
Uncertainty Estimation in Deep Neural Networks for Image
Classification

Master’s Thesis
F.G. Drost
s2934833

August 17, 2020

Internal Supervisor: Dr. M.A. Wiering (Artificial Intelligence, University of Groningen)
External Supervisor: MSc. T. Rozeboom (ZiuZ Visual Intelligence, Gorredijk)

Artificial Intelligence
University of Groningen, The Netherlands

i

Acknowledgement
I would like to thank my supervisors Marco Wiering and Tiemen Rozeboom for their support and ideas
during this research project. I would further like to thank the members of the ZiuZ research team, Chandler
Hatton, Ruben Sluiman - Neurink, Joost Calon, Dries Pruimboom, Ioannis Giotis and Faik Karaaba for
their support and insights during the time I worked on this project. Next, I would like to thank Mark Nauta
and Gerrit Baarda for allowing me the opportunity to conduct this research at ZiuZ Visual Intelligence.
Furthermore, I would like to thank Marie Stadel for supporting me in every single way during the project,
as well as Ivar de Haan for sharing his insights with me and providing some comedic relief. I would also
like to thank my parents for emotionally and financially supporting me throughout my studies. I would
also like to thank the Center for Information Technology of the University of Groningen for their support
and for providing access to the Peregrine high performance computing cluster.

ii

Abstract
For this thesis, we investigated four methods for adding uncertainty estimations to the output of a deep
neural network used for image classification: Two stochastic regularisation techniques, Dropout and Batch
Normalisation, an Ensemble and a novel method named Error Output. All methods, except Error Output,
perform multiple different predictions for a single example to obtain an uncertainty estimate. Error Out-
put trains additional outputs to estimate its error. We trained and evaluated the performance of the four
methods on two separate datasets. We used an additional dataset, on which the networks were not trained,
to evaluate the uncertainty estimations. We found that the training time significantly increased for En-
semble, but not for the other methods. The inference time increased significantly for all methods except
Error Output. Our results show that the uncertainty estimation on its own did not improve our ability to
detect wrong predictions. We did, however, find that Dropout, Batch Normalisation and Ensemble, when
increased inference time and memory requirements allow it, provide useful methods to lower the uncer-
tainty of predictions. Overall, the addition of an uncertainty estimate proves useful for detecting untrained
classes and the mean prediction improves prediction quality in general.

Contents

1 Introduction 1
1.1 Deep Learning . 2
1.2 Model Uncertainty . 2

1.2.1 Application of Model Uncertainty . 3
1.3 Model Uncertainty in Deep Learning . 5

1.3.1 Bayesian Neural Networks . 5
1.4 Image Recognition . 6
1.5 Research Questions . 6
1.6 Thesis Structure . 7

2 Neural Networks 9
2.1 Artificial Neural Networks . 9

2.1.1 Perceptron . 9
2.1.2 Multi-layer Perceptrons (MLPs) . 10

2.2 Supervised Learning . 11
2.2.1 Classification . 11
2.2.2 Regression . 11
2.2.3 Training and Validation . 12

2.3 Likelihood and Loss . 12
2.3.1 Classification . 13
2.3.2 Regression . 14

2.4 Optimisation . 14
2.4.1 Parameter Initialisation . 14
2.4.2 Gradient Descent . 15
2.4.3 Stochastic Gradient Descent . 16
2.4.4 ADAM . 16

2.5 Activation Functions . 16
2.6 Regularisation . 18
2.7 Convolutional Neural Networks . 19

2.7.1 Pooling . 20

3 Uncertainty Estimation for Neural Networks 21
3.1 Types of Uncertainty . 21
3.2 Methods for Approximating Bayesian Models . 21

3.2.1 The Gaussian Process . 22
3.2.2 Stochastic Regularisation Techniques . 23
3.2.3 Monte Carlo Dropout . 23
3.2.4 Monte Carlo Batch Normalisation . 25
3.2.5 Ensemble . 27
3.2.6 From Mean and Standard Deviation to Uncertainty 28

iii

iv CONTENTS

3.2.7 Addition of an Error Output . 29

4 Experimental Setup 31
4.1 Datasets . 31

4.1.1 Messidor-2 . 31
4.1.2 CIFAR10 . 32
4.1.3 MNIST . 33

4.2 Networks . 33
4.2.1 Monte Carlo Dropout . 34
4.2.2 Monte Carlo Batch Normalisation . 35
4.2.3 Ensemble . 35
4.2.4 Error Output . 36

5 Results 39
5.1 Model Performance . 39
5.2 Uncertainty . 40

5.2.1 Uncertainty Method 1 - Standard Deviation . 40
5.2.2 Uncertainty Method 2 - Probability Density Function 41
5.2.3 Scatter Plots . 41
5.2.4 Monte Carlo Dropout . 42
5.2.5 Monte Carlo Batch Normalisation . 43
5.2.6 Ensemble . 45
5.2.7 Error Output . 47

5.3 Discussion . 48
5.3.1 Performance . 48
5.3.2 Uncertainty . 50

6 Conclusion 53
6.1 Summary of Results . 53
6.2 Recommendations for Future Research . 54

Appendices

A Mean Squared Error plotted against the Probability 55

List of Figures

2.1 The XOR problem visualised. No linearly separable line can be drawn to separate both
responses. 10

2.2 An illustration of how the gradient descent algorithm using the derivatives of a function
can be used to follow the function downhill to a minimum (from Deep Learning by Aaron
Courville, Ian Goodfellow, and Yoshua Bengio [5]) . 16

2.3 ReLU v/s Logistic Sigmoid . 18
2.4 Example of a 2-D convolution, where the output is restricted to positions where the kernel

lies entirely within the image. The result is a 3 by 2 matrix of summations. (From Deep
Learning by Aaron Courville, Ian Goodfellow, and Yoshua Bengio [5].) 20

4.1 Examples of the images in the Messidor-2 dataset . 32
4.2 Examples of the ten classes in the CIFAR10 dataset . 32
4.3 Examples of the ten classes in the MNIST dataset . 33
4.4 Architecture of the VGG16 . 34

5.1 Scatterplots for MCDO when the uncertainty is computed via method 1 (standard devia-
tion) and the network is trained on Messidor-2 . 42

5.2 Scatterplots for MCDO when the uncertainty is computed via method 2 (probability den-
sity function) and the network is trained on Messidor-2 42

5.3 Scatterplots for MCDO when the uncertainty is computed via method 1 (standard devia-
tion) and the network is trained on CIFAR10 . 43

5.4 Scatterplots for MCDO when the uncertainty is computed via method 2 (probability den-
sity function) and the network is trained on CIFAR10 . 43

5.5 Scatterplots for MCBN when the uncertainty is computed via method 1 (standard devia-
tion) and the network is trained on Messidor-2 . 44

5.6 Scatterplots for MCBN when the uncertainty is computed via method 2 (probability den-
sity function) and the network is trained on Messidor-2 44

5.7 Scatterplots for MCBN when the uncertainty is computed via method 1 (standard devia-
tion) and the network is trained on CIFAR10 . 44

5.8 Scatterplots for MCBN when the uncertainty is computed via method 2 (probability den-
sity function) and the network is trained on CIFAR10 . 45

5.9 Scatterplots for Ensemble when the uncertainty is computed via method 1 (standard devi-
ation) and the network is trained on Messidor-2 . 45

5.10 Scatterplots for Ensemble when the uncertainty is computed via method 2 (probability
density function) and the network is trained on Messidor-2 46

5.11 Scatterplots for Ensemble when the uncertainty is computed via method 1 (standard devi-
ation) and the network is trained on CIFAR10 . 46

5.12 Scatterplots for Ensemble when the uncertainty is computed via method 2 (probability
density function) and the network is trained on CIFAR10 46

v

vi LIST OF FIGURES

5.13 Scatterplots for Error Output when the uncertainty is raw output of the error nodes and the
network is trained on Messidor-2 . 47

5.14 Scatterplots for Error Output when the uncertainty is computed via the ’true’ error and the
network is trained on Messidor-2 . 47

5.15 Scatterplots for Error Output when the uncertainty is raw output of the error nodes and the
network is trained on CIFAR10 . 48

5.16 Scatterplots for Error Output when the uncertainty is computed via the ’true’ error and the
network is trained on CIFAR10 . 48

A.1 Effect of mean squared error on probability on Messidor-2 test set 55
A.2 Effect of mean squared error on probability on CIFAR10 test set 56

List of Tables

4.1 Division of examples in the Messidor 2 dataset . 32
4.2 Division of examples in the Messidor 2 dataset splitted into a training, validation and test

set. The training set is the only set normalised through augmentation. 32
4.3 Division of examples in the CIFAR10 dataset . 33
4.4 Dropout Rates per layer added to VGG16 . 34
4.5 Overview of the different architectures used for the Ensemble, together with their respec-

tive performance on the ImageNet validation dataset . 36
4.6 Final settings for each method when trained on the Messidor-2 dataset. * Each network

inside the Ensemble is stopped after a different number of epochs. † Error Output is trained
3 times in succession. 37

4.7 Final settings for each method when trained on the CIFAR10 dataset. * Each network
inside the Ensemble is stopped after a different number of epochs. † Error Output is
trained 3 times in succession. 37

5.1 Performance when trained on the Messidor-2 dataset. * The training set caused problems
with batch normalisation due to a lack of variance † Accuracy when the complete trained
network was used without the MCDO or MCBN method 40

5.2 Performance when trained on the CIFAR10 dataset * Accuracy when the complete trained
network was used without the MCDO or MCBN method 40

vii

viii LIST OF TABLES

Chapter 1

Introduction

A critical part of many machine learning (ML) applications is understanding what a model does not know.
An output of a network, even with a high probability, should not directly be assumed to be accurate. Many
factors can cause a network to respond with a high probability to an example outside of the training set,
which can even lead to fatal results [1]. If algorithms can assign an additional uncertainty estimation to
their predictions, decisions that may have severe consequences might be reduced. This would allow for
example physicians in medical environments to assess when the network is giving unreliable predictions.
Leveraging techniques that can assign an uncertainty estimation in the application of deep learning meth-
ods to medical image analysis could accelerate acceptance of deep learning applications among clinicians
and patients [2].

In computer vision existing approaches to model uncertainty include particle filtering and conditional
random fields [3,4]. Deep learning is, however, often mandated to achieve state-of-the-art performance and
the previously mentioned approaches to model uncertainty do not apply to deep learning. Deep learning
classification models often give normalised score vectors which do not necessarily capture model uncer-
tainty [5]. When these models are exposed to data outside of the distribution it was trained on, the network
is forced to extrapolate, which can lead to unpredictable outcomes. Bayesian modelling can, however,
capture uncertainty. Bayesian modeling can model two main types of uncertainty, aleatoric and epistemic
uncertainty. Aleatoric uncertainty arises through noise in the observations (e.g. sensor noise). This uncer-
tainty is inherent in the observations and therefore cannot be reduced with more observations. Epistemic
uncertainty (model uncertainty) arises through uncertainty in the model parameters and the model’s igno-
rance about which model generates the training data. This can be reduced with additional observations
since more data gives a better understanding of the true model that generates the data.

In classification tasks generally aleatoric uncertainty is more important to model since it can’t be cor-
rected for with more data [6]. However, medical data almost never provides enough examples (determining
what is ’enough’ is a hard problem on itself since the variance of the complete data is often unknown),
which keeps modelling epistemic uncertainty important as well.

Combining aleatoric and epistemic uncertainty results in predictive uncertainty (the model’s confi-
dence in its prediction) which takes into account the noise it can and cannot explain away with more data.
Predictive uncertainty is both affected by aleatoric uncertainty (increasing predictive uncertainty in case of
a large measurement error) and epistemic uncertainty (increasing predictive uncertainty for inputs that lie
far away from the training data). Predictive uncertainty is usually obtained by sampling multiple functions
from the model and corrupting them with noise. We can then calculate the variance of these functions on
a fixed set of inputs which yields us the predictive uncertainty.

Bayesian machine learning uses models such as Gaussian processes, which define probability distri-
butions over functions to learn what is the most likely (and unlikely) way to generalise from observed
data. These probabilistic methods offer, through their provided uncertainty, consequentially confidence
bounds which a doctor (or autonomous car) will use in their decision making. These decisions can now
include the conclusion that more (diverse) data is needed to train the model, the model itself needs to

1

2 CHAPTER 1. INTRODUCTION

be changed or perhaps just that some caution is needed in accepting the output. When and how to draw
these conclusions has been extensively studied for Bayesian machine learning [7]. Deep learning models,
mostly viewed as deterministic functions instead of probabilistic, however, require us to sacrifice these
conclusions, causing us to wonder whether a deep model is making a sensible prediction or whether it is
just guessing at random.

However, with a few small changes, many existing deep learning models can give uncertainty informa-
tion as well. This subject is of practical interest for the company ZiuZ Visual Intelligence1, which provided
support in forming this thesis. ZiuZ is currently working on the POLAR project2, which is a collaboration
between Amsterdam Medical Center, Medical Center Leeuwarden and ZiuZ Visual Intelligence. The goal
of this project is to create a product that can advise doctors during a colon exam on whether a polyp is
benign or premalignant. Premalignant polyps can develop into cancer in later stages. In this thesis, we
will compare three existing methods to obtain uncertainty estimates from deep learning models, and also
introduce a novel method.

1.1 Deep Learning
To explain the concepts of deep learning, we have to start with neural networks (NNs). Artificial NNs
are inspired by how biological neurons learn and form networks. NNs are ML models which transform
one or more inputs into one or more outputs through a network with one or more layers. Each layer
consists of neurons which have an activation function and are connected by weights to neurons in different
layers. NNs transform the input(s) through these layers to one or more outputs by propagating activations
throughout the network. Standard feedforward NNs perform a sequence of non-linear transformations, but
layers can also, independently of other layers, have linear element-wise activation functions. Standard NNs
are usually trained by supervised learning, in which the weight parameters connecting the neurons between
layers are tuned in such a fashion that the difference between the predicted output of all transformations
and the ground truth on the known data is minimised. The ability of NNs to learn complex tasks has made
them very successful as an ML method in a wide domain of applications. These include image [8] and
speech recognition [9]. Breakthroughs on these tasks have played a major part in the boom of NN research
since 2012.

A basic deep learning model can be described as an NN model consisting of many layers (possibly
having different activation functions). These layers, or groups of layers, can be seen as building blocks,
specialised for a certain task (e.g. detecting a certain feature). The modularity these building blocks pro-
vide allows for the creation of large varieties of compositions of these blocks. These different architectures
embody the versatility of deep learning models [10]. The advent of deep learning, however, has made it
even more difficult to interpret how a model arrived at its predictions. The increased size of the networks
tremendously increases the number of parameters of the network, which severely hinders the understand-
ing of the network’s inner workings from an outside perspective. Elaborate architectures can be used to
limit the number of parameters, but their complicated designs often hinder understanding as well. This
causes the view of NNs as black boxes to remain.

1.2 Model Uncertainty
Deep learning models can be used for a wide variety of applications such as stock price predictions, cancer
detection from MRI scans, navigation in autonomous vehicles or flower species classification. For an
application like flower species classification, a deep neural network would be trained on a large, annotated
dataset consisting of many examples of different classes of flowers. After successful training, the network

1ZiuZ Visual Intelligence, Gorredijk, The Netherlands
2POLAR stands for POLyp Artificial Recognition

1.2. MODEL UNCERTAINTY 3

should have had its parameters tuned in such a way that it captures the general features that make a certain
flower species that specific species. When presented with a new example of a flower, we can expect the
network to output the corresponding class with a high probability. But what happens when we present this
network with an example of a cat? This is an example of out of distribution test data [11]. After training,
the model has learnt the distribution of each flower species and is able to distinguish them from each other,
but a photo of a cat would lie completely outside of the data distributions it was trained on. Since the model
will always be forced to output probabilities that sum to 1 (in the case of this classification example with
the commonly used Softmax activation on its last layer), we hope that the network will output an even
distribution of probabilities for each output, signalling to the user that its confidence is low. However, due
to the black box behaviour of a trained deep network, this is rarely what happens. A more probable result
would be the model outputting a certain flower species with a rather high probability, because the features
detected in the cat most closely relate to the features found in that flower species. How close (or rather
far) they relate does not matter, an output shall be generated by the network.

A more desirable network would return the prediction, but also return the additional information that
this new example lies outside of the data distribution it has been trained on and therefore has a lower
confidence in this prediction.

Many situations can introduce uncertainty, including:

• The example to be predicted lies outside of the observed data distribution,

• Noise in the data (either in the observed data, the new data, or both), leading to aleatoric uncertainty
(data uncertainty),

• Uncertainty in the model parameters (A large number of different models might explain the ob-
served data, which causes uncertainty about which model to pick to predict with),

• Structure uncertainty (what model structure (for example deep learning architecture) should we
use?)

Uncertainty in the model parameters and structure uncertainty can be combined into epistemic uncer-
tainty (model uncertainty). Data uncertainty and model uncertainty can be used to induce the confidence
the model has in its prediction, its predictive uncertainty.

1.2.1 Application of Model Uncertainty
Uncertainty information is often used in life sciences [12] and is gaining traction in other sciences such as
social sciences [13]. In these areas, the importance of being able to quantify the confidence of the model
is well understood.

POLAR

For systems that make decisions that affect human life, like the polyp detection in the POLAR project, the
importance of understanding the confidence of the model cannot be overstated. This data gives not only
insight for the practitioner using the system, but also for the developer. Recognising that the test data is
far from the training data gives insight into how the model can be improved by for example augmentation
or the gathering of more data.

A practitioner will not be an expert on the workings of the automatic polyp detection and recognition
system. When the trained system is deployed, the practitioner will be told that this new system gained a
(for example) +99% accuracy on the test data. The practitioner will not know what was included in this
test data, and even if the practitioner did, will not know what features of each class the system uses to
make its decision. The practitioner will therefore not have a reason to question the classifications provided
by the system when the input deviates from the data distribution it was trained on. This could lead to
life-threatening consequences and a loss of confidences in the solutions these systems could provide.

4 CHAPTER 1. INTRODUCTION

Autonomous vehicles

Autonomous vehicles can range from vacuum robots to rockets that can land themselves. They can be
divided into two groups, a group of vehicles that is rule-based and a group of vehicles that can learn to
adapt to a changing environment. Both groups can make use of machine learning. The first group might
make use of feature extraction while the second group might use reinforcement learning (RL) to adapt to
a constantly changing environment.

One of the most promising forms of autonomous vehicles are self-driving cars. Self-driving cars make
heavy use of sensory input to map the world around them. Low-level feature extraction is used on cameras,
LIDAR, RADAR or any other raw sensory inputs [14]. These features, among other things, can be used
for image segmentation and object classification. The outputs of these segmentations or classifications are
in turn used by higher-level decision-making algorithms. These high-level decision-making processes can
again be trained through reinforcement learning or they can be expert systems relying on fixed sets of rules
(e.g. yield to vehicles coming from the left).

The hierarchical structure of this system allows mistakes in lower layers to propagate up to the final
decision making. For example, mud on a camera sensor can impact the feature extractors, or a new
uniquely styled car might not be recognised as a car in a classifier. In the real world many new and unique
situations, which the system has not been trained on, can be present. If the outputs of all parts in the
system’s hierarchy would give an uncertainty alongside the regular output, the high-level decision making
might not take potentially dangerous actions but rather prompt the user preemptively to take over control
so fatal results can be avoided [1].

Active Learning

Outside of safety, model uncertainty can also be used to improve the process of constructing a successful
model. Many machine learning approaches, like deep learning, require large amounts of labelled data
to generalise well. It is often the case that more complex tasks require more complex models, which in
turn require more data. Gathering this data can be a long and expensive process in which experts have to
manually label each example.

A possible solution for this problem could be active learning [15]. The key idea behind active learning
is that a machine learning algorithm itself is allowed to choose the training data it learns from. The active
learning algorithm may ask an expert to label unlabelled instances that the algorithm deems to be most
informative to improve itself. The choice of which instances to deem most informative is done through an
acquisition function. Many acquisition functions make use of model uncertainty. When active learning,
for example, tests its predictions on unlabelled data, it might have high confidence that a part of the data
fits in the data distribution it is currently trained on, but it might also have a high uncertainty for a different
part of the data. This last part then gets sent to an expert who could classify it as a completely new class the
model was not yet trained on, or as an existing class after which the model will expand its representation
of the data distributions for those particular classes.

Reinforcement Learning

Reinforcement learning (RL) algorithms learn a task by trial and error [16]. They try a certain action,
evaluates their new states and updates their decision-making process accordingly. If the action did not
result in reward, or in penalty (for example a robot vacuum cleaner bumping into a wall), the algorithm will
learn over time to not take those actions. This process, however, can be very time consuming, certainly
if the training takes place in the real world. Too many mistakes might break the robot, or too much
unnecessary exploration might wear out the physical system.

A RL system usually uses Q-value functions to try to calculate the quality of each action the agent can
take at a given moment. These functions can never calculate the true quality of the actions since the sensor
can only model a limited understanding of the environment and the environment can constantly change.

1.3. MODEL UNCERTAINTY IN DEEP LEARNING 5

Recent advancements in RL make use of deep learning (resulting in deep RL) to produce impressive results
in for example the playing of games [17]. These types of networks use NNs to approximate the Q-value
function. Greedy search is often used to select the best action the agent can take with some probability
and to otherwise explore. However, when the RL algorithm also uses uncertainty information, the agent
can decide when to exploit and when to explore similarly to active learning. Additionally, uncertainty
information over the Q-value function can be used to learn faster as well [11].

1.3 Model Uncertainty in Deep Learning
Above we have established some of the many uses for uncertainty estimations. However, most deep
learning models do not possess the ability to offer such information.

Regression models for example output a single vector representing the mean of the data, but give
no confidence in this vector. Classification models output a probability vector (often a softmax output)
which should not be mistaken as model confidence. The sum of these outputs is always 1, so the model
cannot output ’no confidence’ in all of the possible outputs. Due to the nature of the softmax function,
where the data distribution of the train set should be captured between the two ends of the softmax curve,
unjustifiably high confidences can be given for points far away from the training distribution. For these
new points, the system will usually extrapolate from the most outer reaches of the training distribution
(these outer reaches will be the closest to the real distribution of the test set). However, these outer points
of the training data have usually received a very high or very low probability due to the shape of the
softmax function. Extrapolation will result in the same high probability to be (wrongfully) given to the
new test points.

However, the output after passing the complete distribution through a softmax will give us uncertainty
information about extrapolated results far from the training data. Deep learning models generally do not
use distributions, but rather try to find the optimal point estimate for the weights in every node. Deep
learning models are generally underspecified by the data and many different (but all high performing)
models with differently tuned parameters can exist. Between these many different models that could
explain the data lies the uncertainty that is not captured by only one, point estimate, model. Deep learning
models are, however, related to a family of probabilistic models that do use probability distributions, the
Gaussian process [18].

1.3.1 Bayesian Neural Networks
If one would place a probability distribution over each weight in a neural network, a Gaussian process
can be recovered in the limit of infinitely many weights [19]. The most prominent weaknesses of the
Gaussian Process, however, is that it suffers from cubic time complexity O(n3) (where n is the number of
training examples) because of the inversion and determinant of the n×n kernel matrix [20]. This limits the
scalability of the Gaussian Process and makes it unaffordable for large-scale datasets. However, model
uncertainty can also be obtained when placing a distribution over a finite number of weights. These
models are called Bayesian neural networks [21]. Various techniques using the basic ideas of Bayesian
neural networks have been introduced over the years, with various degrees of success [22]. Often these
models are difficult to work with and introduce many more parameters to be trained, a trade-off many
members of the deep learning community are not willing to take.

A practical solution should scale well with large data, as well as complex models and should apply to
the widely studied and developed deep learning architectures already available. Several methods have been
introduced that satisfy these constraints, including Monte Carlo Dropout (MCDO) [11] and Monte Carlo
Batch Normalisation (MCBN) [23]. These two methods make use of stochastic regularisation techniques
(SRTs). SRTs are techniques for model regularisation. Deep neural networks are usually very complex
models with millions of parameters. This complexity allows them to learn the underlying distribution of

6 CHAPTER 1. INTRODUCTION

almost all training data but also allows them to overfit on the same data. SRTs penalises the weight matrices
of the nodes in a network as to make the model less sensitive to noise and therefore to generalise better.
The process of SRTs can be exploited to gain uncertainty by alternating which weights get penalised. Each
unique combination of penalised weights forms its own unique network, with therefore a unique output.
The mean of multiple of these outputs can be used as the final prediction and the variance can be used as
the uncertainty of that prediction.

Exploiting SRTs for uncertainty estimates are practical with large models and data. They work with
existing approaches and therefore apply to a wide variety of tasks including image classification, rein-
forcement learning and active learning.

1.4 Image Recognition
Image recognition (also referred to as image classification, or broader object recognition) is the computer
vision task of determining the category of an object in an image. One of the first applications of image
classification was optical character recognition. The widely popular convolutional neural network (CNN)
was first developed to aid the object recognition task of handwritten zip code recognition [24]. CNNs do
not require handcrafted feature extractors, but can learn useful feature extractors themself. A CNN also
allows features of an object to be anywhere in the input instead of expecting them to be at certain locations
in the data that it has been trained on. This generalisation is especially useful for image recognition, where
we cannot expect every object to be always placed the same in every image. The next big advance in image
recognition came through the advent of (feasible) deep learning [8, 25, 26]. In 2012 AlexNet, one of the
first deep NNs to utilised a deep CNN trained on GPUs, reached a much lower score on the ILSVRC2012
recognition challenge compared to the previous state-of-the-art [8]. This spawned renewed interest in the
field and led to CNNs being applied to numerous tasks, such as computer-aided diagnosis [27], activity
recognition [28], facial recognition [29] and automatic image annotation [30].

1.5 Research Questions
In this thesis, we investigate how an uncertainty estimation can be incorporated into existing deep learning
architectures. Four methods (all using widely available techniques that require minimal adjustments to
existing architectures) will be compared with regards to their performance, memory requirements and
accuracy.

The problem this thesis will be examining can be framed into the following research question:
Which method provides the best uncertainty estimations in deep neural networks for the classi-

fication of images?
This question can be decomposed into the following sub-questions:

• Which method yields the best performance? Here, performance will be measured in total training
time, the time required to classify one new image (inference time), the accuracy of the predictions,
the accuracy of the uncertainty estimate, the total model complexity and the memory requirements.
Total training time is for example important in an active learning environment where new classes
or data might constantly be added. Inference time is important in for example autonomous vehicles
where the system needs to be able to respond quickly. The accuracy of the predictions or uncertainty
should also not suffer under the addition of the uncertainty estimation. The model complexity and
memory requirements should be small enough to run inference on relative cheap/simple hardware
when used in for example in a mobile application.

• Does testing on a different image dataset clearly show uncertainty? This will test the general-
isation of the uncertainty. Ideally, we want the uncertainty estimate to be perfectly able to detect

1.6. THESIS STRUCTURE 7

which data classes were part of the training data and which not. All out of distribution data should
therefore return a high uncertainty estimate.

1.6 Thesis Structure
The rest of the thesis is structured as follows: Chapter 2 discusses the theoretical background, training and
design of neural networks. Chapter 3 discusses how we can implement uncertainty estimates for neural
networks. It starts by explaining different types of uncertainty and the Bayesian approach. After this, it
describes the four methods of uncertainty estimates that are the core of this thesis and draws a connection
with the Bayesian approach. In Chapter 4 the experimental setup is described, including a description of all
the used datasets and how the four methods were implemented. Chapter 5 shows the results and discusses
their implications. Finally, Chapter 6 concludes by answering the research questions. Furthermore, we
give recommendations for future research.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Neural Networks

2.1 Artificial Neural Networks

An Artificial Neural Network, often simply referred to as a Neural Network (NN), is a computational
model inspired by the way biological neural networks process information. An NN consists of a collection
of connected nodes (also referred to as neurons or units), which loosely model the neurons in a biological
brain. Like the synapses in a biological brain, the connections between nodes transmit information from
one node to another. Each node can have multiple incoming and outgoing connections. During one
forward-pass through the network, a certain node can receive one input per incoming connection and
can output once to all its outgoing connections. Through an activation function (Section 2.5) the nodes
determine the strength of these outgoing signals. A node can have a certain threshold that has to be crossed
before any output signal is sent. In practice, these signals are real numbers and the activation function often
is a non-linear function of the sum of inputs.

Each connection has a certain weight. This weight determines the strength of the signal and can be
compared to the strength of connections between neurons in a biological brain. For biological neurons, the
more often a connection is used, the stronger the connection gets. Similarly, for artificial neurons, changing
the weights of the connections allows the network to learn certain patterns. To do so, the network considers
examples and adjusts it weights until a certain goal (Section 2.3) is met. The weights of connections that
bring the output closer to the goal will be increased, while weights that produce wrong results will be
decreased.

Typically nodes are grouped in layers, with generally no connections between nodes in a certain layer
but only between layers. Each layer can be designed to perform a certain task by applying specific transfor-
mations on its input. Signals travel from the first (input) layer to the last (output) layer, but might traverse
the network multiple times depending on the architecture of the network. The architecture refers to how
the initial network is designed, e.g. how many layers the network has, how these layers are designed and
how they are connected.

One of the first attempts at creating an artificial NN was done by Farley and Clark [31] in 1954.
They simulated a network following Hebbian learning. A few years prior, D.O. Hebb created this learning
hypothesis based on the mechanism of neural plasticity [32]. His theory is often summarized as ”Cells that
fire together, wire together”. This idea sets the basis for how NNs increase the weights of the connections
that produce wanted output and decrease those that produce unwanted output.

2.1.1 Perceptron

The first binary classifier, a function which can decide whether or not an input belongs to a specific class,
was developed by Rosenblatt as the perceptron [33]. The perceptron maps an input vector x to a binary

9

10 CHAPTER 2. NEURAL NETWORKS

output scalar through the following function:

f (x) =

{
1 if w ·x+b > 0
0 otherwise

, (2.1)

where input vector x and weight vector w have real values, and b is the bias. A binary classifier could for
example be used for spam detection. The input vector x could consist of a list of the frequency certain
words are found in an email, which is used to predict the binary target value y of being classified as spam
or not. A prediction ŷ = 1 could mean spam, while ŷ = 0 not spam. The weight matrix w (with one weight
per input dimension) determines how much the frequency of each word in the input list x influences the
outcome, while the bias b determines the magnitude of the dot product w · x that is required for positive
classification.

Rosenblatt’s perceptron training rule provides an iterative method to find the weights that produce a
correct classification. For linearly separable problems (where a hyperplane exists in the input dimensions
that can separate the data points of the positive and negative class), convergence is theoretically guaranteed.

However, a single-layer perceptron cannot solve input vectors that are not linearly separable [34]. The
most prominent example of this limitation is the exclusive-or (XOR) problem. Here, given two input
booleans, the perceptron should provide a positive response if, and only if, only one of the inputs is
positive. No linear line can be drawn to separate both cases (see Figure 2.1).

Figure 2.1: The XOR problem visualised. No linearly separable line can be drawn to separate both
responses.

2.1.2 Multi-layer Perceptrons (MLPs)
The problem of single-layer perceptrons inability to solve not linearly separable inputs was solved by
adding one (or multiple) layers between the input and output layer. The addition of a single extra layer
(a hidden layer) gives this new multi-layer perceptron the ability to solve the XOR problem and other
not linearly separable inputs. MLPs do not require assumptions as to the distribution of the data or the
equality of the covariance matrices of the groups to be classified. The number of nodes in each layer is
called its width, the number of layers in an NN is called its depth. Often only the number of hidden layers
are counted, since all networks have an input and output layer. Consequently, an NN with a large depth
is called a deep NN. Similarly to Equation 2.1, the lth layer of a MLP can be written as the following
function:

f (l)(x;W(1),b(l)) = a(W(l)>x+b(l)), (2.2)

where W(l) is the weight matrix of layer l that performs a linear transformation on the input matrix x
and a represents the pointwise activation function (section 2.5). All weights are arranged in the weight

2.2. SUPERVISED LEARNING 11

matrix W(l) ∈Rm×n, m is the number of input dimensions and n is the number of nodes in the layer l. The
activation function determines what the output of a node looks like. Equation 2.1 uses a step function as
activation function. This activation functions ensures that either the node does not output at all (i.e. 0), or
the output is the maximum value it can be (i.e. 1). Many different activation functions can be chosen as
we discuss in section 2.5.

The addition of (one or more) hidden layers with non-linear activation functions allows MLPs to
approximate non-linear functions. This makes MLPs a universal function approximator, allowing an MLP
with one or more hidden layers and a sufficient number of nodes theoretically capable of representing any
continuous function [35].

2.2 Supervised Learning
A vast number of machine learning applications use supervised learning. Supervised learning is the pro-
cess of learning the mapping function from the input X to the output (e.g. a class or a numerical value)
by exposure to labelled examples. Supervised learning can be seen as a teacher supervising the learning
process. It will provide examples containing a ground truth (a label that is known to be correct, for ex-
ample, given by an expert) as to what the desired output of this example should be. Through a stochastic
learning process, the network will eventually be able to approximate a function that can map the input to
the correct output [36].

Next to supervised learning, the other two main branches of machine learning are unsupervised learn-
ing and reinforcement learning. Unsupervised learning has to the goal to identify structures in unlabelled
data, while reinforcement learning studies how artificial agents can learn to adapt their behaviour to their
environment by interaction. This thesis, however, will focus on supervised learning.

Supervised learning can be split into two subcategories: classification and regression.

2.2.1 Classification
During training, a supervised learning classification algorithm (a classifier) will be given data points with
an assigned category (the ground truth). The classifier then has to assign the correct class to an input value
based on the train data. The train dataset can be written as:

D = {X,Y}= {(x(i),y(i))}N
i=1, (2.3)

where x(i) denotes the input vector to the classifier, y(i) ∈ {1, ...,C} denotes the corresponding ground truth
class from the C different classes. If C = 2, we have a binary classifier again. Often the ground truth labels
are written as a one-hot vector to allow a classifier to output multiple different classes for a single input
(multi-label classification). An one-hot vector is the length of the number of classes and contains a 1 for
the representing class it is labelled as, and zeros for all other classes. This changes the description of the
dataset as follows:

D = {(x(i),y(i))}N
i=1, (2.4)

where y(i)) is now a one-hot vector.
Multi-label classification could for example be used in the classification of animal species, where we

not only want to classify the animal species (e.g. a cat) but simultaneously the animal’s gender as a class
as well.

2.2.2 Regression
Regression is a predictive statistical process where the network attempts to approximate a function that
maps the relation between dependent and independent variables. This is similar to classification, but

12 CHAPTER 2. NEURAL NETWORKS

instead of outputting one or more classes, the network outputs a continuous number. This number could
for instance be a salary, a test score, a predicted stock market price or a life expectancy. The dataset for
regression can be described in the same fashion as the dataset for classification with a one-hot vector is
described:

D = {(x(i),y(i))}N
i=1, (2.5)

where y(i)) is now a continuous variable.

2.2.3 Training and Validation
All supervised learning algorithms rely on labelled data for training and evaluation of the performance.
The validity of these labels is vital because the algorithm will learn to match the input to the label re-
gardless of the label being correctly assigned. The dataset of labelled data is usually divided into three
mutually exclusive subsets.

The first, and usually the largest, subset is called the training set. The training set contains the only
examples the network can use during training to approximate the function that maps these input examples
to the desired output labels. The second subset is called the validation set and contains examples that the
network can measure its performance against next to the training set. The difference with the training set
is that the network does not have access to these examples like it does for the training set. Therefore the
network tries to get a high accuracy score on both the training set and validation set, but can only use the
features found in the training set to do so. The validation set can also be used to optimise the hyperpa-
rameters of the network and the training procedure, i.e. the parameters that are set before the optimisation
starts. The last subset is called the test set and is used to test the performance of the network after training
is completed. Since the network has not seen any of the examples in this subset, the network can only
perform well on this set when it has learned an accurate approximation of the underlying distribution that
explains the data.

Training a feedforward NN through supervised learning can be done through backpropagation [5].
Backpropagation efficiently tries to fits the NN by computing the gradient of the loss function with respect
to each weight in the network. It does so through stochastic gradient descent (SGD). We will have a more
detailed look at the process of backpropagation in section 2.3 and section 2.4.

2.3 Likelihood and Loss
Training an NN through SGD requires a suitable loss function. As discussed previously, a feedforward NN
(MLP) with one or more hidden layers and sufficient many nodes is capable of representing any continuous
function. The problem, however, is that, even when it is proven that a suitable configuration of weights
for a certain problem exists, there is no mathematical equation that directly leads to these weights.

We can, however, define criteria that evaluate how well a certain configuration solves the current
task. A function that captures these criteria is referred to as the objective function. Typically, with NNs,
we seek to minimise the error. As such, the objective function is often referred to as the loss function
(or cost function) and the value calculated by this function as the loss. The loss function calculates the
numeric loss for a certain configuration of the model parameters on the test set and often the validation set
(when available). If the weights were configured in such a fashion that all examples produce their correct
ground-truth label, the loss function would be optimal and the loss would be 0. Different tasks may value
their output differently and therefore require a specific loss function. For example, a regression task may
consider a range of values around the ground truth as correct or a classification task might value a correct
prediction of a certain class more strongly than another class. The task of the loss function is, therefore, to
distil all these aspects of the network into a single number in such a way that improvements (a decrease) to

2.3. LIKELIHOOD AND LOSS 13

that loss number are a sign of a better network. It is, however, noteworthy that a perfect loss of 0 does not
mean that the network has found the perfect configuration for the problem at hand. The loss can only be
calculated on a finite subset of the true (but unknown) data-generating distribution of the data to predict.
A perfect loss on that finite subset means that a function is found that perfectly describes the examples in
the subset, but does not mean that this function can be generalised to the true (often infinite) distribution
of examples representing the data. A perfect loss may therefore very well be a sign of over-fitting.

2.3.1 Classification

The output of a classification task is usually a vector of probabilities for each class. Each example pre-
sented to the classifier will output predicted probabilities for belonging to each class c as follows:

Pmodel(y(i) = c|x(i);θ), (2.6)

where θ represents the parameters of the network.
Next, the conditional likelihood function describes the probability that the network assigns to a dataset

D:
L(θ,D) = P(Y|X;θ), (2.7)

which can be written as:

L(θ,D) =
N

∏
i=1

Pmodel(yi|x(i);θ). (2.8)

This assumes the data to be independently and identically distributed (i.i.d.) [5]. We want to select
the parameters θ that have the highest likelihood of explaining the data D . Equation 2.8 shows that
for a classification task that this is the case when the network predicts high probabilities to classes that
are the ground truth labels y(i), given the input vector x(i). This product over many probabilities can
be inconvenient for a number of reasons. For example, it is prone to numerical underflow [5]. A more
convenient equation is the negative log-likelihood (NLL) as follows:

NLL =−
N

∑
i=1

logPmodel(y(i)|x(i);θ). (2.9)

We use the NLL since the range of the positive log-likelihood is (−∞,0], whereas the NLL lies in
the range [0,∞) so a perfect network would have a loss of 0. The NLL is also called the cross-entropy
error function when used for classification problems [37]. We can now write the maximum likelihood
estimation (MLE) for the networks parameters as follows:

θML = arg max
θ

N

∏
i=1

Pmodel(y(i)|x(i);θ) (2.10)

= arg min
θ
−

N

∑
i=1

logPmodel(y(i)|x(i);θ). (2.11)

The MLE for θ can derive specific functions that are good estimators for different parameters of the
network. Consider a subset of m examples X = {x(1), ...,x(m)} drawn independently from the true but
unknown data-generating distribution pdata(x).

Let pmodel(x;θ) be a parametric family of probability distributions over the same space indexed by θ.
This means that pmodel(x;θ) maps any configuration of x to a real number estimating the true probability
pmodel(x) [5].

14 CHAPTER 2. NEURAL NETWORKS

2.3.2 Regression
The most common loss function for regression is the mean squared error (MSE). Using the MSE for a
regression problem is in effect the same as using the cross-entropy loss (or the NLL for that matter).
Any loss consisting of an NLL is a cross-entropy between the distribution of the training set and the
probability distribution defined by the network [5]. For example, the MSE is the cross-entropy between
the distribution of the training set and a Gaussian model.

Given a dataset with N examples, the MSE is obtained by taking the average of the squared error
between the predicted ŷ(i) and the corresponding ground truth target y(i):

MSE =
1
N

N

∑
i=1

(y(i)− ŷ(i))2. (2.12)

The MSE incorporates both the variance and, if not for an unbiased estimator, the bias of the estimator.
The error is squared to increase the impact of large deviations compared to the mean absolute error (MAE).
Minimising the MAE or the MSE is equivalent to minimising the L1 (also known as the Manhattan
Distance) norm or the L2 (also known as the Euclidean) norm respectively. The MSE is always positive
and a number closer to zero represents a better model (in measurable terms defined by the distribution of
the (limited) dataset).

2.4 Optimisation
Neural networks are notoriously difficult to optimise. It is not uncommon to invest days to months on
hundreds of machines to solve a single instance of a neural network training problem. The loss functions
that need to be optimised are non-convex and there are no theoretical guarantees about the performance of
the most popular functions available [38].

Because this problem is so important and expensive, a specialised set of optimisation techniques have
been developed. In general, these techniques try to find the network parameters θ that significantly reduce
a cost function J(θ). The cost function typically is a performance measure that evaluates on the entire
training set as well as a validation set to account for generalisation.

The optimisation of NNs is usually optimising indirectly. Rather than optimising for the best perfor-
mance P on the training set, we want the best performance on a novel test set. We, therefore, optimise P
only indirectly by reducing a cost function J(θ) in the hope that it will also improve J. For pure optimisa-
tion reducing J would be the goal itself.

Typically, the cost function can be written as an average over the training data as follows:

J(θ) = E(x,y) p̂dataL(f (x;θ),y), (2.13)

where L is the per-example loss function, f (x;θ) the predicted output of x, and p̂data the training distribu-
tion. Note that this cost function is for supervised learning, hence the addition of y.

2.4.1 Parameter Initialisation
Each weight and bias in an NN needs to have a certain value before training can start. If each weight is
initialised with the same value, each node connected to the same inputs would contribute to the output in
the same way and therefore no optimisation regarding the contribution of individual nodes can be done.
Therefore, all parameters of an NN are usually randomly initialised. This way each node can be tuned
through backpropagation after each training step (each epoch).

Calculating the activation of each layer through matrix multiplication could, however, lead to un-
expected problems with randomly initialised weights. A too-large difference between the variance of

2.4. OPTIMISATION 15

activation between layers in an NN could cause the activation gradient for a large enough network to be-
come infinitesimally small. Forcing a standard deviation for each layer of about 1 could still cause this
problem [39].

A common initiation method to omit these problems is to initialise a layer’s weights to values chosen
from a random uniform distribution as proposed by He et al. as follows [40]:

wlk N (0,
√

2/nl), (2.14)

where wlk is the value of the kth weight in layer l and nl is the dimensional of the input to the nodes in
layer l. He et al. initialise all biases as zero.

2.4.2 Gradient Descent

Gradient descent is an algorithm to minimise the loss function. Suppose we have a function y = f (x),
with y and x real numbers. The derivative, that gives the slope of f (x) at the point x, is denoted as f ′(x).
This specifies how to scale a small change in the input to obtain the corresponding change in the output:
f (x+ε)≈ f (x)+ε f ′(x). The derivative can help us minimise a function because it can tell how to change
x to make a small improvement in y. For example, f (x−εsign(f ′(x))) is less then f (x) for a small enough
ε. From this, we can derive that we can reduce f (x) by moving x in small steps with the opposite sign of
the derivative. This is called gradient descent [41]. See Figure 2.2 for an example of gradient descent.

When the derivative becomes zero (f ′(x) = 0), no information can be gathered as in what direction
to move. These points are known as critical points, or stationary points. When at a critical point f (x) is
lower than all neighbouring points, and f (x) can no longer be decreased, a local minimum is reached. If
the value of f (x) at this point is the lowest value f (x) can get, a global minimum is reached. Not every
local minimum is a global minimum. Large NNs often have many local minima that can be difficult to
leave or very flat areas that can be hard to traverse. We therefore often try to find a local minimum with an
acceptable low value of f , since finding the actual global minimum might be an impossible task.

NNs often have multiple inputs, so we have to use partial derivatives. The partial derivative ∂

∂xi
f (x)

measures how f changes when only the variable xi increases at point x. The gradient of f is now a vector
containing all the partial derivatives, denoted by ∆x f (x). The increased dimensions now mean that a
critical point is a point where the derivative of every element of the gradient is zero.

We can now find a new, better, point proposed by the gradient descent algorithm as follows:

x′ = x− e∆x f (x), (2.15)

where e is the learn rate. The learn rate is a positive scalar determining the size of the step towards the
new point. If the learn rate is too big, the NN cannot fine-tune to find a good solution. Set it too small and
the NN will get stuck in the very first local minima while training very slow as well.

The learn rate can also vary during training, as with learn rate annealing. Here, the learn rate starts
high to avoid local minima and to speed up training, while slowly decreasing (cooling off) to fine-tune the
parameters as a good solution nears.

16 CHAPTER 2. NEURAL NETWORKS

Figure 2.2: An illustration of how the gradient descent algorithm using the derivatives of a function can
be used to follow the function downhill to a minimum (from Deep Learning by Aaron Courville, Ian
Goodfellow, and Yoshua Bengio [5])

2.4.3 Stochastic Gradient Descent
Almost all NNs are trained by a variation on gradient descend: stochastic gradient descent (SGD). Since
the non-linearity of an NN causes most loss function to become non-convex, they are usually trained using
an iterative, gradient-based optimiser. This optimiser merely tries to drive the cost function to a low value,
instead of convex optimisation algorithms that have a global minimum guarantee (e.g. for support vector
machines).

SGD applies to non-convex loss functions, has no convergence guarantee and is, as we saw in section
2.4.1, sensitive to the initialisation of the parameters. SGD uses a mini-batch (typically varying between
1 and hundreds of examples per batch) instead of the complete training set as with gradient descent.
The larger the mini-batch, the more computations and memory is required, but also the more precise
the update is. Larger mini-batches may, however, due to their increased precision, end in steeper local
minima [42]. Flatter local minima are often more desirable because they are less specific to the training
data and therefore generalise better.

The addition of momentum may accelerate the SGD process and can help to avoid local minima. A
momentum term is added to the gradient that increases the size of the update in the direction of the last
few updates.

2.4.4 ADAM
Adam (derived from ”adaptive moments”) is a popular adaptive learning rate optimisation algorithm [43].
Adam can be seen as a variant on the combination of Root Mean Square Propagation (RMSprop) algorithm
and SGD with momentum. RMSprop improves the SGD procedure by keeping track of an exponentially
decaying second moment (the pointwise square) of the gradient and dividing this gradient by the square
root of this moving average [44]. Adam also corrects for the bias in the second moment during early
episodes of training [5]. Adam is generally regarded as being robust to the choice of hyperparameters.
The algorithm for ADAM can be seen in Algorithm 1.

2.5 Activation Functions
The activation function computes the output of the unit in each hidden layer of an NN. An example of
an activation function can be seen in Equation 2.2. Many different variations exist, and NN architectures

2.5. ACTIVATION FUNCTIONS 17

Algorithm 1: The Adam algorithm
Require: Step size ε (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, ρ1 and ρ2 in [0, 1). (Suggested defaults:
0.9 and 0.999 respectively)

Require: Small constant δ used for numerical stabilisation (Suggested default: 10−8)
Require: Initial parameters θ

Initialise 1st and 2nd moment variables s = 0, r = 0
Initialise time step t = 0

while While condition do
Sample a mini-batch of m examples from the training set {x(1), ...,x(m)} with corresponding
targets y(i).

Compute gradient: g← 1
m∇θ ∑i L(f (x(i);θ),y(i))

t← t +1
Update biased first moment estimate: s← ρ1s+(1−ρ1)g
Update biased second moment estimate: r← ρ2r+(1−ρ2)g�g
Correct bias in first moment: ŝ← s

1−ρt
1

Correct bias in second moment: r̂← r
1−ρt

2

Compute update: ∆θ =−ε
ŝ√
r̂+δ

(operations applied element-wise
Apply update:θ← θ+∆θ

end

often use different activation functions for specific layers in the network. A default choice of layer is often
the rectified linear unit (ReLU) with the activation function:

g(x) = max{0,x}, (2.16)

where x represents the input to the unit. A visual representation of the ReLU function can be seen on
the right side of Figure 2.3. This activation is very similar to a linear function with the difference that it
outputs a zero for all negative values. This causes a large derivative when the unit is active, with a large
but consistent gradient. Compared to activation functions that introduce second-order effect the second
derivative of the ReLU is almost zero everywhere and 1 everywhere the unit is active, causing the gradient
direction to be very useful for learning [5].

The ReLU activation function has largely replaced the sigmoid activation function:

σ(x) =
1

1+ ε−x , (2.17)

A visual representation of the sigmoid function can be seen on the left side of Figure 2.3. The activation
from the sigmoid function ranges in an s shaped curve between 0 (for large negative values) and 1 (for large
positive values). The derivative of the sigmoid function is bell-shaped with its maximum for x = 0.5. A
drawback of sigmoid is that the function becomes saturated for very small or very large input values, with a
derivative close to zero. As we saw in Section 2.4.1, very small derivatives can cause the backpropagation
algorithm to break for NNs with many layers. When the derivatives are too small, no information about
the contribution of previous layers can be extracted anymore. This causes the algorithm to not be able
to determine in which direction to change the parameters. This phenomenon is known as the vanishing
gradient problem.

The ReLU activation function holds three advantages over the sigmoid activation function.
Firstly, the computation is faster since ReLU is in effect a linear operation.
Secondly, it does not saturate, so it does not cause the vanishing gradient problem.

18 CHAPTER 2. NEURAL NETWORKS

Finally, ReLUs can introduce sparsity. Sparsity arises with the activation is smaller or equal to zero.
More optimisation operation on sparse matrices exist which improve the performance and robustness of
the NN due to for example the disentanglement of information [45].

The output layer of classifiers usually uses the softmax activation function [5]. The softmax function
computes the probabilities associated with a multi-class distribution. The softmax function is defined as:

softmax(x)i =
e(xi)

∑
n
j=1 e(x j)

. (2.18)

Here, the standard exponential function gets applied to each element xi of the input vector x and then
normalised by dividing by the sum of all these exponentials. The normalisation ensures that the sum of all
components in the output vector is 1.

Figure 2.3: ReLU v/s Logistic Sigmoid

2.6 Regularisation
A core problem of training NNs is how to train an NN that not only performs well on the training data,
but also on new inputs. An NN that performs well on new inputs is said to generalise well but is over-
fitted when it only performs well on its training data. The parameters in an over-fitted model are too
specifically tuned for the details of the examples in the training set, instead of tuned to capture the general
underlying pattern that is shared by all examples of a certain class. Strategies that are explicitly designed to
reduce the test error, possibly at the expense of the training error, are known as regularisation techniques.
Many regularisation techniques exist. Some add extra terms to the objective function that can be seen
as a soft constraint on the parameter values. These terms add constraints and penalties that can improve
generalisation when chosen carefully. Some use specific kinds of prior knowledge, while others may
express a general preference for a simpler model. Others again, known as ensemble methods, combine
multiple hypotheses that explain the data [5].

For deep learning, most regularisation techniques are based on regularisation estimators. Regulari-
sation of an estimator works by trading increased bias for reduced variance, preferably trading a small
increase in bias for a large decrease in variance. Three situations can occur when training:

1. Training excludes the true data-generating process. This causes underfitting and introduces bias.

2. Training matches the true data-generating process.

3. Training includes the true-generating-process but also many other possible generating processes.
Variance rather than bias dominates the estimation error.

The goal of regularisation is to get from situation three to situation two.
In practice, however, an NN might not include the target function or the true data-generating process

(or even a close approximation). The true data-generating process is rarely available for checking if the
model includes this process or not. For a complex task that most (deep) NNs are used for, like for example

2.7. CONVOLUTIONAL NEURAL NETWORKS 19

image classification, the true data-generating process will almost certainly be outside the parameters of the
network. Finding the true data-generating process for these tasks might include simulating the complete
universe to capture all variances.

Acknowledging this means that the best model that we can find usually is a large model that has
been regularised properly. In section 3.2.2 till section 3.2.4 we will go over some of the most popular
regularisation techniques currently used.

2.7 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a variation on NNs that are specialised for processing data
with a grid-like topology. This includes time-series data (a 1-D grid taking samples at regular time in-
tervals) or image data (2-D grid of pixels). CNNs use the linear convolution operation instead of general
matrix multiplication for at least one of their layers.

For a 2-D grid of pixels, like the image data we use in this thesis, we can write the convolutional
operation as follows:

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i+m, j+n)K(m,n), (2.19)

where i and j denote the indexing of the resulting matrix, I is a two-dimensional input image and K the two-
dimensional kernel of m by n. The resulting matrix is often called the feature map. The multi-dimensional
input array I and the multi-dimensional kernel array K of parameters that are adapted by the learning
algorithm, are referred to as tensors. The convolutional operation normally is an infinite summation, but
since each element of the input and kernel must be explicitly stored separately, we assume them to be zero
everywhere except for the finite points for which we store the values. This results in Equation 2.19. A
visual example of a convolution operation can be seen in Figure 2.4.

CNNs improve NNs in a few aspects [5]:

• Convolutional layers have sparse interactions with their input.

• CNNs share parameters for more than one function in the network.

• Convolutional layers are equivariance.

• Convolutions allow the input to be of variable size.

First, when the kernel of a convolutional layer is smaller than the input, not every input node interacts
with every output node (spares interactions). This allows convolutional layers with a relatively small
kernel size (tens to hundreds of pixels big) to detect small, meaningful features such as high contrast
areas throughout an input image consisting of thousands or millions of pixels. This allows for fewer
parameters in the network which reduces its memory requirement and improves its statistical efficiency
and performance.

Secondly, every member of the kernel is used at every position of the input (except maybe the edges,
unless a padding technique is used) (parameter sharing). This allows the network to learn only one set
of parameters for a feature that can occur at any location in the input, instead of learning it separately for
every location in the input. Since the kernel size k is usually several orders smaller than the input size, the
convolutional operation is many times more efficient than dense matrix multiplication in terms of memory
requirements and statistical efficiency.

Thirdly, if the input to a convolutional layer changes, the output changes in the same way (the layer is
equivariance to translation). For images, convolution creates a 2-D map of where certain features appear
in the input. If the object in the images was to be shifted, the representation in the output will be shifted
an equal amount.

Lastly, convolutions allow for the processing of inputs with different sizes.

20 CHAPTER 2. NEURAL NETWORKS

Above we saw that the centre of the kernel cannot reach to the edge pixels since the edges of the kernel
would then be outside of the input. A solution can be through padding. Padding the input puts extra data
(usually zeros, but for example, a repetition of the values at the border is also possible) around the input,
which allows the kernel to traverse the full dimensions of the input.

The kernel can shift across the input one or more data points at a time. This is called the stride.
Increasing the stride results in a smaller dimensional output.

2.7.1 Pooling
A typical CNN consists of three stages [5]. First, the layer performs several convolutions in parallel to
produce a set of linear activation. Second, each of these activation is passed through a non-linear activation
function (see Section 2.5). Thirdly, a pooling function is used to modify the output further.

Pooling is used to reduce the dimensionality of the output of a convolutional layer since features
become more abstract in later layers of the network and precise location plays a less important role.
Max pooling, one of the most common pooling techniques, reduces the dimensionality of a layer by only
retaining the maximum output within a certain rectangular neighbourhood [46]. Other pooling techniques,
such as the average value of a certain neighbourhood, are used as well.

Pooling helps to make the representations approximately invariant to small translations of the input, at
the cost of losing information about the exact location. This is useful when we care more about the pres-
ence of a certain feature than we care about its exact location. Pooling can, however, introduce unwanted
effects when the separate features are present in the input, but the geometric relations between them are
not [47].

Figure 2.4: Example of a 2-D convolution, where the output is restricted to positions where the kernel lies
entirely within the image. The result is a 3 by 2 matrix of summations. (From Deep Learning by Aaron
Courville, Ian Goodfellow, and Yoshua Bengio [5].)

Chapter 3

Uncertainty Estimation for Neural Networks

3.1 Types of Uncertainty
Bayesian modeling can model two main types of uncertainty, aleatoric and epistemic uncertainty.

Aleatoric uncertainty arises through noise in the observations (e.g. sensor noise). This uncertainty
is inherent in the observations and therefore cannot be reduced with more observations. Aleatoric uncer-
tainty can be categorised in to homoscedastic and heteroscedastic uncertainty. Homoscedastic uncertainty
stays constant for all inputs (all observations exhibit the same finite variance, i.e. the task-dependent
uncertainty), heteroscedastic uncertainty can differ for each input.

Heteroscedastic uncertainty is usually the most important for computer vision tasks since these tasks
often rely on sharp distinct features to make accurate classifications. When these features are harder to
detect (e.g. the wrong focus of the camera causes object corners to blend into each other to form featureless
parts in the image), the output of a model will be highly uncertain.

Epistemic uncertainty (model uncertainty) arises through uncertainty in the model parameters and the
model’s ignorance about which model generates the training data. This can be reduced with additional
observations since more data gives a better understanding of the true model that generates the data.

In classification tasks, aleatoric uncertainty is more important to model since it cannot be accounted
for with more data [6]. However, medical data might not always provide enough examples, which keeps
modelling epistemic uncertainty important as well.

Combining aleatoric and epistemic uncertainty results in predictive uncertainty, the model’s confidence
in its prediction, taking into account the noise it can and cannot account for with more data. The predictive
uncertainty is both effected by aleatoric uncertainty (increasing predictive uncertainty in case of a large
measurement error) or epistemic uncertainty (increasing predictive uncertainty for inputs that lie far away
from the training data). Predictive uncertainty is usually obtained by sampling multiple functions from the
model and corrupting them with noise. We can then calculate the variance of these functions on a fixed set
of inputs which yields the predictive uncertainty.

3.2 Methods for Approximating Bayesian Models
A Bayesian Neural Network (BNN) puts a prior distribution over its weights [48–50]. This can be for ex-
ample a Gaussian prior distribution: W ∼N (µ,σ2). BNNs replace the weight parameters point-estimate
networks use with distributions over these parameters. Instead of optimising the weight parameters di-
rectly, BNNs average over all possible weights in the distribution (marginalisation). Given a training
dataset D = {(xi,yi)}i=1:N with sample-label pairs (xi,yi), Bayesian inference is used to calculate the
posterior over the weights p(ω|x,y), with parameters ω. The posterior holds the set of plausible model
parameters for the data. To evaluate the posterior, p(ω|x,y) = p(y|x,ω)p(ω)/p∗ (y|x) needs to be calcu-
lated. However, the marginal probability p(y|x) cannot be evaluated analytically, only approximated. This

21

22 CHAPTER 3. UNCERTAINTY ESTIMATION FOR NEURAL NETWORKS

approximation can be calculated through e.g. variational inference [51].
For classification, the posterior distribution of the model parameters p(ω|D) can be approximated as

follows:

p(y|x,D) =
∫

fω(x,y)p(ω|D)dω, (3.1)

where fω(x,y) is an inference function.
The predicted label ŷ can be obtained by sampling p(y|x,D) or by taking its maxima.

3.2.1 The Gaussian Process
The Gaussian process is a stochastic process such that every finite collection of data has a multivariate
normal distribution. For a given dataset, the Gaussian process assigns a probability to each of the functions
that can explain the data. The goal of the Gaussian process is to, stochastically, learn the multivariate
normal distributions underlying the train data Y . From this multivariate normal distribution, we want to
predict the function values (or class in a classification problem) at specific points in the test set X . To get
to this prediction, X also needs to be modelled as a multivariate normal distribution. The joint probability
distribution PX ,Y then spans the space of possible function values for the function (or class) that we want
to predict.

Both X and Y are Gaussian distributions and are therefore closed under conditioning and marginalisa-
tion. This means that the resulting distributions after performing operations on X or Y are also Gaussian
distributions. Through marginalisation we can extract the marginalised probability distributions from the
multivariate probability distribution PX ,Y as follows:

X ∼N (µX ,ΣXX) (3.2)
Y ∼N (µY ,ΣYY), (3.3)

where N represents the Gaussian distribution, µ the mean vector and Σ the covariance matrix. From this
formula we can determine that each partition of X and Y only depends on its corresponding entries in µ
and Σ. If we want to know the probability density of a point x, we need to consider all possible outcomes
of Y that can jointly lead to this result. This can be shown by the following equation:

pX(x) =
∫

y
pX ,Y (x,y)dy =

∫
y

pX |Y (x | y)pY (y)dy. (3.4)

Conditioning is used to determine the probability of one variable depending on another variable. This
operation, similarly to marginalisation, also yields a modified Gaussian distribution. Conditioning is de-
fined as:

X | Y ∼N (µX +ΣXY Σ
−1
YY (Y −µY),ΣXX −ΣXY Σ

−1
YY ΣY X) (3.5)

Y | X ∼N (µY +ΣY X Σ
−1
XX(X−µX),ΣYY −ΣY X Σ

−1
XX ΣXY), (3.6)

where the new mean only depends on the conditioned variable, while the covariance matrix is independent
from said variable.

To perform regression on the training data, we need to use Bayesian inference [52]. Bayesian inference
uses the training data to update the current hypothesis.

To set up the Gaussian distribution we have to define the mean µ and covariance matrix Σ. We can
define the covariance matrix Σ through the covariance function k, also known as the kernel of the Gaussian
process. Kernels are widely used in machine learning and many different kernels exist for the Gaussian
process. Often µ is assumed to be 0 to simplify the necessary equations for conditioning.

3.2. METHODS FOR APPROXIMATING BAYESIAN MODELS 23

When the multivariate Gaussian distributions have been found they can be used to estimate function
values. Each test point is treated as a random variable and the corresponding multivariate Gaussian distri-
bution has the same number of dimensions as the number of random variables. To make a prediction we
draw samples from this distribution. The i-th component of the resulting vector corresponds to the i-th test
point.

A single-layer fully-connected neural network with an independent and identically distributed prior
over its parameters is equivalent to a Gaussian process, in the limit of infinite network width [19]. By
evaluating the corresponding Gaussian process, exact Bayesian inference can be performed on this infinite
width neural network. The standard Gaussian Process, however, has cubic time complexity O(n3) [20].
This limits the scalability of the Gaussian Process and makes it unusable for deep learning. However,
model uncertainty can also be obtained through Bayesian Neural Networks (BNNs) [21]. BNNs place a
distribution over a finite number of weights, therefore vastly reducing the computation required. Various
techniques using the basic ideas of Bayesian neural networks have been introduced over the years [22],
with various degrees of success. Often these models are difficult to work with and introduce many more
parameters to be trained, making it again unsuitable for large-scale deep learning.

We will use two methods that do not suffer from these drawbacks: Monte Carlo Dropout [11] (MCDO)
and Monte Carlo Batch Normalisation [23] (MCBN). These two methods make use of stochastic regular-
isation techniques.

3.2.2 Stochastic Regularisation Techniques
Stochastic regularisation techniques (SRTs) are used to regularise a network by injecting stochastic noise
into the model. This often increases generalisation on novel data by preventing over-fitting. Almost every
network trained with an SRT can output, given some input X∗, a predictive mean E[y∗] and a predictive
variance Var[y∗]. The predictive mean is the expected model output given the input and the predictive
variance reflects how confident the model is in this prediction.

To gain these results we obtain the output of the network with input X∗ while treating the SRT as we
would during training time (i.e. obtain a random output through a stochastic forward pass) [11]. This
process can be repeated T times to sample independent and identically distributed outputs. These are
empirical samples from the approximate posterior. We can get an empirical estimator for the predictive
mean and variance of the approximate posterior as follows:

E[y∗]≈ 1
T

T

∑
t=1

ŷ∗t (x
∗) (3.7)

Var[y∗]≈ τ
−1ID +

1
T

T

∑
t=1

ŷ∗T (x
∗)T ŷ∗t (x

∗)−E[y∗]TE[y∗], (3.8)

where τ−1 is observed noise (the inverse variance, also often called precision), ID the expected log likeli-
hood’s derivative with respects to the dataset D of observed d-dimensional vectors.

3.2.3 Monte Carlo Dropout
Gal (2016) showed that a typical optimisation of NNs with Dropout layers is equivalent to Bayesian
learning via variational inference with a specific variational distribution [11]. Dropout [53, 54] is one of
the most popular SRTs for deep learning models.

Dropout samples i binary vectors for each layer excluding the output layer, with the same dimension
as the respective layer. The elements in these vectors zi take value 1 with probability 0≤ 1− pi ≤ 1 for the
amount of layers i. A proportion pi of all elements in the input x to a certain layer are set to zero as follows:
x̂ = x� zi

1. A proportion pi +1 of the output h of the next layer is again set to zero: ĥ = h≤ zi +1. This
1� is the element-wise product

24 CHAPTER 3. UNCERTAINTY ESTIMATION FOR NEURAL NETWORKS

process is repeated for every layer until the output can be computed: ŷ = ĥWi.
For each different input, forward pass and backward pass through the network’s new binary vectors

zi are calculated. When the model is being evaluated all connections are used and no sampling through
Dropout is applied.

It has been found that optimising any NN through Dropout is equivalent to a form approximate infer-
ence in a probabilistic interpretation of the model. In other words, the optimal weights found through
Dropout are equal to the optimal variational parameters in a Bayesian Neural Network, making it a
Bayesian Neural Network by process. The uncertainty can be obtained by performing several stochas-
tic forward passes through the model and sampling the mean and variance. The inference in this technique
is called Monte Carlo Dropout (MCDO) and can be applied to any pre-trained network with Dropout
layers.

Dropout has, however, some shortcomings. First, the test time is scaled by the number of forward
passes through the network (training time is nearly identical to similar models in the field) [11]. Secondly,
variational inference is known to underestimate predictive variance through the objective which penalises
placing mass where there is no mass [55]. Several solutions exist with varying practicality, but uncertainty
underestimation also does not seem a real concern in practice [11].

Thirdly, the Dropout probability together with the weight configuration of the network determines the
magnitude of the epistemic uncertainty. A fixed probability with higher magnitude weights will cause
higher output variance (i.e. higher epistemic uncertainty). Therefore, the model would like to decrease
its weights (to zero for zero uncertainty, but then losing its ability to explain data well) and find a balance
between the desired output variance and weight magnitude. Allowing for a variable Dropout probability
lets the model decrease its epistemic uncertainty by choosing smaller Dropout probabilities as well as
by decreasing its weights. The Dropout probability can be determined by grid-searching it to maximise
validation log-likelihood [56]. Grid-search is computationally expensive and slow for large models, so
a gradient method would be more suitable. However, using a gradient method forces us to define an
optimisation objective to optimise the Dropout probability as well. Choosing this is not trivial since our
aim is not to maximise the model performance, but to obtain a good epistemic uncertainty. Concrete
Dropout [57] offers a suitable objective.

Lastly, the combination of Dropout and Batch Normalisation [58] (a method which speeds up learn-
ing by normalising layers inputs and that has a regularisation effect) often leads to worse performance.
Performance only seems to increase when the combination is used for very wide networks (e.g. Wide
ResNet) [59].

Concrete Dropout

When allowing the Dropout probability to change, a suitable objective needs to be found to allow gradient
optimisation. A suitable objective follows Dropout’s variational interpretation [11]. Here, Dropout’s
objective is to approximate the distribution qθ(ω) to the posterior in a BNN with a set of random weight
matrices ω = {Wl}L

l=1 with L layers and θ the set of variational parameters. The Monte Carlo (MC)
optimisation object for Dropout can be written as:

L̂MC(θ) =−
1
M ∑

i∈S
log p(yi|fω(xi))+

1
N KL(qtθ(ω)‖p(ω)), (3.9)

where θ are the parameters to optimise, N the number of data points, S a random set of M data points, fθ(xi)

the NN’s output on input xi when evaluated with weight matrix realisation θ, and p(yi|fθ(xi)) the model’s
likelihood, e.g. a Gaussian with mean fθ(xi). The KL term KL(qtθ(ω)‖p(ω)) is used as regularisation to
prevent the approximated posterior qθ(θ) to deviate too far from the prior distribution p(θ).

This equation needs to be evaluated through the derivative with regards to the parameter p. This
can be done by for example a score function estimation or a pathwise derivative estimator. The score

3.2. METHODS FOR APPROXIMATING BAYESIAN MODELS 25

function estimator, however, has an extremely high variance in practice, making optimisation difficult
and not manageable for Dropout [60]. The pathwise derivative estimator has much lower variance and
was therefore successfully used for Gaussian Dropout [60]. However, unlike Gaussian Dropout, we want
to optimise the parameter of a Bernoulli distribution which cannot be done with the pathwise derivative
estimator.

To solve this, Gal, Hron and Kendall (2017), introduced Concrete Dropout, where they replaced
Dropout’s discrete Bernoulli distribution with the Concrete distribution relaxation [57]. This allowed
them to re-parametrise the distribution and to use the low variance pathwise derivative estimator.

Their results showed a slight improvement over regular MCDO, but because of the added complexity,
we decided to not implement this improvement over the standard implementation for this comparison.

3.2.4 Monte Carlo Batch Normalisation
Batch Normalisation (BN) [58] is a unit-wise method to normalise the input distribution to each layer in
an NN. It does this for each training mini-batch B. BN can be used to mitigate the problem of internal
covariate shift, where the initialisation of the parameters and changes in the distribution of the inputs of
each layer affects the learning rate of the network. However, more recent findings suggest this might not
be the case and BN rather smooths the objective function, which improves performance [61].

Ideally, BN would normalise over the entire training set D = {(xi,yi)}i=1:N (where each (xi,yi) is a
sample-label pair), but to do this with stochastic optimisation methods is impractical. Therefore, for each
B of size m, the mean and variance of B is denoted as:

µB =
1
m

m

∑
i=1

xi (3.10)

σ
2
B =

1
m

m

∑
i=1

(xi−µB)
2. (3.11)

For fully connected layers (FC), BN converts the input xk to each unit k (k ∈ [1,d], where d is the
dimensions of the input) in the layer as follows:

x̂k
i =

xk
i −µk

B√
σk2

B

, (3.12)

where k ∈ [1,d], i ∈ [1,m], µk
B the units mean and σk2

B the units variance.
A deep NN can be trained using mini-batch optimisation as above with the following regularised risk

(RR) minimisation:

LRR(ω) :=
1
M

M

∑
i=1

l(ŷi,yi)+Ω(ω), (3.13)

where the first term 1
M ∑

M
i=1 l(ŷi,yi) represents the empirical loss on the training data and the second

term Ω(ω) the regularisation penalty on the model parameters ω (this can be seen as a prior).
With a cross-entropy (for classification) as loss l, this is equivalent to minimising the negative log-

likelihood:

LRR(ω) :=
1
M

M

∑
i=1

ln fω(xi,yi)+Ω(ω). (3.14)

The model parameters for each unit in a layer include {W1:L,γ1:L,β1:L,µ1:L
B ,σ1:L

B }, where γ1:L and β
1:L

are the parameters that are adjusted by stochastic gradient descent (SGD) instead of the weights in each

26 CHAPTER 3. UNCERTAINTY ESTIMATION FOR NEURAL NETWORKS

layer. This prevents SGD to undo the normalisation process of BN. Each output of a layer gets multiplied
(scale) by γ after which β gets added (shift). This scale and shift makes sure that the transformation
inserted in the network can represent the identity transformation. These parameters are learned along with
the original model parameters and restore the representation power of the model [58].

To get the learnable parameters θ= {W1:L,γ1:L,β1:L}, the stochastic parameters ω= {,µ1:L
B ,σ1:L

B } need
to be decoupled. This results in the following objective at each step of the mini-batch optimisation:

LRR(θ) :=
1
M

M

∑
i=1

ln f{θ,ω̂i}(xi,yi)+Ω(θ), (3.15)

where ω̂ is the mean and variance for samples i’s mini-batch at a certain training step as calculated above.
After batch normalising the network, qθ(ω) corresponds to an approximation of the true posterior.

From this, the uncertainty can be calculated using the inherent stochasticity of BN [23].
In 2018 Teye et al. showed that training a deep NN with BN is equivalent to approximating inference

in a BNN [23]. This finding allows us to make estimates of the model’s uncertainty using conventional
architectures without modifications to the network or training procedure needed. The mini-batch statistics
used for training each iteration depend on randomly selected batch members, which can be exploited to
approximate Bayesian inference. The uncertainty of a model trained by BN can be found through a process
called Monte Carlo Batch Normalisation (MCBN).

The predictive mean for classification can be computed from the approximated predictive distribution
p∗(y|x,D) as follows:

µp∗[y] =
∫

yp∗(y|x,D)dy

≈ 1
T

T

∑
i=1

fω̂i(x),
(3.16)

where the MC Integral with T samples of ω is taken and ω̂i represents a sampled set of the network’s
stochastic parameters ω = {µ1:L

B ,σ1:L
B }. As during training, a batch B is sampled from the training set and

the parameters in the BN units are updated.
The Predictive Log Likelihood (PLL) for a test point (yi,xi) is taken to estimate the model’s uncertainty

as follows:
PPL(fω(x),(yi,xi)) = logp(yi| fω(xi))

≈ log
1
T

T

∑
j=1

p(yi| fω̂ j(xi)),
(3.17)

where ω̂ j represents a sampled set of stochastic parameters from the approximate posterior distribution
qθ(θ).

To obtain the uncertainty measures, a network has to be trained similarly to BN, but instead of re-
placing the network’s stochastic parameters ω = {µ1:L

B ,σ1:L
B } with population values D from inference, the

parameters are updated stochastically every forward pass.
A common approach in Bayesian modeling is using variational approximation (VA) to learn a parame-

terized approximating distribution qθ(ω) that minimises the Kullback-Leibler (KL) divergence of the true
posterior with regards to the approximation. From a VA perspective, training the NN via MCBN amounts
to minimising KL(qθ(ω))‖p(ω|D)) with regard to θ. By sampling ω̂ from the training set, and by keeping
B consistent with the mini-batch size used during training, qθ(ω) during inference remains identical to the
approximated posterior optimised during training [23].

In summary, BN normalises the input to each layer in an NN by subtracting the mean and dividing
by the standard deviation of a mini-batch. The adjustment of these inputs causes the weights to be no
longer optimal, so stochastic gradient descent (SGD) will undo the normalisation. To avoid this, BN adds
two trainable parameters to each layer, a standard deviation parameter gamma and a mean parameter beta.
The output of a layer is first multiplied by gamma after which beta is added. BN lets SGD only adjust

3.2. METHODS FOR APPROXIMATING BAYESIAN MODELS 27

these two parameters at each layer and not all the weights of the layer. BN trains each iteration with
randomly selected examples in a mini-batch, which can be exploited to approximate Bayesian inference.
MCBN can compute the mean classification as well as the uncertainty of a sample by calculating the mean
and variance of a mini-batch for multiple inferences. The mini-batch from the training data provides the
network’s stochastic parameters just as during a training step so MCBN, in essence, checks if the sample
falls in the same distribution as the mini-batch of the training data.

3.2.5 Ensemble
Ensembles of NNs, deep ensembles, are proven to boost predictive performance in many classification
tasks. Ensembles work according to the idea that the average vote of many, slightly different, NNs provides
a better prediction than that of a single NN. Generally speaking, two classes of ensembles exist: randomi-
sation-based approaches such as random forests [62] and boosting-based approaches. Randomisation-
based approaches allow the members of the ensemble to be trained in parallel with any interactions, while
boosting-based approaches fit the ensemble members sequentially. In 2017, Lakshminarayanan et al.
introduced a method to use deep, randomisation-based, ensembles to compute uncertainty for classifica-
tions [63]. Here, they treat the many members of an ensemble together as a uniformly-weighted mixture
model and use the mean and variance of the resulting predictions as the final prediction and uncertainty
respectively.

Ideally, we want all of the different members of the ensemble together to be able to explain the com-
plete dataset. The performance of a single NN can be restrained by several different causes. A certain
member of the ensemble might over-fit on the train data and not generalise well, another member might
only be able to explain 85% of the data and not the remainding 15%. One member might even completely
ignore a class with fewer examples compared to the other classes in an unbalanced dataset.

An ensemble consisting of many members, which by design vary from each other, can solve these
problems at least partially. For example, each member can have its own unique architecture, can start with
different pre-trained weights or can be trained on a unique part of the train data. Of course, the previously
mentioned examples can be combined as well to create a vast ensemble of different networks. However,
even if all potential test examples can be classified correctly by at least one of the members, the ensemble
will not know which of the many predictions is the right one. Often the majority vote is taken, which
means that hard-to-predict examples that are only predicted right by the minority are still not classified
correctly.

So instead of only looking at the majority vote (the mean), all predictions can be used to determine
the variance of the predictions. For the ”easy” to learn examples, which would be right near the mean
of the representing class distributions, the standard deviation of all ensemble members will not be high
and therefore the uncertainty will be low. However, for the harder-to-predict examples that are further
near the edges of the representing class distributions (the examples that might only be predicted correctly
by a minority of members), the standard deviation will be higher and therefore the uncertainty should be
higher.

A perfect BNN would have a distribution over its weights that encapsulated every possible explanation
of the data. While a standard ensemble does not approximate a distribution over the weights in a single net-
work as MCDO and MCBN do, it does provide many more possible explanations for the same data which
can ultimately be used to gain an uncertainty estimate. Taking it a step further, the methods from MCDO,
MCBN, or both can also be used on the ensemble members, making it an even closer approximation to a
true BNN.

The drawbacks of ensembles, not to mention in combination with MCDO or MCBN, however, are not
to be understated. Single deep NN can take hours, if not days to train on large datasets. An ensemble in
which each member is trained for maximum variance could take days, if not weeks to successfully train.
This makes making small alterations to the networks or the addition of new data or a new class a slow and
cumbersome task.

28 CHAPTER 3. UNCERTAINTY ESTIMATION FOR NEURAL NETWORKS

After training the deep networks, millions of parameters need to be stored at increasingly large capac-
ity. Many applications require the fully trained network to be stored offline for reliable and quick access.
These networks often run on cheaper, less powerful hardware since the networks do not have to be re-
trained, but only have to be used for new predictions. The use of ensembles might require these devices
to be more powerful and to have more storage. Updating these networks with newly trained weights (for
example after the addition of new classes) would take much more time as well and might not be feasible in
remote locations where the updates are performed over-the-air or via unstable, slow internet connections.

While a single prediction of a trained network often only takes a fraction of a second, the predictions
of a complete ensemble can add up to prediction times that are not feasible in many applications (e.g.
autonomous vehicles where split-second decisions can save lives). The addition of MCDO or MCBN on
each ensemble member would increase the processing time even more. While this can be partially solved
by deploying more powerful hardware, the drawbacks of increased price, power consumption and heat
output might not be out-weighted by the potential increase in classification and uncertainty accuracy.

3.2.6 From Mean and Standard Deviation to Uncertainty

The MCDO, MCBN and ensemble method mentioned above all provide multiple predictions per input
example. It makes the most sense to take the mean of these predictions as the final prediction, but it is not
directly clear what the best way to calculate the is uncertainty.

For the multiple predictions for a single example X the standard deviation for all predictions of a
certain class can be calculated as follows:

σ =

√
1

N−1

N

∑
i=1

(xi−µ)2, (3.18)

where x1,x2, ...,xN are the single predictions in X , µ is the mean value of all predictions in X, and N is the
number of predictions per sample.

One method is to return σ as the uncertainty for that particular example. We will later refer to this
approach as the STD (standard deviation) approach.

Another method is to use the mean µ and standard deviation σ to calculate the probability density
function (PDF) of the Gaussian distribution N (the normal distribution) as follows:

pd f (x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ

)2
. (3.19)

The PDF provides the relative likelihood that the value of the random variables in the distribution
would equal that of a sample x. We can use this function to calculate an individual likelihood for every
probability that we encounter in X. We can then convert this likelihood to an uncertainty through the
following formula:

uncertainty(x) = 1− pd f (x)
pd f (µ)

. (3.20)

The PDF will return the highest likelihood for the mean value µ, so we assume this point to have 0(%)
uncertainty. The further the likelihood of pd f (x) moves from the value of pd f (µ), the higher the uncer-
tainty will get, till a maximum of 1 (100%) for an example that has 0 likelihood to fall in the distribution.
After this uncertainty is calculated for all probabilities in every single prediction, we can get the final
uncertainties per class for that example by taking the mean of all individual uncertainties within that class.

We will later refer to this method as the PDF approach.

3.2. METHODS FOR APPROXIMATING BAYESIAN MODELS 29

3.2.7 Addition of an Error Output
Neural networks can be used to approximate the real distribution f (~x) of a dataset. We assume that this
dataset d(~x) can be modeled by:

d(~x) = f (~x)+n(~x), (3.21)

where n(~x) is the noise. This noise can bee seen as the error on the target values that moves the target
away from their true value f (~x).

In a classification task we can view the outputs of a network d(~x), given an input y(~x), as an estimation
µ̂(~x) of the true mean µ(~x) which represents the noisy distribution of the class to be classified. µ̂(~x) in
classification tasks is converted to a probability for each of the possible classes.

To also quantify the uncertainty next to the probability, the network should simultaneously estimate
the degree of noise of µ̂(~x) based on the noise observed in the training data. To achieve this, we want to
simultaneously learn a function e(x̂) that estimates the true error E(x̂) of that distribution.

µ̂(~x) and e(x̂) together can give us an approximation of the true distribution given by µ(~x) and E(x̂)
[64, 65].

The network will, therefore, have two sets of output units; output units y corresponding to the classes
used in the classification, and the error output e. The target for e will be calculated by taking the square
of the error of y. The error of y is calculated by subtracting the true target value for y from the predicted
value d(~x). For a classification task with multiple outputs, the error and subsequent target are calculated
individually for each of the possible output classes. Both sets of outputs must have at least one unique
layer that is not shared with the other outputs to allow for their own function to be learned.

To end up with an uncertainty estimation, two methods can be used:

• Method 1: The predicted error, as outputted by the network, is directly returned as the uncertainty
estimation.

• Method 2: The predicted error, as outputted by the network, is first converted to an uncertainty
estimation.

For method 1 no additional computation is required. The estimated error of the error nodes can directly
be interpreted as the uncertainty the model has in this prediction.

For method 2 some additional computations are required. Since the output of the error nodes estimates
the true error, we can treat the difference between the estimated error and the true error as the uncertainty
of the model. However, for new examples, we do not have access to the true labels and therefore we cannot
calculate the true error. To circumvent this problem we can, however, treat the highest prediction of the
classification nodes as the ’true’ label. Now the corresponding highest probability can be used to calculate
the ’true’ error.

For example for a classification task class 2 has the highest probability of 0.8. We now treat class 2 as
being the ’true’ label which allows us to calculate the ’true’ (squared) error as follows: (0.8−1)2 = 0.04.
Here 1 is subtracted from the probability 0.8 since we assume this to be the true class which would need
to receive a probability of 1 of being that class. If our estimated error output would be agreeing with
the prediction of the classification outputs, we would expect to see an error output close to 0.04 as well.
Assume the corresponding error estimation is 0.1. This would result in an uncertainty of |0.1− 0.04| =
0.06, which would be 6%.

We can also calculate the uncertainties for the non-highest predicted classes by substituting the 1 above
by a 0. If in the example above the true class is 2, it should have a 0 probability of being any other class.
The outputted error should reflect this as well.

This could of course also be turned around, where a predicted squared error of 0.1 should have a
corresponding probability prediction of 1−

√
0.1 ≈ 0.68. The uncertainty would now be |0.8− 0.68| =

0.12, or 12%. We did, however, use the first method.

30 CHAPTER 3. UNCERTAINTY ESTIMATION FOR NEURAL NETWORKS

Method 2 relies on the premise that, while training to predict the error, the network finds some new
features and patterns in the data that the classifier has not found. For an accurate uncertainty estimate, the
error output and classification output must be in unison when the model is predicting on similar data that
it has been trained on, but they should disagree when the model is predicting on unknown data.

Error Output is most similar to an ensemble that only contains two networks which are trained on the
same dataset. The main difference is that the addition of the Error Output method allows the network
to learn its error instead of just the classification. This means that the network is actively learning its
uncertainty. While not modelling the underlying distributions of the train data, as a Baseyian approach
would do, it will still learn what kind of data it has encountered in the train data. This method captures the
epistemic uncertainty.

The method is, however, more vulnerable to over-fitting than the other methods discussed, since it
only consists of a single deep network. If, for example, the error outputs cannot generalise the train data,
it might give high errors (and therefore uncertainties) to data outside of the train data even when that data
is part of the classes it has been trained on.

Chapter 4

Experimental Setup

4.1 Datasets

4.1.1 Messidor-2

As the first dataset to test the methods on we used the medical Messidor-2 dataset [66] with 1748 anno-
tated images of retinas. This dataset has been created to facilitate studies on computer-assisted diagnoses
of diabetic retinopathy (DR). The dataset was divided into five different classes (by severity) of diabetic
retinopathy. These labels were given by specialists working at hospitals partnered with the Messidor
project1. The number of images for each class was highly imbalanced, as can be seen in Table 4.1. An im-
mediate problem that arises from this imbalance is that a model which has not learned any representations
of the classes but rather is always outputting class 1, will get an accuracy of around 58%. To mitigate this
problem we decided to normalise the classes in the training data by five different random augmentations
while keeping the imbalance in the validation and test set. We used 70% of the original data as the training
set (which additionally got normalised by augmentation), 10% for validation and 20% for testing. The
resulting division can be seen in Table 4.2.

The images were high resolution (> 1500 x > 1000 pixels RGB) cutouts of the iris on a black backdrop.
All images were resized to 256x256x3 pixels RGB, with black pixels padded to the sides to retain the
aspect ratio of the original images while having the iris centred. To counter the effects of the imbalanced
dataset, we normalised the train data by performing augmentation. We took the number of examples of the
class with most examples (which was 700) and set that amount times 1.2 as the goal amount for every class
(700x1.2 = 840). We randomly selected examples of a certain class, performed 5 different augmentations
on them (random rotation with a max range of 20◦, random shearing with a max shear of 20%, random
zooming with a max zoom of 20%, a random horizontal flip and a random change of brightness between
50% and 150%) and repeated this process until we had reached the target amount of 840.

The resulting number of examples per class for the train set was: [840, 840, 839, 838, 836].

The number of examples per class for the validation set (where no normalisation or augmentation was
used) was: [119, 22, 28, 7, 3].

The number of examples per class for the test set (where no normalisation or augmentation was used)
was: [202, 58, 70, 10, 6].

1http://www.adcis.net/en/third-party/messidor/

31

32 CHAPTER 4. EXPERIMENTAL SETUP

Figure 4.1: Examples of the images in the Messidor-2 dataset

Class 1:
No DR

Class 2:
Mild DR

Class 3:
Moderate DR

Class 4:
Severe DR

Class 5:
PDR

Number of examples 1021 270 347 75 35
Percentage of total ∼58.4% ∼15.4% ∼19.9% ∼4.3% ∼2%

Table 4.1: Division of examples in the Messidor 2 dataset

Class 1:
No DR

Class 2:
Mild DR

Class 3:
Moderate DR

Class 4:
Severe DR

Class 5:
PDR

Number of training examples 840 840 839 838 836
Number of validation examples 119 22 28 7 3
Number of test examples 202 58 70 10 6

Table 4.2: Division of examples in the Messidor 2 dataset splitted into a training, validation and test set.
The training set is the only set normalised through augmentation.

4.1.2 CIFAR10
As the second dataset CIFAR10 [67] was used. This dataset is often used as a benchmark for novel machine
learning techniques. The CIFAR-10 dataset consists of 60,000 32x32x3 RGB images in 10 classes, with
an even 6000 images per class. There are 50,000 training images and 10,000 test images. The test images
were split into a validation set and a test set in a 1

3 division. The division of examples per set per class can
be seen in Table 4.3. No augmentation was performed. Examples of the images and classes in CIFAR10
can be seen in Figure 4.2.

Figure 4.2: Examples of the ten classes in the CIFAR10 dataset

4.2. NETWORKS 33

Class 1:
Airplanes

Class 2:
Automobile

Class 3:
Bird

Class 4:
Cat

Class 5:
Deer

Class 6:
Dog

Class 7:
Frog

Class 8:
Horse

Class 9:
Ship

Class 10:
Truck

Number of training examples 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000
Number of validation examples 139 115 122 105 118 122 127 129 131 142
Number of test examples 861 885 878 895 882 875 873 871 869 858

Table 4.3: Division of examples in the CIFAR10 dataset

4.1.3 MNIST

We used the handwritten digit dataset MNIST [68] to test our trained models on out of distribution exam-
ples (classes the network was not trained on). The dataset consists of the 10 Arabic numerals (0 till 9)
all handwritten, centred, greyscale images of 28x28 pixels. The dataset contains 60,000 train images and
10,000 test images.

We did not train any of the networks on the images in MNIST, we only used the test set (after an
appropriate resizing to the required input size of the network in question) to test the performance of the
different methods on data it has not been trained on. An appropriate response to out of distribution data is
to give a high uncertainty. An example of the images and classes in MNIST can be seen in Figure 4.3.

Figure 4.3: Examples of the ten classes in the MNIST dataset

4.2 Networks
We compared three of the four methods (MCDO, MCBN and Error Output) on the same VGG16 archi-
tecture [69]. We picked this network for its proven performance on image classification tasks and its wide
use as a benchmark architecture, as well as the lack of any SRTs incorporated into the architecture. For
the Ensemble method, we used 13 additional architectures which can be seen in Table 4.5. We used the
pre-trained weights2 on the ImageNet dataset [70] as the starting weights of the network (excluding the
last 3 Dense layers). We will refer to fully connected layers with a non-linear activation function as Dense
layers. These weights are the result of training the network for object recognition. We used the assumption
that the basic features found for the object classification task for ImageNet are also useful for our (trans-
fer learning) classification task. The full VGG16 consists of a total of 13 Convolutional layers, 3 Dense
layers and 5 MaxPooling layers. The network can be seen as a combination of 6 distinct blocks. The first
two blocks consist of two Convolutional layers followed by a MaxPooling layer. The middle three blocks
consist of three Convolutional layers followed by a MaxPooling layer. The last block is the top of the net-
work and consists of three Dense layers. Each Convolutional layer uses the ReLU (Section 2.5) activation
function. All Dense layers except the very last (output) Dense layer use the ReLU activation function as

2https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16 weights tf dim ordering tf kernels notop.h5

34 CHAPTER 4. EXPERIMENTAL SETUP

Dropout Layer: 1 2 3 4 5 6 7
Dropout Rate: 0.05 0.1 0.15 0.2 0.2 0.2 0.25

Table 4.4: Dropout Rates per layer added to VGG16

well. The output Dense layer uses the Softmax activation function (Section 2.5). A visual representation
of the network can be seen in Figure 4.4.

To allow for a fair comparison we tried to minimise adjustments to the networks for individual methods
and we tried to keep the hyper-parameters for training as similar as possible.

Figure 4.4: Architecture of the VGG16

4.2.1 Monte Carlo Dropout
To perform Monte Carlo Dropout (MCDO) as mentioned in Section 3.2.3, we added a Dropout layer after
every MaxPooling and Dense layer (except the last Dense classification layer). A total of 7 Dropout layers
were added to the network. Table 4.4 shows the Dropout rates used per layer. The rates are chosen to be
fairly low since the use of multiple Dropout layers all with high Dropout rates can result in a network with
no connections from input to output anymore. The Dropout rates gradually increase since the low-level
features extractors early in the network will generally introduce less variance than the higher-level layers
later in the network. This is because a lot of these low-level features, e.g. the detection of a line at a certain
angle, will not be unique to the classes the network is trained on.

After training we perform 250 3 forward-passes through the network per example in the test set. For
each forward-pass, the network has different active connections because random Dropout masks are taken
(with the same probability as during training, see Table 4.4). The final probabilities for each class are the
mean of all 250 predictions, where the highest mean probability gives the final predicted class. We discuss
two different methods to compute the uncertainty of these predictions in Section 5.2.

Training and Optimisation

The settings of the final MCDO network trained on Messidor-2 and on CIFAR10, found after stochastically
testing various variations of settings, can be seen in Table 4.6 and Table 4.7.

We used early stopping to stop training if no improvements of at least 0.5% were made in the last 5
epochs to the validation accuracy. If the validation loss improved after an epoch, this improved model
was saved. When early stopping stopped training, the previous best model was loaded again and used as
the final model. We used the categorical cross-entropy function (Section 2.3) as loss function and Adam
(Section 2.4.4) as the optimiser.

3more will result in more reliable accuracy and uncertainty predictions (to a certain degree), but will negatively influence
training and inference time

4.2. NETWORKS 35

4.2.2 Monte Carlo Batch Normalisation
To perform Monte Carlo Batch Normalisation (MCBN) as mentioned in Section 3.2.4, we added a batch
normalisation (BN) layer after every Convolutional and Dense layer (except the last Dense classification
layer). At training time the ’standard deviation’ parameter gamma (γ) and the ’mean’ parameter beta (β)
of the BN layers will be trained (as can be seen in Algorithm 2), next to all other layers.

For testing, the weights of all layers were frozen. Next, a random mini-batch was sampled from the
training data to compute a new mean and variance for the batch normalisation layers of the network. Now,
inference was performed on the test set by this new, slightly adjusted network. The resulting predictions
were stored. This process was repeated 250 3 times per example in the test set. The final probabilities for
each class were the mean of all 250 predictions, where the highest mean probability gave the final predicted
class. We discuss two different methods to compute the uncertainty of these predictions in Section 5.2.

Algorithm 2: Batch Normalisation Transform, applied to activation x over a mini-batch.
Input: Values of x over a mini-batch B = {x1...m};

Parameters to be learned: γ,β
Output: {yi = BNγ,β(xi)}

µB →
1
m

m

∑
i=1

xi // mini-batch mean

σ
2B → 1

m

m

∑
i=1

(xi−µB)
2 // mini-batch variance

x̂i→
xi−µB√

σ2
B + ε

// normalise

yi→ γx̂i +β≡ BNγ,β(xi) // scale and shift

Training and Optimisation

The settings of the final MCBN network trained on Messidor-2 and on CIFAR10, found after stochastically
testing various variations of settings, can be seen in Table 4.6 and Table 4.7.

We used early stopping to stop training if no improvements of at least 0.5% were made in the last 5
epochs to the validation accuracy. If the validation loss improved after an epoch, this improved model was
saved. When early stopping stopped training, the previous best model was loaded again and used as the
final model. We used the categorical cross-entropy function (Section 2.3) as loss function and SGD with
momentum (Section 2.4.3) as the optimiser.

4.2.3 Ensemble
To perform uncertainty estimations with an Ensemble, as mentioned in Section 3.2.5, we used 14 different
network architectures. The architectures used can be found in Table 4.5.

Each architecture was trained 3 times, each time on a unique 1
3 of the training data. This resulted

in a total of 42 trained networks. Due to random initialisation of the weights, the difference in network
architecture and the unique part of the training data each of the 3 networks with the same architecture was
trained on, each trained network performs slightly different. All 42 networks performed inference on the

36 CHAPTER 4. EXPERIMENTAL SETUP

complete test set and the resulting predictions were stored. The final predictions were the mean of all the
predictions, and the final uncertainties were the standard deviation of all predictions.

Training and Optimisation

The settings of the final Ensemble network trained on Messidor-2 and on CIFAR10, found after stochasti-
cally testing various variations of settings, can be seen in Table 4.6 and Table 4.7.

We used early stopping while training each model in the ensemble to stop training if no improvements
of at least 0.5% were made in the last 5 epochs to the validation accuracy. If the validation loss improved
after an epoch, this improved model was saved. When early stopping stopped training, the previous best
model was loaded again and used as the final model in the ensemble. We used the categorical cross-entropy
function (Section 2.3) as loss function and Adam (Section 2.4.4) as the optimiser.

Model Size Top-1 Accuracy Top-5 Accuracy Parameters Depth
Xception 88 MB 0.790 0.945 22,910,480 126
VGG16 528 MB 0.713 0.901 138,357,544 23
VGG19 549 MB 0.713 0.900 143,667,240 26
ResNet50 98 MB 0.749 0.921 25,636,712 -
ResNet101 171 MB 0.764 0.928 44,707,176 -
ResNet152 232 MB 0.766 0.931 60,419,944 -
ResNet50V2 98 MB 0.760 0.930 25,613,800 -
ResNet101V2 171 MB 0.772 0.938 44,675,560 -
ResNet152V2 232 MB 0.780 0.942 60,380,648 -
InceptionV3 92 MB 0.779 0.937 23,851,784 159
InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572
MobileNet 16 MB 0.704 0.895 4,253,864 88
MobileNetV2 14 MB 0.713 0.901 3,538,984 88
DenseNet121 33 MB 0.750 0.923 8,062,504 121

Table 4.5: Overview of the different architectures used for the Ensemble, together with their respective
performance on the ImageNet validation dataset

4.2.4 Error Output
To perform Error Output as mention in Section 3.2.7, we added two separate Dense output layers to
VGG16. Both, the classification and the error layer had nodes equal to the number of classes. The clas-
sification layer used the softmax activation function (since it is outputting a probability for each class),
while the error layer used a linear activation function (the errors do not yet represent an uncertainty prob-
ability at this point and therefore should not be normalised). Nix et al. found that, when using only one
hidden layer, connecting the classification layer y and output layer e to their own set of hidden units works
better than connecting them to a shared set of hidden units [65]. Therefore, also the second to last Dense
layer was separated into two equally sized Dense layers both with 4096 nodes. Both these layers were
connected to the same third-to-last Dense layer, but their output was connected to either the classification
layer or the error layer. This ensures that both layers had enough capacity to learn their own function.

Training and Optimisation

The settings of the final Error Output network trained on Messidor-2 and on CIFAR10, found after stochas-
tically testing various variations of settings, can be seen in Table 4.6 and Table 4.7.

The model was trained in three consecutive successions, each with a different loss function.

4.2. NETWORKS 37

During the first training round, only the error output was used for training. The loss function, a
modified version of the mean squared error, only considered the outputs of the error layer and after each
training step, the parameters of the network were adjusted accordingly. Early stopping stopped training
when no improvements to the training loss were made for 10 epochs. Recall that the target error for the
error outputs is the true error calculated on the classification outputs. Not training the classification outputs
actively results in a high variance in the true error, which allows the error outputs to learn how to output
high errors in case of uncertainty. The model with the lowest loss on the training data was used for the
following training round.

During the second training round, only the classifier output was used for training. The loss function, a
modified version of categorical cross-entropy, then only considered the outputs of the classification layer
and after each training step, the parameters of the network were adjusted accordingly. Early stopping
stopped training when no improvements to the validation loss were made for 10 epochs. The model with
the lowest loss on the validation data was used for the following training round. For both datasets the
model with the lowest loss was reached after 1 epoch. The weights found during the first training round
were also relevant for the classifier.

During the last training round both the classifier and error outputs were used for training. The loss
function then summed the error calculated by the categorical cross-entropy function on the classification
output and the mean squared error calculated on the error output. Early stopping stopped training when no
improvements to the training loss were made for 2 epochs. The model with the lowest loss on the training
data was used as the final model.

We used Adam (Section 2.4.4) as the optimiser for each of the three consecutive successions.

Batch size Epochs Pretrained weights Learn rate Optimiser

MCDO 64
Early stopping after: 91
Best model picked: 13 ImageNet 0.00001 Adam

MCBN 180
Early stopping after: 77
Best model picked: 74 ImageNet 0.01

SGD
(momentum = 0.9)

Ensemble 32
Early stopping after: *
Best model picked: * ImageNet 0.00001 Adam

Error Output 64
Early stopping after: 118/26/31†
Best model picked: 109/1/29† ImageNet 0.00001 Adam

Table 4.6: Final settings for each method when trained on the Messidor-2 dataset.
* Each network inside the Ensemble is stopped after a different number of epochs.
† Error Output is trained 3 times in succession.

Batch size Epochs Pretrained weights Learn rate Optimiser

MCDO 32
Early stopping after: 14
Best model picked: 9 ImageNet 0.00001 Adam

MCBN 32
Early stopping after: 18
Best model picked: 3 ImageNet 0.001

SGD
(momentum = 0.9)

Ensemble 32
Early stopping after: *
Best model picked: * ImageNet 0.00001 Adam

Error Output 128
Early stopping after: 101/11/13†
Best model picked: 91/1/9† ImageNet 0.00001 Adam

Table 4.7: Final settings for each method when trained on the CIFAR10 dataset.
* Each network inside the Ensemble is stopped after a different number of epochs.
† Error Output is trained 3 times in succession.

38 CHAPTER 4. EXPERIMENTAL SETUP

Chapter 5

Results

In this chapter, we will present the results from the experiments described in Section 4. Recall that these
experiments were designed to answer the following research question:

Which method provides the best uncertainty estimations in deep neural networks for the classi-
fication of images?

This research question is decomposed into two sub-questions:

• Which method yields the best performance?

This question will be answered by the results shown in Section 5.1 and Section 5.2.

• Does testing on a different image dataset clearly show uncertainty?

This question will be answered by the results shown in Section 5.2.

5.1 Model Performance

Table 5.1 and Table 5.2 show the performance of each method when trained on Messidor-2 and CIFAR10
respectively. All networks were trained on a node from the Peregrine cluster from the University of
Groningen. This node had the following specifications:

• CPU: Intel® Xeon® Gold 6150 @ 2.70GHz (12 cores) (virtualized)

• Memory: 128 GB

• GPU: NVIDIA V100 (32 GB VRAM)

39

40 CHAPTER 5. RESULTS

Training time
(HH:MM:SS):

Inference time
Messidor-2 test set
(HH:MM:SS.ss):

Inference time
MNIST test set
(HH:MM:SS.ss):

Accuracy on
Messidor-2 test set:

Size trained
model (MB):

MCDO
Early stopping: 00:41:12
Best model: 00:06:06

00:05:00
Per example:
00:00:00.65

01:20:54
Per example:
00:00:00.49

63.0% (62.1% †) 663

MCBN
Early stopping: 00:44:01
Best model: 00:42:19

00:07:19
Per example:
00:00:00.96

01:18:07
Per example:
00:00:00.47

29.2% * (63.2% †) 634

Ensemble
Early stopping: 06:29:38
Best model: 02:53:12

00:11:10
Per example:
00:00:01.46

00:21:10
Per example:
00:00:00.12

67.3% 73,505

Error Output
Early stopping: 01:21:06
Best model: 00:59:37

00:00:05
Per example:
00:00:00.01

00:00:20
Per example:
00:00:00.002

61.7% 633

Table 5.1: Performance when trained on the Messidor-2 dataset.
* The training set caused problems with batch normalisation due to a lack of variance
† Accuracy when the complete trained network was used without the MCDO or MCBN method

Training time
(HH:MM:SS):

Inference time
CIFAR10 test set
(HH:MM:SS.ss):

Inference time
MNIST test set
(HH:MM:SS.ss):

Accuracy on
CIFAR10 test set:

Size trained
model (MB):

MCDO
Early stopping: 00:05:13
Best model: 00:02:11

00:02:17
Per example:
00:00:00.016

01:30:29
Per example:
00:00:00.543

85.4% (85.1% *) 129

MCBN
Early stopping: 00:07:19
Best model: 00:01:19

00:04:02
Per example:
00:00:00.025

01:21:53
Per example:
00:00:00.490

83.4% (82.8% *) 130

Ensemble
Early stopping: 14:12:51
Best model: 4:36:11

00:08:05
Per example:
00:00:00.056

00:10:47
Per example:
00:00:00.011

79.3% 14,828

Error Output
Early stopping: 00:22:58
Best model: 00:18:48

00:00:03
Per example:
00:00:00.0004

00:00:25
Per example:
00:00:00.003

83.7% 194

Table 5.2: Performance when trained on the CIFAR10 dataset
* Accuracy when the complete trained network was used without the MCDO or MCBN method

5.2 Uncertainty

The methods MCDO, MCBN and Ensemble all return an output matrix O. We used two different methods
to convert the information in these output matrices to uncertainty approximations. The structure of O is as
follows: O = A,E,C, where A represents the different model configurations that made a prediction on the
complete test set, E represents the examples in the test set and C represents the softmax probabilities for
each class.

5.2.1 Uncertainty Method 1 - Standard Deviation

The first method to gain an uncertainty approximation from the output matrix calculates the standard
deviation (STD) of all the N predictions made for each of the examples ei per class ci by the different

5.2. UNCERTAINTY 41

model configurations in A. The STD is calculated as follows:

s =

√
1

N−1

N

∑
i=1

(xi− x)2, (5.1)

where x1,x2, ...,xN are the predicted probabilities for a certain class c and x is the mean value of these
probabilities.

The resulting matrix is E by C and holds the STDs for each class of each example.

5.2.2 Uncertainty Method 2 - Probability Density Function

For the second method, we use the mean and standard deviations calculated in method 1 to construct a
Gaussian distribution for each class in each example. We then calculate the probability density function
(PDF) of the mean for this distribution. This will be the highest probability any example can get of falling
in this distribution, and therefore will be given 0 uncertainty. Now the PDF for each individual predicted
uncertainty will be computed and compared to the PDF of the mean. The further away this probability is
from the PDF of the mean, the higher the uncertainty.

Details about both methods can be read in section 3.2.6.

5.2.3 Scatter Plots

Section 5.2.4 till 5.2.7 show the results of each method when trained on either Messidor-2 or CIFAR10.
Section 5.2.4 till 5.2.6 show two figures (with each figure containing three plots) per dataset. The first
figure shows the scatter plot when method 1 (STD) is used to compute the uncertainty. The second figure
shows the scatter plot when method 2 (PDF) is used to compute the uncertainty.

Section 5.2.7 shows two figures per dataset as well. Here, the first and second figure depicts the
scatter plot when the uncertainty is calculated via method 1 and method 2 as described in section 3.2.7
respectively.

Per figure three scatter plots are shown.
The leftmost plot (a) shows the highest probability of each example in the test set plotted against the

uncertainty of that example. The green dots represent correct predictions, the red dots wrong predictions.
The middle plot (b) shows the mean squared error (MSE) plotted against the uncertainty. The MSE is

calculated as follows:

MSE =
1
n

n

∑
i=1

(Yi− Ŷi)
2, (5.2)

where Y is the vector of all highest predicted probabilities for a certain example and Ŷ is the true label
for that example. For example if the highest predicted probability of a certain network instance for a
certain example is 0.7, and this prediction is correct (so the true label would be 1), the squared error is
(0.7−1)2 = 0.09. The MSE for a certain example would be the mean of the squared errors calculated for
each prediction made on that example.

If the middle plot (b) would be showing a linearly increasing correlation, the uncertainty would be
increasing when the network’s predictions are less accurate as well.

The rightmost plot (c) shows the highest probability for each example in the MNIST test set plotted
against the uncertainty. Since none of the networks were trained on MNIST and therefore in no way able
to give accurate predictions, the methods should express their confusion through a high uncertainty.

42 CHAPTER 5. RESULTS

5.2.4 Monte Carlo Dropout

In Figure 5.1 till Figure 5.4 the scatter plot results of MCDO can be seen. Figure 5.1 and Figure 5.2 show
the results when the network is trained on the (augmented) Messidor-2 train set, Figure 5.3 and 5.4 show
the results when trained on the CIFAR10 train set.

When trained on Messidor-2

(a) Effect of probability on uncertainty on
Messidor-2 test set

(b) Effect of mean squared error on uncer-
tainty on Messidor-2 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.1: Scatterplots for MCDO when the uncertainty is computed via method 1 (standard deviation)
and the network is trained on Messidor-2

(a) Effect of probability on uncertainty on
Messidor-2 test set

(b) Effect of mean squared error on uncer-
tainty on Messidor-2 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.2: Scatterplots for MCDO when the uncertainty is computed via method 2 (probability density
function) and the network is trained on Messidor-2

5.2. UNCERTAINTY 43

When trained on CIFAR10

(a) Effect of probability on uncertainty on
CIFAR10 test set

(b) Effect of mean squared error on uncer-
tainty on CIFAR10 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.3: Scatterplots for MCDO when the uncertainty is computed via method 1 (standard deviation)
and the network is trained on CIFAR10

(a) Effect of probability on uncertainty on
CIFAR10 test set

(b) Effect of mean squared error on uncer-
tainty on CIFAR10 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.4: Scatterplots for MCDO when the uncertainty is computed via method 2 (probability density
function) and the network is trained on CIFAR10

5.2.5 Monte Carlo Batch Normalisation

In Figure 5.5 till Figure 5.8 the scatter plot results of MCBN can be seen. Figure 5.5 and Figure 5.6 show
the results when the network is trained on the (augmented) Messidor-2 train set, Figure 5.7 and 5.8 show
the results when trained on the CIFAR10 train set.

44 CHAPTER 5. RESULTS

When trained on Messidor-2

(a) Effect of probability on uncertainty on
Messidor-2 test set

(b) Effect of mean squared error on uncer-
tainty on Messidor-2 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.5: Scatterplots for MCBN when the uncertainty is computed via method 1 (standard deviation)
and the network is trained on Messidor-2

(a) Effect of probability on uncertainty on
Messidor-2 test set

(b) Effect of mean squared error on uncer-
tainty on Messidor-2 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.6: Scatterplots for MCBN when the uncertainty is computed via method 2 (probability density
function) and the network is trained on Messidor-2

When trained on CIFAR10

(a) Effect of probability on uncertainty on
CIFAR10 test set

(b) Effect of mean squared error on uncer-
tainty on CIFAR10 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.7: Scatterplots for MCBN when the uncertainty is computed via method 1 (standard deviation)
and the network is trained on CIFAR10

5.2. UNCERTAINTY 45

(a) Effect of probability on uncertainty on
CIFAR10 test set

(b) Effect of mean squared error on uncer-
tainty on CIFAR10 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.8: Scatterplots for MCBN when the uncertainty is computed via method 2 (probability density
function) and the network is trained on CIFAR10

5.2.6 Ensemble

In Figure 5.9 till Figure 5.12 the scatter plot results of Ensemble can be seen. Figure 5.9 and Figure 5.10
show the results when the network is trained on the (augmented) Messidor-2 train set, Figure 5.11 and
5.12 show the results when trained on the CIFAR10 train set.

When trained on Messidor-2

(a) Effect of probability on uncertainty on
Messidor-2 test set

(b) Effect of mean squared error on uncer-
tainty on Messidor-2 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.9: Scatterplots for Ensemble when the uncertainty is computed via method 1 (standard deviation)
and the network is trained on Messidor-2

46 CHAPTER 5. RESULTS

(a) Effect of probability on uncertainty on
Messidor-2 test set

(b) Effect of mean squared error on uncer-
tainty on Messidor-2 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.10: Scatterplots for Ensemble when the uncertainty is computed via method 2 (probability density
function) and the network is trained on Messidor-2

When trained on CIFAR10

(a) Effect of probability on uncertainty on
CIFAR10 test set

(b) Effect of mean squared error on uncer-
tainty on CIFAR10 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.11: Scatterplots for Ensemble when the uncertainty is computed via method 1 (standard devia-
tion) and the network is trained on CIFAR10

(a) Effect of probability on uncertainty on
CIFAR10 test set

(b) Effect of mean squared error on uncer-
tainty on CIFAR10 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.12: Scatterplots for Ensemble when the uncertainty is computed via method 2 (probability density
function) and the network is trained on CIFAR10

5.2. UNCERTAINTY 47

5.2.7 Error Output

As mentioned in section 3.2.7, two methods were used to receive an error estimation from a network
trained through the Error Output method.

For the first method, as can be seen in Figure 5.13 and Figure 5.15, the raw output from the error
outputs is taken as the uncertainty.

For the second method, as can be seen in Figure 5.14 and Figure 5.16, the raw error is compared to the
’true’ error (the error that the predicted probability would yield if the relevant class was correct (for the
highest probability of all classes) or wrong (for all other classes)) to gain an uncertainty. If the predicted
probability and error are compatible with each other, the uncertainty is low. If not, the uncertainty is high.
Section 3.2.7 explains this method in more detail.

When trained on Messidor-2

(a) Effect of probability on uncertainty on
Messidor-2 test set

(b) Effect of mean squared error on uncer-
tainty on Messidor-2 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.13: Scatterplots for Error Output when the uncertainty is raw output of the error nodes and the
network is trained on Messidor-2

(a) Effect of probability on uncertainty on
Messidor-2 test set

(b) Effect of mean squared error on uncer-
tainty on Messidor-2 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.14: Scatterplots for Error Output when the uncertainty is computed via the ’true’ error and the
network is trained on Messidor-2

48 CHAPTER 5. RESULTS

When trained on CIFAR10

(a) Effect of probability on uncertainty on
CIFAR10 test set

(b) Effect of mean squared error on uncer-
tainty on CIFAR10 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.15: Scatterplots for Error Output when the uncertainty is raw output of the error nodes and the
network is trained on CIFAR10

(a) Effect of probability on uncertainty on
CIFAR10 test set

(b) Effect of mean squared error on uncer-
tainty on CIFAR10 test set

(c) Effect of probability on uncertainty on
MNIST test set

Figure 5.16: Scatterplots for Error Output when the uncertainty is computed via the ’true’ error and the
network is trained on CIFAR10

5.3 Discussion
In this section, we will discuss the findings of the first part of Chapter 5. Per method, we will discuss if
the method has been able to answer our research questions of Section 1.5.

5.3.1 Performance
We can see the performance of each method in Table 5.1 and 5.2. We will elaborate on these results in the
following sections.

Training time

MCDO was the fastest to train, next was MCBN, followed by Error Output and the slowest method was
Ensemble. The training times for MCDO and MCBN are very similar. This is to be expected since only
the addition of either Dropout or BN layers is the difference between the two resulting networks. The
addition of Dropout generally has less of an impact on training than the addition of BN, a result we see
replicated here [71].

5.3. DISCUSSION 49

Error Output uses two additional Dense layers and trains three consecutive times with different loss
functions, causing it to be slower than the MCDO and MCBN. Ensemble was unsurprisingly the slowest
since it had to train 42 different networks. Even though the networks were only trained on 1

3 of the training
data individually, Ensemble was still around a factor 10 slower on Messidor-2 and more than a factor 100
slower on CIFAR10 compared to MCDO and MCBN. This is because some of the architectures used in
the Ensemble are a lot slower and deeper than VGG16 used for the other methods.

Inference time

Error Output excels at inference time since it only requires one forward-pass per example. Error Output
had an average inference time of just 2 to 10 ms, which was around 60 to 200 times faster than the other
methods. Ensemble, which had to load and perform inference on 42 networks, was the second-fastest when
it had to perform inference on a large set of data (MNIST). When Ensemble had to perform inference on a
smaller test set (Messidor-2 and CIFAR10), it was the slowest since it needs to load each of the 42 models
before inference.

MCDO was slightly faster than MCBN. Since both methods had to adjust and perform inference on
their network 250 times, they were a lot slower than Error Output and Ensemble when dealing with big
datasets.

Accuracy

Messidor-2 proved to be a difficult dataset to classify correctly. This is probably due to the non-precise
nature of the ground truth labels, where specialists classified the perceived severity of diabetic retinopathy
(DR). The difference between, for example, mild and moderate DR is not easily quantifiable and a look
at the confusion matrices of each method showed us that, when the wrong prediction was made, it was
often only one class away from the true class. Combined with the fact that the dataset was imbalanced
(see Table 4.1), the accuracy fell between 61.7% and 67.3%, with the highest accuracy obtained by the
Ensemble. The Ensemble method reaching the highest accuracy was in line with other literature [72].

MCBN was not able to receive an acceptable accuracy on the Messidor-2 test set. During the training,
it reached high training and validation accuracy, but this was not reflected in the test accuracy of 29.2%.
A possible explanation for these bad results would be a lack of variance in the mini-batch (128 random
examples from the training data) used to adjust the mean and variance of the BN layers when the mini-
batch was too small. Experiments in which only the original data was used (the augmented set could have
less variance since multiple examples could come from the same original image) or the mini-batch size
was increased to 180 (we could not test higher sizes due to memory limitations) did not resolve this issue
and only attained a slightly higher accuracy of 45.3%.

CIFAR10 proved to be a more balanced dataset with more variance between the classes. This resulted
in high accuracies between 79.3% for the Ensemble and 85.4% for MCDO. The Ensemble performed
notably worse on this dataset, which was probably because it was only able to train each network on 1

3 of
the train data. When each network was trained on the complete train data the accuracy was notably higher,
but at an increased training time and a drop in the variance used for the uncertainty estimate.

On CIFAR10, MCBN did not have the same problems as it had on the Messidor-2 test set. CIFAR10
has more variance between the classes which further reinforces the hypothesis that MCBN performs bad
on Messidor-2 because of a lack of variance in the mini-batches.

Testing the complete trained network of MCDO and MCBN resulted in a lower accuracy score than
with the methods applied (except for MCBN on the Messidor-2 dataset where the complete trained network
did not have a suspected variance problem). Since MCDO and MCBN combine the predictions of multiple
networks into a single mean prediction we can see that their accuracy increases as it does for ensembles
[72].

50 CHAPTER 5. RESULTS

Model complexity

The model complexity of MCDO and MCBN was nearly equal since they both have an equal amount
of layers. The model complexity of Error Output was slightly higher since it added two Dense layers
with many trainable weights. Ensemble had by far the highest model complexity since it consisted of 14
different architectures, each trained 3 times.

This was also reflected in the memory requirements of the trained models.
After being trained on Messidor-2 (where the input as 256x256x3) MCDO, MCBN and Error Output

were all around 650 MB in size. Ensemble, however, was 73,505 MB in size, resulting in an average size
per network of around 1750 MB. Ensemble, therefore, was nearly 115 times bigger in terms of memory
than the other methods.

We see similar results when trained on the smaller images of the CIFAR10 dataset (32x32x3). MCDO
and MCBN were around 130 MB, Error Output was 194 MB and Ensemble was 14,828 MB (for an
average of around 350 MB per network, or around 100 times bigger in total than the other methods).

5.3.2 Uncertainty
We can see the uncertainty estimates in Figure 5.1 till 5.16. We will elaborate these results in the following
sections.

Uncertainty on original test data

Figure a of Figure 5.1 till 5.16 show us that the uncertainty estimates of none of the methods gave us
information to better distinguish between false positives (red) and true positives (green).

For the Error Output method, the reason was perhaps easy to find. Error Output can only give a high
estimated error if it thinks the classifier layer is going to classify this example wrong. To do this, it needs
to detect some features in the input that tell it that this is a hard to classify example. But if the Error layer
was able to detect these features, why wouldn’t the classifier layer be able to do the same thing and use
these features to make a correct prediction in the first place? It probably would, and therefore both output
layers would almost always be in correspondence with each other. This means that when the error outputs
predict a higher error because of uncertainty, the classifier has also already picked up on this and therefore
is not giving a high probability to a single class. This idea was reflected in the results as well.

For MCDO, MCBN and Ensemble we can see that when the probability lowers, the uncertainty in-
creases as well. We usually saw the highest uncertainty when the probability was around 0.5. Gal, in his
thesis where he introduced MCDO, reported similar results when MCDO was used for image classifica-
tion [11]. Uncertainties were found to be the highest when the probability was around 0.5 and lower when
the probabilities either got higher or lower. The performance of MCBN was in line with previous findings
that found the performance of MCDO and MCBN to be very similar [23].

MCDO, MCBN and Ensemble all used the variance of multiple predictions to estimate uncertainty
(either through STD or PDF). If the separate predictions did not agree with each other, the uncertainty
will be higher. We indeed saw that the uncertainty became higher when the mean probability lowered, but
again this did not give us the ability to reliably detect false positives. When the variance was higher, the
mean of those predictions with high variance between them will generally be lower than when the variance
is small.

Uncertainty versus mean squared error

Figure b of Figure 5.1 till 5.16 show us the uncertainty estimates plotted against the mean squared error
(MSE) of all predictions (or just the squared error of the one prediction of Error Output). If the uncertainty
estimation was perfectly able to increase uncertainty when the classification error was increasing there

5.3. DISCUSSION 51

would be a linear relation between the two axes that would increase from the left bottom to the right upper
corner. We can see that none of the methods shows a perfect linear relationship, but most roughly increase
the uncertainty (most of the time very fast) when the MSE increases. MCDO, MCBN and Ensemble also
lowered the uncertainty again when the MSE was the highest. This happened when the probabilities for a
certain class were high, but this class happened to be the wrong one (for example due to over-fitting while
training).

Error output did not show this behaviour but seems to always increase the error when the squared error
(not the mean squared error since it was now only one prediction) was high (this only happened when the
Error was converted to an uncertainty estimate via method 2, see Figure 5.14b and 5.16b). Error Output
seemed to nicely model its own uncertainty since it raised the uncertainty when it actually was completely
right (MSE of 0). It did this because it ”knows” it is not a perfect classifier and therefore a prediction with
a very high probability (e.g. > 0.95) is unusual since it’s actual accuracy on the test set might only be for
example 80%.

When we compare the uncertainty plotted against the MSE to the probability plotted against the MSE
(see Appendix A: Figure A.1 and Figure A.2), we see that only using the probability shows a better linear
relation between the two axes. This further diminishes the advantage of the uncertainty estimate.

Uncertainty on untrained data

Figure c of Figure 5.1 till 5.16 show us the uncertainty estimates on the MNIST test, data that none of
the models is trained on. We would like to see a high uncertainty for every example since none of them
can be classified as something useful. We can see only Ensemble was able to give a high uncertainty for
every example. MCDO and MCBN gave a high uncertainty, but the uncertainty drops down the closer the
estimated highest probability was to 1. It seems that the extra variance that either Dropout or BN layers
added to every different version of the network was not comparable to that of the different architectures of
Ensemble. MCBN showed strangely low uncertainty over nearly all probabilities in Figure 5.7c, when the
uncertainty was calculated via STD and the original model, was trained on CIFAR10. This was, however,
solved when the uncertainty was calculated via PDF. This only occurred when trained on CIFAR10 and
not when trained on Messidor-2, which probably had to do with the difference in the input size and the
variance between the examples in the training sets.

STD vs PDF

Figure 5.1, 5.3, 5.5, 5.7, 5.9 and 5.11 show the plots when the standard deviation (STD) of all predictions
was used as the uncertainty estimate, while Figure 5.2, 5.4, 5.6, 5.8, 5.10 and 5.12 show the plots when
the probability density function (PDF) was used to calculate the uncertainty estimate. Both methods are
explained in Section 3.2.6.

The PDF method caused the uncertainties to, on average, get higher and more squeezed together for all
predictions that did not have a high probability estimate. Comparing Figure 5.7c with Figure 5.8c shows
most clearly the advantage of the PDF method. Where STD fails to show convincing uncertainty for
MNIST, PDF shows it perfectly. This effect was less pronounced for the other methods (or even datasets).

Since the PDF method requires quite some more computational steps compared to STD, the inference
time is also slowed down.

Error Output: raw error versus conversion

Figure 5.13 and 5.15 show Error Output when using the outputted error as the uncertainty (raw), while
Figure 5.14 and 5.16 show Error Output when the outputted error is first converted before being used as
the uncertainty estimate (converted). This conversion is explained on Section 3.2.7.

52 CHAPTER 5. RESULTS

When the error was used raw, only the information of the error outputs was used to determine the un-
certainty. The conversion checked if the probabilities outputted by the classifier layer were in accordance
with the output of the error layer, so both the information of the error outputs and the classifier outputs
were used to determine the uncertainty.

When the output was used raw, the uncertainty never hits 0 and was often quite high, even when the
probability estimate was (close to) 1, except for Figure 5.13c where the uncertainty was only close to
1 when the probability was near 0. Since Figure 5.13c represents the results when testing on an out-
of-distribution dataset we would like to see a high uncertainty for all cases, not just for the cases with
a low probability (the low probability itself would likely already cause the prediction to be rejected).
Converting the raw error solved the first problem of the uncertainty never being close to 0 by linking the
class probability and error together. This caused that an estimate class probability of for example 0.6
could still have a low uncertainty if the error agreed with this estimation. This can happen when the error
output outputs an estimated error of around 0.4 for the example above. This means that if the estimated
probability of 0.6 truly would point to the right class, the true error would have been 0.4. When this is more
or less the same error as outputted by the error output, the error layer and classifier layer are agreeing with
each other, resulting in a low uncertainty. We remain, however, with the same problem in Figure 5.14c as
in Figure 5.13c.

It seems that the raw output was more able to capture the aleatoric uncertainty while the conversion
method seems better at capturing the epistemic uncertainty. The capturing of epistemic uncertainty can
best be seen in the ’V’ shapes, where the lowest uncertainty occurred a bit below the probability that
would reflect the achieved accuracy (see Table 5.1 and 5.2). This is the probability that most examples
during training received and of which therefore the error was learned the best. This pattern can be useful
to determine the overall range of error the uncertainty estimation of the model is exhibiting. When for
example the lowest part of the ”V” shape is at 0.7 probability, we can say that the uncertainty estimation
of the model has an error of 0.3 or 30%. This number seems only to be around ±0.1 or ±10% off of the
actual accuracy, but can now be estimated without the use of the ground truth labels.

Figures (b) of Figures 5.13 till 5.14 show how the conversion method better linearly scaled with the
squared error compared to the raw method.

Further observations

The Messidor-2 dataset was a difficult dataset and Ensemble, while obtaining the highest accuracy of all
methods, only achieved an accuracy of 67%. Ensemble was the only method to reflect this low accuracy
score by not giving high certainty to an single example in the Messidor-2 test set. On CIFAR10, where
it received a higher accuracy, Ensemble was more confident in its predictions and therefore gave lower
uncertainty estimations as well.

Chapter 6

Conclusion

6.1 Summary of Results

We began this thesis by asking the question which of the four methods provides the best uncertainty
estimation in deep neural networks for image classification. While, in theory, a perfect Bayesian network
can provide us with a tremendous amount of useful information, we found mixed evidence that MCDO
and MCBN (the methods to approximate a Bayesian network) are capable of doing the same. None of the
four methods was able to help distinguishing false positives from true positives and MCDO and MCBN
were only partly successful at giving a high uncertainty to examples of an untrained class.

We found that the uncertainty estimation of the Ensemble method performed better than MCDO and
MCBN. Ensemble was very good at giving a high uncertainty to all examples of untrained classes and
better reflected overall model uncertainty on the Messidor-2 test set.

Error Output gave, without the conversion from error to uncertainty, not useful extra information. The
conversion helps to capture the epistemic uncertainty and the resulting pattern, when plotted against the
probability, helps to analyse this epistemic uncertainty.

MCDO and MCBN obtained the fastest training times of the four methods, but also very slow inference
times (certainly on a large test set). Ensemble had the longest training time, but also received the best
accuracy on the difficult Messidor-2 dataset. Error Output obtained a relatively fast training time and
magnitudes faster inference time compared to the other methods. MCDOs, MCBNs and Error Outputs
trained model were about equal in size, but the Ensemble was at least 40 times the size.

Overall, Ensemble gave the most reliable and accurate uncertainty estimates, but at the cost of slow
training, mediocre inference time and large memory requirements. MCBN’s inconsistent results make it
no reliable option for most applications. MCDO seems promising, but the uncertainty estimate might not
justify the slow inference time. Error Output introduces an interesting perceptive on obtaining uncertainty
estimates, but again seems to not improve over the information that can already be obtained from the
probability estimate.

All the above statements have to be put in perspective, however. MCDO, MCBN and Ensemble all
use the mean of multiple predictions to give their final prediction. This inherently improves their accuracy
as well [72] and already merges the uncertainty into the probability. Therefore, when we compare these
methods to a single prediction of the complete, trained network, we can draw a different conclusion. If the
variance between the multitude of predictions is high, a single prediction could just as well receive a (far)
lower or higher probability then the mean now shows, all without an uncertainty estimation informing us
about this problem.

Considering this, I can conclude that MCDO, MCBN and Ensemble, when increased inference time
and memory requirements allow it, provide useful methods to lower the uncertainty of predictions. The
addition of an uncertainty estimate proves useful to detect untrained classes and the mean prediction of
MCDO, MCBN and Ensemble improve the quality of their predictions in general.

53

54 CHAPTER 6. CONCLUSION

6.2 Recommendations for Future Research
Future research could combine one or more of the above methods to try to obtain even more predictions
for the calculation of the uncertainty estimate. All methods should be able to work together since none
of them uses particular functions that would be incompatible with the other methods. The strengths of a
particular method could be used to reduce the weakness of another method. For example, the fast training
speed of MCDO could be used to train fewer members in an Ensemble, so combining the added variance
of the Ensemble with also having enough separate predictions to obtain a reasonable uncertainty estimate
through MCDO.

Another research topic could be expanding the Error Output method to include many more outputs
that all try to capture a separate representation of the classes. This brings it closer to the ensemble method.
A variation could also just include a single error output node. This single output only tries to detect
hard-to-predict examples regardless of the class.

Finally, it has been shown that some of the methods are useful for detecting classes that the classifier is
not trained on. This could be useful for (unsupervised) active learning where the learner can add examples
with high uncertainty as new classes.

Appendix A

Mean Squared Error plotted against the
Probability

(a) MCDO (b) MCBN

(c) Ensemble (d) Error Output

Figure A.1: Effect of mean squared error on probability on Messidor-2 test set

55

56 APPENDIX A. MEAN SQUARED ERROR PLOTTED AGAINST THE PROBABILITY

(a) MCDO (b) MCBN

(c) Ensemble (d) Error Output

Figure A.2: Effect of mean squared error on probability on CIFAR10 test set

Bibliography

[1] N. H. T. S. Administration, “Tesla Crash Preliminary Evaluation Report,” tech. rep., NHTSA, Jan
2017.

[2] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak,
B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Medical
image analysis, vol. 42, pp. 60–88, 2017.

[3] A. Blake, R. Curwen, and A. Zisserman, “A framework for spatiotemporal control in the tracking of
visual contours,” International Journal of Computer Vision, vol. 11, no. 2, pp. 127–145, 1993.

[4] X. He, R. S. Zemel, and M. Á. Carreira-Perpiñán, “Multiscale conditional random fields for image
labeling,” in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2004. CVPR 2004., vol. 2, pp. II–II, IEEE, 2004.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[6] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning for computer vi-
sion?,” in Advances in Neural Information Processing Systems 30 (I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), pp. 5574–5584, Curran Asso-
ciates, Inc., 2017.

[7] Z. Ghahramani, “Probabilistic machine learning and artificial intelligence,” Nature, vol. 521,
no. 7553, pp. 452–459, 2015.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information processing systems, pp. 1097–1105, 2012.

[9] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural network learning for speech recog-
nition and related applications: An overview,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 8599–8603, IEEE, 2013.

[10] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep neural network
architectures and their applications,” Neurocomputing, vol. 234, pp. 11–26, 2017.

[11] Y. Gal, Uncertainty in deep learning. PhD thesis, PhD thesis, University of Cambridge, 2016.

[12] S. Herzog and D. Ostwald, “Sometimes bayesian statistics are better,” Nature, vol. 494, no. 7435,
pp. 35–35, 2013.

[13] R. Van De Schoot, S. D. Winter, O. Ryan, M. Zondervan-Zwijnenburg, and S. Depaoli, “A systematic
review of bayesian articles in psychology: The last 25 years.,” Psychological Methods, vol. 22, no. 2,
p. 217, 2017.

57

58 BIBLIOGRAPHY

[14] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Mon-
fort, U. Muller, J. Zhang, et al., “End to end learning for self-driving cars,” arXiv preprint
arXiv:1604.07316, 2016.

[15] B. Settles, “From theories to queries: Active learning in practice,” in Active Learning and Experi-
mental Design workshop In conjunction with AISTATS 2010, pp. 1–18, 2011.

[16] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,” Journal of
artificial intelligence research, vol. 4, pp. 237–285, 1996.

[17] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, D. Guo, and C. Blundell,
“Agent57: Outperforming the atari human benchmark,” arXiv preprint arXiv:2003.13350, 2020.

[18] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer School on Machine Learn-
ing, pp. 63–71, Springer, 2003.

[19] R. M. Neal, Bayesian learning for neural networks, vol. 118. Springer Science & Business Media,
2012.

[20] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When gaussian process meets big data: A review of scalable
gps,” IEEE Transactions on Neural Networks and Learning Systems, 2020.

[21] D. J. MacKay, “A practical bayesian framework for backpropagation networks,” Neural computation,
vol. 4, no. 3, pp. 448–472, 1992.

[22] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in neural net-
works,” arXiv preprint arXiv:1505.05424, 2015.

[23] M. Teye, H. Azizpour, and K. Smith, “Bayesian uncertainty estimation for batch normalized deep
networks,” arXiv preprint arXiv:1802.06455, 2018.

[24] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel,
“Backpropagation applied to handwritten zip code recognition,” Neural computation, vol. 1, no. 4,
pp. 541–551, 1989.

[25] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised learning using graphics pro-
cessors,” in Proceedings of the 26th annual international conference on machine learning, pp. 873–
880, 2009.

[26] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep, big, simple neural nets for
handwritten digit recognition,” Neural computation, vol. 22, no. 12, pp. 3207–3220, 2010.

[27] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, “Dermatologist-
level classification of skin cancer with deep neural networks,” nature, vol. 542, no. 7639, pp. 115–
118, 2017.

[28] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and
T. Darrell, “Long-term recurrent convolutional networks for visual recognition and description,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2625–2634,
2015.

[29] X. Sun, P. Wu, and S. C. Hoi, “Face detection using deep learning: An improved faster rcnn ap-
proach,” Neurocomputing, vol. 299, pp. 42–50, 2018.

BIBLIOGRAPHY 59

[30] V. N. Murthy, S. Maji, and R. Manmatha, “Automatic image annotation using deep learning repre-
sentations,” in Proceedings of the 5th ACM on International Conference on Multimedia Retrieval,
pp. 603–606, 2015.

[31] B. Farley and W. Clark, “Simulation of self-organizing systems by digital computer,” Transactions
of the IRE Professional Group on Information Theory, vol. 4, no. 4, pp. 76–84, 1954.

[32] D. O. Hebb, The organization of behavior: A neuropsychological theory. Psychology Press, 2005.

[33] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the
brain.,” Psychological review, vol. 65, no. 6, p. 386, 1958.

[34] M. Minsky and S. A. Papert, Perceptrons: An introduction to computational geometry. MIT press,
2017.

[35] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural networks,
vol. 4, no. 2, pp. 251–257, 1991.

[36] E. B. Baum and F. Wilczek, “Supervised learning of probability distributions by neural networks,” in
Neural information processing systems, pp. 52–61, 1988.

[37] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[38] I. J. Goodfellow, O. Vinyals, and A. M. Saxe, “Qualitatively characterizing neural network optimiza-
tion problems,” arXiv preprint arXiv:1412.6544, 2014.

[39] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural net-
works,” in Proceedings of the thirteenth international conference on artificial intelligence and statis-
tics, pp. 249–256, 2010.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

[41] A. Cauchy, “M ’e general method é n ’e rale for the solution of é systems of simultaneous equations
’e es,” Comp. Give back. Sci. Paris, vol. 25, no. 1847, pp. 536–538, 1847.

[42] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On large-batch training
for deep learning: Generalization gap and sharp minima,” arXiv preprint arXiv:1609.04836, 2016.

[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[44] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning lecture 6a overview
of mini-batch gradient descent,”

[45] N.-N. Ji, J.-S. Zhang, and C.-X. Zhang, “A sparse-response deep belief network based on rate distor-
tion theory,” Pattern Recognition, vol. 47, no. 9, pp. 3179–3191, 2014.

[46] Y.-T. Zhou, R. Chellappa, A. Vaid, and B. K. Jenkins, “Image restoration using a neural network,”
IEEE transactions on acoustics, speech, and signal processing, vol. 36, no. 7, pp. 1141–1151, 1988.

[47] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” in Advances in neural
information processing systems, pp. 3856–3866, 2017.

[48] J. S. Denker and Y. Lecun, “Transforming neural-net output levels to probability distributions,” in
Advances in neural information processing systems, pp. 853–859, 1991.

60 BIBLIOGRAPHY

[49] D. J. MacKay, “A practical bayesian framework for backpropagation networks,” Neural computation,
vol. 4, no. 3, pp. 448–472, 1992.

[50] R. M. Neal, Bayesian learning for neural networks, vol. 118. Springer Science & Business Media,
2012.

[51] T. S. Jaakkola and M. I. Jordan, “Variational probabilistic inference and the qmr-dt network,” Journal
of artificial intelligence research, vol. 10, pp. 291–322, 1999.

[52] G. E. Box and G. C. Tiao, Bayesian inference in statistical analysis, vol. 40. John Wiley & Sons,
2011.

[53] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving neural
networks by preventing co-adaptation of feature detectors,” 2012.

[54] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple
way to prevent neural networks from overfitting,” The journal of machine learning research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[55] R. Turner, P. Berkes, and M. Sahani, “Two problems with variational expectation maximisation for
time-series models,” Bayesian Time Series Models, 01 2008.

[56] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing model uncertainty
in deep learning,” in international conference on machine learning, pp. 1050–1059, 2016.

[57] Y. Gal, J. Hron, and A. Kendall, “Concrete dropout,” in Advances in Neural Information Processing
Systems, pp. 3581–3590, 2017.

[58] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing
internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[59] X. Li, S. Chen, X. Hu, and J. Yang, “Understanding the disharmony between dropout and batch
normalization by variance shift,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2682–2690, 2019.

[60] D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout and the local reparameterization
trick,” in Advances in Neural Information Processing Systems, pp. 2575–2583, 2015.

[61] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch normalization help optimization?,”
in Advances in Neural Information Processing Systems, pp. 2483–2493, 2018.

[62] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[63] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive uncertainty es-
timation using deep ensembles,” in Advances in Neural Information Processing Systems, pp. 6402–
6413, 2017.

[64] W. L. Buntine and A. S. Weigend, “Bayesian back-propagation,” Complex systems, vol. 5, no. 6,
pp. 603–643, 1991.

[65] D. A. Nix and A. S. Weigend, “Estimating the mean and variance of the target probability distribu-
tion,” in Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94), vol. 1,
pp. 55–60, IEEE, 1994.

BIBLIOGRAPHY 61

[66] E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, P. Gain, R. Ordonez,
P. Massin, A. Erginay, B. Charton, and J.-C. Klein, “Feedback on a publicly distributed database:
the messidor database,” Image Analysis & Stereology, vol. 33, pp. 231–234, Aug. 2014.

[67] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for advanced research),”

[68] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” 2010.

[69] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recogni-
tion,” arXiv preprint arXiv:1409.1556, 2014.

[70] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[71] C. Garbin, X. Zhu, and O. Marques, “Dropout vs. batch normalization: an empirical study of their
impact to deep learning,” Multimedia Tools and Applications, pp. 1–39, 2020.

[72] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisciplinary Reviews: Data Min-
ing and Knowledge Discovery, vol. 8, no. 4, p. e1249, 2018.

