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A B S T R A C T

Technical debt (TD) is an allegorical term used to describe shortcuts taken by software
developers during the development of projects, either deliberately or unintentionally, to
achieve a short-term goal. Unlike bugs, TD issues can take a while to make themselves
present, which can result in major problems in dealing with them as the rest of a project
can be heavily intertwined.

In this paper, a random sample of 1200 issues were taken from two of Googles issue
tracker projects, namely, Chromium and Gerrit. These 1200 issues were analysed for
different criteria, to help determine the nature of their TD.

Within these issues 8 different types of TD were found: architecture, build, code,
defect, design, documentation, requirement, and test Debt. Of these issues, the 3 most
common types were code, design and defect debt.

Of the issues that contained TD, half was created as a result of reporting technical
debt and the other half was found later on whilst an issue was being resolved.

About 69.6% of issues with TD were resolved by developers which further strength-
ened the idea that developers are aware of the importance of resolving TD.

On average, it takes projects in Google’s issue tracker, 5559.4 hours or 234 days to
resolve TD in issues. The majority of developers that resolved the TD in an issue was
neither the person that first reported the issue or the developer that identified the TD
in the issue.
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1
I N T R O D U C T I O N

The term Technical debt was first introduced by Ward Cunningham in 1992 to try and
describe the short cuts used by developers, either deliberately or unintentionally, taken
in software intensive projects. Technical debt was created to try and address the impact
that these "quick fixes" can have on the both the maintainability and evolvability of a
project [12]. As opposed to say bugs, which are visible to the user, technical debt issues
can take a while before they become apparent and problematic.

There is fine balance between permitting a certain amount of technical debt to allow
the progress of a project versus an excessive amount of technical debt which can become
problematic later on. This build up can become very challenging to deal with as the
project has evolved over time and possibly cause the collapse of a project entirely.
Almost all projects will incur technical debt at some stage of their development due to
some strategic decision that was made to help with the development of a program or
project. Due to the dependencies that modules or components can have on these "quick
fixes" it can become extremely challenging beyond a certain point to deal with these
issues. Therefore it is vital that these issues be resolved regularly when they are still
manageable.

Technical debt can occur at almost any stage throughout a project. Quantifying techni-
cal debt and knowing how to deal with it are primary focuses in the study of technical
debt. As with any relatively new field, the boundaries that define technical debt are ever
changing along with the methods and approaches used to deal with it. As technical
debt can occur at any stage of the development life cycle, from project demands, to
architectural design, implementation, etc. there are already approaches that exist to
detect technical debt in any of these areas via the use of analytic tests on source codes.
Another key area in the research of technical debt is the study of these analytic re-
ports with the aim of trying to further understand where technical debt occurs and why.

This study will focus on both the introduction and repayment of technical debt in
Google issue trackers. A tool was built to collect issue data from Monorail, Googles
issue tracker. The types and indicators of technical debt in the issues were annotated
and studied to see how developers identify and resolve technical debt.
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2
B A C K G R O U N D I N F O R M AT I O N

This chapter aims to introduce the reader to the origins of how technical debt came
about and some of the background information regarding technical debt. There is also
a table at the end of the section with that should help introduce the reader to some of
the more relevant terminology, definitions and ideas.

The term technical debt was first introduced by Ward Cunningham in 1992 in a board
meeting with non-technical people [3]. Cunningham used the idea of financial debt
as an analogy for describing this new term. This allowed the members of the meeting
to have a clear understanding as they were already familiar with the idea of financial
debt.f

Cunningham explains "Shipping first time code is like going into debt. A little
debt speeds development so long as it is paid back promptly with a rewrite... The
danger occurs when the debt is not repaid. Every minute spent on not-quite-right code
counts as interest on that debt. Entire engineering organizations can be brought to a
stand-still under the debt load of an unconsolidated implementation, object-oriented or
otherwise." [3]

Similar to monetary debt, if technical debt is not repaid in time, it can garner "interest",
which in turn makes it harder to pay off, i.e implementing changes can be become more
difficult.

Technical debt can also be described in the following way: Technical debt is when
software development tasks are put aside to make way for higher priority tasks. The
tasks form a foundation and support the project in its entirety. As with any structure,
if its foundation is poor, it becomes harder and harder to build upon as the structure
keeps developing. Eventually, the possibility arises of needing to demolish the entire
structure and rebuilding from the ground up as the foundation can no longer support
the project.

2.1 quantifying technical debt

Since Ward Cunningham first introduced the idea of technical debt, several key devel-
opments have been introduced by academics from around the world. Several studies
have been conducted to give technical debt a theoretical framework to be universally
accepted and adopted. There are three main studies conducted by Krutchen [13],
Fowler[5] and McConnell[9] that have made the foundation for both defining and
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4 background information

quantifying technical debt. The following sub section aims to more explicitly state and
outline the ways in which technical debt is quantified.

2.1.1 Krutchen’s Technical Debt Landscape

Philippe Krutchen first noted that the majority of technical debt is only observed by
software developers trying to maintain or update systems. Krutchen distinguished
between visible and non-visible technical debt, suggesting that the scope of technical
debt should encompass just what is visible to the customer. Krutchen introduced the
idea of technical debt arising with the evolvement of a product. This can happen when
a program simply out grows what it was initially intended for and an overhaul from
the ground up is required. Krutchen also argued that issues with Architectural design
and Technological gaps require more attention than code-level technical debt as these
cannot be detected by technical debt tools.

2.1.2 Fowler’s Technical Debt Quadrant

Martin Fowler quantified technical debt based on two main factors, poorly written code
and badly designed programs, which Fowler termed reckless and prudent respectively.
Fowler went on to further break down these groups into deliberate and non-deliberate.
This then gives rise to Fowlers technical debt quadrant. For example, well designed
code that was quickly written would fall under Deliberate Reckless code. Fowlers
motivation for this system of classification is that these types of technical debt are more
taxing to pay off.

2.1.3 McConnell’s Technical Debt Taxonomy

Steve McConnell broke down the idea of technical debt into the following categories
shown below in Figure 1. McConnell started categorizing technical debt into either
Intentional or Unintentional. Unintentional technical debt can be summarised as any-
thing ranging from substandard code or poor design. McConnell focused primarily at
looking at forms of Intentional technical debt.
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Figure 1: McConnell’s Technical Debt Taxonomy

Intentional technical debt is made up of two forms, long term and short term. Long
term technical debt is strategically taken on and can last for several years, for example,
designing an application to initially only run on Windows and not Mac. Short term
technical debt is a strategic choice made by developers which will be quickly payed off.
Short term technical debt consists of focused technical debt and unfocused technical
debt. Focused technical debt is anything that can be easily tracked and monitored, such
as quickly implementing an inefficient algorithm for the sake of completing a project
quickly. Unfocused technical debt refers to more difficult to manage issues such as
omitting a naming convention for classes for the sake of time. McConnell argued that
short term technical debt should be avoided as it can build up very quickly.

Presently, after having established a theoretical framework for technical debt, some
of the terms and definitions will be introduced surrounding technical debt will be
introduced. It is not required to memorize the following information, it should simply
be treated as a point of reference to aid with reading of this paper..

2.2 technical debt nomenclature

In practice, technical debt is quite hard to pinpoint in software development. It can
occur in many different ways and stages throughout the development and is often
challenging to identify. Given that technical debt is still a relatively new research
area, there does not yet exist a universally agreed upon system for quantifying and
determining technical debt. With this in mind, the following table aims to introduce
the reader into the relevant terms and definitions which will be used as metrics for
quantifying the data further on in this paper using the information from Alves et al. [6]
[11].
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See Table 1 Below.

The information given in the aforementioned section(s) will be used throughout the
rest of this paper extensively. The terms and definitions will be used fluidly.

Table 1: Definitions of Indicators of Different Types of Technical Debt in Issue Trackers.
Type Indicator Definition

Architecture debt Violation of modularity Because shortcuts were taken, multiple modules became inter-dependent,
while they should be independent.

Using obsolete technology Architecturally-significant technology has become obsolete.

Build debt
Under- or over-declared depen-
dencies

Under-declared dependencies: dependencies in upstream libraries are not de-
clared and rely on dependencies in lower level libraries.Over-declared depen-
dencies: unneeded dependencies are declared.

Poor Deployment Practice The quality of deployment is low that compile flags or build targets are not
well organized.

Code debt

Complex Code Code has accidental complexity and requires extra refactoring action to reduce
this complexity.

Dead code Code is no longer used and needs to be removed.

Duplicated code Code that occurs more than once instead of as a single reusable function.

Low-quality code Code quality is low, for example because it is unreadable, inconsistent, or vio-
lating coding conventions.

Multi-thread correctness Thread-safe code is not correct and may potentially result in synchronization
problems or efficiency problems.

Slow algorithm A non-optimal algorithm is utilized that runs slowly.

UI code Bad UI code

Defect debt Uncorrected known defects Defects are found by developers but ignored or deferred to be fixed.

Design debt Non-optimal decisions Non-optimal design decisions are adopted.

Documentation
debt

Outdated documentation A function or class is added, removed, or modified in the system, but the doc-
umentation has not been updated to reflect the change.

Low-quality documentation The documentation has been updated reflecting the changes in the system, but
quality of updated documentation is low.

Requirement debt
Requirements partially imple-
mented Requirements are implemented, but some are not fully implemented.

Non-functional requirements not
fully satisfied

Non-functional requirements (e.g. availability, capacity, concurrency, extensibil-
ity), as described by scenarios, are not fully satisfied.

Test debt
Expensive tests Tests are expensive, resulting in slowing down testing activities. Extra refactor-

ing actions are needed to simplify tests.

Lack of tests A function is added, but no tests are added to cover the new function.

Low coverage Only part of the source code is executed during testing.

2.3 issue trackers

An issue tracker is a software system that provides a platform for developers to manage
and maintain issues that occur in the development process of software projects. An
issue is a unit of work to accomplish and improve in the software development process,
an important problem or topic to be discussed. Issues can take many forms ranging
from software bugs to feature requests, tasks or the reporting of technical debt. Once a
developer reports an issue on the issue tracker, the issue is then archived. At this stage,
other developers will then be able to comment and collaborate on resolving the issue.



3
R E L AT E D W O R K S

This chapter aims to summarize some related works that have explored the study and
understanding of technical debt. There findings have helped in both defining what
technical debt is and also analysing it in different areas of software development. This
section will focus on detecting technical debt, technical debt in issue trackers and how
to manage technical debt.

3.1 detecting technical debt

Several studies have already used static source code analysis techniques to identify
code-level technical debt and poor programming (e.g no comments). Marinescu first
put forward a metric-based detection system. This was aimed at engineers "to directly
localize classes or methods affected by the violation of object-oriented design principles
and validated the approach on multiple large industrial case studies." [7]. Munro et
al. further developed Marinescu’s work by establishing some new metrics to quantify
the data and provided justifications for why certain metrics should or should not be
present. Munro also tested this updated version of Merinescu’s work by identifying two
kinds of code smells (lazy class and temporary field) in two case studies [8]. Brondum
et al. focused on detecting architectural technical debt by trying to model visual aides
based on the analysis of structural code [1]. Li et al. proposed the use of two modularity
metrics, Index of Package Changing Impact (ICPI) and Index of Package Goal Focus
(IPGF), as indicators of architecture technical debt [18]. Further, they proposed an
architecture technical debt identification approach based on architecture decisions and
change scenarios [19].

In Ke Dais and Philippe Kruchtens [4] paper the project was split into 5 main stages.
Firstly, issue data was exported to allow for easier processing later on. Then the issues
were manually categorized into one or more of the relevant types. Following this, key
words and phrases were chosen and extracted based on there suspected relevance to
technical debt. These words indicate defects or design limitation such as inconsistent
UI style, unreasonable design, etc. [4]. Then key features were extracted based on
text classification of the previous step. Finally a classifier was established in order to
quantify the augmented data. Dai and Kructhen analysed only specific parts of an issue
where as this paper will focus on analysing all the comments in an issue.

7



8 related works

3.2 technical debt in issue trackers

Researchers focused on Technical Debt have the choice of using different Issue trackers,
e.g Jira, Clickup. Issue trackers are frequently used in open source projects. They play
an important role in facilitating software development teams to manage development
and maintenance activities and thus promoting the success of software projects. Some
researches have focused on mining issue tracking databases to retrieve valuable informa-
tion for improved definition, development management, quality evaluation, predictive
models, etc.

Runeson et al. developed a prototype tool which detects duplicate defect reports in
issue tracking systems using NLP techniques, evaluated the identification capabilities
of this approach in a case study and concluded that about 2/3 of the duplicates can
possibly be found using this approach [14].

Other work focused on concerned aspects of software quality attributes, e.g security.
Cois et al. proposed an approach to detecting security-related text snippets in issue
tracking systems using NLP and machine learning techniques [2]

Everton et al. concluded on their paper "Detecting and Quantifying Different Types
of Self-Admitted Technical Debt" the following data. Self-admitted technical debt com-
ments were primarily made up of design debt (42% to 84%) and requirement debt (5%
to 45%) across their projects. The remaining types of debt have relatively low frequency,
comprising of less than 10% of the total quantified debt [15].

Avgeriou et al. focused on self admitted technical in the issue tracker Jira in their arti-
cle "Identification and Remediation of Self-Admitted Technical Debt in Issue Trackers"
[12]. In their findings they found that the issue tracker Jira contained 8 types of technical
debt reported: architecture, build, code, defect, design, documentation, requirement,
and test debt. In Jira the majority of technical debt was paid off by primarily those who
identified or created it. They also found that the median time and average time spent
on technical debt repayment was 25.0 and 872.3 hours respectively.

Bellemo et al. gathered the following data with issue trackers Stephany Bellomo and
Popec[16] see 2. N.B: Project A and Project B are representatives from the Issue tracker
Connect.
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Table 2: Issue Tracker Data

Issue Tracker No. of Issues
No. Of times key
words found

Date first
occurred

Connect
5,186 since July
2009

15 Jan. 2012

Project A 86 0 N/A

Project B 193 0 N/A

Chromium
>390,000 since
Sept. 2008

56 Oct. 2008

As can be seen from the table 2, Key words come up a relatively small amount of
time. This in part led Bellemo et al. to the conclusion that "Our data and analysis
weakly support that issues where developers discuss certain classes of changes such
as refactoring and cleanup are more likely to contain references to accumulation of
technical debt." and that "Technical debt conceptually is about conscious design trade-
offs. However, the majority of technical debt that developers deal with is a consequence
of unintentional design choices. Issue trackers carry information that can assist in
uncovering the hidden technical debt." Defining any metric to try and establish a
framework for quantifying technical debt can be a tricky and challenging trade-off
Stephany Bellomo and Popec[16].

3.3 managing technical debt

Managing Technical Debt is of course one of the most crucial stages in this process.
After data has been collected on technical debt, it can be studied to see in which ways
data collection could be improved. Data collection can also help in defining what
technical debt is and its scope, i.e, issues rarely or never occurring could be possibly be
removed as a metric for defining technical debt.

Bellomo et al. hypothesized that of the issues there tracker provided, the 51 technical
debt issues would take longer to solve than the 656 non-technical debt issues. The
average amount of days an issues was open for was determined using mean plots.
Each day was calculated by subtracting the closed date from the open date. All of the
issues in each set of data was split up into either technical debt or non-technical debt.
Subgroupings of 100 days (e.g 1 to 100, 101 to 200, etc.) were created. The average of
these subgroupings were taking and plotted against the results on a mean plot line
charts. These charts enabled easier comparison of the technical and non-technical data
sets for each project. Finally the charts were analyzed and it was observed that there
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was no consistency or pattern in average days open [16].
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M E T H O D O L O G Y

This chapter aims to outline how to study was conducted by explaining the main
steps that were taken during the project. This research project was constructed around
answering 5 research questions. These questions are outlined in full below along with
further explanations to indicate why they were chosen.

4.1 case study design

The goal of this study, formulated according to the Goal-Question-Metric [6] template
is to “analyze issues in issue tracking systems for the purpose of characterizing the technical
debt within the issues with respect to the types, the introduction, and the repayment of technical
debt from the point of view of software developers in the context of open source software”. This
goal is approached by breaking the goal up into 5 research questions, denoted RQ.

• RQ1: What are the types of technical debt in Google issue trackers?

Knowing what types of technical debt can be identified within issue trackers is
vital in determining the possible limitations of using issue trackers to analyse
technical debt. It is possible to determine which types of technical debt affect
Google issue trackers and whether or not specific types of technical debt occur
more frequently than others. In determining the types of technical debt that occur
in Google issue trackers, all comments in an issue were analysed individually.

• RQ2: When do developers identify and report technical debt?

It is worth noting that issues can be created as a consequence of resolving
technical debt but technical debt can also be created as a result of solving issues.
It is important to understand whether or not issues are created in order to resolve
technical debt or is technical debt is created/acquired as a result of fixing an
issue. Understanding when developers identify technical debt in issues can help
researchers to more accurately identify the source of technical debt.

• RQ3: How much of technical debt is resolved?

Understanding how much technical debt is resolved can help both software
developers and managers in measuring the severity of the technical debt. It also
allows an insight to be had of the attitudes of developers towards technical debt.
Furthermore it can show when developers are not resolving debt frequently and
helps in describing the build up of debt. This is important as a build of debt over
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12 methodology

an extended period of time can become problematic and challenging to repay. It
also highlights specific developers who have a thorough understanding of debt
and manage their own personal technical debt regularly.

• RQ4: How long does it take on average to resolve technical debt?

The length of time it takes to solve technical debt is a good indicator for software
developers and managers to effectively plan and manage future issues of technical
debt. It helps managers to create a time frame needed to resolve technical debt.

• RQ5: Who resolves technical debt?

Knowing who resolves technical debt will allow a clear understanding to be had
in who needs the tools and support to resolve the technical debt more efficiently.
Is the person admitting the debt resolving it or is someone else resolving the
debt? It is possible that when trying to solve debt admitted by someone else, more
information than just the comment itself may be need to resolve the debt. How
diverse is the group admitting technical debt? Is it always the same people? Is
there a need for change in the structure of development and management of a
project?

4.2 method of approach

1. Data Source

The Google issue tracker Monorail was used for data collection as it contains the
majority of Google’s mature public source projects. Monorail has been in use
since 2013 by Google developers. The projects Chromium and Gerrit were used
for this research as both projects have been in development since 2008. Chromium
is a web browser that google chrome is built upon and Gerrit is a code review
and project management tool for Git based projects. Both of these projects use
Monorail as their issue tracker. table 3 shows some details of the Chromium and
Gerrit.

Table 3: Project Tracker Data

Project No. of Issues
Date first
occurred

Gerrit 13,134 2008

Chromium 1,104,611 2008
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2. Filtering Issues

This paper contains only data from closed issues, so all open issues were filtered
out. This was done in order to avoid conflicts in answering some of the research
questions. Open issues can still receive technical debt in future comments which
then also need to be resolved. These situations would prevent research questions
3, 4 and 5 from being properly answered. With the closed issue filter applied, the
number of issues left to analyse in the two projects were:

Table 4: Project Closed Issue Tracker Data

Project No. of Closed Issues

Gerrit 8,213

Chromium 96,891

3. Issue Data Collection

The collection of data from the issue tracker Monorail was done with a web
scrapper tool that was developed in python as the API (Application Program
Interface) of monorail is deprecated. Analysing every closed issue from both
projects would be too time consuming so a sample size of 600 issues was taken
from each project. The web scrapper tool extracted data from 600 randomly
chosen closed issues from each project.

4. Manual annotation of Issues

After the relevant data was gathered from these randomly chosen closed issues
they were imported into Doccano an online annotation tool. In Doccano each
issue was broken up under the following categories: issues title, description and
issues comments. Each of these components was then analyzed individually
and manually annotated with either the correct label stating which type of
technical debt it has or it was labelled debt free if no technical debt was present
in the issue. The total numbers of titles, descriptions, and comments of the 1200

issues added up to 6644 components to annotate. Throughout the process of
annotation, discussions were held periodically about issues that were annotated
in a contradictory manner to overcome the possibility of human error occurring.
After completing the annotations, a generated data set was produced containing
the technical debt annotations for each of the collected issues.
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5. Manual Analysis of Technical Debt Issues

With the generated data set of annotated issues, the issues containing technical
debt were manually analysed on Monorail to determine whether or not the issues
were resolved. Each issue was analysed using the issue’s comments to check if the
technical debt had been resolved. If the technical debt in the issue was resolved
the owner and date of the resolving comment in the issue is recorded.

6. Data Analysis

Quantitative analysis was conducted on each of the data sets collected. This
was done with the aim of trying to understand when and why technical debt
occurs, specifically in the projects studied from Google’s issue tracker Monorail.
Applying the correct statistical procedures on each sample set of data for each
project, data was computed and visualised with various charts to accurately
answer the research questions with quantified evidence.



5
I M P L E M E N TAT I O N

The following chapter aims outline how the study was carried out with in particular, a
detailed outline of how the data was gathered, collected, and annotated. Justifications
and background to implementation design for the web scrapping tool is also given in
this chapter.

5.1 web scrapping tool

A web scrapping tool was designed and implemented to collect the data required for
the analysis of the project. The API of Google’s issue tracker, Monorail, was not used
for this project as it was deprecated at the time and the newer version was not open to
the public at the time this project was conducted.

5.1.1 Design

The web scrapper tool was programmed in python due to the ease of implementation.
The libraries required for this extraction and manipulation of data where also readily
available which further motivated the choice of using python.
The main obstacle in scrapping Monorail’s website is that the website is a dynamic
website that heavily uses shadow DOM.

"Shadow DOM is a web component that allows encapsulation. This allows the web
page to be able to keep the markup structure, style, and behavior hidden and separate
from other code on the page." [10]

15



16 implementation

Figure 2: Shadow DOM Structure

"Shadow DOM allows hidden DOM trees to be attached to elements in the regular
DOM tree — this shadow DOM tree starts with a shadow root, underneath which can
be attached to any elements you want, in the same way as the normal DOM."[10]

To reveal these hidden shadow DOMs, the module selenium_utilities.py was created.
This was done by rendering these shadow DOMs independently. This had to be done
multiple times as Monorails webpages used multiple shadow DOMs on one page and
many nested shadow DOMs which all had to be rendered independently.

The MonorailScraper class would first create a list of all the ids of closed issues of
the chosen projects. This list was saved as json file. This was done by scrapping the
webpage that contained the list of issues. This then iterated through multiple pages of
the lists of closed issues.
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Figure 3: Monorail Issue List Page

An older version of the webpage of the list of issue was used to overcome the hin-
drance of shadow DOM as they were not used in the older version, as they were in the
new version of the webpage.

After the creation and collection of the list of closed issue ids, MonorailScraper class
would create a random list of 600 closed issues of the projects. The function scrapeIs-
sueList would iterate through each issue id to scrape.

The class IssueScraper was used to scrape all the relevant data of each issue.
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Figure 4: Monorail Issue Page

Each data element collected had to be independently found by first rendering multiple
nested shadow roots repeatedly.
The json data below shows all the data that was collect from each issue.

{

"ID": "Issue ID",

"title": "Title of issue",

"opened date": "Date issue was opened",

"closed date": "Date issue was closed",

"reporter": "The creator of the issue",

"status": "Status of the issue",

"description": "description of the issue",

"comments": [

{

"comment": "text of comment",

"date": "date when comment was made",

"owner": "owner of comment"

}

]

}

Once the program iterated through the whole random list of issues and all the data
was collected it was then saved to a json file.
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5.1.2 Evaluation

Each time a shadow root was rendered a wait time was implemented to give the shadow
root time to load the data. Due to this and the need to render multiple nested shadow
roots repeatedly, which was needed to find and extract each data element. Therefore,
there was a considerate amount of slowdown.

5.2 annotation

The collected data was imported into, Doccano an online annotation tool. In Doccano
each issue was broken up under the following categories: issues title, description and
issues comments.

Figure 5: Doccano Page

An Annotation Guideline can be viewed in Table 15 of the Appendix. Each of these
components was then analyzed individually and manually annotated with either the
correct label stating which type of technical debt it has or it was labelled NonDebt if no
technical debt was present in the issue.





6
R E S U LT S

This Chapter aims to outline in a clear and concise manner the results gathered. The
research questions will be answered in the next section using the results explained in
this chapter. It is also worth noting that in certain cases, only the average results across
the two projects investigated are displayed here for the sake of ease of reading. The full
results for individual projects are however contained in the appendix of this paper in
the instances that they are omitted from this chapter.

6.1 types of technical debt in google issue trackers

In the Google issue tracker, Monorail, there were 8 different types of technical debt
found in the two projects, Chromium and Gerrit and there were 22 different indicators
in total for indicating the 8 different types of technical debt.

A list of example issues with the different types of technical debt found:

• Architecture Debt: "Robert, seems you removed support for window.external.AddSearchProvider()
on Mac"-[CHROMIUM-88350]

• Build Debt: "chromium build should not depend on WebKit/WebKit or WebKit/We-
bKitLibraries"-[CHROMIUM-4685]

• Code Debt: "Hmmm... did we use a deprecated syntax? If that syntax is illegal(it IS
ambiguous) then I’d prefer that it failed rather than worked in some cases..."-[GERRIT-
2507]

• Defect Debt: "We’re going to drop GWT after 2.16. It’s not worth fixing this on the
existing stable branches."-[GERRIT-2309]

• Design Debt: "Main reason why flush() fixes random things for you is because it creates
a timeout before the callback. You could effectively replace it with setTimeout(()=>, 1); in
most cases. Which is obviously not a good practice, just to be clear. I think flush() finished
debouncers, micro-tasks, and probably data binding propagation. I don’t think this is the
case here."-[GERRIT-6524]

• Documentation Debt: "...However. There is an undocumented thing here, we do in fact
load $site_path/etc/gitweb_config.perl and allow it to override prior configuration. So I
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guess I’ve already done what you asked for, I just didn’t document it. *sigh*"-[GERRIT-
496]

• Requirement Debt: "The toolbar icons (add / remove / show-in-folder) in the Mac
bookmark manager window are just placeholders. I need to replace them with some real
ones..."-[CHROMIUM-32442]

• Test Debt: "Test flakiness on linux due to Omnibox not being fully functional immedi-
ately after window creation"-[CHROMIUM-62783]

Figure 6: Technical Debt Bar-graph
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Table 5: Total Types and Indicators of Technical Debt.
Type Indicator No. No. %

Architecture debt Violation of modularity 3
6 1.2

Using obsolete technology 3

Build debt Over-declared dependencies 2

13 2.7Under-declared dependencies 2

Poor deployment practise 9

Code debt

Complex Code 9

207 43

Dead Code 3

Duplicated Code 2

Low-quality Code 80

Multi-thread correctness 5

Slow algorithm 7

Code UI 98

Code other 3

Defect debt Uncorrected known defects 62 62 12.8

Design debt Non-optimal decisions 117 117 24.2

Documentation debt Low-quality documentation 10
18 3.7

Outdated documentation 8

Requirement debt
Requirements partially imple-
mented 8

15 3.1

Non-functional requirements not
being fully satisfied 7

Test debt
Expensive tests 24

45 9.3
Lack of tests 13

Low coverage 8

Table 6: Gerrit Types and Indicators of Technical Debt.
Type Indicator No. No. %

Architecture debt Violation of modularity 0
2 0.9

Using obsolete technology 2

Build debt Over-declared dependencies 0

6 3Under-declared dependencies 2

Poor deployment practise 4

Code debt

Complex Code 0

80 39.7

Dead Code 0

Duplicated Code 2

Low-quality Code 35

Multi-thread correctness 0

Slow algorithm 1

Code UI 42

Code other 0

Defect debt Uncorrected known defects 27 27 13.5

Design debt Non-optimal decisions 57 57 28.2

Documentation debt Low-quality documentation 10
18 8.9

Outdated documentation 8

Requirement debt
Requirements partially imple-
mented 0

2 0.9

Non-functional requirements not
being fully satisfied 2

Test debt
Expensive tests 5

10 4.9
Lack of tests 3

Low coverage 2
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Table 7: Chromium Types and Indicators of Technical Debt.
Type Indicator No. No. %

Architecture debt Violation of modularity 3
4 1.4

Using obsolete technology 1

Build debt Over-declared dependencies 2

7 2.5Under-declared dependencies 0

Poor deployment practise 5

Code debt

Complex Code 9

127 45.1

Dead Code 3

Duplicated Code 0

Low-quality Code 45

Multi-thread correctness 5

Slow algorithm 6

Code UI 57

Code other 3

Defect debt Uncorrected known defects 35 35 12.5

Design debt Non-optimal decisions 60 60 21.4

Documentation debt Low-quality documentation 0
0 0

Outdated documentation 0

Requirement debt
Requirements partially imple-
mented 8

13 4.6

Non-functional requirements not
being fully satisfied 5

Test debt
Expensive tests 19

35 12.5
Lack of tests 10

Low coverage 6

The graph above 6 shows the frequency at which different types of technical debt
occurs Chromium, Gerrit and the total. The tables 6 and 7 present the results of different
types of technical debt found through their indicators in both projects and 5 shows the
combined total different types of technical debt found through their indicators. Table 7

shows that the project Chromium only contained 7 different technical debt types and
19 different indicators for these technical debt. Table 6 shows that the project Gerrit
contained all 8 different technical debt types but only 15 different indicators. From
table 5 it is observed that three most common types of technical debt are code-debt
with 43%, design-debt with 24.2%, and defect debt with 12.8%.

Table 8: Total Number of Types of Technical Debt in Issues.

Type # Indicator % Issues

Does not contain technical debt 808 67.3

Contains one type of technical debt 316 26.3

Contains two types of technical debt 63 5.3

Contains three types of technical debt 12 1

Contains five types of technical debt 1 0.1
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Table 9: Gerrit Number of Types of Technical Debt in Issues.

Type # Indicator % Issues

Does not contain technical debt 426 71

Contains one type of technical debt 150 25

Contains two types of technical debt 20 3.3

Contains three types of technical debt 4 0.7

Table 10: Chromium Numeber of Types of Technical Debt in Issues.

Type # Indicator % Issues

Does not contain technical debt 382 63.6

Contains one type of technical debt 166 27.7

Contains two types of technical debt 43 7.2

Contains three types of technical debt 8 1.3

Contains five types of technical debt 1 0.2

Tables 8, 9, and 10 show the number of different types technical debt found in a
single issue. An issue can have more than one technical debt instances occurring in its
lifetime. From table 8 it is observed that 32.7% of the 1200 issues analysed has technical
debt. Of the 600 issues in Gerrit that were analysed, 29% had technical debt and from
Chromium’s 600 issues, 36.3% had technical debt. Of all the issues with technical debt
19.4% of them had more than one type of technical debt.

6.2 developers identifying and reporting technical debt

Table 11 shows how many issues with technical debt are either Created or Identified.
Created means that the issue was created by a developer for the purpose of reporting
and resolving technical debt and Identified means that the technical debt was identified
by a developer later in the process of resolving an issue. Observing the table shows
that from the 392 issues with technical debt 54.1% of the issues were created to report
technical debt and 45.9% of the issues was technical debt that was identified later in
the issue.
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Table 11: Technical Debt Reporters.

Project
Created Identified

No. % No. %

Gerrit 84 48.3 90 51.7

Chromium 128 58.7 90 41.3

Total 212 54.1 180 45.9

6.3 amount of technical debt resolved

Table 12 shows the number of issues with technical debt that were resolved and not
resolved. In some cases it could not be determined if the issues were resolved or not. In
these cases the issues were labelled as Not Determined. Observing the table 12 shows
that of the issues that could be determined, 69.6% were resolved. In particular this was
76.8% for Gerrit and 63.7% for Chromium.

Table 12: Amount of Technical Debt that was Repaid.

Project No. Resolved No. Not Resolved No. Not Determined

Gerrit 106 32 36

Chromium 109 62 47

Total 215 94 83

6.4 average time to resolve technical debt

Figure 7 shows the visual distribution for the time in hours it took to resolve the
technical debt for the issues in both projects separately and combined. The average
time it takes for the two projects to resolve their technical debt is 7246.4 hours for Gerrit
and 3918.8 hours for Chromium. To compare the two projects’ average time, a Welch
Two Sample t-test [17] was preformed on the time samples of the two projects, with
the null hypothesis: (that the difference in the average time is equal to 0), gaining the
p-value of 0.054. It was calculated that the average time to resolve technical debt for the
issue tracker is 5559.4 hours.
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Figure 7: Time to Resole Technical Debt

Table 13: Average Time to Resolve Technical Debt

Project Mean Time (Hours) Median Time (Hours)

Gerrit 7246.4 480

Chromium 3918.8 336

Total 5559.405 408

6.5 the developers that resolve technical debt

Table 14 shows who the developers were that resolved the issues with technical debt.
There are three cases: Creator, Identifier, and Other. Creator is when the creator of the
issue resolves it. The Identifier is when the person who identifies the issues later in
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the project resolves it. Other is when neither the Creator nor the Identifier are the ones
who resolve the issue, but rather another developer. The table shows that most of the
technical debt is resolved by neither the Creator nor Identifier. From the Table 14 it can
be seen that 74% of technical debt issues are resolved by Other, 18.6% of technical debt
issues are resolved by the creator of the issue, and 7.4% of technical debt issues are
resolved by the identifier of the technical debt.

Table 14: Who Repaid Technical Debt.

Project Repaid
Repaid by

Creators Identifiers Others

No. % No. % No. %

Gerrit 106 16 15.1 5 4.7 85 80.2

Chromium 109 24 22 11 10.1 74 67.9

Total 215 40 18.6 16 7.4 159 74
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D I S C U S S I O N

This chapter aims to answer the proposed research questions in detail. The results are
compared to other papers in order to help give the reader an insight into how the
information of this paper correlates with work of a similar nature. Further discussions
are made to previous papers to help further support the results of this paper or outline
interesting disagreements.

7.1 question 1 : what are the types of technical debt in google issue

trackers?

It can be seen from the results that the Google issue tracker, Monorail, has 8 different
types of technical debt: architecture, build, code, defect, design, documentation, require-
ment, and test debt. There are 22 different indicators for these types of technical debt.
The three most common types of technical debt found in the issue tracker were code,
design, and defect debt respectively. In the study[6] it was shown that Jira’s three most
common types of technical debt were code, documentation, and test debt whereas in
the study of S. Maldonado and Shihab[15] they found that design debt was their most
common form of technical debt followed by requirement debt. Both Jira and Google’s
issue trackers have code debt as their most common type of technical debt. Design debt
is a major source of technical debt in the two studies cited above and this paper. The
other major types of technical debt that occur in Googles issue trackers are not similar
to the findings of Everton et al. and to the types that most commonly occur in Jiras
issue tracker. Documentation and requirement debt are one of the least common types
of technical debt found in this paper. This shows that there are distinct differences in
the types of technical debt that are found in different issue trackers.

In comparing the types of technical debt found in Gerrit against Chromium, it can be
seen that Chromium had only 7 types of technical debt found compared to Jira which
had 8. Chromium did not have any documentation debt unlike Jira, which was the
second most common technical debt found in Jira’s issue tracker. This clearly shows the
importance in these studies as research into the different types of technical debt that
occur in issues trackers can highlight many differences between issue trackers. This
makes sense as the nature of the projects are different and therefore they do not face
the same issues which results in them not producing the same types of technical debt.
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7.2 question2 : when do developers identify and report technical

debt?

Developers use one third of the issues created to identify and report technical debt.
This shows that issue tackers are important tools in keeping track of technical debt in
projects. In the results section two categories were used to analyse when technical debt
is identified and reported by developers. The results show that the data is split evenly
between developers reporting technical debt through creating an issue and developers
identifying technical debt later in an issue.

7.3 question 3 : how much of technical debt is resolved?

It can be seen from the results that most of the technical debt that is identified and
reported by developers was resolved. This total came to about 69.6% of the issues
in Google’s issue tracker that were eligible candidates for determining a result of
resolved or not. This is inline with results of the study done on Jira’s issue tracker[6],
as their result was 71.3% and 72.5% for their two projects. This strengthens the idea
that developers are aware of the importance of resolving technical debt.

7.4 question 4 : how long does it take on average to resolve technical

debt?

On Average it takes projects in Google’s issue tracker, 5559.4 hours to resolve technical
debt in issues. For Gerrit this is 7246.4 hours and for Chromium it is 3918.8 hours. It
was shown in the Welch Two Sample t-test that there is a significant difference in the
average time taken to resolve technical debt for the two projects Comparing the average
times it takes to resolve technical debt in Google’s issues tracker and Jira’s issue tracker,
it can clearly be seen that the average time to resolve technical debt is significantly
higher in Google’s issues tracker, as in the study [6], compared to Jira’s average time of
repaying technical debt of about 872.3 hours. What is similar though is that in the study
[6] it was also observed that there was a significant difference between their average
times to resolve in their two projects. This can be due to the fact that these projects have
different developers with different technical skill or due to the fact of that different
types of technical debt occur in each project. Like in [16] there was no consistency or
pattern in average hours it took to resolve technical debt

7.5 question 5 : who resolves technical debt?

From the results it can be seen that technical debt in Google issue trackers are mostly
resolved by developers who are neither the reporter nor identifier of the technical debt
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in an issue. This comes out to about 74% of the technical debt issues. This could be
due to the fact that the developers that report or identify technical debt in an issue
rely other developers that are highly skilled in resolving technical debt. The opposite
however can be said about Jira’s issue tracker, where it was found that only 8.3% of
all technical debt is resolved by other developers. This might indicate why the average
time taken to resolve technical debt is significantly lower in Jira’s issue trackers as they
do not wait for other developers.





8
T H R E AT S T O VA L I D I T Y

This chapter aims to explain the nature and types of threats to validity in the under-
taking of this research. The information in this paper is subject to errors due to the
approaches taken in both methodology and the collection of data. As with any research
topic concerning the analysis of data using subjective methods, both the analysis of
results and conclusions garnered are affected by threats to validity. The two primary
sources of threats to validity concerning this particular paper are internal and external
threats to validity which concerns the actions taken by the researcher in regards to the
analysis of data and how the results of this particular paper can correspond to topics
or applications of a similar nature respectively.

8.1 internal validity

Threats to the internal validity of this paper stem from the decisions and measures
that were taken in a subjective aspect. Threats to internal validity in this study arises
in the manual annotations of comments on issues of technical debt in Google issue
trackers. The way in which these comments can be annotated can differ from researcher
to researcher, i.e one researcher may label an issue as solved in the case of unclear
comments whereas another could label it unresolved. The threats to internal validity
can still arise however when the sample taken does not accurately reflect the entire
project. This was mitigated by taking a random sample of data.

8.2 external validity

The understanding of threats to external validity in this paper is important for further
research in the study of technical debt as it allows others researchers to see how relevant
this paper may be to a similar topic. The data garnered in this paper may not accurately
reflect data in other issues trackers. This is because different projects may use different
labels and comments for issues than in this paper as each developer or team may
have their own unique system for issue classification. Threats to external validity were
minimized by focusing on only Googles issue trackers. From the two projects chosen
in the issue tracker, Chromium and Gerrit, equal sample sizes were chosen in order
to allow for fair comparisons to be made. These projects were also chosen due there
longevity, which insured the samples taken would be significantly less likely to be
skewed with erratic issues that may occur in newer projects.
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C O N C L U S I O N

The goal of this study is to analyze issues in Google issue tracking systems for the
purpose of characterizing the technical debt within the issues with respect to the types,
the introduction, and the repayment of technical debt from the point of view of software
developers in the context of open source software.

In this paper, eight types of technical debt were found in two projects, Chromium and
Gerrit, found on Monorail, a Googles issue tracker. There were 22 different indicators
that highlighted the presence of one of these forms of technical debt. The types of
technical debt that were present were architecture, build, code, defect, design, docu-
mentation, requirement, and test debt. From the sample set taken of 1200 issues, 32.7%
contained at least one indicator that showed the presence of some form of technical
debt. The three most common types of technical debt found in the issue tracker were
code, design, and defect debt (with 43%, 24.2%, and 12.8% respectively).

Furthermore, from the technical debt reported, an average 54.1% of issues were
reported by their creator across the two projects. The remaining 45.9% of issues were
reported by a developer other than the creator of the issue. Of the 392 cases were
technical debt was identified across the two projects studied in this paper, 215 cases
were resolved, 94 cases were not resolved and 83 of these cases were inconclusive, i.e it
was not clear if the technical debt was repaid or not.

The average time it took for technical debt to be resolved for the projects studied in
Monorail was 5559.4 hours. It took on average 7246.4 hours for Gerrit to resolve their
issues with technical debt and 3918.8 hours for chromium. This significant statistical
difference is most likely a result of the different nature of these two projects.

Lastly, across the two projects, of the technical debt that was repaid, 18.6% of it was
repaid by the creator of the issue and 7.4% was repaid by the identifier of the technical
debt. The remaining 74% of resolved technical debt was resolved by developers who
neither created nor identified the debt.
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F U RT H E R W O R K S

This study can act as good basis for many different research projects in technical debt.
The structure created in this paper by outlining how technical debt can be quantified
and how the results can be analysed can aid further research even when different
sample sets are chosen.

Further works in an exploratory study of technical debt in Google issue trackers
can be improved by taking a larger sample size of issues from the projects Chromium
and Gerrit. Despite the sample set being randomly selected, the size of the sample set
selected still limits how accurately the results of this study can reflect the total spread
of issues with technical debt across Chomium and Gerrit. A larger sample set would
greatly strengthen the findings of this thesis should this larger data set lead to results
that are inline with that of this paper.

As reflection of Googles issue trackers, this study can only be representative of the
projects Chromium and Gerrit. Other projects that differ in nature could likely produce
different statistical results. Given that 27 different projects use Monorail as their issue
tracker, it would be interesting to repeat this study with a larger number of projects.
This would allow one to compare and determine with a greater certainty if the findings
of this study are a reflection of Googles issue tracker or to the selected projects chosen
inside Googles issue tracker.

Lastly, given that all the annotations were deduced on a subjective manner, there will
always be discrepancies in how this study will relate to further works. Each study will
by nature, have its own system and methodology for labeling issues and some studies
will also quantify issues differently than how this study has. A standard guideline or a
standard metric for detecting and annotating technical debt in issues would strengthen
and enrich future data in further studies in technical debt.
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A P P E N D I X A

a.1 doccano annotation guideline

label technical debt indicator

Architecture-VioMod Architecture debt - Violation of modularity

Architecture-ObsTech Architecture debt - Using obsolete technology

Architecture-Oth Architecture debt - Others

Build-UndDpd Build debt - Under-declared dependencies

Build-OvrDpd Build debt - Over-declared dependencies

Build-Oth Build debt - Others

Code-CpxCd Code Debt - Complex code

Code-DedCd Code Debt - Dead code

Code-DupCd Code Debt - Duplicated code

Code-LQualCd Code Debt - Low-quality code

Code-MTCor Code Debt - Multi-thread correctness

Code-SlAlg Code Debt - Slow algorithm

Code-UI Code Debt - Wrong UI code

Code-Oth Code debt - Others

Defect-Def Defect debt - Uncorrected known defects

Design-Des Design debt - Non-optimal decisions

Documentation-OtdDoc Documentation debt - Outdated documentation

Documentation-LQualDoc Documentation debt - Low-quality documentation

Requirement-ReqParImp Requirement debt - Requirement partially implemented

Requirement-NonFucNotSat Requirement debt - Non-functional requirements not fully satisfied

Test-ExpTst Test debt - Expensive tests

Test-LacTst Test debt - Lack of tests

Test-LCvg Test debt - Low coverage

NonDebt No technical debt

Table 15: Annotation Guideline.
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