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Abstract

Cryo Electron Tomography (Cryo-ET) — which stems from the
better known Cryo Electron Microscopy — is a powerful imaging
technique that allows for high resolution structure determination of
single samples in native conformation or in situ. Recent engineering
and computational advances brought Cryo-ET back to the front-line
of structural biology, opening up new applications and possibilities.
Here, we describe the state of the art of Cryo-ET, with a particular
focus on subtomogram averaging for single particle studies, and ex-
plore the recent technological advances that prove most promising for
the future of this technique.
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1 Introduction

Interactions between biological molecules are heavily dependent on their
structural features. The goal of structural biology is to understand the
function of such molecules by determining and understanding their three-
dimensional structure.

Structural biologists employ a few different methods to this end; the most
commonly used techniques for structure determination are X-ray crystallog-
raphy, NMR and Electron Microscopy (EM). Currently, these techniques
respectively account for about 89%, 8% and 3% of PDB entries1.

Despite its spread, X-ray crystallography is limited by its applicability to
molecular complexes, and relies on the capability of the target molecule to
form crystals. Less diffused than X-ray crystallography, structure determi-
nation through NMR is very powerful, but can only be applied to relatively
small systems due to the high complexity of the information and other effects
of bigger systems such as slower tumbling.

Cryo Electron Microscopy (Cryo-EM) is the least common of the three
techniques, but has been slowly gaining traction in the structural biology
community. Cryo-EM is a well-established imaging technique which consists
in imaging cryogenically vitrified samples with an electron microscope. It
appears in published papers as far back as 70 years ago, which test and
discuss its potential for structure determination2.

In recent years, advances in both engineering and computational equip-
ment led to new advances in Cryo-EM which brought this technique back to
the front-line of structural biology research. Where it was once impractical
or inferior to existing alternatives, Cryo-EM is now approaching the high
resolution of X-ray crystallography, while proving more versatile and being
applicable to new and different studies3.

1.1 Single-particle Cryo-EM

The most common application of Cryo-EM is single-particle structure deter-
mination4,5, which is often chosen as an alternative to X-ray crystallography
for the structural study of proteins and other biological macromolecules.

In single-particle analysis (SPA), samples of purified molecules are applied
to a specialized grid in order to form a thin layer, which is then vitrified by
plunge-freezing. The process of vitrification preserves the native structure of
the samples, while limiting the effects of radiation damage6. Such samples
are then imaged using an electron microscope; the resulting images are 2D
projections of several copies of the target molecule in many different orienta-
tions. Images are then computationally combined into a 3D reconstruction
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of the target, which can be interpreted in a similar way to electron-density
maps obtained through X-ray crystallography.

1.1.1 Advantages over X-ray crystallography

Differently from X-ray crystallography, Cryo-EM does not require to crys-
tallize the target prior to imaging; instead, samples are vitrified by rapid
freezing. This not only makes sample preparation less complicated, but also
fixates the target in a near-native conformation, preserving features that
may otherwise be lost or altered during the crystallization process. By not
restricting the conformational space of the target to be crystal-compliant,
Cryo-EM also allows for structure determination of challenging targets —
such as integral membrane proteins of mammal origin or chromatin in com-
plex with its modifiers — which would otherwise be near impossible with
X-ray crystallography.

While SPA presents several benefits over X-ray crystallography, it also
maintains some of the same disadvantages. One such limitation is due to the
necessity of imaging many copies of the target arranged in a grid in different
orientations, which precludes the analysis of samples in situ and of systems
of disordered nature.

Here, we focus on a branch of Cryo-EM called Cryo Electron Tomography
(Cryo-ET), which opened new possibilities by allowing for high resolution in
situ structure determination7.

1.2 Cryo Electron Tomography

Cryo Electron Tomography (Cryo-ET) is a technique used to reconstruct a
3D image of a vitrified biological sample in situ. This is achieved by acquiring
a set of projection images of the sample from several different orientations
(tilt series), which are then computationally combined to reconstruct the 3D
structure of the target (tomogram).

This approach provides a mean to inspect structural features of complex
systems that cannot be imaged with other methods because they cannot be
crystallized nor purified to a simple elementary unit.

To extract the most information from a tomographic reconstruction, subto-
mogram averaging (StA) can be be used when several copies of the target
particle are present in one (or more) tomograms. By extracting the subto-
mograms containing each particle, aligning them and averaging their density
maps, it is possible to dramatically increase the resolution of the recon-
structed 3D particle.
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While Cryo-ET is an old technique, recent developments in data acqui-
sition and processing show promising advancements in its applications and
capabilities for the near future. The following sections describe the state of
the art of Cryo-ET, analyzing the future perspectives for each step of this
imaging technique, from sample preparation to tomogram reconstruction and
subtomogram averaging.

2 Sample preparation

The first challenges in Cryo-ET imaging come from the preparation of sam-
ples. Several optimizations in this step can improve the quality of the data,
simplify the imaging process or allow for different targets.

2.1 Vitrification

Samples are vitrified for a few reasons: to preserve their structure, to improve
their resistance to the high energy of the electron beam, and to protect them
from the vacuum needed for EM imaging.

Vitrification is can be achieved through High Pressure Freezing8 or Plunge
Freezing9; these procedures are designed to cool down the samples extremely
rapidly in order to prevent the formation of ice crystals, which can damage
and deform dramatically the structure of the target.

Vitrification is a complex procedure that, if done manually, can lead to
suboptimal results that hurt reproducibility. While automated procedures
exist, currently available robots still require a fair amount of manual in-
tervention. A few improvements to the established vitrification techniques
are currently under development: the use of new plunge freezing robots and
nanowire grids can boost reproducibility and lower the dwell time of sam-
ples in thin liquid films, thus preventing the samples from adopting preferred
orientations10,11.

2.2 Slicing and Milling

One of the strength of Cryo-ET — the ability to image complex and het-
erogeneous systems — is also what requires additional care. Cells, organelle
complexes, and other macromolecular structures are sometimes too thick for
electron microscopy.

Imaging in EM depends on the elastic scattering of electrons; higher sam-
ple thickness means that a higher percentage of electrons gets scattered in-
elastically, effectively losing information while damaging the sample. This
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imposes a practical limit for Cryo-ET sample thickness at around 300 nm,
which amounts to an apparent thickness of ∼600 nm at high tilt angles12.

Due to this limitations, naturally thick samples such as cells need to be
thinned before they can be imaged by Cryo-ET. Currently, the most estab-
lished thinning approach is Cryo-sectioning, also called CEMOVIS; samples
are simply cut with a diamond knife before being deposited on the EM grid13.
However, CEMOVIS is a very low throughput technique that inevitably de-
forms the sample with compression, and formation of crevasses and breaks
in the ice14.

In recent years, cryo-sectioning started to give way to more modern tech-
nologies, such as focused ion beam (FIB) milling14,15. Instead of cutting
the sample, FIB milling progressively removes material from the ice layer by
bombarding it with Ga3+ ions. Differently from CEMOVIS, this technique
preserves the sample to a near-native condition.

Although FIB milling is not yet widespread, as it requires highly special-
ized equipment, it already enabled novel in situ structural insights as well as
providing a new perspective on the dynamic nature of cellular complexes16.

Despite the benefits, FIB milling does not improve on one of CEMOVIS
limitations: with both techniques, it is hard to cut the sample to the de-
sired thickness while maintaining the feature of interest inside the ice layer.
Currently, this is solved by collecting low-dose EM images to determine the
position of the target feature inside the ice layer; this method, however, is
limited by the poor contrast of EM images, especially when trying to mini-
mize the exposure of the sample to harmful radiation.

A better approach, though still relatively immature, is correlative mi-
croscopy: by using fluorescence microscopy to more easily detect sample
features, it is possible to find and focus the region of interest with the elec-
tron microscope, with more accuracy and without damaging the sample in
the process17.

2.3 Fiducial markers

Images within a tilt series require careful alignment before performing the
tomographic reconstruction. Despite the engineering advances in the auto-
mated collection of tilt series and fiducialless alignment procedures, the use
of fiducial markers such as gold beads is still extremely helpful for the proper
alignment of a tilt series (Figure 1).

Fiducials are added to the samples before vitrification; the high contrast
of the fiducial markers against the surroundings allows for higher precision
in the tilt series alignment process (see Section 4.2).
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Figure 1: EM projection image of a sample containing gold bead fiducials. Fidu-
cials are visible as small dark disks with high contrast to the surroundings.

3 Data acquisition

One of the main limitations in Cryo-EM is the intrinsically low signal to noise
ratio (SNR). This is further complicated by the progressive degradation of
the sample due to the high energy of the electron beam. This is particularly
problematic for Cryo-ET, since a single sample needs to be imaged multi-
ple times during the collection of a tilt series. Due to this effect, there is
a practical limit to how much information can be extracted from a given
sample.

To compensate these limitations, during data acquisition particular care
must be taken to reduce secondary sources of noise and minimize the effects
of sample degradation.

3.1 Collection schemes

As mentioned in section 2.2, higher sample thickness leads to higher inelastic
scattering, and therefore worse quality images. Higher resolution information
is the first to be lost to this phenomenon.

In Cryo-ET, imaging a sample at higher tilts is effectively equivalent to
imaging a thicker sample. Due to this reason, most of the high resolution
information is found at low tilts. Since high resolution information is also
the first to be degraded by radiation damage, an ideal tilt series should be
collected first at low tilt angles, progressively moving towards higher tilts.
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Conventionally, tilt series are collected along two passes: from 0°to +60°,
and then from 0°to –60°). Though this bi-directional tilt scheme is better than
the older, continuous method, more recent microscope mounts and software
enable the use of a dose-symmetric collection scheme18. This improved col-
lection method maximizes the high-resolution information collected in early
images, thus minimizing the impact of sample degradation (Figure 2). Addi-
tionally, it distributes the radiation damage more evenly throughout the tilt
series, which later improves tilt series alignment.

Figure 2: Schematic representation of different collection schemes. Darker lines
represent early images, while lighter lines represent later images. In the continu-
ous tilt scheme (A), high-resolution information is already severely degraded before
reaching the lower tilts. In the bidirectional tilt scheme (B), the first pass starts
from zero tilt, collecting more high resolution information than the continuous tilt
scheme. The dose-symmetric tilt-scheme (C) concentrates all the first images at
lower tilts, retaining the most high resolution information against sample degrada-
tion. Figure taken from Hagen et Al.18.

The speed of data collection can also be significantly impacted by the col-
lection scheme and imaging procedures. Through automation, it is possible
to increase the precision of mechanical movements, as well as speeding up
the imaging process.

The relatively slow speed of data collection currently poses a significant
limit to the throughput of a single microscope. Conventional tilt series acqui-
sition can typically take between 20 and 60 minutes, mostly due to unstable
mechanical movements which require automated tracking and focusing to
compensate between each imaging step.

New tilting schemes, such as the ”fast-incremental single-exposure” (FISE)
method, promise to remove these additional steps and increase imaging speed
several-fold19. FISE eliminates a lot of idle camera time by collecting a con-
tinuous movie of the sample with a blanked beam. At discrete tilt angles,
the electron beam is unblanked to record an actual image for the tilt series.
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3.2 Detectors

Electron microscopes collect information by means of a detector, or camera.
Older microscopes used photographic film for this purpose. While capable
of recording very high resolution images, this type of detector has a low
throughput and does not lend itself easily to automation, due to the several
steps needed to develop the image and access the data.

CCD-based detectors — currently the most common type of camera —
provide instead immediate access to the collected data, while also offering
higher dynamic range20,21. They work by first converting incident electrons
into light, which is then detected by the CCD. However, the converted light
suffers from scattering, which lowers the practical resolution limit that can
be reached by this method. Moreover, due to charge sharing between pix-
els, CCD detectors have relatively low SNR, which makes them particularly
unsuitable for Cryo-ET.

In the last decade, wider use of Direct Detector Devices (DDD) signifi-
cantly improved the quality of collected data. Differently from CCD, DDD
bypass the conversion step and offer higher SNR, better resolution, and have
better Detective Quantum Efficiency (DQE) and Modulation Transfer Func-
tion (MTF) for Cryo-EM and Cryo-ET than their predecessors22,23.

Recent improvements in DD such as the Gatan K3 were shown to further
speed up data collection in combination with collection methods like FISE
by effectively eliminating most of the processing time during imaging24.

4 Image processing

After imaging, the acquired data must undergo a series of processing steps
before it can be used to reconstruct the sample.

The main issues that data processing tries to solve are defocus, tilt series
alignment, and the missing wedge.

4.1 Defocus determination and Contrast Transfer Func-
tion

The Contrast Transfer Function (CTF) describes the signal transfer at dif-
ferent spacial frequencies, and is determined by the physical properties of the
microscope, as well as other parameters such as electron voltage, acceleration
voltage and defocus. Due to these properties and electron interference, the
signal transfer changes periodically based on the spacial frequency, resulting
in zeroes that manifest in Fourier space in the form of Thon rings (Figure 3).
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Figure 3: Illustration of how Thon rings may appear in Fourier space. Low
spacial frequencies are at the center of the image, while high frequencies are at
the edges. Where Thon rings reach zero intensity, information is completely and
irretrievably lost to destructive interference. In areas surrounding these zeroes,
however, information is only attenuated and can be recovered through CTF correc-
tion.

One of the parameters that greatly affect the CTF is the defocus value,
which is determined by the distance between the focal plane of the microscope
and the target particle. Calculating the defocus value for a given image (or
image patch) is essential to apply a CTF correction and compensate for this
problem.

This is more difficult in tomography than in single particle Cryo-EM, as
in a tilted specimen there is a defocus gradient perpendicular to the tilt axis.
Typically, this is solved by calculating strip-wise defoci along the gradient
and performing CTF correction on each strip25,26.

Another complication is introduced by thicker specimens, where individ-
ual particles can be found at significantly different Z positions, requiring
CTF correction to be thickness-sensitive. A solution to this problem can be
found in 3D CTF correction27–30, or in determining the local defocus of each
particle in order to perform particle-wise CTF correction31.

Novel approaches and algorithms to further improve defocus determina-
tion and CTF correction are being developed every year, such as faster and
more accurate computational tools and algorithms32,33.
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4.2 Tilt series alignment

As previously mentioned in section 2.3, the most common and effective
method for tilt series alignment is the use of gold beads as fiducials.

Fiducials appear as high contrast dots embedded in the ice layer. They
provide easily trackable features that can be used to estimate sample displace-
ment and stage drift. By aligning the position of fiducials throughout the
tilt series, the alignment of the samples themselves is significantly improved.

Human intervention is often required to ignore or manually identify fidu-
cials that migrate during data collection or overlap with other fiducials at
a different depth. To solve this problem, automated alignment procedures
that require almost no human intervention have recently been published, and
achieved equally good results as traditional semi-automated techniques34.
This proves useful especially for StA, which would benefit greatly from batch
image processing.

While fiducials are relatively easily embedded in in vitro samples, the
use of fiducials in situ is sometimes hard or undesirable. Although less ac-
curate than their fiducial-based counterparts, non-fiducial-based alignment
approaches are available: for example, by calculating the cross-correlation
(CC) between image patches in a tilt series35.

4.3 The missing wedge

Tilt series acquisition is limited by the sample holder geometry and the thick-
ness of the sample. As a result, the maximum tilt angle that can be collected
is less than the full 90°(usually collection stops at around 60°).

Since 3D reconstruction relies on the projection images collected in a tilt
series in order to fill the Fourier space (see section 6 for more detail on to-
mographic reconstruction), an incomplete tilt series results in an incomplete
Fourier space. This limitation results in the so-called missing wedge, a wedge-
shaped region in the spacial frequency domain which is void of information.
In real space, this results in smearing of the density map (Figure 4).

This issue is especially problematic for StA, where subvolumes containing
a target particle must be aligned to each other. The zeros that compose the
missing wedge in Fourier space overpower every other feature when perform-
ing the cross-correlation (CC) search needed for subtomogram alignment.

This can be solved by using a Fourier space CC procedure which properly
weighs zeroes in the search36,37. With similar results, thresholding CC simply
ignores the lower Fourier coefficients, thus discarding the missing wedge and
most of the noise38,39.

Very different approaches attempt to completely remove the missing wedge
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Figure 4: Example of missing wedge and its effect on the subtomogram of a par-
ticle. The left column shows a complete, simulated density map without missing
wedge. On the right is instead the same density map reconstructed through a simu-
lated tilt series (-60°to 60°, with 3°increments). The bottom right figure shows the
missing wedge in Fourier space. The top right one shows its effects in real space.
Figure taken from Wan and Briggs31.

problem by using FIB to mill the sample to an ice needle, or using a cylin-
drical sample holder40–42.

5 Denoising

As the low SNR poses the main limitation to quality of Cryo-ET reconstruc-
tions, it comes to no surprise that a need for advanced denoising techniques
is increasingly more widespread in the tomography community.

Conventional denoising in Cryo-EM and Cryo-ET is obtained through fil-
ters based on the local image context, such as non-linear anisotropic diffusion
filters43, bilateral filters44, and iterative median filters45.

These techniques, while improving on the older and more trivial low-pass
filtering in different ways, still rely on the local neighbourhood of each pixel
to determine its intensity. More recent, non-local filtering approaches use a
much wider range of pixels, significantly improving the detail retention while
performing as well as local filters for noise removal46.

The rapid advancement of Machine Learning (ML) methods for data de-
noising offers entirely new possibilities for Cryo-ET. A recently published
image restoration technique known as noise2noise (N2N) seems particularly
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promising for tomography47. In conventional ML denoising techniques, neu-
ral network training requires a dataset of pairs of high and low quality images.
In Cryo-ET, however, it is virtually impossible to obtain noise-free data; N2N
provides a mean to circumvent this necessity.

N2N works based on the idea that corrupting the training data of a neural
network with a zero-mean noise won’t change the output of the network. Thus,
in order to train the N2N neural network, many independently noisy but
otherwise equal image pairs are collected and then compared by the network,
which is able to effectively learn how a noisy image can be converted into
the same image, but with different noise. The average between them is, in
practice, the noise-free image.

Some publications applying this technique to Cryo-ET already appeared,
such as cryo-CARE48, which combines content-aware image restoration with
a N2N-trained neural network. Similarly, Topaz-Denoise implements a noise2noise-
based denoising procedure, trained over thousands of micrographs in varying
conditions, thus providing a general-purpose tool without necessitating re-
training on a per-dataset base49.

6 Tomographic reconstruction

After processing, the tilt series can finally be used to reconstruct a 3D tomo-
gram. This reconstruction is usually performed through Fourier synthesis.
According to the central slice theorem, the Fourier transform of each 2D pro-
jection image in the tilt series corresponds to a central slice through the 3D
Fourier transform of the real object. By collecting a tilt series, it is possible
to partially fill the 3D Fourier space, which can then be inverse transformed
back to 3D real space (Figure 5).

WBP is one of the most commonly used techniques, as it is less computa-
tionally intensive than Fourier synthesis but for many applications practically
analogous. However, depending on the weighing function used, WBP can
lead to a loss of contrast; this can result in poorer subtomogram alignment
precision, and hinders particle identification51.

On the other hand, iterative methods improve contrast retention compare
to WPB, but take significantly longer to reach convergence. Additionally,
they can be prone to loss of high resolution signal, which is essential for good
quality StA31,51.

New iterative algorithms with a focus on StA (such as INFR52, ICON53

and supersampling SART54) were recently developed, but are not yet estab-
lished as good replacements to WBP and Fourier synthesis.
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Figure 5: Schematic representation of the Fourier slice theorem. A slice is ob-
tained by imaging the sample in direction θ, resulting in a 2D projection image
(A). The Fourier transform of that projection corresponds to a single central slice
in Fourier 3D space at angle θ (B). The missing wedge is a region of Fourier
space where information is missing, due to the limited tilt that can be reached by
the sample. Figure taken from Dahmen et Al.50.

6.1 Subtomogram Averaging

In order to perform averaging over the density map of several particles, subto-
mograms need to be first identified and aligned. Additionally, clustering and
classification of subtomograms is necessary to distinguish between slightly
different particles or conformations.

6.1.1 Template matching

Template matching uses an exhaustive search where a template density map
is translated and rotated through the full 3D space, and then compared at
each position to measure the similarity to the tomogram. A similarity score
is then calculated and normalized for each position in the tomogram, with
high scores indicating a recognized particle55.

While this method has been put extensively to good use, it has several
flaws, first and foremost the need of a template of known structure. While it is
possible to compare databases of different templates, this is computationally
inefficient, still requires a ”complete” database and is not suited for matching
complexes.

Moreover, due to overfitting and the use of a mostly arbitrary cutoff for
similarity, the template is always recovered (template bias), and if the same
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similarity criteria are then used for cross-validation, true and false positives
are virtually indistinguishable56.

6.1.2 Reference-free alignments

The ab initio Stochastic Gradient Descent (SGD) algorithm introduced in
cryoSPARC is an optimization technique that begins with a randomly ini-
tialized map which is iteratively improved through many noisy steps. This
technique can solve some of the problems of template matching; it eliminates
the need for a known template, while introducing some precautions against
overfitting57.

Other reference-free approaches include Fourier space constrained volu-
metric matching58, and local feature enhancement, which reduce the influ-
ence of noise and enhance important features through the application of a
weight mask58.

Recently, a procedure for template-free tracing and alignment called Py-
Seg was developed based on the discrete Morse theory59. PySeg was ef-
fectively used to automatically and comprehensively detect heterogeneous,
membrane-bound complexes on the endoplasmic reticulum.

Recent publications showed how the use of Machine Learning (ML) can
significantly improve particle recognition and classification, while not requir-
ing a priori knowledge of the target.

First attempts at using Convolutional Neural Networks (CNN) in Cryo-
EM SPA showed a similar performance to conventional template-matching60.
Further improvements were obtained through the use of deep residual net-
works such as BoxNet used by Warp61.

Another application of a CNN by Chen et Al.62 uses a slice-wise ap-
proach which greatly simplifies the complexity of the Neural Network, and
can be easily re-trained for specific features with a small dataset of manually
annotated images.

Deep Learning is also used by crYOLO14,63, which uses the You Only Look
Once object detection framework to pick particles in a low SNR tomogram.

A different Neural Network is used by KerDenSOM3D56, a 3D implemen-
tation of the ”Kernel Density Estimator Self–Organizing Map”, which clas-
sifies subtomograms by reducing the dataset to a small set of good-quality
representatives.

15



7 Discussion

In the last few years, Cryo-ET techniques underwent steady improvements
both on the engineering and computational front. In particular, new tools
and methods of great importance for subtomogram averaging have been de-
veloped, such as direct detectors and machine learning-based reference-free
template matching and denoising. All these new methods contribute to over-
come the biggest limitation of StA: the extremely low SNR and subsequent
difficulty to obtain high resolution structures.

New direct detectors in combination with clever collection techniques —
such as the Gatan K3-FISE combination24 — significantly reduce the collec-
tion time of Cryo-ET. This enables easier and more effective automation for
routines such as StA, which require long experimental measurements times
and produce high volumes of raw data.

The massive surge in new machine learning technologies will also play
a major role in Cryo-ET development, with techniques such as template
matching56,60–62,64 and image denoising48,49 already showing the first promis-
ing results in this field .

As several of these tools and techniques are currently still limited in scope
and applicability, we expect that future research will focus on refining, au-
tomating and implementing them in mainstream Cryo-ET hardware and soft-
ware. The improvements brought by these new tools extends the applica-
bility of Cryo-ET to new molecular complexes, more heterogeneous, smaller,
and rarer than previously possible, making structure determination of large,
complexm, and dynamic systems in situ a more concrete possibility.
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