
I T E R AT I V E C O N S T R U C T I O N O F D I S T R I B U T E D C O M P O N E N T
F O R E S T S

aniket rane

s3290999

Bachelor Thesis

supervisors:
S.R.N. Gazagnes
dr. M.H.F. Wilkinson



A B S T R A C T

In this paper, we present an implementation to construct Distributed
Component Forests in an iterative manner in situations where the
number of processor nodes and memory is limited. The input image
is first split into Nt different tiles, where Nt is larger than Np, the
maximal number of nodes or processes on the machine used. Com-
ponents tees are then computed and stored iteratively for each image
tile. In order to adapt the full parallel implementation of constructing
Distributed Component Forests in an iterative manner, boundary trees
are successfully created, merged, combined and updated by iteratively
storing and loading the necessary information in files to perform these
operations using a limited number of processes. This implementation
would help to process very large images on machines with limited
memory capacity.

ii



Trees sprout up just about everywhere in Computer Science

— Donald E. Knuth

A C K N O W L E D G M E N T S

I would like to thank my supervisors S.R.N. Gazagnes and dr. M.H.F.
Wilkinson for their guidance and immense help. A special thanks to
my parents, family and friends for their love and support.

iii



C O N T E N T S

1 introduction 1

2 background information 2

2.1 Component Trees 2

2.2 Distributed Component Forests 3

2.2.1 Building DCFs in parallel 3

2.2.2 Boundary trees 5

3 implementation 6

3.1 Reading and Writing Functions 6

3.1.1 Writing functions 6

3.1.2 Reading functions 7

3.2 Iterative DCF Construction 8

3.2.1 1 Process 2 Tiles 8

3.2.2 1 Process 4 Tiles 8

4 tests & results 12

5 conclusion & further improvements 15

5.1 Conclusion 15

5.2 Further Improvements 15

a appendix 16

a.1 Read and Write functions 16

bibliography 23

iv



L I S T O F F I G U R E S

Figure 2.1 Component tree representation from input gray-
scale image [3] 2

Figure 2.2 Constructing DCF in parallel for 2 image tiles 3

Figure 2.3 Constructing DCF in parallel for 4 image tiles 4

Figure 4.1 Total time to execute 1 process steps for (a)
Haiti 8-bit and (b) Haiti 16-bit 13

Figure 4.2 (a) Timings and (b) speed-up for 1 process with
Haiti 8-bit and Haiti 16-bit 13

Figure 4.3 Maximum memory usage per process for (a)
Haiti 8-bit and (b) Haiti 16-bit 13

Figure 4.4 Size of (a) component tree and (b) boundary
tree saved files 14

L I S T I N G S

Listing A.1 Function to write component tree to file 16

Listing A.2 Function to write boundary tree to file 16

Listing A.3 Function to write combined boundary tree to
file 17

Listing A.4 Function to read component tree from file 19

Listing A.5 Function to read boundary tree from file 19

Listing A.6 Function to read combined boundary tree from
file 20

A C R O N Y M S

DCF - Distributed Component Forest
CTi - Component tree for ith image tile, where i ≥ 1
BTi - Boundary tree for ith image tile, where i ≥ 1

v



1
I N T R O D U C T I O N

As the size of images increase, it gets increasingly difficult to store
the hierarchical representation of these images efficiently and apply
filters on them. Component tree is a data structure that allows for an
efficient representation of a grey-level image by storing information
about each component of the image and the connections that exist
between these components at sequential grey-levels [4]. Component
trees are useful in attribute filtering [1] [8] [6] [9], visualization [10]
and multi-scale analysis [5].

Component trees are unsuitable when either the tree or the image
don’t fit in the memory of a single processor node [3]. Hence, recently
a new structure was suggested called Distributed Component Forest
(DCF) which is a collection of updated component trees for an image
where each component tree is per image tile 1 such that filtering these
updated component trees gives the exact same results as filtering
a single component tree for the whole image [5]. Although usually
these DCFs are computed in parallel, there is a need to compute them
iteratively in situations where the number of processor nodes and
memory is limited. This paper aims to provide a solution to this very
problem by presenting an implementation in which the merging and
combining of individual component trees is carried out in an iterative
manner. The iterative implementation can also then further be scaled
to suit more number processor nodes. This implementation can be
useful in many fields where often large images need to be processed
on low memory like digital telescopes, phones, microscopes etc.

This thesis is organized as follows : In Section 2 background in-
formation is provided to understand the implementation of the idea
presented. In Section 3 the implementation of the idea is presented.
Section 4 presents the tests conducted and the results obtained. Finally
Section 5 presents the conclusion and further improvements that can
be made.

1 Image tile and tile are henceforth used interchangbly

1



2
B A C K G R O U N D I N F O R M AT I O N

2.1 component trees

The concept of component trees was first introduced in 1999 [4]. Com-
ponent trees are of two types - max-trees and min-trees [8]. Max-trees
are where the leaves depict a foreground component at a particular
threshold set and vice versa for min-trees [3]. In this paper we will
look at max-trees as we can easily use the same implementation for
min-trees as well. Hence, whenever we will mention component tree
from now on it means a max-tree. As we can observe in Figure 2.1, the
input gray-scale image is represented as foreground components of
each threshold set and this representation is converted into a max-tree.

Component trees can be built with various algorithms but mainly
they are classified into 3 main categories - immersion, flooding and
merge [2]. In this paper we are concerned with merge based algo-
rithms. In merge based algorithms the general idea is to divide an
image into blocks and compute component trees for these sub-images
in the blocks and finally merge them together [2]. In merge based
algorithms we use any sequential methods from either immersion or
flooding based algorithms to compute component trees for sub-images.
There is no one “optimal” algorithm to build component trees as the
choice of algorithm depends on hardware size, size of the image and
the dynamic range of the image. In general these algorithms build
component trees in O(GN) , where G is the number of gray levels in
8-16 bit per pixel case or O(n log n) in the 32-bit per pixel or floating
point case [7].

Figure 2.1: Component tree representation from input gray-scale image [3]

2



2.2 distributed component forests 3

2.2 distributed component forests

In this subsection we will first look at how to build DCFs in parallel
and then we will look at an important structure called boundary tree
that will help us understand the construction of DCFs better.

2.2.1 Building DCFs in parallel

We will first look at a basic 2 tile case and then a complicated 4 tile
case which can be extended to more tiles.

2.2.1.1 2 Process 2 Tiles

Figure 2.2 shows how to build DCFs in a parallel using 2 processes
and 2 image tiles. This is the simplest case to build DCFs. The input
image is split into 2 tiles, where the tiles are represented as 0,1. The 2

processes are represented as 0,1. All the processes first load the pixel
intensities in the tiles. Processes 0,1 then build component trees for
tiles 0,1. Processes 0,1 then build boundary trees for tiles 0,1. After
this process 1 sends boundary tree 1 to process 0. Process 0 receives
the boundary tree 1 from process 1. Process 0 merges (horizontally)
boundary tree 0 and boundary tree 1. At this point, the two boundary
tree structures are ”linked” together, such that for example some nodes
in boundary tree 0 have their parents in boundary tree 1. The two
boundary trees are not combined as we only have 2 tiles and we don’t
need to perform merging with other boundary trees. Process 0 updates
boundary tree 0 and boundary tree 1 which ensures that the boundary
trees are independent again, such that both of these boundary trees
have their parent nodes pointing to themselves. Process 0 then sends
back the updated boundary tree 1 to process 1. Process 1 receives the
updated boundary tree 1 from process 0. Processes 0 and 1 update
their respective component trees using the boundary trees. Finally
processes 0 and 1 filter their respective component trees.

Figure 2.2: Constructing DCF in parallel for 2 image tiles



2.2 distributed component forests 4

Figure 2.3: Constructing DCF in parallel for 4 image tiles

2.2.1.2 4 Process 4 Tiles

Figure 2.3 shows how to build DCFs in a parallel using 4 processes
and 4 image tiles. The input image is first split in 4 image tiles, where
the tiles are represented as 0,1,2,3. The 4 processes are represented
as 0,1,2,3. All the processes first load the pixel intensities in the tiles.
Processes 0,1,2,3 then build component trees for tiles 0,1,2,3. Processes
0,1,2,3 then build boundary trees for tiles 0,1,2,3. After this processes
1 and 3 send boundary tree 1 and boundary tree 3 to processes 0 and
2. Process 0 and 2 receive the boundary tree 1 and boundary tree 3

from processes 1 and 3. Process 0 merges (horizontally) boundary
tree 0 and boundary tree 1, and process 2 merges boundary tree 2

and 3. Process 0 combines boundary trees 0 and 1 (horizontally), and
process 2 combines boundary trees 2 and 3 (horizontally). Process 2

sends the combined boundary tree 2-3 to process 0. Process 0 merges
boundary tree 0-1 and boundary tree 2-3 (vertically). Process 0 updates
the boundary tree 0-1 and the boundary tree 2-3. Process 0 sends back
the updated boundary tree 2-3 to process 2. Process 2 receives the
updated boundary tree 2-3 from process 0, and uses it to update the
individual boundary trees 2 and 3. Process 0 updates boundary trees 0

and 1 using the updated boundary tree 0-1. Process 0 and 2 send back
the updated boundary trees 1 and 3 to process 1 and 3 respectively.
Process 0,1,2,3 update the component trees from their tiles using their
boundary trees. Process 0,1,2,3 filter the component tree from their
tile.



2.2 distributed component forests 5

2.2.2 Boundary trees

While constructing DCFs it is inefficient to pass the entire component
tree from one tile to another for merging. Instead we only choose
the nodes that are touching the boundary of the tile as any other
nodes don’t change while merging [5]. Hence, a structure called a
boundary tree is created, which is essentially a pruned component tree
and passed on to another tile. Boundary tree consists of all the border
nodes in a component tree, all of the ancestors of these nodes which
include parents until the root and additional metadata [5]. Boundary
tree is represented as a 1D array of the structure Boundary.

We will now look at 3 important elements of the structure Boundary

that would help us to understand the implementation presented in the
next section. All these 3 elements mentioned below are arrays of the
type BorderIndex. BorderIndex is a structure that contains a pointer
to a boundary tree and an index in the boundary.

- border_par, represents parents in the boundary tree.
- border_ori, represents the position in the previous boundary tree
(used while combining).
- border_lr, represents the levelroot at same intensity in the other
merged tree (used while merging).



3
I M P L E M E N TAT I O N

The main idea to construct DCFs iteratively is by reading and writ-
ing structures like component trees and boundary trees into files.
Constructing DCF iteratively for n tiles would be expensive and ineffi-
cient on memory of m processes where m < n so we read and write
structures to mimic the working of n processes.

To completely understand the iterative implementation we will look
at the reading and writing functions used and then we will look at
the algorithms to construct DCFs iteratively for 1 process 2 tiles and 1

process 4 tiles.

3.1 reading and writing functions

All structures like component trees and boundary trees are stored in
files in a local folder. These structures are stored as binary files to
reduce their size. The standard C fread and fwrite functions are used
to read and write the content of these structures. All write functions
return void and all read functions return the structure they are reading
from the file.

3.1.1 Writing functions

The function write_tree_file [A.1] writes the component tree for a tile
to file. This function takes as input a component tree, name of the file
to write to and the tile number. This function writes everything in the
Node structure to file.

The function write_boundary_file [A.2] writes the boundary tree to
file. This function takes as input a boundary tree, name of the file to
write to, tile number and the status of the boundary tree. Status of
the boundary tree indicates whether the boundary tree is a basic or a
merged boundary tree.

If the boundary tree is a basic boundary tree then we write ev-
erything in the Boundary structure except the arrays border_lr and
border_ori. While writing border_par array, we cannot write all the
parent indexes stored in it. Hence, we create a sub-array that only
contains the indexes of the parents and we write this sub-array in file.
In the basic boundary tree we don’t have to worry about storing the
pointers in the border_par array as everything points to the boundary
tree itself.

6



3.1 reading and writing functions 7

If the boundary tree is a merged boundary tree then we write ev-
erything in the Boundary structure except the border_ori array. As in
the basic case, we use sub-arrays to write the indexes contained in
border_par and border_lr arrays to file. Although here we also have
to store the pointers to these indexes for both these arrays as merging
changes their addresses. Hence, we can’t directly store the address
of pointers in file as after reading the file. To bypass this problem we
first create a boolean array with the same size as the current boundary
tree. This is because we know that these pointers may point to one
of two boundary trees i.e the current boundary tree or the boundary
tree with which the current boundary tree is merged. Then to write
these pointers to file we check if the pointer points to the same tree,
if it does we assign true to the boolean array element otherwise we
assign false. We then write this boolean array in file.

The function write_boundary_combined_file [A.3] writes the com-
bined boundary tree to file. This function takes as input a combined
boundary tree, name of the file to write to, tile number, two boundary
trees that combine to create the resulting combined boundary tree
and the status of the combined boundary tree. Status of the combined
boundary tree indicates whether the combined boundary tree is basic
or merged.
For both the basic and merged case we follow the same procedure as
write_boundary_file except we also write border_ori array in both
the cases. Again we use a boolean array to store the pointers for the
border_ori. We assign true if the pointer points to one of the bound-
ary trees otherwise we assign false if it points to the other. We do this
because we know that every element in the border_ori array points
to either one of the boundary trees that have been combined. We then
write this boolean array in file.

3.1.2 Reading functions

The function read_tree_file [A.4] reads the component tree from a
file. This function takes as input the name of the file to be read, tile
number. This function reads everything in the Node structure which
was written to file.

The function read_boundary_file [A.5] reads the boundary tree from
a file. This function takes as input the name of the file to be read, tile
number and the status of the boundary tree to be read.

If the boundary tree to be read is a basic boundary tree then we read
everything except for the border_ori array. We read the indexes in
border_lr and border_par arrays by assigning for each node the cor-
rect indexes. We assign the pointers to the indexes in the border_par



3.2 iterative dcf construction 8

the boundary tree itself. We assign the pointers to the indexes in the
border_lr array BOTTOM to initialize them.

If the boundary tree to be read is a merged boundary tree then we
read everything except for the border_ori array. We read the indexes
of border_lr and border_par just as the basic case. In order to read
the pointers to indexes of border_lr and border_par we first read the
boolean arrays written to the file. If the value of the element in the
boolean array is true, then we assign the pointer to the boundary tree
being read otherwise we assign it NULL. We later correct these pointers
pointing to NULL by making them point to the correct boundary tree
in the function correct_boundary_indexes.

The function read_boundary_combined_file [A.6] reads the combined
boundary tree from file. This function takes as input the name of the
file to be read, tile number, two boundary trees that combine to create
the resulting combined boundary tree and the status of the combined
boundary tree to be read.

For both merged and basic case we follow the same procedure as
read_boundary_file except we also read border_ori array. We use the
inverse of the method used to write the border_ori array to read it.

3.2 iterative dcf construction

3.2.1 1 Process 2 Tiles

Algorithm 1 constructs DCF iteratively for an image split into 2 tiles.
This is the base case algorithm for the method of iterative construction
of DCF. The algorithm is the same as the steps to construct DCF in
parallel with 2 tiles except there is only 1 process and we use read and
write functions.

3.2.2 1 Process 4 Tiles

Algorithm 2 constructs DCF iteratively for an image split into 4 tiles.
This algorithm is an extended version of the basic case algorithm
and deals with a complicated case of 4 tiles. This algorithm works
like the steps to construct DCF in parallel for 4 tiles. The function
correct_boundary_indexes corrects the border_lr and border_par ar-
ray pointers of the boundary trees by pointing them to the correct
boundary trees. The function does this by checking the arrays and
if it comes across an element pointing to NULL, then it points it to
the other boundary tree the current boundary tree was merged with.
The function correct_combined_indexes does the same for combined
boundary trees that are merged.



3.2 iterative dcf construction 9

Algorithm 1 IterativeDcf2Tiles

1: i← 0
2: num_tiles← 2
3: while i < num_tiles do
4: lct← build_local_tree(i)
5: write_tree_ f ile(lct, i)
6: bt← create_boundary(lct, i)
7: write_boundary_ f ile(bt, i)
8: f ree_boundary(bt)
9: f ree_tree(lct)

10: i← i + 1
11: end while
12: bt_0← read_boundary_ f ile(tile_number_0)
13: bt_1← read_boundary_ f ile(tile_number_1)
14: merge(bt_0, bt_1, HORIZONTAL)
15: bt_01← combine(bt_0, bt_1, HORIZONTAL)
16: if bt_01 == NULL then
17: update_par_step()
18: update(bt_0, bt_01)
19: update(bt_1, bt_01)
20: end if
21: write_boundary_ f ile(bt_0, 0)
22: write_boundary_ f ile(bt_1, 1)
23: f ree_boundary(bt_0)
24: f ree_boundary(bt_1)
25: i← 0
26: while i < num_tiles do
27: lct← read_tree_ f ile(tile_number_i)
28: bt← read_boundary_ f ile(tile_number_i)
29: lct← correct_local_tree(lct, bt)
30: tree_ f iltering(lct)
31: f ree_boundary(bt)
32: f ree_tree(lct)
33: i← i + 1
34: end while



3.2 iterative dcf construction 10

Algorithm 2 IterativeDcf4Tiles

1: i← 0
2: num_tiles← 4
3: while i < num_tiles do
4: lct← build_local_tree(i)
5: write_tree_ f ile(lct, i)
6: bt← create_boundary(lct, i)
7: write_boundary_ f ile(bt, i)
8: f ree_boundary(bt)
9: f ree_tree(lct)

10: i← i + 1
11: end while
12: i← 0
13: while i < num_tiles do
14: a← i
15: b← i + 1
16: bt_a← read_boundary_ f ile(tile_number_a)
17: bt_b← read_boundary_ f ile(tile_number_b)
18: merge(bt_i, bt_i + 1, HORIZONTAL)
19: bt_ab← combine(bt_a, bt_b, HORIZONTAL)
20: write_boundary_combined_ f ile(bt_ab, bt_a, bt_b, BASIC)
21: write_boundary_ f ile(bt_a, tile_numbera, MERGED)

22: write_boundary_ f ile(bt_b, tile_numberb, MERGED)

23: f ree_boundary(bt_a)
24: f ree_boundary(bt_b)
25: f ree_boundary(bt_ab)
26: i← i + 2
27: end while
28: bt_0← read_boundary_ f ile(tile_number0, MERGED)

29: bt_1← read_boundary_ f ile(tile_number1, MERGED)

30: bt_2← read_boundary_ f ile(tile_number2, MERGED)

31: bt_3← read_boundary_ f ile(tile_number3, MERGED)

32: i← 0
33: while i < num_tiles do
34: a← i
35: b← i + 1
36: correct_boundary_indexes(bt_a, bt_b)
37: i← i + 2
38: end while



3.2 iterative dcf construction 11

39: bt_01← read_boundary_combined_ f ile(tile_number_0, tile_number_1, BASIC)
40: bt_23← read_boundary_combined_ f ile(tile_number_2, tile_number_3, BASIC)
41: merge(bt_01, bt_23, VERTICAL)
42: bt_0123← combine(bt_01, bt_23, VERTICAL)
43: update_par_step(bt_0123)
44: update(bt_01, bt_0123)
45: update(bt_23, bt_0123)
46: write_boundary_combined_ f ile(bt_01, MERGED)

47: write_boundary_combined_ f ile(bt_23, MERGED)

48: f ree_boundary(bt_01)
49: f ree_boundary(bt_23)
50: bt_01← read_boundary_combined_ f ile(tile_number_0, tile_number_1, MERGED)

51: bt_23← read_boundary_combined_ f ile(tile_number_2, tile_number_3, MERGED)

52: correct_combined_indexes(bt_01, bt_23)
53: i← 0
54: while i < num_tiles do
55: a← i
56: b← i + 1
57: update_par_step(bt_ab)
58: update(bt_a, bt_ab)
59: update(bt_a, bt_ab)
60: write_boundary_ f ile(bt_a, a)
61: write_boundary_ f ile(bt_b, b)
62: f ree_boundary(bt_ab)
63: f ree_boundary(bt_a)
64: f ree_boundary(bt_b)
65: i← i + 2
66: end while
67: i← 0
68: while i < num_tiles do
69: lct← read_tree_ f ile(tile_numberi)
70: bt← read_boundary_ f ile(tile_numberi)
71: lct← correct_local_tree(lct, bt)
72: tree_ f iltering(lct)
73: f ree_boundary(bt)
74: f ree_tree(lct)
75: i← i + 1
76: end while



4
T E S T S & R E S U LT S

Tests were conducted on Zeus compute server : 64-core AMD Opteron
Processor 6276 (2.3 GHz) with 512 GB of RAM by implementing the
iterative algorithms presented in the previous section. Two images
were used to carry out the tests : 8-bit per pixel remote sensing image
of Haiti of size 1.2 Gigapixels (1.2 GB in storage) and 16-bit per pixel
remote sensing image of Haiti of size 1.2 Gigapixels (2 GB in storage).
Different tests were run to compare and study the timings between
generating DFCs using 1 process n tiles, 1 process 1 tile and n pro-
cesses n tiles. The speed-up was obtained by taking the ratio t(1)/t(n),
where t(1) is the wall-clock time (in seconds) for 1 process 1 tile and
t(n) is the wall-clock time (in seconds) for 1 process n tiles. The tim-
ings in all the figures in this section are minimum timings recorded
over 5 runs. Timings that are reported for steps like tree building,
writing trees to file, filtering etc. are the total sum of wall-clock times
(in seconds) for those steps over all the tiles present. The time taken
for n processes n tiles and 1 process n tiles does not include the time
taken to read the input per tile and the time taken to write output files
per tile. Different tests were run to compare the memory efficiency by
varying the number of tiles and the number of processes. The top com-
mand was used to check the maximum memory used during a process.

In Figure 4.1 the step numbers indicate the following :

1. Initial component trees built for all tiles.

2. Initial component trees written for all tiles.

3. Initial boundary trees built for all tiles.

4. Writing boundary trees to file for all tiles (including merged and
combined).

5. Reading boundary trees from files for all tiles (including merged
and combined).

6. (Merging + Combining + Updating) the boundary trees.

7. Tree filtering.

In Figure 4.1 (a) for 8-bit image we can observe that per step it takes
more time for 2 tiles as compared to 4 tiles for 1 process except for
steps - 4, 5 and 6. This is because as the number of tiles decreases from
4 to 2, the size of the component tree per tile and the corresponding
boundary tree generated increases as now more information

12



tests & results 13

Figure 4.1: Total time to execute 1 process steps for (a) Haiti 8-bit and (b)
Haiti 16-bit

Figure 4.2: (a) Timings and (b) speed-up for 1 process with Haiti 8-bit and
Haiti 16-bit

Figure 4.3: Maximum memory usage per process for (a) Haiti 8-bit and (b)
Haiti 16-bit



tests & results 14

Figure 4.4: Size of (a) component tree and (b) boundary tree saved files

is stored per tile. Hence, with larger component tree and boundary
tree size, the time taken to write it initially also increases. However for
the 4 tiles case there are more than 4 boundary trees written, it also
includes the time to write the merged and the combined trees. That’s
why steps 4, 5 and 6 take more time for 4 tile cases as the number
of structures to read and write are simply more than the 2 tile case.
So by increasing the number of tiles we save time for the most time
consuming steps which are building, writing and filtering component
trees. We can observe the same results in Figure 4.1 (b) for a 16-bit
image of Haiti. But as the bit depth has increased we can also observe
comparing Figure 4.1 (a) and Figure 4.1 (b) that the difference between
2 tiles and 4 tiles steps has decreased.

In Figure 4.2 (a) we can observe the timing required by 1 process
varying the number of tiles and in Figure 4.2 (b) we can observe its
corresponding speed-up plot. The time required by 1 process 4 tiles
is faster than the time required by 1 process 1 tile for both 8-bit and
16-bit images. The time taken for 1 process 2 tiles is slower than 1

process 1 tile for 8-bit image but it’s faster in 16-bit image case. This
similarly reflects in the speed-up.

In Figure 4.3 we can observe for both 8-bit (a) and 16-bit (b) images,
the memory usage per process scales down linearly as the number of
processes increases. It takes the same amount of memory per process
for 1 process n tiles as it does for n processes n tiles, where n = 2, 4. This
is an important result as it shows with the iterative implementation 1

process performs exactly the same as n processes for n tiles memory
wise.

Figure 4.4 (a) shows a non increasing trend in the size of the com-
ponent tree files per tile. This is because the size of the component
tree files per tile written decreases as the number of tiles increases. In
Figure 4.4 (b) as the number of tiles increases, the number of boundary
trees increases (including combined boundary trees) and hence their
size too.



5
C O N C L U S I O N & F U RT H E R I M P R O V E M E N T S

5.1 conclusion

In this thesis an iterative implementation to construct DCF is presented
with the help of reading and writing structures like component trees
and boundary trees for 2 and 4 tiles. The implementation presented
for 1 process uses 1/nth the total memory used by n processes, where
n = 2, 4. The time taken by 1 process and n tiles gets faster compared
to the time needed by 1 process and 1 tile as n increases, where n = 2, 4
except for the 8-bit case where 1 process 2 tiles performs slightly worse
than 1 process 1 tile. Hence, overall this iterative implementation
constructs DCFs by using memory equivalent to n processes while
taking less time in general compared to 1 process 1 tile.

The drawback of this iterative implementation is that as we increase
the number of tiles, the size of this folder to store the component and
boundary trees increases by a large factor. For example, an image of
1.2 Gigapixels results in a folder size of 20 GB in storage.

5.2 further improvements

The iterative implementation of 1 process 4 tiles can be further ex-
tended to 1 process n tiles and m processes n tiles where m < n. Also
the read and write functions can be more efficiently written to reduce
the size of the folder where the files are saved. Further tests can be
conducted on more image sets and on Peregrine cluster with 162

standard nodes with 24 Intel Xeon 2.5 GHz cores and 128 GB of RAM
each. This would help to get a more accurate measure of memory
being used.

15



A
A P P E N D I X

a.1 read and write functions

Listing A.1: Function to write component tree to file

1 void write_tree_file(Node *tree, const char *fname, int num) {

asprintf(&fname, "%s_%d", fname, num);

FILE *fp = fopen(fname, "wb");
fwrite(&tree->size_init, 1, sizeof(ulong), fp);

fwrite(&tree->size_curr, 1, sizeof(ulong), fp);

6 fwrite(&tree->size_attr, 1, sizeof(ulong), fp);

fwrite(tree->offsets, 3, sizeof(ulong), fp);

fwrite(tree->border, 6, sizeof(bool), fp);

fwrite(tree->parent, tree->size_curr, sizeof(idx) , fp);

fwrite(tree->attribute, tree->size_curr, tree->size_attr, fp);

11 fwrite(tree->gval, tree->size_curr, sizeof(value), fp);

fclose(fp);

}

Listing A.2: Function to write boundary tree to file

void write_boundary_file(Boundary *b, const char *fname, int num,

Status s) {

2 asprintf(&fname, "%s_%d", fname, num);

FILE *fp = fopen(fname, "wb");
fwrite(&b->size_init, 1, sizeof(ulong), fp);

fwrite(&b->size_curr, 1, sizeof(ulong), fp);

fwrite(&b->size_attr, 1, sizeof(ulong), fp);

7 fwrite(b->offset, 7, sizeof(ulong), fp);

fwrite(b->dims, 3, sizeof(ulong), fp);

fwrite(b->merge_idx, b->offset[6], sizeof(idx), fp);

fwrite(b->array, b->size_curr, sizeof(BoundaryNode), fp);

fwrite(b->attribute, b->size_curr, b->size_attr, fp);

12 if(s == BASIC) {

idx *par_idx = malloc(b->size_curr*sizeof(idx));

for (ulong i = 0; i < b->size_curr; i++) {

par_idx[i] = b->border_par[i].i; // extracting the parents

indexes

}

17 fwrite(par_idx, b->size_curr, sizeof(idx), fp);

}

else if(s == MERGED) {

bool *partree = malloc(b->size_curr * sizeof(bool));

idx *par_idx = malloc(b->size_curr*sizeof(idx));

22 for(ulong i = 0; i < b->size_curr; i++) {

16



A.1 read and write functions 17

if(b->border_par[i].b == b) {

partree[i] = true;

}

else {

27 partree[i] = false;

}

}

fwrite(partree, b->size_curr, sizeof(bool), fp);

for (ulong i = 0; i < b->size_curr; i++) {

32 par_idx[i] = b->border_par[i].i;

}

fwrite(par_idx, b->size_curr, sizeof(idx), fp);

if(b->border_lr != NULL) {

bool *lrtree = malloc(b->size_curr * sizeof(bool));

37 idx *lr_idx = malloc(b->size_curr*sizeof(idx));

for(ulong i = 0; i < b->size_curr; i++) {

if(b->border_lr[i].b == b) {

lrtree[i] = true;

}

42 else {

lrtree[i] = false;

}

}

fwrite(lrtree, b->size_curr, sizeof(bool), fp);

47 for (ulong i = 0; i < b->size_curr; i++) {

lr_idx[i] = b->border_lr[i].i;

}

fwrite(lr_idx, b->size_curr, sizeof(idx), fp);

}

52 }

fclose(fp);

}

Listing A.3: Function to write combined boundary tree to file

1 void write_boundary_combined_file(Boundary *b, const char *fname,

int num, Boundary *b1, Boundary *b2, Status s) {

asprintf(&fname, "%s%d", fname, num);

FILE *fp = fopen(fname, "wb");
fwrite(&b->size_init, 1, sizeof(ulong), fp);

fwrite(&b->size_curr, 1, sizeof(ulong), fp);

6 fwrite(&b->size_attr, 1, sizeof(ulong), fp);

fwrite(b->offset, 7, sizeof(ulong), fp);

fwrite(b->dims, 3, sizeof(ulong), fp);

fwrite(b->merge_idx, b->offset[6], sizeof(idx), fp);

fwrite(b->array, b->size_curr, sizeof(BoundaryNode), fp);

11 fwrite(b->attribute, b->size_curr, b->size_attr, fp);

if(s == BASIC) {

idx *par_idx = malloc(b->size_curr*sizeof(idx));

for(ulong i = 0; i < b->size_curr; i++) {

par_idx[i] = b->border_par[i].i;

16 }



A.1 read and write functions 18

fwrite(par_idx , b->size_curr , sizeof(idx) , fp);

if(b->border_lr != NULL) {

idx *lr_idx = malloc(b->size_curr*sizeof(idx));

for (ulong i = 0; i < b->size_curr; i++) {

21 lr_idx[i] = b->border_lr[i].i;

}

fwrite(lr_idx , b->size_curr , sizeof(idx) , fp);

}

}

26 else if(s == MERGED) {

bool *partree = malloc(b->size_curr * sizeof(bool));

idx *par_idx = malloc(b->size_curr*sizeof(idx));

for(ulong i = 0; i < b->size_curr; i++) {

if(b->border_par[i].b == b) {

31 partree[i] = true;

}

else {

partree[i] = false;

}

36 par_idx[i] = b->border_par[i].i;

}

fwrite(partree, b->size_curr, sizeof(bool), fp);

fwrite(par_idx , b->size_curr , sizeof(idx) , fp);

if(b->border_lr != NULL) {

41 bool *lrtree = malloc(b->size_curr * sizeof(bool));

idx *lr_idx = malloc(b->size_curr*sizeof(idx));

for(ulong i = 0; i < b->size_curr; i++) {

if(b->border_lr[i].b == b) {

lrtree[i] = true;

46 }

else {

lrtree[i] = false;

}

}

51 fwrite(lrtree, b->size_curr, sizeof(bool), fp);

for (ulong i = 0; i < b->size_curr; i++) {

lr_idx[i] = b->border_lr[i].i;

}

fwrite(lr_idx, b->size_curr, sizeof(idx), fp);

56 }

}

if(b->border_ori != NULL) {

bool *oritree = malloc(b->size_curr * sizeof(bool));

idx *ori_idx = malloc(b->size_curr * sizeof(idx));

61 for(ulong i = 0; i < b->size_curr; i++) {

if(b->border_ori[i].b == b1) {

oritree[i] = true;

}

else if(b->border_ori[i].b == b2) {

66 oritree[i] = false;

}

}



A.1 read and write functions 19

fwrite(oritree, b->size_curr, sizeof(bool), fp);

for (ulong i = 0; i < b->size_curr; i++) {

71 ori_idx[i] = b->border_ori[i].i;

}

fwrite(ori_idx, b->size_curr, sizeof(idx), fp);

}

fclose(fp);

76 }

Listing A.4: Function to read component tree from file

Node *read_tree_file(const char *fname, int num) {

Node *tree = malloc(1* sizeof(Node));

asprintf(&fname, "%s_%d", fname, num);

4 FILE *fp = fopen(fname, "rb");
fread(&tree->size_init, 1, sizeof(ulong), fp);

fread(&tree->size_curr, 1, sizeof(ulong), fp);

fread(&tree->size_attr, 1, sizeof(ulong), fp);

fread(tree->offsets, 3, sizeof(ulong), fp);

9 fread(tree->border, 6, sizeof(bool), fp);

tree->parent = malloc(tree->size_curr*sizeof(idx));

tree->attribute = malloc(tree->size_curr*tree->size_attr);

tree->gval = malloc(tree->size_curr*sizeof(value));

fread(tree->parent , tree->size_curr , sizeof(idx) , fp );

14 fread(tree->attribute , tree->size_curr , tree->size_attr , fp )

;

fread(tree->gval , tree->size_curr , sizeof(value) , fp);

fclose(fp);

return tree;

}

Listing A.5: Function to read boundary tree from file

Boundary *read_boundary_file(const char *fname, int num, Status s

) {

2 asprintf(&fname, "%s_%d", fname, num);

FILE *fp = fopen(fname, "rb");
Boundary *b = calloc(1, sizeof(Boundary));

fread(&b->size_init, 1, sizeof(ulong), fp);

fread(&b->size_curr, 1, sizeof(ulong), fp);

7 fread(&b->size_attr, 1, sizeof(ulong), fp);

b->size_alloc = b->size_curr;

fread(b->offset, 7, sizeof(ulong), fp);

fread(b->dims, 3, sizeof(ulong), fp);

b->array = malloc(b->size_alloc * sizeof(BoundaryNode));

12 b->merge_idx = malloc(b->offset[6] * sizeof(ulong));

b->attribute = malloc(b->size_alloc * b->size_attr); check_alloc

(b->attribute, 220);

b->border_par = malloc(b->size_alloc * sizeof(BorderIndex));

check_alloc(b->border_par, 221);

b->border_lr = malloc(b->size_curr * sizeof(BorderIndex));



A.1 read and write functions 20

fread(b->merge_idx, b->offset[6], sizeof(idx), fp);

17 fread(b->array, b->size_curr, sizeof(BoundaryNode), fp);

fread(b->attribute, b->size_curr, b->size_attr, fp);

size_t size = b->size_curr;

if(s == BASIC) {

idx *par_idx = malloc(b->size_curr * sizeof(idx));

22 fread(par_idx , b->size_curr , sizeof(idx) , fp );

for (size_t i = 0; i < size; i++) {

b->border_par[i] = (BorderIndex) {.b = b, .i = par_idx[i]};

b->border_lr[i] = (BorderIndex) {.b = b, .i = BOTTOM};

}

27 }

else if(s == MERGED) {

bool *partree = malloc(b->size_curr * sizeof(bool));

idx *par_idx = malloc(b->size_curr * sizeof(idx));

bool *lrtree = malloc(b->size_curr * sizeof(bool));

32 idx *lr_idx = malloc(b->size_curr * sizeof(idx));

fread(partree, b->size_curr, sizeof(bool), fp);

fread(par_idx, b->size_curr, sizeof(idx), fp);

fread(lrtree, b->size_curr, sizeof(bool), fp);

fread(lr_idx, b->size_curr, sizeof(idx), fp);

37 for(size_t i = 0; i < size; i++) {

if(partree[i] == true) {

b->border_par[i] = (BorderIndex) {.b = b, .i = par_idx[i]};

}

else {

42 b->border_par[i] = (BorderIndex) {.b = NULL, .i = par_idx[i

]};

}

}

for(size_t i = 0; i < size; i++) {

if(lrtree[i] == true) {

47 b->border_lr[i] = (BorderIndex) {.b = b, .i = lr_idx[i]};

}

else {

b->border_lr[i] = (BorderIndex) {.b = NULL, .i = lr_idx[i

]};

}

52 }

}

fclose(fp);

return b;

}

Listing A.6: Function to read combined boundary tree from file

Boundary *read_boundary_combined_file(const char *fname, int num,

Boundary *b1, Boundary *b2, Status s) {

asprintf(&fname, "%s%d", fname, num);

FILE *fp = fopen(fname, "rb");
4 Boundary *b = calloc(1, sizeof(Boundary));

fread(&b->size_init, 1, sizeof(ulong), fp);



A.1 read and write functions 21

fread(&b->size_curr, 1, sizeof(ulong), fp);

fread(&b->size_attr, 1, sizeof(ulong), fp);

b->size_alloc = b->size_curr;

9 fread(b->offset, 7, sizeof(ulong), fp);

fread(b->dims, 3, sizeof(ulong), fp);

b->array = malloc(b->size_alloc * sizeof(BoundaryNode));

b->merge_idx = malloc(b->offset[6] * sizeof(ulong));

b->attribute = malloc(b->size_alloc * b->size_attr); check_alloc

(b->attribute, 220);

14 b->border_par = malloc(b->size_alloc * sizeof(BorderIndex));

check_alloc(b->border_par, 221);

b->border_lr = malloc(b->size_curr * sizeof(BorderIndex));

b->border_ori = malloc(b->size_curr * sizeof(BorderIndex));

fread(b->merge_idx, b->offset[6], sizeof(idx), fp);

fread(b->array, b->size_curr, sizeof(BoundaryNode), fp);

19 fread(b->attribute, b->size_curr, b->size_attr, fp);

size_t size = b->size_curr;

if(s == BASIC) {

idx *par_idx = malloc(b->size_curr * sizeof(idx));

idx *lr_idx = malloc(b->size_curr * sizeof(idx));

24 bool *oritree = malloc(b->size_curr * sizeof(bool));

idx *ori_idx = malloc(b->size_curr * sizeof(idx));

fread(par_idx, b->size_curr, sizeof(idx), fp);

fread(lr_idx, b->size_curr, sizeof(idx), fp);

fread(oritree, b->size_curr, sizeof(bool), fp);

29 fread(ori_idx, b->size_curr, sizeof(idx), fp);

for(size_t i = 0; i < size; i++) {

b->border_par[i] = (BorderIndex) {.b = b, .i = par_idx[i]};

}

for(size_t i = 0; i < size; i++) {

34 b->border_lr[i] = (BorderIndex) {.b = b, .i = lr_idx[i]};

}

for(size_t i = 0; i < size; i++) {

if(oritree[i] == true) {

b->border_ori[i] = (BorderIndex) {.b = b1, .i = ori_idx[i

]};

39 }

else {

b->border_ori[i] = (BorderIndex) {.b = b2, .i = ori_idx[i

]};

}

}

44 }

else if(s == MERGED) {

bool *partree = malloc(b->size_curr * sizeof(bool));

idx *par_idx = malloc(b->size_curr * sizeof(idx));

bool *lrtree = malloc(b->size_curr * sizeof(bool));

49 idx *lr_idx = malloc(b->size_curr * sizeof(idx));

bool *oritree = malloc(b->size_curr * sizeof(bool));

idx *ori_idx = malloc(b->size_curr * sizeof(idx));

fread(partree, b->size_curr, sizeof(bool), fp);

fread(par_idx, b->size_curr, sizeof(idx), fp);



A.1 read and write functions 22

54 fread(lrtree, b->size_curr, sizeof(bool), fp);

fread(lr_idx, b->size_curr, sizeof(idx), fp);

fread(oritree, b->size_curr, sizeof(bool), fp);

fread(ori_idx, b->size_curr, sizeof(idx), fp);

for(size_t i = 0; i < size; i++) {

59 if(partree[i] == true) {

b->border_par[i] = (BorderIndex) {.b = b, .i = par_idx[i]};

}

else {

b->border_par[i] = (BorderIndex) {.b = NULL, .i = par_idx[i

]};

64 }

}

for(size_t i = 0; i < size; i++) {

if(lrtree[i] == true) {

b->border_lr[i] = (BorderIndex) {.b = b, .i = lr_idx[i]};

69 }

else {

b->border_lr[i] = (BorderIndex) {.b = NULL, .i = lr_idx[i

]};

}

}

74 for(size_t i = 0; i < size; i++) {

if(oritree[i] == true) {

b->border_ori[i] = (BorderIndex) {.b = b1, .i = ori_idx[i

]};

}

else {

79 b->border_ori[i] = (BorderIndex) {.b = b2, .i = ori_idx[i

]};

}

}

}

fclose(fp);

84 return b;

}



B I B L I O G R A P H Y

[1] Edmond J Breen and Ronald Jones. “Attribute openings, thin-
nings, and granulometries.” In: Computer vision and image under-
standing 64.3 (1996), pp. 377–389.

[2] Edwin Carlinet and Thierry Géraud. “A comparative review of
component tree computation algorithms.” In: IEEE Transactions
on Image Processing 23.9 (2014), pp. 3885–3895.

[3] S. Gazagnes and M. H. F. Wilkinson. “Distributed Component
Forests in 2-D: Hierarchical Image Representations Suitable for
Tera-Scale Images.” In: International Journal of Pattern Recognition
and Artificial Intelligence 33.11 (2019), p. 1940012.

[4] R. Jones. “Connected filtering and segmentation using compo-
nent trees.” In: Computer Vision and Image Understanding 75.3
(1999), pp. 215–228.

[5] J. J. Kazemier, G. K. Ouzounis, and M. H. F. Wilkinson. “Con-
nected morphological attribute filters on distributed memory
parallel machines.” In: International Symposium on Mathematical
Morphology and Its Applications to Signal and Image Processing.
Springer. 2017, pp. 357–368.

[6] Arnold Meijster, Michel A Westenberg, and Michael HF Wilkin-
son. Interactive shape preserving filtering and visualization of volu-
metric data. University of Groningen, Johann Bernoulli Institute
for Mathematics and . . ., 2002.

[7] Laurent Najman and Michel Couprie. “Building the compo-
nent tree in quasi-linear time.” In: IEEE Transactions on Image
Processing 15.11 (2006), pp. 3531–3539.

[8] Philippe Salembier, Albert Oliveras, and Luis Garrido. “Antiex-
tensive connected operators for image and sequence process-
ing.” In: IEEE Transactions on Image Processing 7.4 (1998), pp. 555–
570.

[9] Erik R Urbach, Niek J Boersma, and Michael HF Wilkinson.
“Vector-attribute filters.” In: Mathematical Morphology: 40 Years
On. Springer, 2005, pp. 95–104.

[10] Michel A Westenberg, Jos BTM Roerdink, and Michael HF
Wilkinson. “Volumetric attribute filtering and interactive visual-
ization using the max-tree representation.” In: IEEE Transactions
on Image Processing 16.12 (2007), pp. 2943–2952.

23


	Abstract
	Acknowledgments
	Contents
	List of Figures
	Listings
	Acronyms
	1 Introduction
	2 Background Information
	2.1 Component Trees
	2.2 Distributed Component Forests
	2.2.1 Building DCFs in parallel
	2.2.2 Boundary trees


	3 Implementation
	3.1 Reading and Writing Functions
	3.1.1 Writing functions
	3.1.2 Reading functions

	3.2 Iterative DCF Construction
	3.2.1 1 Process 2 Tiles
	3.2.2 1 Process 4 Tiles


	4 Tests & Results
	5 Conclusion & Further Improvements
	5.1 Conclusion
	5.2 Further Improvements

	A Appendix
	A.1 Read and Write functions

	 Bibliography

