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Abstract

Since many investigative journalists accused YouTube’s video rec-
ommendation system of recommending radical political and conspira-
torial content, the inner workings of this algorithm have become the
focus of public scientific research. Multiple studies were carried out
to analyse the bias of the recommendation engine with conflicting re-
sults. An important drawback of all of these studies was that the core
feature of the algorithm - personalized recommendations - was not in-
vestigated.

The overall aim of this Master project was to design an experiment
that would provide a dataset of personalized video recommendations
with which a potential bias could be detected. The large time cost of
manually classifying such a dataset necessitates algorithmic classifica-
tion. Due to the easy availability of unlabeled data, semi-supervised
learning appears to be an attractive approach for this task. The com-
putational research question to be addressed in this thesis was therefore
whether unlabeled data would improve the performance of machine
learning classifiers if used in a semi-supervised learning algorithm.

To this end, multiple classifiers were trained in a supervised manner
for a binary classification task, distinguishing political from nonpoliti-
cal YouTube channels, and a multi-label classification task, classifying
channels according to a number of political categories. These clas-
sifiers were compared to classifiers trained using the semi-supervised
self-training algorithm.

The results show that self-training did not make effective use of
the unlabeled data, as almost all classifiers trained with it performed
significantly worse. Nevertheless, the classifier trained only on labeled
data was able to distinguish political from nonpolitical channels with
an accuracy of 96%, while it achieved a mean precision of 63% and a
mean recall of 53% in the multi-label classification task.

1



Acknowledgement

I would like to express immense appreciation to my supervisors Prof. Michael
Biehl and Prof. Herbert Jaeger for allowing me to pursue my own project
idea. Especially for all the conversations and discussions in which they
sorted my initially quite disorganized thoughts, I am extremely grateful. I
would like to stress that without their influence and guidance along the way,
this project would have never been realized. Another person, without whom
this work would not have been possible, is Mark Ledwich, who supported
me from the very beginning with data collection, the experiment design,
and who provided the fundamental data on which this project is built. I am
glad that we got to cooperate on this project and I am looking forward to
continuing it together. I wish to acknowledge the help provided by my dear
friends Thorsten, Lukas, Phillip and Leah who read drafts, commented on
my work and contributed invaluable feedback. Special thanks I would like
to extend to Claudia Limbrock for offering me a place to focus and to be
creative during a time when universities and libraries where not accessible.
Her co-working space provided me with a unique environment which not
only contributed to the quality of this work, but also made the whole writing
process an enjoyable experience.

2



Contents

1 Introduction 6

2 Theoretical Background 9
2.1 Recommendation Systems . . . . . . . . . . . . . . . . . . . . 9
2.2 YouTube Recommendation Algorithm . . . . . . . . . . . . . 11
2.3 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . 17

3 Related Works 19
3.1 Studies on Radicalization on YouTube . . . . . . . . . . . . . 19
3.2 Classification of Videos and YouTube Channels . . . . . . . . 20
3.3 Self-Training - Empirical Evaluations . . . . . . . . . . . . . . 21

4 Methods 23
4.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Personalized Recommendations . . . . . . . . . . . . . 25
4.2.2 Collection of Nonpolitical Channels . . . . . . . . . . . 29
4.2.3 Classification Features . . . . . . . . . . . . . . . . . . 34

4.3 Data Preprocessing and Feature Extraction . . . . . . . . . . 37
4.3.1 Network Features . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Text Preprocessing . . . . . . . . . . . . . . . . . . . . 39

4.4 Classifier Architectures . . . . . . . . . . . . . . . . . . . . . . 41
4.4.1 Text Classifiers . . . . . . . . . . . . . . . . . . . . . . 41
4.4.2 Network Classifiers . . . . . . . . . . . . . . . . . . . . 44
4.4.3 Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.4 Multi-Label Ensemble . . . . . . . . . . . . . . . . . . 51
4.4.5 Ensemble Self-Training . . . . . . . . . . . . . . . . . . 53

4.5 Comparison Experiment . . . . . . . . . . . . . . . . . . . . . 55

5 Results 57
5.1 Data Exploration . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Network Features . . . . . . . . . . . . . . . . . . . . . 57
5.1.2 Ensemble Predictions . . . . . . . . . . . . . . . . . . 62

5.2 Comparison Experiment . . . . . . . . . . . . . . . . . . . . . 66

6 Discussion 73

7 Conclusion 76

3



8 Appendix 85

List of Figures

1 Personalized Recommendation Experiment Procedure . . . . 29
2 Subscribers Histogram - Political Channels . . . . . . . . . . 30
3 Subscribers Histogram - Nonpolitical Channels . . . . . . . . 31
4 Hyper-Parameter Optimization - Epochs . . . . . . . . . . . . 43
5 Hyper-Parameter Optimization - Learning Rate . . . . . . . . 43
6 Hyper-Parameter Optimization - N-Grams . . . . . . . . . . . 43
7 Ensemble Classifier Architecture . . . . . . . . . . . . . . . . 48
8 Hyper-Parameter Optimization - Regularization Strength . . 49
9 Receiver-Operator Characteristics of Ensemble Classifier . . . 50
10 Multi-Label Ensemble Classifier Architecture . . . . . . . . . 51
11 Association Network of Political and Nonpolitical Channels . 58
12 Association Network of Political Channels . . . . . . . . . . . 59
13 Subscription Network of Political And Nonpolitical Channels 60
14 Subscription Network of Political Channels . . . . . . . . . . 60
15 Cross-Channel Comment Network of Political and Nonpolit-

ical Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
16 Cross-Channel Comment Network of Political Channels . . . 62
17 Binary Class Probability Predictions of Text Classifiers - Train-

ing Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
18 Binary Class Probability Predictions of Network Classifiers -

Training Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
19 Binary Class Probability Predictions of Text Classifiers - Test

Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
20 Binary Class Probability Predictions of Network Classifiers -

Test Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
21 Multi-Label Class Probability Predictions of Ensemble Sub-

Classifiers - Training Set . . . . . . . . . . . . . . . . . . . . . 65
22 Multi-Label Class Probability Predictions of Ensemble Sub-

Classifiers - Test Set . . . . . . . . . . . . . . . . . . . . . . . 65
23 Mean Confidence Scores of Lowest Confidence Predictions

During Self-Training . . . . . . . . . . . . . . . . . . . . . . . 66
24 Performance Metrics on Test Set After Each Self-Training

Iteration - Binary Classification . . . . . . . . . . . . . . . . . 67
25 Performance Metrics on Test Set After Each Self-Training

Iteration With 95% Threshold - Binary Classification . . . . . 68

4



26 Performance Metrics on Test Set After Each Self-Training
Iteration with 90% Threshold - Binary Classification . . . . . 68

27 Performance Metrics on Test Set After Each Self-Training
Iteration - Multi-Label Classification . . . . . . . . . . . . . . 69

28 Performance Metrics on Test Set After Each Self-Training
Iteration with 80% Threshold - Multi-Label Classification . . 69

29 Performance Metrics on Test Set After Each Self-Training
Iteration with 83% Threshold - Multi-Label Classification . . 69

30 Performance Comparison of Supervised and Semi-Supervised
Classifiers - Binary Classification . . . . . . . . . . . . . . . . 70

31 Performance Comparison of Supervised and Semi-Supervised
Classifiers - Multil-Label Classification . . . . . . . . . . . . . 72

List of Tables

1 Overview of Labels . . . . . . . . . . . . . . . . . . . . . . . . 24
2 Missing Features - Labeled Channels . . . . . . . . . . . . . . 37
3 Text Preprocessing Steps . . . . . . . . . . . . . . . . . . . . 40
4 Performance Metrics of Binary Text Classifiers . . . . . . . . 43
5 Performance Metrics of Multi-Label Text Classifiers . . . . . 45
6 Performance Metrics of Binary Network Classifiers . . . . . . 45
7 Performance Metrics of Multi-Label Network Classifiers . . . 47
8 Performance Metrics of Binary Ensemble Classifier . . . . . . 50
9 Performance Metrics of Multi-Label Ensemble Classifier . . . 52
10 Performance Metrics of Reduced Multi-Label Ensemble Clas-

sifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
11 Multi-Label Classification Report . . . . . . . . . . . . . . . . 53
12 Missing Features - Unlabeled Channels . . . . . . . . . . . . . 54
13 Results Statistical Comparison - Binary Classification . . . . 70
14 Results Statistical Comparison - Multi-Label Classification . 72

5



1 Introduction

Since its launch in 2005, YouTube has become the largest video platform in
the world with over 720,000 hours of video material uploaded and 1 billion
hours watched every day1. A likely reason for its success is the recommen-
dation engine that proposes to viewers a set of videos they might want to
watch next. YouTube itself claims that more than 70% of their entire watch
time is generated by their recommendation system2, showing how actively
this system influences the users’ viewing behaviour.
Youtube is also used as a political platform where political content is up-
loaded by election campaign organizers, established news channels and me-
dia corporations, but also by private or semi-professional content creators
(so-called YouTubers). Given the large reach of political messages on YouTube,
the platform has become a considerable factor in elections and other political
decision processes [1, 2].
In 2018, The Guardian published an article in which the first allegations
against the political neutrality of YouTube and its recommendation system
were made [3]. It was claimed that the company actively helps the spread
of misinformation and extremist political content through the way they rec-
ommend it in their ‘recommended videos’ section next to the video player.
Furthermore, this recommendation system supposedly has a radicalizing ef-
fect on some of its users [4]. Since then, YouTube has been under constant
scrutiny by journalists and scholars, pressuring YouTube spokespersons to
promise improvements of the algorithm multiple times3.
Researchers outside of Google have conducted studies to scientifically ap-
proach the question of whether the algorithm might be biased towards right-
wing content. Ribeiro et al. [5] claimed that there is indeed a pathway from
moderate political content to radical right-wing content. Ledwich and Zait-
sev [6] found the opposite and discovered that there are more recommenda-
tions from radical content to moderate content than the other way around.
Faddoul et al. [7] report in their publication about a short term decrease
in recommendations to conspiratorial fringe content after YouTube imple-
mented changes to their system, but later a return to the trend of a growing
number of conspiracy video recommendations.
These studies all have a common drawback in their methodology: In none of
the experiments were the experimenters logged in with a YouTube account,

1www.youtube.com/intl/en-GB/about/press/ (accessed: 24.07.2020)
2www.cnet.com/news/youtube-ces-2018-neal-mohan/ (accessed: 24.07.2020)
3foundation.mozilla.org/en/blog/congratulations-youtube-now-show-your-

work/ (accessed: 24.07.2020)
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which means that they can only make claims about the non-personalized4

recommendation system. However, as over three quarters of internet users
say that they have a YouTube account and YouTube has over two billion
users that log in at least once per month5, one can assume that a large
proportion of users, especially those that use YouTube often, experience the
website while being logged in. All of the users who are logged in while watch-
ing videos, receive personalized recommendations that are, among other fac-
tors, based on their watch history.
Understanding the non-personalized recommendation engine of YouTube is
helpful but clearly not sufficient to get full insight into how the mechanisms
of the video platform might facilitate political radicalization. With regards
to how the personalized recommendation system could contribute to this
effect, the main question is whether any bias exists in the system, such that
some content is recommended disproportionately often.
This Master thesis project’s goal is the creation of a dataset that can of-
fer answers to this question. To this end, an experiment was designed and
implemented that gathers information about personalized video recommen-
dations. A challenge for a quantitative analysis of such a dataset is how the
recommended videos are coded. If the question is whether the algorithm
has (intentionally or unintentionally) learned to serve certain kinds of po-
litical videos more often than others, the collected recommendations need
to be classified according to political categories. Only then can quantitative
statements be made about the data. Manually labeling YouTube videos or
channels is an extremely time-consuming process, as hours of video material
would need to be sighted. Machine learning based classifiers that auto-
matically label the data are therefore needed to analyse sufficiently large
datasets.
In this Master project, two machine learning methods are compared: su-
pervised learning, in which a classifier learns patterns from a set of human-
labeled examples and applies the gained information to unseen data, and
semi-supervised learning (SSL), in which additionally unlabeled examples
are used in the training process.
Semi-supervised learning is often advantageous in situations where manually
labeling examples is very cost-intensive but where unlabeled data is readily
available. Analyzing YouTube videos channels fits this description perfectly.
Neither supervised nor semi-supervised learning works without a set of la-

4Non-personalized means here, that the recommendations are not based on previously
watched videos. They are still based on location data and similar features, as explained
in Section 2.2.

5www.oberlo.com/blog/youtube-statistics (accessed: 24.07.2020)
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beled data from which inferences can be made. The original labeled dataset
that was used in this work stems from a study by Mark Ledwich and
Anna Zaitsev from the end of 2019 [6]. In this work, the authors categorize
YouTube’s own political micro-cosmos and label over 800 channels according
to a set of political ideologies and other characteristics. Based on this data,
I decided to also classify channels instead of individual videos.
The classification of channels happened in this project in two stages. First,
they were categorized as either political or nonpolitical, where a classification
as political means that the channel frequently comments on US-related po-
litical or cultural issues [6]. All political channels were then further labeled
with 18 different tags, denoting their ideological orientation.
While this project aims to contribute to answering the question of whether
the recommendation system might be biased and possibly facilitates radi-
calization processes, the actual analysis of the experiment’s results is not in
the scope of this project. Its main contribution is the collection of empirical
data and, in particular, an experimental comparison of different classifica-
tion approaches.
In summary, the two main objectives of this project are (i) the creation
of an experiment that generates an unlabelled dataset about personalized
video recommendations from YouTube, and (ii) a comparison of two ma-
chine learning approaches that results in a trained classifier with which the
gathered data can be labelled.
The thesis is structured as follows: The Theoretical Background section of
this thesis introduces general information about recommendation systems, in
particular the YouTube algorithm, as well as relevant concepts from super-
vised and semi-supervised learning. In the Related Works section I present
the current state of research on the YouTube recommendation system and I
shortly review literature on methods used in this project. A description of
the experiment design, data collection and how the classifiers were trained
and compared follows in the Methods section. Visualizations from the ex-
ploration of the data and the outcome of the classifier comparison I present
in the Results. In the Discussion I argue why the unlabeled data did not
improve the supervised classifiers, as the experiment results show, and the
Conclusion gives a summary of the project.
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2 Theoretical Background

To put the experiments and methods described in this report in context, I
give necessary background knowledge in this section. Different approaches
regarding recommendation systems and a description of the specific algo-
rithm employed by YouTube are presented here. The second half of the
section offers an overview of important concepts from supervised and semi-
supervised learning.

2.1 Recommendation Systems

Recommended items on commercial web services have become a ubiqui-
tous sight. Whether it is related news articles, products other people have
bought, movies or videos one might also like - recommendation systems
(RSs) are fundamental features of many service providers. The goal of an RS
is to predict how positively a user rates an item, and to present them a list of
potentially ranked suggestions of items [8]. While there are recommenders
that are not personalized, and e.g. just query the most popular items at
the moment and present them to everyone, the most frequent version of
recommenders are those that present every user different, personalized rec-
ommendations [9, 8]. For these recommenders, it is essential to create a
user-model that reflects the preferences of every user, either by explicitly
gathering feedback on presented items through ratings [10] or by implicitly
inferring the preferences from the user’s behaviour, by e.g. monitoring the
time an item was viewed [11].
In the literature, different taxonomies of recommender algorithms types have
emerged from which the two most important classes are collaborative filtering
and content-based recommenders [12, 8, 9].
The idea to simply suggest items that other users with similar interests liked
in the past, was the first implementation of a recommendation system and is
called collaborative filtering [13]. For this technique, the most similar user-
models to the current user are found and the recommender suggests items
that these users have liked, but the current user hasn’t seen yet. Collabora-
tive filtering has certain disadvantages [14]: Problematic for this approach
is the beginning phase in which little or no information about users’ history
exists yet (“cold start problem”[15]). New or unpopular items can also not
be handled well. In large web shops that offer millions of products, some
items have never been bought by any customers, so they cannot be recom-
mended by collaborative filtering system. Additionally, these systems are
hard to scale if the service has millions of users.
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From the fields of information retrieval and information filtering emerged
content-based RSs as an alternative approach [9]. These recommenders sug-
gest items that are similar to items the users has liked in the past and
therefore each item’s features and attributes must be modeled in addition
to the users’ profiles. The advantage of this approach is that also niche con-
tent or completely new content can be recommended, even if no other user
has ever bought, seen or interacted with it. A limitation of content-based
recommenders is that they cannot expand on the users’ interests, because
they are restricted to preferences shown in the past. An item that is very
different from previous liked items, which the user nevertheless might still
like, is not recommended by a content-based recommender.

Evaluation Evaluating a recommendation system is not a trivial task, as
there is usually not a single goal that the system is optimized for. As Shani
and Gunawardana [16] lay it out, “it is now widely agreed that accurate
predictions are crucial but insufficient to deploy a good recommendation
engine”.
They further list a number of characteristics that are considered to be rele-
vant for successful RS [16]: Next to the accuracy of the user rating predic-
tions, properties like the coverage are important. It measures the number of
items that the RS is able to recommend from the catalogue of all available
items. For some applications, serendipity, novelty and diversity are major
factors, while they are less relevant for others.
Serendipity measures how surprising a successful recommendation is which
is operationalized with a distance metric that captures the dissimilarity be-
tween items in the catalogue. This dissimilarity is also maximized when the
diversity of the recommendations is the goal. Novelty, which describes the
unfamiliarity of users with the recommendation, can be operationalized in
various ways, but a simple one is to assume that users are familiar with
popular items. When novelty is of high importance, the goal is thus to
recommend unpopular items more often.
While these are all characteristics of RSs that are often desired by the stake-
holders, some effects of recommendation systems can be perceived as detri-
mental. The following paragraphs summarize a paper by Jiang et al. about
so-called “degenerate” recommendation systems [17].

Degenerate Recommendation Systems Due to the inherent nature of
RSs to not recommend a representative view of the full content but only a
slice of it that is predicted to be preferred by the user, some people claim that

10



RSs create ‘echo chambers’ or that users get stuck in ‘filter bubbles’ which
is usually implied to be something negative [18]. The goals that platform
stakeholder pursue with an RS do not necessarily align with the interests of
the users and even if, certain effects of an RS can occur unintentionally.
The authors of [17] wanted to find out what constitutes a so-called ‘degen-
erate’ recommendation system. Under ‘degeneracy’ they understand the
tendency to create echo chambers and filter bubbles. These effects are often
mixed together or treated as synonyms but Jiang et al. see them as two
separate effects that, nevertheless, often occur at the same time. If a “user’s
interest [is] being positively or negatively reinforced by repeated exposure to
a certain item or category of items” [17] they are subject to the echo cham-
ber effect, while a filter bubble simply describes “the fact that recommender
systems select limited content to serve users online” [17].
The authors model in their study a recommender system that interacts with
a user over time. The system serves every time step t a set of items a
out of a countably infinite set M . The user has a function µt : M −→ R
which represents her interests, and is a large positive number if the item set
presented matches her interests and small or negative if not. At each time
step the user gives feedback to the recommender system by interacting with
the item set. In the case of YouTube that interaction could be clicking on
a video and watching it for a certain amount of time or engaging with it in
other ways (liking, commenting etc.). The recommendation system has an
internal model which tries to predict the user’s interest and is updated based
on her feedback. However, also the user’s interest function µt changes over
time and is dependent on the previous interest state µt−1, the recommended
item set at−1 and also the previous interaction with that itemset, which is
denoted as ct−1.
The authors claim that a characteristic of every recommender system is
that it is ‘degenerate’, i.e. the interest of the user at a later point in time
µt is arbitrarily different to the initial interest µ0. From their experiments,
however, they conclude that the speed of this interest shift varies strongly
among the different recommender types they tested.

2.2 YouTube Recommendation Algorithm

A common way of circumventing the disadvantages of collaborative filtering
and content-based filtering are hybrid systems that combine the strengths
of multiple algorithms [12]. The algorithm YouTube uses to provide their
video recommendations is a good example for such a system and is shortly
presented here. YouTube has been constantly modifying their recommenda-
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tion system, and while some publications give insight into its inner workings
on the surface level, the details of the system remain hidden to the pub-
lic. It should be noted that even if YouTube had no financial interest in
keeping their algorithm closed-source, releasing the exact functionality of it
would likely open the door for adversarial attacks and spammers, abusing
the system to push their content.
While the earliest version of their algorithm was based on association rule
mining [19], YouTube revealed with the publication of [20] a switch to deep
learning for generating video recommendations. The new system consisted
of two neural networks, one for generating a candidate set of a few hundred
relevant examples from millions of videos, and another one to rank the can-
didates such that the top dozens most relevant candidates can be presented
to the user.
The candidate selection network uses features such as the watch history,
search history, geographic features, gender, and age and uses implicit user
feedback, e.g. watching a video to the end, to create user embeddings. Based
on the similarity of the user embeddings, a collaborative filtering approach
selects the set of candidate videos.
The second neural network responsible for ranking the candidates has more
features available because it does not need to be scaled to millions of videos.
In this phase, the users’ previous interactions with a candidate video or the
corresponding channel are, among other features, taken into account to de-
termine its ranking. The neural network model predicts the watch time of
each candidate and ranks them accordingly. This part of the recommenda-
tion system embodies a content-based approach.
In 2019, the latest update6 on the algorithm was released which addressed
certain challenges that were previously left neglected [21].
One problem that many recommendation systems have is a selection bias
in the training data. When a user clicks on a recommended video, thus
providing positive feedback to the recommender, it might not have happened
because she liked it the most, but simply because the recommender ranked
it the highest. Recommender systems are thus prone to fall into feedback
loops.
A second problem is the different optimization objectives for the algorithm,
that are not necessarily aligned. For example, YouTube might want to
recommend more videos that the user watches to the end, or they might
want to recommend more videos that the user is most likely to share with

6YouTube has at the time of writing not yet officially announced that this version is
currently used.
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friends, etc. These are not necessarily the same videos and an RS that is
able to recommend more of one kind potentially recommends less of the
other.
To address these challenges, YouTube updated mostly the second phase of
the recommendation system - the ranking algorithm. Multiple predictions
on different metrics were combined in a so-called “Multi-gate Mixture of Ex-
perts architecture”. To circumvent the feedback loop problem, a technique
was used that feeds the position of a training example in the ranking as a
feature into the neural network. While this method improved the engage-
ment with the recommended videos, the authors admit that this problem
remains an open question in research.
The architectures described by YouTube were evaluated offline, i.e. without
actual user interaction, by using metrics such as the squared error to de-
termine how well the system predicts the users’ preferences. Additionally,
the algorithms were evaluated in live A/B testing through user surveys and
monitoring of user behaviour [21]. In A/B testing, a subset of users is pre-
sented with the new RS, making it possible to compare the new architecture
to the previous architecture.

2.3 Supervised Learning

At the core of this project is the classification of a set of YouTube chan-
nels with machine learning, since manual classification would be too time-
intensive. Because a dataset with manually labeled channels already exists,
the problem at hand is a classical case for Supervised Learning (SL). This
section will explain the fundamentals of SL and introduce the theoretical
background necessary to understand the methods used in this project.
Given a set of items and a set of categories according to which the items
are supposed to be classified, the goal of SL is to find a function that maps
an item to a category. A necessary requirement for this is that some of the
items, also called examples, are already assigned to the categories. From
this training data an SL algorithm ideally generalizes a function that is also
able to accurately map unseen data points. How well this function, also
called a model, predicts the class of unseen examples can be estimated on a
test set. The test set consists of examples for which the classes are known,
but which are not included in the training of the model.

13



Logistic Regression A classical tool for supervised classification tasks
is the logistic regression. With a standard linear regression [22], a linear
relationship between a feature variable and a target variable can be described
in the form

Y = α+ βX. (1)

Logistic Regression is used when the target variable is categorical. More
precisely, for simple logistic regression, the target variable has only two
values. Otherwise, when the target variable can have one out of multiple
values, multinomial logistic regression is used. Such a classification task is
also called multi-class classification.
A logistic regression model is trained by minimizing the cost function shown
in Equation 2 [23].

min
w,c

1

2
wTw + C

n∑
i=1

log(e−yi(X
T
i w+c) + 1) (2)

The term 1
2w

Tw + C is a regularization term that prevents the model from
overfitting, i.e. failing to generalize from the training set to new data. It is
controlled by the parameter C.

Multi-Label Classification While each instance in logistic regression
has one out of two target variables (binary) and in multinomial logistic
regression one out of many (multi-class), multi-label classification describes
tasks in which an instance can belong to up to n classes. The output of such
a classifier is thus a binary vector V ∈ {0, 1}n such that

Vi =

{
1, if the input is assigned to label i

0, otherwise.
(3)

Multi-label classifiers can also be realized with algorithms intended for bi-
nary decision problems such as logistic regression by training n classifiers,
one for each class. Each classifier learns to discriminate between the in-
stances that belong to that class and all other instances. This way, the i-th
classifier outputs the probability that the input belongs to class i.
In algorithms such as multinomial logistic regression the output probability
for each class can be directly calculated through the softmax function shown
in Equation 4 [24].

P (y = i|x) =
ex∑K
k=1 e

x
(4)
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Since this function normalizes the output vector such that the sum of the
probabilities equals 1, it is typically used for multi-class problems. In some
applications, it is also used for multi-label classification tasks by using a
threshold value [25].

Evaluation To evaluate a binary classifier, different metrics can be used.
If the goal is e.g. to determine whether a tumor is malignant or not, one is
typically interested in how many of the cases that the classifier identified as
malignant were truly malignant (precision), and how many of the malignant
cases were identified as malignant by the classifier (recall). Usually, there
is a trade-off involved between these two metrics. Equation 5 shows the
F1-score, a metric that combines both precision and recall in one metric, by
calculating their harmonic mean.

F1 =
true positives

true positives+ 1
2(false positives+ false negatives)

(5)

A metric like the F1-score can only evaluate the model for a specific clas-
sification threshold. If this threshold is e.g. 0.6, all examples for which the
model predicts that they belong to class A with a probability of 0.6 or higher
are classified as A. To make a statement about the general quality of a model,
independent of this threshold, one can plot the Receiver Operating Charac-
teristic (ROC) curve and compute the area under the curve (AUC) [26].
The ROC curve shows the recall and false positive rate, i.e. the probability
of false alarms, for every possible threshold. The AUC then summarizes the
information from this curve into one metric, so that different models can be
easily compared.
In multi-label classification tasks, even more metrics exist because there are
many more ways in which a classifier’s prediction can be considered correct.
Consider an image recognition task where the goal is to identify all items
on an image of a table with a glass of water and a plate. The choice of
performance metric determines whether a classifier that recognizes only a
glass of water is considered more correct than a classifier that recognizes a
glass, plate and additionally a banana with high confidence.
One metric that is employed in determining the quality of recommender
systems but also in multi-label classification tasks related to the one in this
project [27, 28] is the Mean Average Precision (MAP). For a given predic-
tion, the predicted labels are ordered by probability and the precision and
recall at each position are calculated. The average of these values (average
precision (AP)) is then calculated according to Equation 6 [23].
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AP =
∑
n

(Rn −Rn−1)Pn (6)

Calculating the mean of the APs for a whole set of predictions results in the
MAP.

Text Classification A specific domain for supervised classification is the
classification of natural language texts. The entities that are to be cate-
gorized can be short snippets of text or whole articles, but each entity is
called a ‘document’. To make a machine learning algorithm able to process
text it needs to be represented in vector form in some way. Two common
approaches for this vectorization exist, namely bag-of-words representation
and word embeddings.
In the bag-of-words approach, the order of words is disregarded and texts are
viewed as a collection of words. Which words appear in the text with which
frequency are the only features used by the algorithm to discern between
the documents. For this purpose, the vocabulary of the whole set of relevant
documents is determined and each document is represented as a vector with
the length of this vocabulary. The element i in the vector signifies whether
or how often the word at the i-th position in the vocabulary appears in the
document.
An alternative approach to document vectorization is to represent each word
as a vector in an arbitrarily sized feature space and combine these vectors,
so-called word embeddings, to represent a document. The idea behind em-
beddings is that words with similar meaning also correspond to vectors close
to each other in the feature space [29]. To generate these embeddings, neural
networks are trained on large sets of documents to learn which words often
occur in the same contexts [29].
Relevant for both methods is a proper preprocessing of the text. Natural
language contains a lot of signals that do not contain any discriminative
value. Punctuation, special symbols and the most common words, so called
stop words are usually removed from the text before it is vectorized. The
goal of such preprocessing is to keep the dimensionality of the vectors low.
For this purpose, words are often also lemmatized which means that different
grammatical inflections of one word are mapped to the same word [30]. After
a text is processed with such methods, it is split into different tokens that
each represent one term, that can then be vectorized easily. Terms do not
necessarily have to be single words but could also refer to proper names like
New York.
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2.4 Semi-Supervised Learning

While supervised learning is used in situations where labeled training data
is available, and unsupervised learning covers scenarios where this is not
the case, semi-supervised learning can be placed somewhere in between. In
many situations, it is costly to assign classes to some examples but cheap
to gather many unlabeled examples. The goal of semi-supervised learning is
to extend supervised learning methods by extracting additional information
from the unlabeled data.
The information one can gain from the unlabeled data comes from its distri-
bution. Given P (x) as the probability of encountering a certain example x
and the class conditional probability P (x|y) which expresses the probability
to encounter an example x given that we know it belongs to class y, semi-
supervised learning helps in situations where the assumption about the link
between P (x) and P (x|y) is correct [31].
Every semi-supervised method makes its own assumptions about this con-
nection. In a binary classification task, a Gaussian Mixture Model, for
example, would assume that the data comes from two Gaussian distribu-
tions. More training data, even if not labeled, makes the estimations of the
distribution parameters more accurate. Not necessarily, however, if the data
points actually stem from a totally different distribution.
There are three assumptions of which at least one is used by every SSL al-
gorithm [32]. The semi-supervised smoothness assumption states that two
points that are close together in a high-density region, belong to the same
class. A more specific version of this assumption is the cluster assumption
which postulates that two points in the same cluster are likely belonging
to the same class. Lastly, the manifold assumption states that the high-
dimensional data is likely to lie on a subspace (manifold) with a lower di-
mension.
Two different settings of SSL with different goals exist [31]. In inductive
learning, the goal is, similar to standard supervised learning, to train a
classifier on training data, and use it to predict unseen examples, hoping that
it generalizes well enough. The difference is then simply that the training
data also includes unlabeled examples. Transductive learning, is the easier
task, because the goal is to use the classifier only on the unlabeled data in
the training sample.
Further, some SSL methods can be described as wrapper methods because
they can internally use any classifier, provided it can output the probability
P (y|x) as a prediction for a data point or some other kind of confidence
score [31]. Examples for such wrapper methods are self-training and co-
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training. Self-Training was chosen as the SSL technique in focus for this
project because it is the most simple SSL method and its compatibility with
other classifiers allows for an intuitive comparison with supervised learning.
Details about this approach are therefore explained here.
The basic idea of Self-Training is that a given classifier teaches themself, by
iteratively using its own predictions for further training epochs [31].
Algorithm 1 shows the pseudo-code of the algorithm as seen in [31]:

Algorithm 1 Self Training Algorithm

1: Input : labeled data {(xi, yi)}li=1, unlabeled data {xj}l+u
j=l+1

2: initially, let L = {(xi, yi}li=1 and U = {xj}l+u
j=l+1

3: repeat
4: Train f from L using supervised learning.
5: Apply f to the unlabeled instances in U .
6: Remove a subset S from U ; add {(x, f(x)|x ∈ S} to L

The subset S contains the predictions with the highest confidence. The as-
sumption that underlies the use of self-training is that these high-confidence
predictions tend to be correct. Depending on which classifier is used inside of
the self-training wrapper, the semi-supervised smoothness assumption hides
implicitly in that assumption.
Possible problems of the self-training algorithm are initial mistakes in the
prediction that are amplified by further iterations [31]. Since no convergence
criterion exists, the training of the wrapper algorithm ends with a custom
stopping criterion. It can e.g. run for a fixed number of iterations, until all
unlabeled examples are part of the training set, or until the confidence score
of the predictions falls below a certain threshold.
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3 Related Works

To provide an overview of the current state of research related to YouTube,
classification of content on the platform, and how self-training performs in
practical tests, this section summarizes a selection of relevant literature.

3.1 Studies on Radicalization on YouTube

After the initial accusations [3] by a former employee of Youtube in the be-
ginning of 2018, numerous articles emerged in newspapers and media outlets
that claimed the YouTube recommendation system facilitates radicalization
[4], spreads conspiracy theories [33] and extremist content [34].
Various researchers also investigated YouTube and the recommendation al-
gorithm in scientific studies regarding similar claims. Rebecca Lewis ana-
lyzed from January 2017 to April 2018 connections between channels of the
so-called “Alternative Influence Network” [35]. Through a snowball method,
in which connections from a set of seed channels were followed, 88 influen-
tial channels were discovered that had a “general opposition to feminism,
social justice or left-wing politics” [35] in common. In this study, a connec-
tion is present between two channels if the host of channel A has a guest
appearances in a video of channel B. The study concludes that there are
two main radicalization effects. First, the viewers of a moderate channel
are exposed to more extreme positions through e.g. interviews with more
radical figures of the scene. Secondly, the influencers themselves radicalize
as well through interactions with their audience and their demand for more
extreme content. Lewis claims that this radicalization is a social and not
a technical problem and that even without any recommendation algorithm
these two effects would still exist.
Ribeiro et al, conducted in 2019 a study in which the user intersection and
user migration between politically moderate and extremist groups were an-
alyzed [5]. Additionally, they examined non-personalized YouTube recom-
mendations by following the recommendations on a set of seed videos from
each category and checking whether this path led to more or less radical
videos. Based on their results, they assert that, even if not very high, there
is a flow from mild to extreme content.
In October 2019, Munger and Phillips published a new theory on radicaliza-
tion on YouTube in which the recommendation algorithm does not play a
central role [36]. According to their “Supply and Demand” theory, videos on
YouTube did not radicalize the audience, but the radical content on YouTube
was created to satisfy the demands of an already extremist audience that
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was previously not met by classical media. They underline this theory with
quantitative data that shows how search queries regarding niche topics show
much more results from radical channels than mainstream media.
Ledwich and Zaitsev also disagree with the claim that the YouTube algo-
rithm leads users from moderate to fringe content, based on the results
from a study that gathers non-personalized recommendations from and to
multiple political channels [6]. When comparing (i) the number of recom-
mendations that point to videos with extreme content and (ii) the number of
recommendations that lead away from them, they found that, on average,
the YouTube algorithm tends to rather divert traffic towards videos from
mainstream media than towards radical fringe content.
Lastly, a study co-authored by the aforementioned former YouTube em-
ployee was published in March 2020 and examined how many videos spread-
ing conspiracy theories and misinformation were recommended by YouTube’s
algorithm [7]. They tracked the proportion of these videos among all recom-
mendations they gathered over time and found out that, indeed, YouTube’s
efforts to reduce misinformation were partly successful but 2% of the recom-
mendations still promoted conspiracy theories and misleading information.
In summary, there is neither consensus yet on how the recommendation
algorithm contributes to the radicalization of YouTube consumers, nor is
there consensus on whether such an effect exists in the first place. While the
goal of this project is not to prove the presence of any kind of radicalization
mechanism, it aims to contribute to this research by examining whether the
potential for such a mechanism lies in the functioning of the algorithm.

3.2 Classification of Videos and YouTube Channels

This subsection gives an overview of different approaches to the classifica-
tion of YouTube videos and channels in the literature. Starting with the
classification into more general categories, it finishes with multiple studies
that use political categories.
YouTube itself is annotating videos and channels with semantic topics [37,
38, 39]. Their approach for channel classification as described in [37] does
not make use of the image or audio content, but rather uses meta-data such
as titles, description and keywords. Furthermore, features from the user
behaviour, such as search queries and which videos were watched in the
same session, are processed.
With a similar approach, they created in 2016 the YouTube-8M dataset
consisting of over 8 million YouTube videos, annotated with 4800 classes
[38]. The original version of this dataset has since then been deprecated and
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updated7. This dataset has led researches to combine features from different
modalities [28]. With deep learning models, MAP scores of over 0.85 were
achieved [27, 28].
Regarding the explicit political classification of videos, a very salient research
focus is the analysis of political advertisement videos. In [40], different
features extracted from the image content of video ads shown on YouTube
are used to classify videos as political or nonpolitical. Different machine
learning classifiers were used by [41] to perform automatic coding of political
ads according to variables such as the mood of background music, whether
opponents appeared in the video, or which political issues were addressed.
With a background in media bias research, Dinkov et al. classify the YouTube
channels of news media according to their left-center-right bias [42]. From
existing labels for different media companies and their corresponding YouTube
channels, they created a dataset of 421 channels and 3345 videos. Multiple
features were extracted from the video captions, video snippets (title, de-
scription, tags), audio information and video metadata (views, likes, etc.)
to be combined in a deep learning model. With the three classes left, center
and right their model achieved an accuracy of 73.42%.
Recently, [7] aimed to identify conspiracy theories and falsehoods in YouTube
videos. For their approach, they combined multiple classifiers each trained
on a separate feature set into one classifier. The feature sets consisted
of the video caption, video snippet, the 200 top comments and the per-
ceived impact of comments (‘toxic’, ‘spam’, ‘unsubstantial’, etc.) classified
by Google’s Perspective API8. The resulting ensemble was able to identify
conspiratorial videos with a precision of 78% and recall of 86%.
It can be seen that various methods and features were successfully used to
classify YouTube videos and channels. Even though deep learning models
performed excellently in previous studies, this technique is not well suited
for the goal of this project due to the small size of the training data. Using
features from audio or image data was also disregarded, because of the cost
to collect this feature data and because I did not expect these features to
carry a large amount of additional information with regards to the task at
hand.

3.3 Self-Training - Empirical Evaluations

The self-training algorithm has been used in various practical investigations
and comparison studies. Two relevant studies are highlighted in this sub-

7research.google.com/youtube8m/download.html
8perspectiveapi.com (accessed: 24.07.2020)
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section to show in which situations self-training has worked well and when
other methods are superior.
A survey and comparative study on multiple SSL algorithms was published
by Da Silva et al. [43]. The domain on which the classifiers were compared
was the sentiment analysis of tweets. The sentiment analysis was treated as
a classification problem of positive, neutral and negative sentiments.
As a stopping criterion for their self-training algorithm, the authors selected
a confidence threshold so that the algorithm terminated if no predictions on
the unlabeled examples exceeded this threshold. In their experiment, they
varied the number of initially labeled examples and compared the F1-score
on the testing set. Multiple datasets were used and additionally multiple
threshold values were evaluated for the self-trainer algorithm.
Their results show that when only little labeled data is available, the clas-
sifiers trained with a lower threshold performed better on some datasets.
Overall, however, a higher threshold led to better results. Compared with
the other SSL wrapper method co-training, self-training performed better
when more labeled data was available
Researchers Didaci and Roli compared how self-training and co-training per-
form in the context of ensemble classifiers [44]. For this purpose, they used
different classifier algorithms inside each wrapper method and checked how
well the ensemble operates on different datasets.
Two stopping criteria were used for the wrapper algorithm. In both cases,
the number of examples added to the training set in each iteration was
fixed. For large datasets, they used a number of iterations set to 2/3 of the
maximally possible iterations. For small datasets, they ran the algorithm
until all of the unlabeled data was added to the training set. After each
iteration of the self-training algorithm, the error of the classifier on the test
set was calculated.
For all classifiers the authors compared, a non-monotonic decrease in the
error could be observed. This means that adding unlabeled data to the
training set first increased the performance of the ensemble classifier, but
later decreased it again. Nevertheless, most classifiers performed better in
the end than before the first iteration, when it was only trained on labeled
data.
From these two studies, some limits to self-training but also its strengths
can be seen. The study by [43] proved that self-training can work in the
context of text classification, while [44] showed that ensemble classifiers can
benefit from unlabeled data.
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4 Methods

This section describes the data that was available at the beginning of the
project, the methods used to gather more data, and how the data was pro-
cessed for classification. The section ends with an explanation of the classi-
fication algorithms and the methodology of how they were compared.

4.1 Dataset Description

The dataset by [6] contains 803 political channels with so-called ‘hard tags’
and ‘soft tags’. Hard tags are labels that were given to the channel if they
appeared in studies such as [5], if they were recognized as official news outlet
or if the channel belonged to an existing news network. In general, hard tags
are labels given from external sources. In contrast, the soft tags are labels
given by the authors and their co-labeller. They were created to capture the
specific context of YouTube because “traditional ways of dividing politics
are not natural categories that would accurately describe the politics of
YouTube channels” [6].
Table 1 lists the 18 soft tag labels that were used for the multi-label classi-
fication and how many channels in the dataset were tagged with each label:
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Label Number of Channels

Anti-SJW 276

Partisan-Right 232

Partisan-Left 120

SocialJustice 106

Conspiracy 80

ReligiousConservative 54

AntiTheist 47

Socialist 46

WhiteIdentitarian 44

Libertarian 37

MissingLinkMedia 37

Educational 34

StateFunded 32

Provocateur 26

MRA 18

Revolutionary 10

LateNightTalkShow 7

AntiWhiteness 3

Table 1: The number of channels per label. Out of all channels, 365 were
tagged with one label, 260 with two, 84 with three and eight channels had
four labels.

A description of each of these labels can be found in appendix D of [6].
A label was given to a channel if more than half of the raters agreed on that
label. For 63 channel no soft tag was given because there was no agreement
on any label. For the multi-label classification, these channels were useless
and were thus removed from the training set. For the binary classification
task of labelling channels as either political or nonpolitical, channels with
only hard-tags were kept in the dataset. Still, 45 channels had neither soft,
nor hard tags, so they were removed completely, leaving 758 labeled channels
for the binary classification task and 740 for the multi-label classification
task.

4.2 Data Collection

Data collection was a large part of this project as on the one hand, data
about personalized YouTube video recommendations was gathered, and on
the other hand, an algorithmic classifier for such data was trained for which
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also additional data was needed. To make distinctions between political
and nonpolitical channels, the classifier required examples of channels that
do not primarily produce content on political or cultural issues. Further-
more, a machine learning algorithm needs a set of features, on which it can
distinguish the channels from each other.
This section first proposes an experiment to collect meaningful data on per-
sonalized video recommendations, then it describes how a selection of non-
political channels was sampled, and lastly, the collection of feature data is
outlined.

4.2.1 Personalized Recommendations

Video Recommendations that are personally tailored to the taste of a user
can only be presented by YouTube if the user logs into their YouTube ac-
count with which their watch history can be recorded. Necessary steps to
see personalized recommendations are therefore the creation of a YouTube
account, logging in, and watching videos with that account.
Gathering data about personalized recommendations on a large scale is diffi-
cult because YouTube does not offer this feature in their YouTube Data API 9

and traditional scraping methods are not equipped to deal with YouTube’s
two-factor authentication (2FA) during log-in. Two-factor authentication
is an authentication technique that requires, in addition to username and
password, further proof of identity, often in form of an sms code.
In order to automatically log into YouTube, watch videos and record which
recommendations appear on the website, I implemented a data scraper based
on Selenium. Selenium is a framework that enables the automated control
of web browsers and is usually employed to test the interfaces of web ap-
plications [45]. The implemented scraper is able to receive 2FA validation
codes via the messaging platform Discord10 and can watch multiple YouTube
videos in parallel in different browser tabs.
With this scraper, it is possible to launch studies that explore the nature of
YouTube’s recommendation algorithm by recording and analyzing recom-
mendations on a large scale. One such study is proposed here.

Experiment Background The experiment design is based on the model
by Jiang et al. [17] explained in section 3.1. According to their theory, ev-
ery recommendation system eventually shifts the users’ interests from their
original position to a (potentially) arbitrarily different position. I propose

9developers.google.com/youtube/v3 (accessed: 24.07.2020)
10www.discord.com (accessed: 03.08.2020)
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a study that would investigate whether any bias with regards to this shift
exists in YouTube’s recommendation system. Such a bias could be the ten-
dency to select some items more often, independent from the interests of
the user, or the tendency to shift the user’s interest more strongly in one
direction than in others.
With regards to ‘degenerate’ behaviour of the YouTube algorithm, there are
multiple hypotheses that were stated by journalists and researchers. Two of
the most common are:

• Hypothesis 1: Filter bubble effect
The composition of recommendations in the feed and in the ‘watch
next’ recommendations is less diverse for users logged in to an account
with a viewing history compared to users who are not logged in or have
no watch history (and thus receive non-personalized recommendations)
[6].

• Hypothesis 2: Right-wing advantage
Watching a right-wing video has a higher impact on later recommen-
dations than watching a neutral or left-wing video [6].

To either confirm or dismiss these hypotheses I designed an experiment
which was integrated into the Recfluence project11 in collaboration with
its author Mark Ledwich. The Recfluence project was started in 2018 to
collect non-personalized recommendations on YouTube. Under the name
‘UserScrape’ a pilot version of the proposed experiment was launched to
also gather information about personalized recommendations. Code and
further information can be found in Appendix A.

Experiment description For a comparison of how the YouTube algo-
rithm reacts to different initial interests and watching behaviours, 17 new
accounts were created. To each of these accounts, a specific ’viewer pro-
file’ is assigned that describes what kind of interest the test-account has.
The viewer profiles are based on ideology categories created by Ledwich
and Zaitsev in [6]. From the 18 labels that were described in section 4.1
they aggregated 13 ideology classes according to rules that can be found
in appendix D of [6]. These ideology classes represent 13 of the 17 viewer
profiles. The remaining four viewer profiles are control-accounts, leading to
the following list of viewer profiles:

11Recfluence.net (accessed: 04.08.2020)
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1. White Identitarian
2. MRA
3. Conspiracy
4. Libertarian
5. Provocative Anti-SJW
6. Anti-SJW
7. Socialist
8. Religious Conservative
9. Social Justice

10. Center/Left MSM
11. Partisan Left
12. Partisan Right
13. Anti-Theist
14. An equal number of videos from each class (uniform condition)
15. A number of videos watched from each class which is proportional to

that classes’ view count
16. Nonpolitical
17. A fresh account without viewing history

The viewer profile defines the set of videos that an account initially watches,
on which the recommendation system bases its recommendations. Account 1
will e.g. automatically watch videos solely from channels classified as ‘White
Identitarian’, account 2 watches videos from channels classified as ‘MRA’
and so on. The videos to be watched are sampled from all videos that
channels with the specific label in the dataset uploaded. The videos are
sampled weighted by popularity, to better represent the watching behaviour
of a typical user. Each account watches 13 videos from their viewer profile
per experiment trial. Since some videos can be rather long, this number
was restricted to a relatively low number. The videos need to be watched in
full length so that every video contributes equally to the recommendation
system.
To measure the impact of the different watch histories on the personalization
of the recommendations, a set of videos is watched by every account and the
recommendations are collected and compared. This set of videos is created
by sampling one video from the top five channels of each category, again
weighted by popularity. Every account thus watches per trial the same five
videos from every ideological category - in total 65 videos. The number of
videos was restricted to five to limit the execution time of the experiment
but could also easily be increased.
Since it is also an important question how a political watch history influ-
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ences the recommendation on nonpolitical videos, each account additionally
watches 50 videos from the top trending videos12 in the US on the day that
the trial is run. These videos are algorithmically selected by YouTube and
contain mostly nonpolitical content. In total, the ‘test set’ of videos that
each account watches consists of 115 videos, 65 sampled political videos from
different political categories and 50 trending videos. To not influence the
recommendations of subsequent test videos, these videos are directly deleted
from the watch history after the corresponding video recommendations are
saved.
Additionally to the recommendations gathered from the test videos, the
feed i.e. the personal homepage for each user, which also contains video
recommendations, is stored and compared. The feed is essentially a rep-
resentation of the user’s interests from the recommendation engine’s point
of view because it is not based on any specific seed video unlike ’watch
next’ recommendations that appear next to a video. The feed thus gives
valuable information about the internal model of the recommendation algo-
rithm. The feed is refreshed and stored multiple times to have more data
points along which the different conditions can be compared.
The full procedure of an experiment run is presented in Figure 1. The
experiment is run every day to collect longitudinal information about the
recommendation system in case that YouTube announces changes. This way,
the effects of the changes can be validated with a change in the measured
recommendations. In summary, 17 different accounts each add 13 randomly
sampled videos from their viewer profile to their watch history. Their feed
is recorded 100 times and also the personalized recommendations from 115
test videos that are sampled every day anew are recorded.
With this experiment the aforementioned hypotheses can be addressed in
the following way:

• Hypothesis 1: Filter bubble effect
To measure whether personalization decreases the diversity of the rec-
ommendations’ content, the number of distinct political categories that
appear in the recommendations for the account without a watch his-
tory will be compared with accounts that have already watched videos
according to their viewer profile. An additional comparison could be
drawn between test videos watched from the category of each account’s
viewer profile and test videos from the other categories. This way it
can be inspected whether users are ‘isolated’ in their own bubbles.

12See www.youtube.com/feed/trending (accessed: 10.08.2020)
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• Hypothesis 2: Right-wing advantage
For this hypothesis, the recommendations of the uniform condition
(account 14) would be examined and compared with those of account
17. If content from right-wing categories appears proportionally more
in the uniform condition than for the fresh account, it can be concluded
that watching a video from such channels has a higher impact on the
recommendations than watching other channels.

Figure 1: The experiment procedure.

4.2.2 Collection of Nonpolitical Channels

To train a classifier to discern between political and nonpolitical channels,
examples for nonpolitical channels are needed. For creating a balanced
dataset, attention had to be paid not to introduce any unwanted biases.
The popularity of a channel, for example, should not have much of an in-
fluence on its classification - if done by a human. However, for the machine
learning approach, small differences in the training data could accumulate
and introduce a bias. More popular channels might show a different distri-
bution in the word frequency because of a selection bias. In other words,
channels that use certain words in their titles, descriptions and videos are
possibly less likely to be successful. If only very popular channels are picked
for the negative examples, one might miss out on these potentially different
vocabularies, that could still be valuable for the classification task.
Therefore I selected for the nonpolitical examples only channels that have
approximately the same number of subscribers as the political examples,
which have a mean subscriber count of 443.391 and a median of 93.350.
The distribution of the number of subscribers per channel is depicted in
Figure 2. The mean count of total channel views is 142.196.397 and the
median 11.896.201.
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Figure 2: Subscribers Histogram - Political Channels.
The channel with the most subscribers has 21.7 million subscribers while
some channels have 0 subscribers.
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Figure 3: Subscribers Histogram - Nonpolitical Channels
The channel with the most subscribers has 1.010.000 subscribers and the
channel with the least subscribers 100.000.

Since it is not possible to sample YouTube videos or channels randomly,
because YouTube does not offer access to the full set of channels, alterna-
tive ways to sample YouTube channels had to be found. A previous study
by Figueiredo, Benevenuto and Almeida employed a semi-random sampling
technique by randomly sampling a set of words and proper names from a
lexical ontology, and then picking the first search results on YouTube for
each entity [46].
However, an additional challenge is the enormous variety of channels and
channel content on YouTube. For a good, generalizable machine learning
classification between political and nonpolitical content, ideally examples
from all kinds of nonpolitical content are provided. The sampling method
should therefore make sure that the diversity of content on the platform is
reasonably represented in the sample. One option to do this is to use the
categories that YouTube offers.
According to their API documentation, YouTube has two different category
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systems in place to sort its content. On the video level, the uploader of the
video can manually set the category to which he or she thinks the video
belongs. The categories are:

1. Film & Animation
2. Autos & Vehicles
3. Music
4. Pets & Animals
5. Sports
6. Travel & Events
7. Gaming
8. People & Blogs
9. Comedy

10. Entertainment
11. News & Politics
12. Howto & Style
13. Education
14. Science & Technology
15. Nonprofits & Activism

On the channel level, the users can not set their category themselves, but
instead YouTube classifies them according to the following categories:

1. Best of YouTube
2. Creator on the Rise
3. Music
4. Comedy
5. Film & Entertainment
6. Gaming
7. Beauty & Fashion
8. Sports
9. Tech

10. Cooking & Health
11. News & Politics

Unfortunately, it is not possible to query the YouTube Data API to return
these channel categories, which are called GuideCategories, for a specific
channel. It is only possible to ask for a list of channels that belong to
one specific GuideCategory. Luckily, the website channelcrawler.com [47]
offers a free search engine for YouTube channels. One can filter based on
channel popularity, language, country, and also category. The categories by
which one can filter are not based on the GuideCategories, but rather on
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the YouTube video categories. The author of the tool assigns each channel
a category based on the majority of the 10 most recent videos’ categories.
Furthermore, it is possible to enter search terms, so that related channels are
found. This would technically allow for the sampling method by Figueiredo
et al [46] which in this case presented to be too time-intensive: Because the
ChannelCrawler’s automatic language detection tool was very inaccurate,
every search result needed to be manually checked whether first, the chan-
nel language is indeed English and second, whether its content is indeed
unpolitical. Employing Figueiredos sampling technique was therefore dis-
regarded because of time reasons. Instead, I used the following procedure:

For every nonpolitical category (i.e. excluding ‘News & Politics’ and ‘Non-
profits & Activism’) I filtered the search for channels in English language
and a subscriber count between 100.000 and 1.000.000. The results were by
default ordered by their most recent video in descending order. All search
queries were conducted on the 13th of April 2020. I then picked the first
results that fulfilled the previously mentioned conditions from this list. In
the ‘Education’ category, channels that educated about cultural topics such
as the bible and religion were disregarded in order to have a clear separation
between political and nonpolitical examples. To have a sufficient number of
popular channels represented in the dataset, the results were also ordered
by subscriber count in descending order and the first dozen results were
picked from this list. In total, 60 channels were collected for each category,
resulting in 780 nonpolitical channels.
The resulting nonpolitical data set has a mean subscriber count of 382, 184
and a median of 308, 000. The distribution is shown in Figure 3. The mean
number of channel views is 99.227.448 and the median 46, 406, 315. While
the general distribution is similar to the one in Figure 2 and the mean is close
to the mean of the political channels, channels below 100,000 subscribers are
missing because they were filtered out in the ChannelCrawler search results.
In an analysis of the dataset, I found that there is an overlap of two channels
between the nonpolitical and the political data. These two channels were
therefore removed from the nonpolitical data. Four more channels were re-
moved. Two because they were clearly political, and for two other channels,
one educating about laws, and another about political science, I changed the
label to ‘Educational’ and thus moved them from the nonpolitical channels
to the political channels. This reduced the number of nonpolitical chan-
nels to 774 and increased the number of political channels by two. More
information about these steps can be found in Appendix B.
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4.2.3 Classification Features

Having a dataset of labeled positive and negative examples is necessary for
training a machine learning classifier, but it is certainly not sufficient. Every
machine learning classifier needs a set of features in a machine-readable form
to base any decision on. The features can be measurements taken from sen-
sors, images and video recordings, or inherent characteristics of the objects
one wants to classify. In the case of YouTube channels, the content that a
channel produces is of course the main feature, but some channels upload
thousands of videos, so it is with my available resources not possible to take
a channel’s full video content into account. Since the visual information from
the videos is presumably a minor decision factor for distinguishing political
videos, I instead focused on more language-based features of the videos. For
deciding which features to use, the study by Faddoul, Chaslot and Farid on
classifying YouTube recommendations regarding their conspiratorial nature
was used as an orientation [7]. For their classification task they use the
following features:

1. the (auto-generated) captions of a video
2. the video snippet of the video (title, description, tags)
3. the top 200 comments of the video (without replies and sorted by

YouTube’s relevance metric)
4. a feature vector created through classification of the comments with

Google Perspective API
The classifier trained on these features performed well enough such that it
could be used to label channels gathered in their study. Based on these
promising results, I made use of the same features, with some differences.
First, since my approach classifies channels and not videos, all features were
aggregated from multiple videos. Instead of using the captions from one
video, multiple captions plus the video snippets were concatenated. Com-
ments were treated in the same way, but instead of the top 200 comments,
only 100 were downloaded because of resource limitations.
To be able to process the data with the available computational resources,
the amount of videos from which features are aggregated is set to the three
most popular videos of each channel. While the most popular videos do not
necessarily best represent the political nature of the channel, they are, next
to the most recently uploaded video of the channel, the most likely videos to
be watched by new viewers and therefore the most influential. One could also
choose to pick the three most recent videos of each channel, but there might
be fewer comments under those videos, which are presumably an important
feature for the classification.
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The Google Perspective API to classify each comment was not used because
the quota restrictions of this API are so limited that classifying the given
amount of data would take weeks. Furthermore, this feature’s regression
coefficient had the lowest weight from all features in Faddoul’s classifier and
might thus not be that influential on the final classification [7].
Instead of this comment feature vector, I made use of some other features
that are either channel-related or harness network information. First of all,
each channel is given a description by the owner, which was concatenated to
the video snippets to create one text document. Additionally, a channel can
also give information about related channels: Each user has the option to
present other channels on their channel homepage13. Some use this feature to
refer to their own other channels on YouTube if they have multiple channels,
but some users present channels they recommend their viewers to check out
because they are similar to their own channel. This list of related channels
gives valuable information about what the channel owner likes or what they
think their content is similar to.
Furthermore, for some channels, information about their subscriptions is
publicly available. On YouTube, subscribing to a channel means that one
wants to be kept up to date when this channel uploads new content. Being
able to see the list of subscriptions of a channel enables inferences about
what kind of content the person behind the channel personally consumes or
finds interesting.
Another information source on how channels are connected are the com-
ments. Some channel owners frequently leave comments under videos of
other channels, which gives information on who is watching the videos of
that channel. In a similar vein, simple mentions of other political channels
in the comment under a video can also give information about the politi-
cal orientation of the video uploader. This would rest on the assumption
that commenters mention channels with similar content more often than
other channels. It is also possible that users discuss a variety of political
YouTubers in the comments and extracting such a feature would contain
no discerning information. This feature was considered to be analysed for
efficacy but dismissed for other reasons, as explained in Section 4.3.1.
In summary, the following features were added:

1. The channel description (added to the snippets)
2. Channel subscriptions
3. Related channels of the network
4. Comments by known channels

13See for example www.youtube.com/googlecode/channels (accessed: 10.08.2020).
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All of these features need to be prepared such that they are in a form that
the machine learning algorithm can interpret them. The encoding of these
features will be explained in the following section. But first, the methods
for how this data was collected are presented here.
In the beginning, the id’s of each channel’s top three most popular videos
were scraped with Selenium. With the YouTube Data API I downloaded the
respective video snippets (title, description, keywords and statistical data),
the top 100 comments (sorted by relevance) under each video with the com-
ment author names, the general channel description and information about
which channels they feature in their ‘Related Channels’ list and who they
subscribe to. If available, the English closed captions for each of the videos
were downloaded with the help of the dotnet package YouTube Explode [48].
The YouTube Data API could not be used for the captions due to their API
quota limit.
Between the time the channels were labeled for [6] and the time I gathered
the feature data, some channels were deleted or they deleted all of their
videos. This made it impossible to get more data for them, so they were
removed from the dataset. The final set of labeled political channels for the
binary classification task was thus reduced to 732 and for the multi-label
classification task to 713.

Missing Data Through the previously described process, one should find
for each channel three video snippets, three captions, three sets of 100 com-
ments each, and a list of related channels and subscriptions. However, not
for all channels were three videos available and not for all videos from the
channels existed all features. Some videos on YouTube do not have closed
captions, some have comments disabled or sometimes the channel owner
simply deletes all comments under a video. It is also not possible for each
channel to see what other channels they subscribed to, since most people set
this list to ‘private’ in their settings. Approximately a third of the channels
do not list any related channels on their channel page. Table 2 shows a
comparison of the missing data for all political channels and nonpolitical
channels.
The missingness of these features is not equal for the two classes of channels.
For the political channels, 4.8% have no captions for their top 3 videos and
only 1.6% have no comments for any of them. In contrast to this, the
nonpolitical channels have no captions in 19.8% and no comments in 7% of
all cases. The missing captions are easily explained as there are many music
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videos and other videos without spoken words in the set of nonpolitical
channels.

political nonpolitical

total number of channels: 734 774

#channels with 2 video snippets: 2 (0.3%) 0

#channels with 1 video snippet: 0 0

#channels with no video snippets: 0 0

#channels with 2 captions: 138 (18.8%) 135 (17.4%)

#channels with 1 caption: 53 (7.2%) 103 (13.3%)

#channels with 0 captions: 35 (4.8%) 153 (19.8%)

#channels with 2 comment sets: 27 (3.7%) 36 (4.7%)

#channels with 1 comment set: 4 (0.5%) 8 (1%)

#channels with 0 comment sets: 12 (1.6%) 54 (7%)

#channels with 0 related channels: 232 (31.6%) 253 (32.7%)

#channels with 0 subscriptions: 511 (69.6%) 538 (69.5%)

Table 2: An overview of the missing features for the two classes.

4.3 Data Preprocessing and Feature Extraction

This subsection explains how the feature data was processed so that they
are interpretable by the machine learning algorithms. First, the encoding of
all features based on the relations between channels is described and then
the text-preprocessing pipeline is outlined.

4.3.1 Network Features

The simplest way to encode relations between channels in vector form is to
create a connectivity matrix A ∈ {0, 1}n×m such that

Aij =

{
1, if there is a connection from channel i to channel j

0, otherwise
(7)

For the n channels in the dataset (including unlabeled channels described
in Section 4.4.5), each row vector Ai would then encode the feature vector
for channel i = 1...n. For the choice of m two options exist. Since some
channels had e.g. ‘related channel’ connections to channels that were not
part of this dataset, these outgoing connections could either be included or
excluded. Depending on this choice, the dimensionality m of the feature
vector could either be lower or equal to n, or a finite number greater or
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equal to n, depending on how many of these outgoing connections exist for
that feature.
Some features, namely the cross-channel comments and channel mentions
first had to be extracted from the comments that were gathered earlier.
Due to the way these two features were extracted, the corresponding feature
vectors could be of maximal length n. The following paragraphs give more
details about each network feature.

Related Channels The most promising network feature was the list of
related channels that a channel owner can present on their main page. Two
thirds of all channels do recommend at least one other channel in this way.
If only recommendations to channels included in the dataset were used to
create the feature vectors, the length of the vectors was 2,401. If also con-
nections to channels outside of the dataset were considered that number was
15,606. This feature will also be referred to as ‘associations’ in this report.

Subscriptions This subscriptions feature is unfortunately the most sparse,
since most channel owners set their list of subscriptions to ‘private’ such that
this information is not available to the public. Channels that do make their
subscriptions public are on average subscribed to 151 other channels with
some subscribed to up to 970. This leads to a relatively high dimensionality
of 113,614 for the feature vector if unknown channels are included. If only
subscriptions to channels contained in the dataset are regarded the length
of the vector is 4,431.

Cross-Channel Comments A channel on YouTube can not only be used
to publish videos, but also functions as a user account with which one can
comment videos. With the cross-channel comments feature I wanted to
examine which channel owners write comments under the videos of other
channels, because it shows that they watch and engage with that channel’s
content. For each comment returned by the YouTube API, the id of the
author’s channel is delivered as well, which allows for a precise identification
of who commented under whose videos. For every channel in the dataset,
I checked whether any of the comments on the three most popular videos
were written from a channel account that also appeared in the dataset.
The cross-channel comment feature vector thus signifies which owners from
channels in the dataset commented at least one of the three most popular
videos. It is important to note again that only the first 100 comments
(sorted by relevance) were gathered, so not every cross-channel comment
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was necessarily found. The feature vector had a length of 506 which means
that at the time the data was gathered, at least 506 comment interactions
happened between two channels from this project’s dataset.

Channel Mentions Under the assumption that commenters will mention
channels similar to the one that is currently watched, I wanted to extract
mentions of channel names from the comments. For this purpose, a regular
expression with each channel’s title was used to identify its occurrence in
any of the comments in the dataset. This method unfortunately quickly
showed to be unsuccessful because many of the channel titles were either
so specific that is unlikely that they are referred to by their full title (e.g.
‘Patriots’ Soapbox News Network LIVE 24/7’ or ‘David Wilcock — Divine
Cosmos (OFFICIAL)’) or they are too generic that people often use the
title without specifically referring to channel with that title (e.g. ‘Patriot
Act’, ‘amazon’). Using a simple regular expression to extract this feature is
therefore overly imprecise, but other methods are potentially very complex
and do not necessarily promise better results. For these reasons I dismissed
the feature completely.

4.3.2 Text Preprocessing

All text-based features were extracted by simply concatenating relevant
parts from the data gathered through the YouTube Data API and other
methods. The snippets consist of the channel description, channel title,
video titles, video descriptions and video tags. To create the captions for
the channels, the closed captions from the three most popular videos were
concatenated, and the same was done for the 100 comments for each video
to create the comments feature.
This way, up to three text documents with varying lengths existed for each
channel. These documents did not have to be encoded in vector form di-
rectly, because the library that was used for text classification in this project
receives the text as input and the encoding happens internally (see Section
4.4.1). To facilitate an effective encoding, they nevertheless had to be pre-
processed which I did in the following way:

Since comments and snippets are written by humans (in contrast to the
auto-generated captions) they contain spelling mistakes that needed to be
corrected. Running extensive spell-checking on texts of this size is very time
expensive which is why I decided to employ only a very basic spell-check.
With a regular expression any letter that appears more than two times after
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Captions Comments Snippets
Processing
Step

Total
Tokens

Distinct
Tokens

Total
Tokens

Distinct
Tokens

Total
Tokens

Distinct
Tokens

Before
preprocessing

9,047,641 129,026 8,704,924 508,404 964,501 106,399

Spellchecking 9,047,641 128,759 8,704,924 494,233 964,501 105,909

HTML tag removal 9,047,431 127,918 8,477,714 438,931 964,475 105,311

URL removal 9,047,408 127,882 8,476,210 437,302 934,885 86,209

Special symbols
removal

8,997,105 85,339 8,262,769 227,757 890,885 49,610

Stop word removal 4,367,255 85,173 4,401,594 227,587 642,747 49,450

Lemmatization 4,367,255 75,135 4,401,594 217,622 642,747 45,282

mean median mean median mean median

Tokens per
document

2864 1745 2916 2724 364 316

Table 3: The effects of each processing step on the corpus of each text
feature.

another is replaced with just two occurrences of that letter. The misspelling
‘lettter’ thus turns into the correct form ‘letter’ and ‘amaaaazing’ becomes
‘amaazing’ which is still not correct, but at least merges all instances of this
stylistic device with different amounts of repetitions to one token.
Comments and snippets also contained links and HTML-tags that added
unnecessary noise to the data that were therefore identified with regular
expressions and deleted. After this step, all text was set to lowercase and all
newlines and tabs and any special characters, including punctuation, were
removed.
Next, the text was tokenized and 157 stop words from the NLTK library
[49] were removed. The stop words were processed in the same way as the
text data to assure they match correctly. As a final step, the tokens were
lemmatized with a lemmatizer from the NLTK library. I measured the effect
each preprocessing step has on the corpus by counting the number of total
tokens and also distinct tokens (which represents the dimensionality) before
and after applying each step. Additionally, the mean and median number
of total tokens per data point was calculated. The results are collected in
Table 3.
Removing special characters and punctuation has the largest effect with
regards to dimensionality reduction as it cuts the number of distinct tokens
down by up to 50%. This shows that the tokenizer creates different tokens
for differently written words such as ‘sub-process’ and ‘subprocess’ but also
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that it incorrectly identified words as different tokens if they are adjacent to
punctuation such as ‘house’ and ‘house.’.
The table also shows that a large part of the text consists of stop words as
the total number of tokens is roughly cut in half when they are removed.
Only the snippet data is not as affected by this which can be explained by
the fact that these texts are not completely natural language, but rather
consist of many keywords and tags from the titles and descriptions of the
videos. This is also the reason why removing HTML tags and URLs from
the text has the largest effect on the snippets. Since many content creators
link their profiles on social media sites in their channel or video descriptions,
a large part of the text is removed in this step.
An interesting fact is that the number of distinct tokens in the comments
data is almost three times as large as for the other two text features. This
can be explained by the large diversity of authors of the comments, which
is reflected in the large vocabulary. Furthermore, the authors of these texts
likely put less effort into the correct spelling of their comments than the
authors of the video titles and description, leading to more spelling mistakes
and thus a larger vocabulary.

4.4 Classifier Architectures

Similar to the classifier employed in the study by Faddoul et al. [7], the
classifier used in this project is also an ensemble of multiple classifiers. This
section describes the different classifiers employed for each feature, the en-
semble build from the combination of them, and the hyper-parameter opti-
mization for each of these components. Before any classifiers were trained,
15% of the data was split off to be saved for estimating the risk of the trained
models.

4.4.1 Text Classifiers

On all text features the FastText classifier [25] was trained and evaluated.
At the core of the FastText classifier are three components. First, words are
represented in this model as a bag of character n-grams, which means that
a word such as ‘rhetorics’ is split into ‘<rh’, ‘rhe’, ‘het’, ‘eto’, ‘tor’, ‘ori’,
‘ric’, ‘ics’, and ‘cs>’ if n equals 3 [50]. The ‘<’ and ‘>’ symbols are used as
markers to differentiate between word beginnings or ends and short words.
This representation enables the classifier to calculate the word embedding
of an unseen word from its sub-components.
The word representations are then averaged into a hidden layer which serves
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as text representation, or embedding layer. The dimensionality of this layer
is 100 by default. These embeddings can be reused to initialize other models
if needed. Lastly, the embedding vector is fed into a linear classifier with a
softmax layer to compute the label probabilities.
The FastText classifier has four main hyper-parameters to optimize, which
is the number of epochs for training, the learning rate, the n in the word n-
grams, and the embedding size. Except for the embedding size, I varied each
of the parameters while keeping the others parameters at their default values
and ran a 5-fold cross-validation on the training data for each setting. The
performances were compared by measuring the F1-scores for both classes
and calculating the mean weighted by the support for each class in the
validation set. Figure 4, 5 and 6 show the resulting mean F1-scores on the
training and validation data for each parameter value that was tested. For
reasons of brevity, the graphs show only the cross-validation results for the
caption-feature.
While changing the learning rate or the n-gram from the default value to any
other value decreased the quality of the model, training it with for enough
epochs was essential to get a high precision and recall. Running the same
cross-validation for the other text-based features validated this result. Since
a larger number of epochs leads to longer training times, the final value for
this parameter should be as small as possible, while still maximizing the
validation score. The optimal number of epochs for the captions, comments
and snippets feature are 45, 45, and 50 respectively.
A final model was then trained for each feature on the full training data. In
the training data, missing data was removed, so the model is only training
on examples with non-empty captions, comments or snippets respectively.
When this model later predicts label probabilities for an example where the
respective feature is missing, it will predict Null as a value.
The final model was evaluated by measuring the precision, recall and F1-
score on the testing set. The results are presented in table 4.

42



Figure 4: Varying the number of
epochs on the caption dataset.
Default value = 5.

Figure 5: Varying the initial learning
rate on the caption dataset. Default
value = 1.

Figure 6: Varying over different n-
grams on the caption dataset. Default
value = 1.

Captions Comments Snippets
Metric P NP P NP P NP

Precision 0.914 0.887 0.927 0.921 0.956 0.928

Recall 0.901 0.902 0.914 0.933 0.915 0.963

F1-Score 0.907 0.894 0.921 0.927 0.935 0.945

Average F1-Score 0.902 0.924 0.940

Accuracy 0.902 0.924 0.940

Table 4: The performance metrics for the respective best text classification
models. P stands for the label ‘political’ and NP for ‘nonpolitical’.
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Multi-Label Text Classifiers To achieve a multi-label classification with
the FastText library, the parameters of the predict function can be changed
such that a vector with the probabilities for each label is returned. An ex-
ample is assigned with all labels for which the probability is higher than a
given threshold. Unfortunately, the probability vectors that the model pre-
dicts are the output of a softmax function which means that the probability
values sum up to 114. This makes the choice of the threshold difficult be-
cause for a channel that has multiple labels with similar (high) probability,
the absolute probability values in the output vector are rather low.
For the hyper-parameter optimization with cross-validation, I evaluated the
models with the Mean Average Precision (MAP), where the absolute prob-
abilities for each label do not matter, but only the ordering is relevant.
However, the interpretation of the MAP is not intuitive and therefore I also
evaluated the models according to precision, recall and the F1-score for each
label. For this evaluation, I chose a different threshold for each prediction by
sorting the predicted class probabilities in descending order and setting the
cut-off value at the largest difference between two probabilities. If the class
probability predictions are for example [0.5, 0.4, 0.04, 0.01, 0.01, ...] only the
two most likely labels are predicted because the largest decrease in predicted
class probability is between the second and third label.
The hyper-parameter search indicated that for the multi-label condition,
the number of epochs for each feature needed to be much higher to achieve
good results. Caption, comment and snippet classifiers had to be trained
with 500, 500 and 400 epochs respectively. Table 5 presents the performance
on the testing set when the classifiers were trained on the full training set.
The difference between the text classifiers is in the multi-label classification
more pronounced than in the binary classification, as the classifier trained
on the snippets performs considerably better than the other two. Although
having the smallest amount of data regarding the tokens per document, the
classifier trained on the snippets showed the best performance of all text-
based classifiers.

4.4.2 Network Classifiers

For the network features a logistic regression was chosen that receives as in-
put the connection vector, i.e. the binary vector which shows to which other

14The documentation of the package suggests that also an option for a ‘true’ multi-label
classification with independent probability values exists, but due to a bug in the library
that is not yet fixed at the time of writing (see www.github.com/facebookresearch/

fastText/issues/994), this was not available to me.

44

www.github.com/facebookresearch/fastText/issues/994
www.github.com/facebookresearch/fastText/issues/994


Captions Comments Snippets

MAP 0.541 0.61 0.708

Average Precision 0.32 0.43 0.61

Average Recall 0.34 0.38 0.53

Average F1-Score 0.32 0.36 0.54

Table 5: The metrics for the respective best text classification models in
the multi-label condition. The averages are weighted by support of the
respective class.

channels the respective channel has connections, and outputs a confidence
score, i.e. the signed distance of that data point to the decision hyperplane
[23]. In the binary task, the confidence score represents how likely the
channel belongs to class ‘political’ and in the multi-label task there is one
confidence score for each class. For the training of these classifiers, I did
not remove instances with zero connections because the bias of the logistic
regression adapts to the class imbalance and enables the classifier to also
make predictions about zero vectors.
As described in Section 4.3.1, the network feature vectors could be con-
structed in a way that either includes unknown channels or excludes them.
I conducted hyper-parameter searches for each condition, varying over the
regularization strength of the regression. The parameter settings that gave
the best F1-score on the validation data were used to train a model on the
full training data. These models were evaluated on the test set and the
resulting classification metrics can be found in Table 6.

Associations Associations All Subscriptions Subscriptions All CC Comments
Metric P NP P NP P NP P NP P NP

Precision 1 0.65 0.971 0.681 0.84 0.595 1.0 0.562 1.0 0.504

Recall 0.394 1.0 0.478 0.988 0.292 0.949 0.291 1.0 0.148 1.0

F1-Score 0.565 0.788 0.641 0.806 0.433 0.731 0.451 0.58 0.504 0.67

Average F1-Score 0.683 0.728 0.589 0.58 0.448

Accuracy 0.715 0.748 0.636 0.629 0.534

Table 6: The metrics for the respective best network classifier models, either
trained on vectors covering only channels from the dataset or also includ-
ing external (all) channels. P stands for the label ‘political’ and NP for
‘nonpolitical’.

For all relation-based classifiers a large difference between precision and
recall stands out. Most of the classifiers are able to correctly label all non-
political channels in the dataset as ‘nonpolitical’ and most channels labeled
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as ‘political’ indeed belong to the class ‘political’. If political channels are
considered the positive class, all networks have, however, a large number of
false negatives since the recall values for political channels and precision for
nonpolitical channels are quite low. If not only internal connections, but also
external ones are included for the features, the association classifier performs
better with regards to accuracy and F1-score, while the classifiers trained
on subscriptions do not gain from the inclusion of external connections.
For the final classifiers that are included in the ensemble, I decided to train
the association classifier with all known relations, while restricting the sub-
scription feature to only relations to other channels in the dataset. The
reason for this is that including all subscriptions significantly increases the
dimensionality of the data, and does apparently not increase the perfor-
mance.
Although these classifiers perform considerably worse than the text classi-
fiers, I argue that they can still be useful for the ensemble classifier. The
strength of these classifiers lies in their high precision for the political chan-
nels. The line between political channels and nonpolitical channels can be
very blurry if only the manner of the channel authors’ language is consid-
ered. Some political channels actively try to hide their political nature and
pretend to be e.g. purely for entertainment, in order to reach a larger audi-
ence [35]. The text classifiers therefore do not necessarily pick up on these
nuances. However, these channels can be recognized by examining their
position in the network of political channels. As [35] has shown, especially
politically radical channels are networking extensively. The relation-based
classifiers could thus be useful in the ensemble, by filling in the gaps of the
text classifiers.

Multi-Label Network Classifiers For a multi-label classification of the
network features, the class OneVsRestClassifier of the Scikit-Learn package
[23] was used. This class serves as a wrapper around a classifier, like in this
case the logistic regression, and then trains one classifier of that type for each
label in the training set. Each sub-classifier learns a binary decision between
examples with that specific label and all other examples. The output of such
a model is a vector with the class probability for each label. They do not
necessarily sum up to 1 as a channel could have two labels, each with a
predicted probability of 0.99.
For the logistic regression that is used inside the OneVsRestClassifier I
chose the same parameter configurations that showed the best results for the
binary classification. To get an overview of their performance, the resulting
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wrappers were trained on the full training set and evaluated on the test set.
As Table 7 shows, the recall values for the different labels are remarkably
low. This can be explained by the method with which the classifiers are
trained and the lack of data for many channels. The OneVsRest class trains
one logistic regression model for each label, using all channels with that
label as positive examples, and all others as negative ones. For relation
features like the subscriptions, two thirds of the channels have a feature
vector of only zeros because they have no relation to other channels and are
thus indistinguishable from each other for the classifier. The majority of
these channels will likely always belong to the negative class, and therefore
receive no labels at all. If we assume that the missingness of relations to
other channels is approximately uniformly distributed among the different
classes, then in the case of the subscription feature, two thirds of all channels
from each class cannot be recognized by these classifiers, which is reflected
in the low recall values.

Associations Subscriptions
Cross-Channel
Comments

MAP 0.575 0.56 0.507

Average Precision 0.71 0.62 0.34

Average Recall 0.19 0.15 0.04

Average F1-Score 0.28 0.15 0.08

Table 7: The metrics for the respective best network classifier models in
the multi-label condition. The averages are weighted by support of the
respective class.

4.4.3 Ensemble

To create a final ensemble classifier out of the individual classifiers, each of
the sub-classifiers predicts the probability or confidence score of the instance
being political for each instance in the training data as well as the testing
data. Importantly, even though they are now applied to the testing data,
they were only trained on the training data. The resulting scalar values,
either values between 0 and 1 for the text classifiers, or real numbers for
the logistic classifiers, where positive values indicate the label ‘political’, are
then concatenated and standardized, such that the mean is zero and the
standard deviation is one.
As it was explained earlier, some sub-classifiers predict Null if they do not
receive input if e.g. a channel has no captions available. These missing
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Figure 7: The architecture of the binary ensemble classifier. The input to
the FastText classifier is actually a string of words and not a vector, but the
size of the vocabulary is depicted here to show inherent dimensionality of
the data.
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Figure 8: 5-fold cross validation of the Ensemble Logistic Regression with
varying regularization strength.

predictions are here imputed with a k-Nearest-Neighbors imputation with
k = 3. This means that for a channel with a missing prediction, the three
most similar channels based on existing features are found and the missing
value is replaced with the mean prediction for these channels.
Figure 7 shows the final architecture of the supervised baseline ensemble.
A logistic regression classifier was trained on the six-dimensional prediction
vector resulting from the sub-classifiers. Because the sub-classifiers were not
trained on the testing set, it could be used to evaluate the final ensemble
classifier. Before that, the regularization hyper-parameter of the final lo-
gistic regression was tuned with cross-validation on the training data. For
this cross validation, each sub-classifier and the final logistic regression were
only trained on the training fold and then their F1-score measured on the
validation fold. Figure 8 shows that for every value above 0.1 for the regu-
larization parameter, the mean training F1-score was 1, but the validation
F1-score only decreased. Therefore, a small parameter value of 0.01 was
chosen for the final logistic regression classifier.
Training the ensemble on the full training data and evaluating it on the test
data resulted in a F1-score of 0.965 (see Table 8) and an ROC-AUC of 0.994
(see Figure 9)
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Ensemble Classifier
Metric P NP

Precision 0.962 0.967

Recall 0.962 0.967

F1-Score 0.962 0.967

Average F1-Score 0.965

Accuracy 0.965

Table 8: The classification metrics for the binary ensemble classifier. ‘P’ is
the class ‘political’ and ‘NP’ ‘nonpolitical’. The average F1-score is weighted
by the support of the respective class (122 NP, 105 P).

Figure 9: The Receiver-Operator Characteristics of the ensemble classifier
on the test data.
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4.4.4 Multi-Label Ensemble

Figure 10: The architecture of the multi-label ensemble classifier. The input
to the FastText classifier is actually a string of words and not a vector, but
the size of the vocabulary is depicted here to show inherent dimensionality
of the data.

The main difference between the two ensemble models is that in the multi-
label condition, the sub-classifiers do not return scalar values, which can
be combined into a 6-dimensional vector, but rather a vector of length 18.
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These vectors are concatenated into a 108-dimensional vector. Principle
Component Analysis [51] was employed as a feature reduction technique to
reduce this vector to an 18-dimensional vector in order to see whether it
improves performance. Preliminary tests showed that this is the case and
thus the feature reduction was included in the architecture of the multi-label
ensemble classifier (see Figure 10. The reduced vector serves as the input
for the final layer in the multi-label ensemble classifier, which is again a
OneVsRestClassifier with logistic regression.
Another difference was the imputation of missing predictions from the sub-
classifiers. Because the higher dimensionality of the sub-classifiers’ predic-
tions complicated the application of a k-Nearest-Neighbors imputation, a
simple constant imputation was applied. If a sub-classifier predicted Null,
the predictions were replaced by the uniform probability, i.e. 1/18 for every
class.
A hyper-parameter search for this ensemble resulted in the same value for
the regularization parameter as in the binary case. The performance of
the multi-label ensemble classifier on the test set is given in Table 9. If
compared with the individual snippet classifier in Table 5, the results show
that the ensemble performs better according to the MAP, but worse in terms
of the average F1-score. The snippet classifier alone cannot be used for the
classification on the whole dataset, because the full snippet data does not
exist for every channel. I therefore implemented a second ensemble that
only consists of the snippets, comments and associations classifiers because
they showed the best individual results. Table 10 lists the metrics of the
smaller ensemble trained on the full training set and evaluated on the test
set. Even though it is MAP score is even lower, the F1-score is on par with
the snippet classifier.

Multi-Label Ensemble

MAP 0.712

Average Precision 0.60

Average Recall 0.52

Average F1-Score 0.53

Table 9: The metrics for the ensemble classifier in the multi-label condition.
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Reduced Multi-Label Ensemble

MAP 0.696

Average Precision 0.63

Average Recall 0.53

Average F1-Score 0.55

Table 10: The metrics for the ensemble classifier consisting of the comment,
snippet and association sub-classifiers in the multi-label condition.

A more detailed overview of the smaller ensemble classifier’s precision and
recall values for every label can be found in Table 11

Label Precision Recall F1-Score Support

AntiSJW 0.64 0.78 0.70 41

AntiTheist 0.57 0.50 0.53 8

AntiWhiteness 0.00 0.00 0.00 0

Conspiracy 0.62 0.62 0.62 8

Educational 1.00 0.08 0.14 13

LateNightTalkShow 0.00 0.00 0.00 1

Libertarian 0.50 0.60 0.55 5

MRA 0.80 0.57 0.67 7

MissingLinkMedia 0.50 0.60 0.55 5

PartisanLeft 0.65 0.69 0.67 16

PartisanRight 0.68 0.68 0.68 31

Provocateur 0.00 0.00 0.00 6

ReligiousConservative 0.20 0.25 0.22 4

Revolutionary 1.00 1.00 1.00 2

SocialJustice 0.45 0.28 0.34 18

Socialist 0.33 0.67 0.44 3

StateFunded 0.80 0.67 0.73 6

WhiteIdentitarian 0.29 0.50 0.36 4

Table 11: Multi-Label Classification Report. The support for a label tells
how many channels with that label appear in the test set. The total support
is 178.

4.4.5 Ensemble Self-Training

For each ensemble classifier I created a wrapper class that implements self-
training as described in [31]. The basis for this semi-supervised method
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was a set of unlabeled data points. For the experiments described in this
report, the unlabeled data was taken from the Recfluence dataset [6]. Since
the launch of the Recfluence project, over 100.000 unlabeled channels were
discovered through gathering recommendations. To reduce the run-time of
the further experiments, only the top 5000 most recommended channels from
this large set were taken and used to train the classifiers.
For these channels, all features such as the captions, comments etc. were
collected. During this process, channels that were either deleted or had no
videos available were removed from the dataset. These were 311 channels.
Additionally, some of these channels were already included in the labeled
dataset, so the 102 duplicate channels were also removed. The resulting
set of unlabeled channels thus consisted of 4587 channels. A breakdown of
missing features is presented in Figure 12.
In the multi-label classification task, only unlabeled channels that the super-
vised ensemble classifier predicted as ‘political’ were used in the self-training
algorithm.

Unlabeled Channels

Total number of channels: 4587

#channels with 2 video snippets: 20 (0.4%)

#channels with 1 video snippet: 19 (0.4%)

#channels with 2 captions: 900 (19.6%)

#channels with 1 caption: 516 (11.2%)

#channels with 0 captions: 724 (15.8%)

#channels with 2 comment sets: 236 (5.1%)

#channels with 1 comment set: 96 (2%)

#channels with 0 comment sets: 192 (4.1%)

#channels with 0 related channels: 1502 (32.7%)

#channels with 0 subscriptions: 3100 (67.6%)

Table 12: An overview of the missing features for the unlabeled data.

The SelfTrainer wrapper is a class that creates an instance of one of the
ensemble classifiers and additionally loads the unlabeled data. Originally the
classifier is just trained on the labeled examples. Step by step, the classifier
then predicts the labels for each unlabeled channel and the channels where
these predictions had the highest confidence are added to the training set.
In the next iteration, the classifier thus has a larger training set to learn
from.
There are multiple ways to implement how many of the unlabeled examples
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are transferred to the training set in each iteration. For the experiments in
this project, two versions were tested. In the first version, the stop condition
of the self-training algorithm is set to a fixed number, which means that also
in each iteration a fixed number of examples is added to the training set.
The number of iterations was set to six and in each iteration, the 16.6%
most confidently labeled examples are transferred to the training set, such
that the set of unlabeled data is empty when the algorithm finishes. In the
second version of the SelfTrainer, a confidence threshold was applied. Only
examples for which the classifier predicts a class probability higher than this
threshold are added to the training data. The algorithm ends if none of the
predictions fulfill this criterion. This way the classifier only learns on its
high-confidence predictions.
In the multi-label condition, there were two ways of calculating the confi-
dence of a prediction. Since the ensemble classifier gives a confidence score
for each label, one could either take the mean or maximum of all confidences.
I decided to go with the mean confidence because a high mean confidence
indicated an overall good prediction and reduced the risk of channels with
wrongly predicted labels in the training data.

4.5 Comparison Experiment

The main research goal of this project was to find out whether the use
of unlabeled data in a semi-supervised learning approach leads to better
classifiers than supervised learning does.
Comparing algorithms effectively is not a trivial task. Thomas Dietterich
explains in [52] the difficulties of making a reliable statement about the
differences in performance between algorithms. First, it is important to
distinguish between classifiers, which are functions that assign examples to
one or multiple classes, and algorithms that construct classifiers from a set
of examples and their corresponding classes.
To evaluate two classifiers, a common method is to hold out a part of labeled
data and measure the performances of the classifiers on this test set.
Since the supervised method and the semi-supervised method presented in
this report are algorithms that produce classifiers, we want to know, which
algorithm produces the better classifiers. To train one classifier with each
algorithm and comparing their performance on a test set is unfortunately
not sufficient because the result of that comparison can be wrong by chance
due to statistical variations.
There are usually four different sources of variation that could influence the
result of a single comparison [52]. First, there is variation from the randomly
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drawn test data. A classifier might perform better on one specific test set,
while being actually worse if it was applied to the whole set of channels.
Similarly, the randomly drawn training set can influence the performance of
the resulting classifiers. Thirdly, some algorithms such as neural networks
have internal randomness that can have an impact as well. Lastly, there is
usually a certain rate of random mislabeling in the data.
The result from a single comparison between one classifiers from each algo-
rithm is therefore statistically not very meaningful. The question arises how
two algorithms can be compared.
Dietterich [52] suggests, that if the set of labeled data is large enough, one
test set and a number of disjoint training sets should be created, on which
each one classifier is trained. They can then be evaluated on the test set
and their performances compared with a statistical test.
Unfortunately, the available data in this project did not allow for completely
disjoint training sets because of its small size and therefore a resampling
method was applied. A fraction of 15% of all labeled channels was retained
as testing set and ten different training sets were created by sampling 90% of
the remaining data ten times. Similarly, for the semi-supervised algorithms,
ten sets of unlabeled channels were created with the same method but using
the set of unlabeled channels to sample from.
This way two comparisons were performed, one for the binary classification
task, and one for the multi-label task. In each condition, ten classifiers
created from the supervised ensemble were compared with ten classifiers
from the SelfTrainer algorithm, using the ensemble classifier to classify the
unlabeled data. For the statistical comparison, a t-test was used to check
the null hypothesis that the resulting classifiers from the two algorithms
perform equally well.
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5 Results

During the project, multiple experiments and tests were conducted. Results
from cross-validation experiments were already presented in the Methods
section. Results from the exploration of the data and the results of the main
comparison experiment are presented separately in the following subsections.

5.1 Data Exploration

Some of the features were visualized to get an insight into the characteristics
of the gathered data. The next subsection presents networks of related
channels, subscriptions and cross-channel comments and the following one
gives a visualization of the predictions of the different sub-classifiers of the
ensemble classifier.

5.1.1 Network Features

To investigate the potential of the feature sets that are based on relations be-
tween channels, the channel relations were visualized as networks. For each
relation feature, a graph was created that contains the channels as nodes
and each edge represents a connection between them. These connections
can either be a mention in the ‘related channels’ section, a subscription, or
a comment from one channel under the video of another. Although all of
these relations are directed, i.e. from channel i to channel j but not neces-
sarily the other way around, the directionality is not depicted in the graphs
to not clutter the image too much. The position of the nodes in the graph
is determined via the Fruchterman-Reingold algorithm [53].
For each feature two networks were created and illustrated. In one, the
colors of the nodes represent the binary classes ‘political’ and ‘nonpolitical’
and in the other, they represent the ideological labels. Since each channel can
have multiple labels, for these visualization, only the most salient label was
selected according to the schema found in appendix D of [6]. Nonpolitical
channels were not included in the second network unless otherwise noted.
The goal of these visualizations was to get an impression of how clustered
the channels are in the political network. For these features to be of dis-
criminative value for an algorithmic classification, the hypothesis is that a
channel is more likely to be connected to other channels of the same class.
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Figure 11: Association network of political and nonpolitical Channels. An
edge from channel i to channel j means that i lists j in their ‘Related
Channels’ section.

Related Channels Figures 11 and 12 depict the graph visualization of
the associations feature. The graphs contain only channels that had connec-
tions (in our out-going) to other channels in the dataset. Both graphs show
very prominently a core network of channels that connects the majority of
political channels in the dataset.
In Figure 11 one can see that some nonpolitical channels have ties to political
channels, but mostly they are connected to each other in pairs or small
clusters. What also becomes very clear is that the nonpolitical channels are
much less connected than political channels, as noticeably fewer nonpolitical
channels appear in the graph.
If only the relations between political channels are considered, as in Figure
12, some clustering is recognizable. Channels that mostly produce videos
on conspiracy theories seem to be tightly connected and separated from
the main cluster. Socialist and other left-leaning channels form one large
section in the lower right of that core cluster, and reactionary and other more
right-leaning channels are grouped in the top left. Connected are these two
sections mostly via a cluster of anti-theist channels.
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Figure 12: Association network of political channels. An edge from channel
i to channel j means that i lists j in their ‘Related Channels’ section.

Subscriptions Looking at the subscriptions of political and nonpolitical
channels reveals that channels’ subscriptions are much more mixed and not
as separated by political nature or ideology. Figures 13 and 14 display the
nodes in-degree, i.e. the number of incoming ties as node size. The channels
that were most often subscribed by other channels from the dataset were
”Sargon of Akkad” (53), ”StevenCrowder” (41) and ”PowerfulJRE” (40),
all of which are labeled, among others, with the ‘AntiSJW’ tag.
Both subscription networks show that cluster boundaries are heavily over-
lapping and in the case of the nonpolitical channels in Figure 13 a cluster
is not even recognizable. The overlapping boundaries may partially be ex-
plained by the larger amount of connections for this feature that causes all
nodes to be drawn closer together by the Fruchterman-Reingold algorithm.
In the case of political/nonpolitical classes, it is also reasonable to expect
that political channels subscribe to popular non-political channels and vice
versa, which explains why the two classes are not very separated.
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Figure 13: Subscription Network of Political And Nonpolitical Channels.
An edge from channel i to channel j means that i subscribes to j.

Figure 14: Subscription Network of Political Channels. An edge from chan-
nel i to channel j means that i subscribes to j.

Cross-Channel Comments Figures 15 and 16 depict the cross-channel
comment feature and show the clearest clustering among the network fea-
tures. Channel owners almost exclusively interact through comments with
channels that are ideologically similar to themselves. Unfortunately, one
can also see in Figure 15 that nonpolitical channels have almost no cross-
channel comments to or from other channels. The graph includes 282 (36
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nonpolitical) out of 1508 channels because only 124 of them have comments
from other channels in the dataset under their videos.
The disparity between political and nonpolitical channels with regards to
some of the network connections can be explained by the data acquisition
process of the nonpolitical channel data. Since these channels were picked
from completely different categories, it is unlikely that the channels heavily
interact with each other in the comments or subscribe to each other. A large
network of nonpolitical channels was therefore not expected. Unfortunately,
this introduces some bias into the dataset for the binary classification task,
as most of the channels that have no connections at all will be predicted
to be nonpolitical because the classifiers learn that political channels have
more connections. This explains the classifiers’ high recall values for the
nonpolitical class and low recall values for the political class seen in Table
6.
However, this problem is expected to be less relevant with a larger number
of unlabeled channels because the proportion of channels with absolutely
no connections is likely to go down when more channels are included in the
dataset, making the network features more useful.

Figure 15: Cross-channel comment network of political and nonpolitical
channels. An edge from channel i to channel j means that i left a comment
under one of j’s three most popular videos and this comment appeared in
the first 100 most relevant comments.

61



Figure 16: Cross-channel comment network of political and nonpolitical
Channels. An edge from channel i to channel j means that i left a comment
under one of j’s three most popular videos and this comment appeared in
the first 100 most relevant comments.

5.1.2 Ensemble Predictions

The vector of predictions from the ensemble’s sub-classifiers that is served
as input to the final logistic regression was visualized in 3d space to get
an insight into how separated the classes are from each other. For the
binary classification task, the predictions from the three text classifiers were
separately plotted from the three network feature classifiers. Figures 17
and 18 depict the training data. For the text classifiers, the dimensions
correspond to the predicted probability that the channel belongs to the class
‘political’, while they show the confidence score for the relation classifiers.
The probability predictions were centered around zero which is why they do
not fall into the range (0,1).
The predictions of the text classifiers on the training data are very clearly
separated, which is not surprising since all classifiers have already seen these
examples. For the relation data it is also expected that many data points
fall together on one point of the feature space since they do not have any
relations to other channels.
With regards to the test set, which the individual classifiers have not yet
seen, the two classes are not as clearly separated. Some of the channels
from the nonpolitical class fall in the space of the top right quadrant while
also three of the political channels are deemed more nonpolitical by the
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classifiers. For the relation classifiers, no overlap between the classes is
observable except of course for those channels that fall together on the point
where each channel without relations falls onto. The network classifiers can
apparently very reliably separate political from nonpolitical channels as long
as they have some information on what other channels they are related to.

Figure 17: The class probability pre-
dictions of the caption, comment and
snippet classifier on the training set.

Figure 18: The class probability pre-
dictions of the associations, subscrip-
tions and cross-channel comments
classifier on the training set.

Figure 19: The class probability pre-
dictions of the caption, comment and
snippet classifier on the testing set.

Figure 20: The class probability pre-
dictions of the associations, subscrip-
tions and cross-channel comments
classifier on the training set.
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Multi-Label Classification Since the sub-classifiers in the multi-label
classification do not predict a single probability value or confidence score,
but one for every class, their predictions are not as easily translated into 3d.
Principal Component Analysis (PCA) was employed as a feature reduction
technique to project the predicted values from each sub-classifier to only
three dimensions. The predictions that are visualized here stem from the
ensemble consisting of the comment, snippet and associations sub-classifiers.
Figures 21 and 22 show these predictions for the training and testing set
respectively. Again, the color of each data point refers to the most salient
label of each channel.
On the training set, the data points form relatively well-formed clusters.
The final ensemble classifier is trained to separate each example with label i
from all examples without that label. If channels with the same label appear
close together in the PCA-reduced 3d space, we can infer that they are likely
also separable for the logistic regression in the ensemble classifier.
In Figure 22 it can be seen that the data is still grouped according to their
classes, but in general much closer together. Interestingly, there are some
‘outliers’. Two socialist channels and one channel from the class ‘AntiSJW’
appear far outside of the main cluster. Unfortunately, this distance is not
easily interpretable. The position of the two socialist labels might be ex-
plained by the fact that they are also labeled ‘Revolutionary’ which is a
rather rare label in the dataset.
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Figure 21: Multi-Label Class Probability Predictions of Ensemble Sub-
Classifiers - Training Set. The axes show the three leading principal com-
ponents.

Figure 22: Multi-Label Class Probability Predictions of Ensemble Sub-
Classifiers - Testing Set. The axes show the three leading principal com-
ponents.
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5.2 Comparison Experiment

Before I compared the classifiers resulting from the self-training, I first mea-
sured multiple variables during the process of the algorithm to get a better
understanding of it. In each iteration of the self-training algorithm, the
confidence score of the classifier’s predictions on the unlabeled data was
recorded. To see whether more training data makes the classifier better at
discerning edge cases in the examples, the data points closest to the deci-
sion boundary were compared over time. Figure 23 shows that, indeed, the
confidence score of the ‘most difficult’ cases rises steadily with an increasing
number of training data.

Figure 23: Mean confidence scores of 10% lowest confidence predictions. Ten
different runs of the self-training algorithm with fixed number of iterations.

Additionally, the classifier’s performance was evaluated on the test set after
each iteration to see whether it is able to extract additional information
from the unlabeled data. In Figure 24 the performance trajectory of 10
different runs of the self-training algorithm with fixed number of iterations
can be seen. On average, the first iteration slightly increased the classifier’s
performance, only to drop with every further iteration. In some cases, an
increase in performance is visible in some of the last iterations, but the
negative trend is still apparent.
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Figure 24: Performance on test set after each training iteration. Ten differ-
ent runs of the self-training algorithm with fixed number of iterations.

Because the initial improvement of the classifier indicates that at least its
high confidence predictions can be used for successful self-training, I imple-
mented a version of self-training with a confidence threshold. Two thresholds
were tested, 95% and 90%. Figure 25 and 26 present the plots for the re-
spective test scores. If only predictions with a confidence over the threshold
of 95% are chosen for training, the performance increases in some algorithm
runs, and decreases in others but on average the F1-score on the test set
only slightly increases. Overall, the fluctuation of the scores is much lower in
this condition. The reason for that is that only a small number of examples
are added to the training set. On average, 311 self-labeled examples are
used for training in about 9 iterations of the algorithm. This increases the
number of examples in the training set by 24.3%.
If the confidence threshold is lowered to 90% around 3259 unlabeled channels
are used to train the classifier in the algorithm, increasing the number of
training examples by a factor of 2.54. Unfortunately, the quality of the
predictions suffers slightly, as Figure 26 shows.
Similar results could be observed for the multi-label classification task. If
the self-training algorithm was run with a fixed number of iterations, the
performance of the test set decreased with every iteration almost without
exceptions (see Figure 27). For the self-training version with a confidence
threshold, different thresholds had to be chosen than in the binary classifi-
cation task. Instead of confidence thresholds of 90% and 95%, 80% and 83%
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Figure 25: Ten different runs of the
self-training algorithm with a confi-
dence threshold of 95%.

Figure 26: Ten different runs of the
self-training algorithm with a confi-
dence threshold of 90%.

were tested because the mean confidences were lower and they varied less,
which is why a few percent increase already meant that either all unlabeled
channels are added, or only a few dozen. But even for multiple runs of the
algorithm with 83%, there were significant differences in the run time as
Figure 29 shows. In some cases, the algorithm stopped after only a few iter-
ations or it continued for over 10. The difference in added training examples
is also significant. For runs that stopped early, between 3 and 8 examples
were added. For all other runs, the number was between 2102 and 2118.
Apparently, there were some examples in either the unlabeled or labeled
set, that facilitated an increase in prediction confidence for a majority of
the training examples.
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Figure 27: Ten different runs of the self-training algorithm on multi-label
data with fixed number of iterations.

Figure 28: Ten different runs of the
self-training algorithm with a confi-
dence threshold of 80%.

Figure 29: Ten different runs of the
self-training algorithm with a confi-
dence threshold of 83%.

Main Results - Binary Classification All classifiers were evaluated
again after convergence of the self-training algorithm and their scores on
the test set compared with the supervised classifiers’ scores. Figure 30 dis-
plays these final scores and the mean score of every condition. The normality
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Self-Training
6 Iterations

Self-Training
90% Threshold

Self-Training
95% Threshold

Ensemble SL 9.4692081e-10 0.0023552 0.6718178

Table 13: The P-values resulting from the statistical comparisons of the
binary classification algorithms.

of the distribution of scores was checked with a Shapiro-Wilk test [54] before
testing whether the mean performances of the self-trainer classifiers are sig-
nificantly different from the classifier with a standard Student’s T-Test [55].
The results (see Table 13) confirm that only self-training with a threshold of
95% performs equally well as simple supervised learning. For the two other
conditions, the null hypothesis that the two algorithms perform equally well
is rejected.

Figure 30: The performance on the test set by the classifiers trained only on
the labeled data versus the classifiers trained with self-training algorithm.
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Main Results Multi-label Classification The same experiments were
performed for the multi-label classification task. Figures 27, 28 and 29
illustrate that the same negative trend that could already be seen for the
binary classification appears again. Each step in which additional channels
are labeled and added to the training decrease the quality of the classifier.
This time, the effect is even stronger as before, as Figure 31 demonstrates.
Some differences to the binary classification can be observed. First of all,
the classifiers trained with a higher confidence threshold performs worse
than those with a lower threshold. Both of them are even outperformed by
the self-training algorithm with a fixed number of iterations, but only if the
reduced ensemble is used inside the wrapper class. Interestingly enough, the
reduced ensemble performed better when trained with self-training than the
larger ensemble in the same condition, although it performs slightly worse
when trained in a supervised manner only.
On average, the MAP scores for classifiers trained with the self-trainer al-
gorithm were always significantly worse than the supervised classifiers, as
Table 14 shows. The two versions of the ensemble classifiers perform equally
well, as the p-value is larger than 0.05 and the null hypothesis is thus not
rejected.
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Reduced
Ensemble

SL

Self-Training
6 Iterations

Self-Training
Reduced
Ensemble

6 Iterations

Self-Training
90% Threshold

Self-Training
95% Threshold

Ensemble SL 0.6359 1.253e-09 0.0022 3.804e-07 8.651e-05

Reduced Ensemble
SL

- 2.7409e-09 0.00646 1.592e-06 0.000150

Table 14: The P-values resulting from the statistical comparisons of the
multi-label classification algorithms.

Figure 31: The performance on the test set by the classifiers trained only on
the labeled data versus the classifiers trained with self-training algorithm.
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6 Discussion

With this Master project my aim was to create a classifier with which po-
litical YouTube channels could be labeled, in order to facilitate research on
the personalized YouTube algorithm. Since only little training data for such
channels is available, the main research question of this project was whether
unlabeled data could help with the training of machine learning classifiers
in the domain of YouTube channels. For this purpose, the semi-supervised
learning method self-training was tested and compared with a standard su-
pervised learning approach.
Given the results of the experiments, the unlabeled examples appear to be
of only very limited value for the training process of algorithmic classifiers,
at least when used in the form of self-training. Most models that were
trained with the self-training algorithm performed worse than the models
that were trained exclusively with the labeled data points. As previous
research has shown, self-training does not always work successfully, but it is
usually applicable when the base classifier’s high confidence predictions are
mostly correct [43, 44].
The experiments carried out as part of this project could confirm this as-
sumption. Only in one condition, where the most confident predictions
of the already very accurate base classifier were used for training, did the
performance increase slightly, but not significantly. However, this modest
improvement came with a large reduction in unlabeled data that was actu-
ally used for training. In the multi-label task, not even the high confidence
predictions helped in the classification because the base classifier was appar-
ently not accurate enough. In none of the experiments did the utilization of
the self-training algorithm significantly improve the classifier performance.
These results could be explained by the specific characteristics of YouTube
channels’ content. Especially for the multi-label classification task, it is
possible that examples that lie close together in the feature space do not
share the same label. The exploration of the ensemble data demonstrated
that the text classifiers can not completely distinguish the classes. Two
channels that produce videos about the same topic, but do so from two
opposing perspectives, will still have a large overlap in their vocabulary,
which text classifiers interpret as semantic similarity. This is especially the
case when content creators cite each other and discuss the content of other
channels, which is commonly done on YouTube. In these situations, even
high confidence predictions of the text classifiers are not necessarily correct.
Already expecting this challenge, I included the relation-based features with
the hope that textually similar channels can be disambiguated. While the
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relation classifiers were indeed able to discern channels that were connected
to other channels, some channels have no relations and thus unfortunately
no feature information was available for these channels. The exploration
has shown that only if that condition is fulfilled, channels can be reliably
classified by the relation classifiers. Given that the self-training algorithm
did not prove to be successful, the relation features were apparently not
often enough available to clearly separate the classes in feature space and
thus the class borders were not smooth enough for self-training to work.
As an open question remains, whether the best classifiers could still be used
for the large-scale classification of the data obtained by the experiment on
personalized recommendations. For this purpose, the binary classifier would
be used to first filter out political channels that would then be labeled by
the multi-label classifier. While the supervised binary classifier has shown
excellent performance, even the multi-label classifiers that performed best on
the test data still did not display very high accuracy. In particular, the low
recall values imply that many relevant channels are missed in the analysis.
When interpreting the performance of the algorithmic classifiers, one should
keep in mind that also human classification of political YouTube channels
is not clearly defined. Political orientation is not a natural category that
can be recognized by human raters but is to some degree always a subjec-
tive judgement. Even though the raters in [6] defined guidelines according
to which the channels are labeled, a rater can still make ‘errors’ in their
classification. To evaluate the reliability of human codings, the Intraclass
Correlation Coefficient (ICC) can be computed. The ICC gives a measure
for how well the labels actually capture information about the constructs
that they are supposed to represent, rather than just noise from the coding
process [56]. For 5 out of the 18 labels in the dataset used for this project,
the ICC is rather low [6]. This means that the channel labels that were used
for training the classifiers contained noise that the classifiers inadvertently
learned. This naturally affected their performance when they were tested
on the (also noisy) testing set.
A clear limitation of the ensemble classifier created for this project is that
only up to three videos from each channel were used for determining the
political ideology of the entire channel. These three videos do not necessarily
represent the political content of the channel well. Gathering more videos
could thus improve the accuracy of the predictions.
Another limitation is concerned with the normalization of the probability
output vectors in the text classifiers. The implementation of the text classi-
fication library uses a softmax function, which makes the probability vector
sum up to 1. The output of the text classifiers is used as the input for the
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logistic regression in the ensemble, but because of this normalization, they
do not necessarily produce consistent output. For a channel with ‘Partisan-
Left’ as the only label, the text classifiers might predict a probability of 0.9
for that label and very low probabilities for all other labels. However, for a
channel with the labels ‘Partisan-Left’ and, in addition, ‘Educational’, the
predicted probability for these two labels will likely be around 0.5. Even
though both channels belong to the same class, the logistic regression in
the ensemble classifier interprets the second channel as less likely to be
labeled ‘Partisan-Left’. The noise introduced through this normalization
presumably affects the accuracy of the ensemble and could be mitigated by
a different implementation of the text classifiers.
Another challenge for successful classification, which may explain the rela-
tively weak performance, and especially the low recall, is the class imbalance
in the training data. Since the classifier learns in a ‘One-vs-Rest’ manner in
which the training set is split into multiple binary classification tasks, large
imbalances are created for labels that do not occur often. In the training
data for the multi-label task, the worst splits had a ratio of 3 to 603. Proper
handling of these imbalances with methods such as resampling [57] could
improve the classifiers’ performance.
Despite the non-optimal performance, there would exist ways to make the
classifier usable for subsequent studies on YouTube channels and videos.
For instance, Faddoul et al. [7] multiply the count of videos classified as
conspiratorial with the class probability that the classifier outputs for the
videos, which correlated with the actual likelihood of videos containing con-
spiracy theories. This way, not every video was correctly identified, but
statistically, the count of classified videos was approximately correct. Sim-
ilar approaches could be followed when the classifiers from this project are
used in the analysis of further experiments.
With regards to the goal of the algorithmic classification, one difficulty arises
from the transductive nature of the classifier. The model created in this
project cannot classify channels that are not part of the dataset because
the relation feature vectors do not necessarily cover those channels. If a new
channel is added to the dataset, the subscription and cross-channel comment
feature vector have to be created again, and the classifiers retrained. The
channels collected daily through the experiment described in Section 4.2.1
can therefore not be classified every day without completely retraining the
ensemble classifier. A more convenient option would be to collect data over
a longer time-window and then classify and analyse them retrospectively.
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7 Conclusion

With this Master project, I set out to design an empirical experiment on per-
sonalized YouTube recommendations that would be able to detect structural
political biases in the YouTube recommendation system - if they exist. The
labeling of the data resulting from such an experiment was identified as the
key challenge for this undertaking. Since unlabeled data is readily available
and has in previous studies helped with the training of algorithmic classi-
fiers, the central goal of this project was the exploration of semi-supervised
learning for the classification of YouTube channels.
To have an effective baseline to which a semi-supervised learning approach
could be compared, I adapted a classifier used in [7] to identify videos spread-
ing conspiracy videos, to the purposes of channel classification. As an ad-
ditional feature for this classification, I gathered and extracted what I call
network features that consist of relations between channels. An exploration
of these features revealed a tight network of political YouTube channels,
where channel owners consume and interact heavily with content that is
similar to what they themselves create. Especially the network of related
channels showed that producers of political content do not exist in a vacuum
but actively connect to similar YouTubers.
The labeling of political channels was split into two sub-tasks. In a first
binary classification task, channels that produce videos on political and so-
cial issues were distinguished from channels with nonpolitical content such
as sports, movies, music, etc. In a second classification task, the channels
identified as political by the first classifier were each labeled with possi-
bly multiple tags defined by Ledwich and Zaitsev in [6]. These labels were
created to explicitly capture the different categories that emerged in the
political landscape of YouTube.
For each task, an ensemble classifier that consisted of sub-classifiers trained
on six different feature sources (video closed captions, comments, video and
channel snippets, related channels, subscriptions and cross-channel com-
ments) was constructed. They were trained and evaluated on labeled exam-
ples that were published in [6].
As a comparison to these baseline classifiers, unlabeled data was used with
a technique called self-training to train multiple classifier models that were
also evaluated on a test set created from the labeled data. The classifiers are
easily comparable because in self-training, the model trained on the labeled
data in a supervised manner is further training itself with the unlabeled
data. The comparison is thus facilitated because a possible positive effect
of the unlabeled data can be observed directly.
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Unfortunately, the unlabeled channels did not improve the performance on
the testing set. A reason for this could be that the discriminative features
used for the classification do not fulfill the so-called ‘semi-supervised smooth-
ness assumption’, i.e. that two channels that have very similar features
belong to two different classes. Unavoidable noise in the labeled dataset,
stemming from the very difficult process of classifying political categories
by hand, could explain why the smoothness assumption is violated.
Next to this exploration of classification methodology, I implemented a
scraper that is able to gather personalized recommendations from YouTube,
enabling experiments on the YouTube recommendation system that have not
yet been conducted according to the literature. One such experiment was
designed and proposed in this Master Project. The experiment is deployed
under the name ‘UserScrape’ in the environment of the Recfluence project
with support from the author Mark Ledwich. The project analyses the ‘flow’
of recommendations in-between political YouTube channels over time. As
soon as enough data from the UserScrape experiment is collected the results
will be analyzed. The Appendix of this report points to the repositories
where the code used in this project and all data that was collected can be
found.
This project took the first steps towards understanding personalised recom-
mendations on YouTube, and also how semi-supervised learning can be used
for this. However, further work is needed to gain deeper insights.
From the comparison experiments in this project, no wide-reaching state-
ments about the effectiveness of semi-supervised learning in general can be
made, as only one out of many methods was tested. There are at least two
other methods that promise success with regards to the problem at hand. Da
Silva et al. [43] use the network structure from Twitter follows and retweets
for a graph-based semi-supervised approach. The network features that were
extracted for this project could be used in the same way.
Another technique that could be explored is Co-Training in which two clas-
sifiers trained on different feature sets teach each other in a similar procedure
as it happens in the self-training algorithm. According to Didaci et al. [44],
this is very suitable for ensemble classifiers built from multiple feature clas-
sifiers, as it is the case in this project. However, this procedure operates
under similar assumptions as self-training, so it might suffer from the same
problems.
In addition to other semi-supervised techniques that could be examined fur-
ther, it would also be worth exploring whether implementational variations
in the classifier used as the comparison baseline would yield better, or qual-
itatively different, results. These variations could, for instance, include an
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exchange of the algorithms used for the sub-classifiers as well as for the final
ensemble classifier, the utilization of different combinations of features, or,
instead, the application of an entirely different classifier architecture.
Further research should also explore the mechanisms that actually cause
individuals to radically change their view points and behaviour through
content consumed on platforms like YouTube. With this work, the focus
was primarily on the recommendation algorithm, but how significant its
role is in such a complex process in comparison to many other factors, is
still unexplored and would require a multidisciplinary research approach.

78



References

[1] Y. Golovchenko, C. Buntain, G. Eady, M. A. Brown, and J. A. Tucker,
“Cross-Platform State Propaganda: Russian Trolls on Twitter and
YouTube During the 2016 US Presidential Election,” The International
Journal of Press/Politics, vol. 25, no. 3, pp. 357–389, 2020.

[2] R. K. Gibson and I. McAllister, “Do Online Election Campaigns Win
Votes? The 2007 Australian ’YouTube’ Election,” Political Communi-
cation, vol. 28, no. 2, pp. 227–244, 2011.

[3] P. Lewis, “’Fiction Is Outperforming Reality’: How YouTube’s Algo-
rithm Distorts Truth.” The Guardian, 2018-02-02. Online available
at www.theguardian.com/technology/2018/feb/02/how-youtubes-

algorithm-distorts-truth (accessed: 14.08.2020).

[4] Z. Tufekci, “YouTube, the Great Radicalizer.” The New York
Times, 2018-03-10. Online available at www.nytimes.com/2018/03/

10/opinion/sunday/youtube-politics-radical.html (accessed:
14.08.2020).

[5] M. Horta Ribeiro, R. Ottoni, R. West, V. A. F. Almeida, and W. Meira,
“Auditing Radicalization Pathways on YouTube,” arXiv e-prints, Aug.
2019. arXiv:1908.08313.

[6] M. Ledwich and A. Zaitsev, “Algorithmic Extremism: Examining
YouTube’s Rabbit Hole of Radicalization,” arXiv e-prints, Dec. 2019.
arXiv:1912.11211.

[7] M. Faddoul, G. Chaslot, and H. Farid, “A Longitudinal Analysis of
YouTube’s Promotion of Conspiracy Videos,” arXiv e-prints, Mar.
2020. arXiv:2003.03318.

[8] F. Ricci, L. Rokach, and B. Shapira, Introduction to Recommender
Systems Handbook, pp. 1–35. Boston, MA: Springer US, 2011.

[9] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich, Recommender
Systems: An Introduction. Cambridge University Press, 2010.

[10] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, Collabora-
tive Filtering Recommender Systems, pp. 291–324. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007.

79

www.theguardian.com/technology/2018/feb/02/how-youtubes-algorithm-distorts-truth
www.theguardian.com/technology/2018/feb/02/how-youtubes-algorithm-distorts-truth
www.nytimes.com/2018/03/10/opinion/sunday/youtube-politics-radical.html
www.nytimes.com/2018/03/10/opinion/sunday/youtube-politics-radical.html


[11] J. Parsons, P. Ralph, and K. Gallagher, “Using Viewing Time to Infer
User Preference in Recommender Systems,” AAAI Workshop - Techni-
cal Report, July 2004.

[12] R. Burke, “Hybrid Recommender Systems: Survey and Experiments,”
User Modeling and User-Adapted Interaction, vol. 12, Nov. 2002.

[13] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using Collaborative
Filtering to Weave an Information Tapestry,” Commun. ACM, vol. 35,
p. 61–70, Dec. 1992.

[14] S. Lee, J. Yang, and S.-Y. Park, “Discovery of Hidden Similarity on
Collaborative Filtering to Overcome Sparsity Problem,” in Discovery
Science, pp. 396–402, Springer Berlin Heidelberg, 2004.

[15] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, “Meth-
ods and Metrics for Cold-Start Recommendations,” in Proceedings of
the 25th annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 253–260, 2002.

[16] G. Shani and A. Gunawardana, Evaluating Recommendation Systems,
pp. 257–297. Boston, MA: Springer US, 2011.

[17] R. Jiang, S. Chiappa, T. Lattimore, A. György, and P. Kohli, “Degen-
erate feedback loops in recommender systems,” in AIES ’19, 2019.

[18] E. Pariser, The Filter Bubble: What the Internet Is Hiding From You.
Penguin UK, 2011.

[19] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi,
S. Gupta, Y. He, M. Lambert, B. Livingston, and D. Sampath, “The
YouTube Video Recommendation System,” in Proceedings of the Fourth
ACM Conference on Recommender Systems, RecSys ’10, p. 293–296,
Association for Computing Machinery, 2010.

[20] P. Covington, J. Adams, and E. Sargin, “Deep Neural Networks for
YouTube Recommendations,” in Proceedings of the 10th ACM Confer-
ence on Recommender Systems, RecSys ’16, p. 191–198, Association for
Computing Machinery, 2016.

[21] Z. Zhao, E. Chi, L. Hong, L. Wei, J. Chen, A. Nath, S. Andrews,
A. Kumthekar, M. Sathiamoorthy, and X. Yi, “Recommending What
Video to Watch Next: A Multitask Ranking System,” pp. 43–51, 09
2019.

80



[22] S. Menard, Applied Logistic Regression Analysis, vol. 106. Sage, 2002.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011. Referenced
Documentation (accessed: 14.08.2020):

1. www.scikit-learn.org/stable/modules/generated/sklearn.

linear_model.LogisticRegression.html

2. www.scikit-learn.org/stable/modules/generated/sklearn.

metrics.average_precision_score.html

3. www.scikit-learn.org/stable/modules/generated/

sklearn.multiclass.OneVsRestClassifier.html?highlight=

onevsrest#sklearn.multiclass.OneVsRestClassifier

.

[24] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[25] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of
Tricks for Efficient Text Classification,” arXiv e-prints, July 2016.
arXiv:1607.01759.

[26] T. Fawcett, “An Introduction to ROC Analysis,” Pattern recognition
letters, vol. 27, no. 8, pp. 861–874, 2006.

[27] K. Shin, J. Jeon, S. Lee, B. Lim, M. Jeong, and J. Nang, “Approach
for Video Classification with Multi-label on YouTube-8M Dataset,” in
Proceedings of the European Conference on Computer Vision (ECCV)
Workshops, September 2018.

[28] Z. Wang, K. Kuan, M. Ravaut, G. Manek, S. Song, Y. Fang, S. Kim,
N. Chen, L. F. D’Haro, L. A. Tuan, et al., “Truly Multi-modal
YouTube-8m Video Classification With Video, Audio, and Text,” arXiv
preprint arXiv:1706.05461, 2017.

[29] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation
of Word Representations in Vector Space,” 2013.

[30] M. L. Hann, “Principles of Automatic Lemmatisation,” ITL Review of
Applied Linguistics, 1974.

81

www.scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
www.scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
www.scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
www.scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
www.scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html?highlight=onevsrest#sklearn.multiclass.OneVsRestClassifier
www.scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html?highlight=onevsrest#sklearn.multiclass.OneVsRestClassifier
www.scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html?highlight=onevsrest#sklearn.multiclass.OneVsRestClassifier


[31] X. Zhu and A. B. Goldberg, “Introduction to Semi-Supervised Learn-
ing,” Synthesis lectures on artificial intelligence and machine learning,
vol. 3, no. 1, pp. 1–130, 2009.

[32] O. Chapelle, B. Scholkopf, and A. Zien, “Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews],” IEEE Transactions on
Neural Networks, vol. 20, no. 3, pp. 542–542, 2009.

[33] C. O’Donovan, C. Warzel, L. McDonald, B. Clifton, and
M. Woolf, “We Followed YouTube’s Recommendation Algo-
rithm Down The Rabbit Hole.” Buzzfeed News. Online available
at www.buzzfeednews.com/article/carolineodonovan/down-

youtubes-recommendation-rabbithole (accessed: 14.08.2020).

[34] J. Nicas, “How YouTube Drives People to the Internet’s
Darkest Corners.” Wall Street Journal. Online available at
www.wsj.com/articles/how-youtube-drives-viewers-to-the-

internets-darkest-corners-1518020478 (accessed: 14.08.2020).

[35] R. Lewis, “Alternative Influence,” Data & Society, 2018.

[36] K. Munger and J. Phillips, “A supply and demand framework for
youtube politics,” Preprint, 2019.

[37] V. Simonet, “Classifying YouTube Channels: A Practical System,” in
Proceedings of the 22nd International Conference on World Wide Web,
pp. 1295–1304, 2013.

[38] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici,
B. Varadarajan, and S. Vijayanarasimhan, “YouTube-8M: A
Large-Scale Video Classification Benchmark,” arXiv e-prints,
p. arXiv:1609.08675, Sept. 2016.

[39] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale Video Classification with Convolutional Neural
Networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2014.

[40] B. Banerjee, “Machine learning models for political video advertisement
classification,” Master’s thesis, Iowa State University, 2017.

[41] L. Qi, C. Zhang, A. Sukul, W. Tavanapong, and D. A. Peterson, “Auto-
mated Coding of Political Video Ads for Political Science Research,” in

82

www.buzzfeednews.com/article/carolineodonovan/down-youtubes-recommendation-rabbithole
www.buzzfeednews.com/article/carolineodonovan/down-youtubes-recommendation-rabbithole
www.wsj.com/articles/how-youtube-drives-viewers-to-the-internets-darkest-corners-1518020478
www.wsj.com/articles/how-youtube-drives-viewers-to-the-internets-darkest-corners-1518020478


2016 IEEE International Symposium on Multimedia (ISM), pp. 7–13,
IEEE, 2016.

[42] Y. Dinkov, A. Ali, I. Koychev, and P. Nakov, “Predicting the Leading
Political Ideology of YouTube Channels Using Acoustic, Textual, and
Metadata Information,” arXiv e-prints, p. arXiv:1910.08948, Oct. 2019.

[43] N. F. F. Da Silva, L. F. S. Coletta, and E. R. Hruschka, “A Survey and
Comparative Study of Tweet Sentiment Analysis via Semi-Supervised
Learning,” ACM Comput. Surv., vol. 49, June 2016.

[44] L. Didaci and F. Roli, “Using Co-training and Self-training in Semi-
supervised Multiple Classifier Systems,” in Structural, Syntactic, and
Statistical Pattern Recognition, pp. 522–530, Springer Berlin Heidel-
berg, 2006.

[45] ThoughtWorks, “Selenium.” GitHub repository, https://github.

com/SeleniumHQ/selenium (accessed: 14.08.2020), 2018.

[46] F. Figueiredo, F. Benevenuto, and J. Almeida, “The Tube Over Time:
Characterizing Popularity Growth of YouTube Videos,” pp. 745–754,
Jan. 2011.

[47] G. Reemer, “ChannelCrawler.” https://channelcrawler.com/eng

(accessed: 14.08.2020), 2019.

[48] A. Golub, “YouTube Explode.” https://github.com/Tyrrrz/

YoutubeExplode, 2016.

[49] S. Bird, E. Klein, and E. Loper, Natural Language Processing With
Python: Analyzing Text With the Natural Language Toolkit. O’Reilly
Media, Inc., 2009.

[50] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching
Word Vectors with Subword Information,” arXiv e-prints, July 2016.
arXiv:1607.04606.

[51] M. E. Tipping and C. M. Bishop, “Probabilistic Principal Component
Analysis,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 61, no. 3, pp. 611–622, 1999.

[52] T. G. Dietterich, “Approximate Statistical Tests for Comparing Super-
vised Classification Learning Algorithms,” Neural computation, vol. 10,
no. 7, pp. 1895–1923, 1998.

83

https://github.com/SeleniumHQ/selenium
https://github.com/SeleniumHQ/selenium
https://channelcrawler.com/eng
https://github.com/Tyrrrz/YoutubeExplode
https://github.com/Tyrrrz/YoutubeExplode


[53] T. M. Fruchterman and E. M. Reingold, “Graph Drawing by Force-
Directed Placement,” Software: Practice and Experience, vol. 21,
no. 11, pp. 1129–1164, 1991.

[54] S. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for Nor-
mality (Complete Samples),” Biometrika, vol. 52, pp. 591–611, Dec.
1965.

[55] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. May-
orov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat,
Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cim-
rman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald,
A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Con-
tributors, “SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python,” Nature Methods, 2020. Referenced Documenta-
tion (accessed: 14.08.2020): docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.ttest_ind.html.

[56] R. Landers, “Computing Intraclass Correlations (ICC) as Estimates of
Interrater Reliability in SPSS,” The Winnower, June 2015.

[57] A. More, “Survey of Resampling Techniques for Improving Classifica-
tion Performance in Unbalanced Datasets,” arXiv e-prints, Aug. 2016.
arXiv:1608.06048.

84

docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html


8 Appendix

A

Scripts that were used to collect and preprocess feature data in addition with
all scripts used to train and compare the classifiers and ultimately visualize
the results can be found in www.github.com/antonlaukemper/YouTube-

Recommendation-ThesisProject

Labeled and unlabeled data that was used for training the classifiers can
be downloaded via drive.google.com/file/d/1oKKUhTh1tt8OyZFoA4cgg_

HhSM6Z9MSz/view?usp=sharing or requested by mail at anton@laukemper.
it.
The selenium scraper with which personalized YouTube recommendations
can be gathered and the implementation of the experiment described in Sec-
tion 4.2.1 can be found in the folder ’userscrape’ in github.com/markledwich2/

Recfluence.

B

During the acquisition of nonpolitical channels, each channel was briefly
examined with regards to possible political content before it was added to
the dataset. Some political channels were missed in this filtering and were
only discovered during later processing steps. These channels were15:

1. www.youtube.com/channel/UCwd_sSDZ8EQt6SEeOO2tBRA

2. www.youtube.com/channel/UCD4qMoFPUEzSn4CurFLJkIQ

3. www.youtube.com/channel/UCBizESL5Wcvcxs2eB6h0txQ

4. www.youtube.com/channel/UCOYm0tm472SIMVan6KSOuKg

5. www.youtube.com/channel/UC1iFTPspSKcb4vb1N7czmRQ

6. www.youtube.com/channel/UCMljRGC0eBJrxbUorWEnasg

The first two channels in this list also appear in the set of labeled political
channels and were thus simply removed from the set of nonpolitical chan-
nels. Channels 3 and 4 produce videos that can be considered political,
but because I did not have the means for a proper labeling process with
multiple labelers, these channels were also deleted. The last two channels
were more unambiguously political and could be confidently labeled ’Edu-
cational’, which I did after consulting the original labelers of [6].

15All accessed on 14.08.2020
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