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Abstract

A key element of academic research is the ability to reproduce results of the experiment.
Sadly, even within the field of computing- and data science, this remains a challenge. In
order to ensure the reproducibility it is critical to know the exact versions of all elements
involved. Once this information is known, differences between editions of experiments
can be traced and reasons for deviating results may be concluded. It is therefore not
only important to track the versions of both data and computations, but also track how
these evolve throughout time.
This research investigates the different elements of reproducibility and tracking the
provenance of change in data science pipelines. Existing tools for these processes are
analyzed and evaluated; subsequently, a novel conceptual architecture for a framework
is introduced. This framework aims at assisting users in tracking the provenance of
change of their pipelines such that they enable reproducibility of their experiment. The
framework is able to track the evolution of code, configurations, and data throughout
the pipeline. It is accompanied by a proof-of-concept implementation called Iterum,
which is used to evaluate the designed framework by implementing two use cases from
the domain. These experiments show that the framework is capable of achieving its
goals. Yet, it requires users to properly use the provided abstractions and, due to its
alpha stage, is not ready to be evaluated on its usability and accessibility.
This thesis is the result of a joint research focusing on the provenance of pipelines and
code. Another thesis is referenced which focuses on the provenance of data.
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Glossary

DAG Directed Acyclic Graph - A graph structure consisting of nodes connected by
directed edges, without forming cycles. v, vi, 5, 16, 43

fragment A fragment is a layer of abstraction on top of actual data. It defines a chunk
of the data, which can be a single file, multiple files or parts of a file. It serves
two purposes: the first is that it allows the user to optimize for network traffic by
grouping small pieces of data together in one bundle. Secondly, it allows the user
to group data that belongs together in a way that is not limited by issues such as
different file types (E.G. one fragment could contain both some image.jpg and a
corresponding metadata.json). v

fragment description A fragment description is the metadata part of a fragment ,
which does not contain the actual data of the fragment, but a reference to it. This
is an abstraction used for the implementation of Iterum. 26

fragment streams Fragment streams are streams of fragments than flow through a
pipeline and are (ideally) individually processable. 13

iterum The name given to the implementation of the framework introduced in this
document. The word iterum is Latin for “again“ or “a second time“. v, 25

pipeline A set of data transformation steps designed to perform some computation, in
which each step performs part of that computation before passing the transformed
data on to the next step(s). In this research, pipelines can be structured as a
DAG . Here each node is a transformation step and each (directed) edge denotes
the direction of data flow. vi, 1, 5

pipeline configuration The configuration of a pipeline which consists of the different
versions of the transformation steps, the version of the fragmenter, and any extra
configuration the user has provided for the pipeline. In short, the (formal) speci-
fication regarding a pipeline excluding any execution details such as the data set
version or additional user-specified parameters. v, 6, 22

pipeline run Also pipeline execution. The formal specification of a pipeline run arti-
fact . A pipeline run combines a pipeline configuration with a versioned data set
and any additional parameters based on this data set or other user intentions. By
sharing this pipeline run configuration, another user should be able to deploy this
pipeline run and reproduce the same results. v, 6, 23

pipeline run artifact Also pipeline artifact. The artifacts produced by the (auto-
mated) deployment of a pipeline run. This artifact actually runs the computations
and produces the results. The framework will track all relevant information and
try to bring the execution of the associated components to completion. v, 6, 18,
23
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provenance of change Information about the origin of changes. This includes what
triggered this change, who is responsible for the change, and what the change
entails (i.e. a previous and current version). Within the context of data science
experiments this includes how both the code and data used by the experiment
evolves over time and how it affects the experiment. 1

reproducibility The ability to recreate the results of an experiment by going through
the same steps described by the definition of that experiment. This can imply
reproducing the exact results from a predefined experiment, or in the case of
stochastic processes results that are sufficiently similar in nature. An example of
the latter would be accuracy scores very close to that of the original. 1

version tree A tree structure, were each node is a version of something (data, code,
pipeline, etc.). Parents are the predecessors and so earlier versions. Children are
the later versions that resulted from another version. 20

workflow A term used to describe a business or scientific flow which consists of a set
of processes which is often structured in a DAG . A workflow is sometimes used
interchangeably with pipeline, but there are some differences. These differences
are described in detail in Section 2.6.1. In this thesis usage of this term is refrained
in order to avoid confusion. 9
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Chapter 1

Introduction

The quality of academic research can be quantified (partially) by the ability to reproduce
its findings. Increasingly more experiments are performed through the use of simulations
and other computational models. Often these cases are implemented in the form of a
software system. In the cases that these systems process large quantities of data, they
are often implemented as (distributed) data processing pipelines.

1.1 Problem Statement

At its core, computers and their software are based on pure mathematics and therefore,
one would expect to be able to reproduce the same results consistently. However, es-
pecially in the realm of distributed computing, this proves difficult. Due to numerous
factors, repeating experiments at a later stage may yield results deviating from the ini-
tial run. Knowing how and what changed in an experiment is key in order to explain
those deviations. It also helps in determining whether these alternate results are ac-
ceptable. Information about where changes originate from and how they are created is
called the provenance of change. Tracking this over the lifetime of an experiment helps
in understanding how the current version of an experiment and its results came to be.

Factors that are subject to change or otherwise influence the reproducibility include the
many different hard- and software environments, but also the rapid development of new
technologies. Additionally, results depend on the models of the target phenomenon,
system architecture, software design, and the underlying algorithms.

Besides the evolution of the computation environment, the data set, on which the com-
putation is performed, is also subject to change. These changes originate from factors
such as additional data gathering, data cleaning, and preprocessing.

Finally, the person reproducing the experiment is often not the one that originally de-
fined it. This adds an additional layer of complexity to the reproducibility of (the results
of) an experiment. Even when the original author of the experiment has documented
the experiment extremely well, there is bound to be some tacit knowledge left undocu-
mented, or a software specific dependency left unspecified. This can result in unwanted
differences between two instances of an experiment.

All of the aforementioned factors make obtaining identical results from (approximately)
the same experiments more difficult with time. In order to ensure the future repro-
ducibility of those experiments it is essential to understand where, and how, changes
were introduced. In other words, in order to keep consistent results it is crucial to track
the provenance of change of an experiment.
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1.2 Research Goals

In the field of computing science the importance of provenance of change has been noted
not only within the context of academic research. Computing science has long been
dealing with its different elements, such as proper versioning, roll-back and consistency
across environments. To deal with the issues that accompany these elements, systems
such as Git1, Docker2 and even Java3 have been developed.

On the one hand, the field of computing science has developed state of the art tools
that deal with (elements of) provenance of change in software settings. On the other
hand, academic research struggles with similar issues related to change provenance. This
research tries to bridge the gap between these two.

1.2.1 Research Questions

This thesis its the result of a joint research and therefore covers a subset of all aspects
involved in the problem space. Pointers for results outside the scope of this thesis can
be found in the next section. Given the perceived problems in academic research as
described in Section 1.1, this thesis focuses on the following question:

How can one track changes to code of (data science) pipelines in order
to provide provenance and reproducibility of the pipeline execution?

This question can be further divided into a set of sub-questions and topics. The following
sub-questions will be addressed throughout this thesis in order to answer the main
research question:

1. What are the various elements of change provenance related to (data science)
pipelines?

2. What tools exist that support provenance tracking for pipelines?

3. How can an (adaptive) data science pipeline framework be designed, which is able
to respond correctly to the different changes that can occur?

4. Which provenance elements can be tracked prior to the execution of a pipeline?

5. Which elements of provenance, that can be tracked, are specific to a pipeline
execution?

1git-scm.com
2docker.com
3java.com
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1.2.2 Research Contributions

This thesis presents the design of a conceptual framework that accommodates tracking
all forms of provenance of change, focusing on highlighting all pipeline- and code-related
elements. Besides this design, a proof-of-concept implementation is presented. It is
evaluated using two use cases from the domain of data science which were ported to
fit within its bounds. This research identifies various elements of change, investigates
current tools that attempt to solve its associated problems, and considers current al-
ternatives to the presented framework. The research serves as both an overview and a
problem identification paired with a suggested solution.

Throughout this thesis, only one side of the problem space is explored. It focuses on
tracking the provenance of change over pipeline elements and code specifically. Another
thesis resulting from the same research focuses specifically on the evolution of data [21].
Together they describe all insights gained from this joint research. Due to this separate
presentation of the results, these two theses will have significant overlap. The design
and implementation tried to take all requirements from both thesis subjects into account
and therefore the presentation of these chapters is common between the two theses. A
full overview of all common sections can be found in Appendix A.

1.3 Methodology

This research was kick-started by evidence from the academic world that reproducing re-
sults of (computer-based) experiments can be challenging [22, 9]. These challenges were
scoped down to reproducibility issues with cases of (distributed) data science pipelines.
Distributed computing as well as processing of large quantities of data makes these
problems especially apparent.

After this initial phase the standard research process began with a literature study of the
available material. This included researching academic references as well as investigating
existing tools, their capabilities, and their shortcomings. In an iterative process, these
investigations led to a better understanding of the problem space and a well defined list
of aspects to take into account. From this a list of requirements could be extrapolated.
After concluding that most existing platforms have some shortcomings, a design phase
was started. This led to a conceptual framework existing of components and interactions
that aid in tracking the provenance of change. Due to time constraints and other resource
constraints it was deemed most feasible to implement a custom proof of concept of this
framework, rather than building on top of some existing alternatives. This will be
covered in more depth in Chapter 2. This proof of concept was then evaluated by
implementing two actual use cases within this framework.

3



Chapter 2

Background and Related Work

This chapter covers a mix of related academic work, background information on relevant
topics, and an analysis of existing tools. It gives an overview of the various elements
associated with tracking provenance of change, as well as a breakdown of various other
challenging aspects induced by data processing, pipelines and distributed computing. It
also provides an analysis of tools that currently already provide (part of) the envisioned
solution.

2.1 Data processing models

Nowadays, data is collected at a massive scale. It can be gathered from server logs,
activity data, sensors and more[2]. All of this data needs to be processed somehow.
There are a couple of different models to process large amounts of data. In batch
processing, data is collected over a time window, grouped together, and then processed
as a whole. As opposed to batch processing, data can also be processed as a stream,
where data is processed as it comes in. Both of these processing models have their
appropriate use cases and are not mutually exclusive.

The Lambda Architecture is an example of an architecture where batch and stream
processing are combined [12]. The stream of data coming in is processed via multiple
paths of computation. First, data is processed as a stream to provide quick, slightly
less accurate results. Simultaneously the data is stored so that it can be processed in a
batch for more accurate, but slower results.
In data science experiments, scientists often work with a fixed data set, and thus a fixed
“batch“ of data. Even though this hints at the batch processing models, there may be
situations where the batch of data is too large to fit in the storage of one machine. The
Kappa architecture solves this problem by interpreting a batch of data as a bounded
stream [14]. The batch is split into separate elements which are processed individually.
This unified approach processes both batch data and streaming data as a stream. This
reduces the complexity of data processing infrastructures. The first introduction of the
Kappa architecture is based around the Kafka technology where data is stored in a
distributed log [13]. Incoming streams of data are processed immediately. Then, when
a batch of historic data needs to be processed, the log is “replayed“ and processed by
the stream processing components again.

4



2.2 Pipelines

A pipeline consists of a set of (independent) data processing steps configured such that
these steps process an input data set, and send their output onwards as input for a
next processing step. Due to processing steps transforming data from their input set
to their output set they are often called transformation steps. This configuration of
transformation steps together forms a graph structure through which the input data
flows and gets transformed by the transformation steps. Pipelines can both be used to
process batches of data and streams of data. However, for processing a batch of data
each of the transformation steps has to finish before the next transformation step can
start. Pipelines structured to process a stream, transformation steps can start processing
as soon as the first pieces of output become available from the preceding transformation
step.

Step

Step Step

Step

Step

Figure 2.1: An example DAG describing a pipeline showing multiple inputs, outputs
and multiple streams

Traditionally, a pipeline referred to a linear set of transformation steps chained in se-
quence. Nowadays, this definition has expanded to include any configuration of trans-
formation steps structured as a DAG . Figure 2.1 shows an example of such a pipeline.
This implies that transformation steps may have multiple inputs and outputs. This does
not only cover the case where multiple (different) transformation steps post a single type
of input to some transformation step. It also includes cases where a transformation step
receives multiple input streams in which the data is not of the same shape and somehow
needs to combine these streams. This creates a complicated problem of knowing how
and when to combine which elements of which of the input streams to create a new
output. Similarly, multiple output streams do not all have to send the same (shape of)
data to their targets.

Pipelines appear in many forms and implementations. Pipelines can be implemented
within one program in the form of modules or functions. To have the benefits of concur-
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rent and parallel processing the different transformation steps can be split over multiple
cores and threads. Take it one step further and each transformation step can be im-
plemented as its own program distributed across multiple machines. All of the above
can match the specifications of a pipeline, however, within this research the focus lies
on the latter one. A distributed setting introduces more pitfalls and problems regarding
provenance tracking. Assuming that the rate of growth of data sets will not slow down,
the associated problems will only become more apparent. This is why this research
focuses on distributed data pipelines. Their associated problems are covered in more
detail in Section 2.3.

2.2.1 Within this Research

This research makes a distinction between the definition of a pipeline and its execution.
A pipeline is defined by the set of transformation steps (code, execution environment,
etc), and their configuration. This determines how they are connected, which input
links to which output, and any other configurable elements of a pipeline. This pipeline
definition is called the pipeline configuration. The configuration is defined via a formal
structure describing all the necessary information. This could be the entire code that
links the elements of the pipeline, but is more likely to consist of configuration files in
a structured format such as JSON, or as output from some graphical interface. Those
formats would then refer to explicit versions of the actual code of transformation steps.
Chapters 3 and 4 cover these specifications in more detail.
The execution of a pipeline, or a pipeline run, is defined by the combination of a pipeline
definition, a data set to be processed, and any additional parameters that can be set
for a pipeline. This can be either pipeline-wide or specifically for a transformation step.
Examples of the latter one include parameters of a transformation step which can be
set dynamically based on the contents of the data set or the intention of the user. The
term pipeline run can refer to both the (formal) specification of a pipeline run artifact ,
as well as the artifact itself. The pipeline artifact contains the actual programs executed
in order to gain the results from the specified pipeline run.

2.2.2 Subjects of Change

As described in Chapter 1, the ability to reproduce an experiment is closely related to
knowing the origin of changes. The focus on pipelines introduces more details that are
subject to change besides the code for an experiment, the data set used and maybe
the environment that it runs in. These additional subjects are the configuration of the
pipeline, run time updates to the configuration of a pipeline, parameters of a pipeline
execution, and intermediate data sets that result from the transformation steps. These
are covered in more detail in Sections 2.4 and 2.5.

2.3 Distributed Computing

The size of the gathered data sets for experiments increases. Additionally, more com-
plicated transformations, such as the training of a machine learning model, increase the
workload of experiments. These larger experiments require more processing power in
order to complete within reasonable time. To deal with this increased demand, large ex-
periments are performed by distributing the workload over multiple computation nodes.
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2.3.1 Cloud Computing

Large companies such as Amazon, Google, and Microsoft rent out their computing re-
sources to users which do not want to, or can not host their own computing services.
Resources are allocated and released dynamically by the cloud provider. Cloud ser-
vices are attractive to use as they provide high availability guarantees, can be used
on-demand, and allow users to only use what they need at that moment (i.e. a pay-per-
use model). Compute clouds are able to provide the computational resources required
for the increased workload of experiments. These clouds can be either private or rented
via cloud providers. Usage of cloud platforms is increasing, making their problems all
the more relevant to tackle [26]. Even though cloud computing has its merits, it also has
some limitations. One of which originates from the fact that users of cloud providers
are often subject to vendor lock-in. Meaning that once a provider is chosen it becomes
hard to move away from it [16]. These kinds of limitations will need to be considered in
order to design a solution to the problems posed in Section 1.1.

2.3.2 Provenance Tracking in the Distributed Setting

The addition of the distributed setting to academic research introduces many new prob-
lems that make the reproduction of results and provenance tracking especially hard.
Distributed computing in itself introduces a couple of different problems inherent to its
nature. These problems can be translated to complications for provenance tracking.
Firstly, data needs to be communicated over a network between the different compu-
tational instances. Network failure occurs often and losing even a single piece of data
can introduce different results for an experiment. Secondly, compute nodes often have
ephemeral instances of the experiment running on them. As soon as these fail, data and
progress inside is lost. If this information is not either recovered or tracked accordingly,
later repetitions of the experiment will yield different results.

2.3.3 Orchestration

Many things can fail in a distributed setting. This requires systems designed for a
distributed system to be fault-tolerant and able to recover. Orchestrators automate
various processes related to managing distributed systems. Typically the orchestration
software is installed on multiple computation nodes, which then form a pool of resources
for the orchestrator to use. Users supply which services need to be active, and the
orchestration software schedules the required services on the available nodes. This layer
of abstraction allows the users to focus on the functionality of the system they are
developing rather than the headaches of distributed deployment.

Kubernetes1 being perhaps one of the most prominent examples of such a system [6].
Kubernetes is an open-source, widely used orchestration tool first developed by Google.
It allows for the deployment and management of services over distributed computation
nodes specified by YAML-structured configuration files.

2.4 Provenance of Pipelines and Code

In order to fully reproduce experiments it is critical to know how and when changes
occur. These changes include changes to code, data, hardware, and execution environ-
ment for example. Each respective thesis (Section 1.2.2), identifies subjects of change
related to its research scope. This includes a description of the subjects as well as what
would be needed to track their evolution.

1https://kubernetes.io/
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2.4.1 Source Code of Transformation Steps

Implementation of the transformation steps is done through source code. Tracking which
version of a transformation step is used is critical in order to ensure reproducibility.
Another version of code could mean an entirely different implementation and could
therefore yield different results.

Source code provenance can be tracked and versioned using version control software,
this has been the industry standard for years. One very popular version control system
is Git; Git allows users to keep track of versions of text oriented repositories [19]. It is
often used for source code, but it is also possible to use it for any other text oriented
files. The user is able to add new versions to a version tree, branch off from the current
version tree and revert back to older versions of a repository. An important aspect
of provenance of data science pipeline is to be able to track how transformation steps
change. Git is able to compute differences between different versions of the files and
since the implementations for transformation steps are defined through source code, Git
is able to track their evolution. This allows users to gain insight into how the source
code changes across different versions and with that, time.

2.4.2 Environment and Infrastructure

The architecture and details of the machine that a program runs on can introduce
inconsistencies across machines and platforms. In order to ensure that also this kind
of information can be tracked, transformation steps need to be wrapped up in some
abstraction. Containerization provides such an abstraction by virtualizing the host
environment in a reproducible way.

Docker2 is one of the most wide-spread examples of this containerization technology
and aims to provide exactly this abstraction: a homogeneous environment that runs on
every machine, preventing the notorious ”Works on my machine”-issues. In the case of
Docker, environments, defined by so-called Docker images, are specified through con-
figuration files called Dockerfiles. These define the dependencies, the environment, and
all the other details needed by a machine to reliably run a program. Docker containers,
which are instances of some Docker image, are based on LXC container technology [15].
Each container is isolated from the others and functions in a sand-boxed fashion on the
host system. The containers have their own network stack which allows them to com-
municate with other containers if they are configured properly. It is a commonly used
method for deploying programs on distributed systems, as the Docker images also pack-
age the machine dependencies. The use of the Dockerfiles also allows for version control
software such as Git to version the different editions of a ”containerized” application.
Besides the widespread adoption of Docker in the business world, Docker has also been
noted as a way to increase the reproducibility of academic research [5]. Containerizing
transformation steps also makes them more reusable as they are much more portable
than plain programs running on the host OS.

2.4.3 Pipeline Configurations

Pipeline configurations are formal structures that link transformation steps to each
other. Making changes to this configuration will result in different behaviour from a
pipeline and so, may lead to different results. Regardless of the implementation of such
a structure, this configuration can be tracked and version controlled in order to see how
the pipeline evolves over time. In the case that this configuration is defined in terms

2www.docker.com
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of a structure such as YAML or JSON, this can be versioned using the same tools as
for source code. If this information is available about an experiment one can guarantee
that the structure of a pipeline and the versions of its transformations are identical to
the ones used originally.

2.4.4 Pipeline Run

A pipeline run is the combination of the transformation steps and the data set used
to run the pipeline. Running the pipeline with the same version of the data set and
the same versions of the transformation steps should yield the same results. Which
version of a pipeline configuration is run with which version of a data set is therefore
another subject of change. In order to provide complete provenance of change this so-
called pipeline run specification needs to be tracked accordingly. Version references of
pipelines and data sets do not generate a lot of data and can likely be specified in some
(structured) text format. This means that these pipeline executions can be versioned in
the same way and tracked using source code versioning systems.

2.4.5 Pipeline Updates During Runtime

The final subject of change that needs tracking is the evolution of a pipeline throughout
its execution. If changes are made to running pipelines, by swapping out a transfor-
mation step for example, this should be recorded and stored in a reproducible way.
The versioning that should result from this process is one that reflects how the pipeline
execution evolved throughout its lifecycle. This can be difficult as it requires coordina-
tion of many parts of the pipeline. How far along data has been processed and which
parts were processed using the ”previous version” and which parts were processed by
the ”updated version” for example.

2.5 Provenance of Data

Not only code, pipelines and their deployments are important when reproducing exper-
iments. A very important part is also the data that is processed by the pipeline. If the
input changes, the output obviously changes as well. Different versions of data sets will
therefore impact the reproducibility and should be dealt with accordingly. This is the
focus of the other thesis as described in Section 1.2.2 and is therefore left mostly to the
other thesis. Its importance should however not be dismissed.

2.6 Existing Workflow and Pipeline Tools

Many tools, frameworks and programs provide (parts of) the functionality required to
solve the problems of reproducible research and provenance tracking. There is particu-
larly much to find on automated, distributed workflow deployment. None of the tools
analyzed during this research seem to focus as much on reproducibility and provenance
as desired, though many of them do invest in concepts such as data lineage. Some of
these tools are investigated here.

2.6.1 Workflows versus Pipelines

Workflows and pipelines are terms that often have different meanings depending on
their context. Pipelines have been defined in Section 2.2 as a graph of transformation
steps through which data flows and gets transformed in order to achieve some common
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goal. When researching these topics the term workflow is often used as an alterna-
tive to pipeline. Though a workflow seems similar to a pipeline, there are differences.
Within this research these terms are explicitly separated. A workflow is a combination
of processes which describe some business- or scientific process. Similar to a pipeline,
a workflow can be structured as a DAG of processes which interact with each other.
Workflows are often higher level processes which can be more complex and might take
a longer time to perform. This comes from the fact that processes are not necessarily
performed by computers, but may also be some external process. The workflow can be
triggered by some external event, or by another workflow. The data that flows between
the different workflow processes is often metadata rather than actual data; in the end,
the goal of a workflow is to perform some process, not to process data per se. An ex-
ample of a workflow for a business is how an order for a product has to be handled.
A more specific example within data processing is: pull data from a database, extract
some information, produce a report, and send an email with the report, repeating the
process every week. This is in contrast to the goal of a data science pipeline, which is
to process a data set in order to gain new insights. It could very well be that a data
processing pipeline is one of the processes in a larger workflow.

2.6.2 Pachyderm

Pachyderm3 is an open-source data science platform with (enterprise) premium dash-
board aimed at scalable, distributed and repeatable data science. Its goals seem very
much in line with this research except for a few points. On the one hand it boasts open-
source, but restricts necessary features such as a dashboard interface behind a paywall.
It is also very resource intensive for local development. Running Pachyderm means first
installing Kubernetes locally, followed by all of their abstractions. This makes even sim-
ple experiments slow, and more focused on setup rather than experiment development.
Where they do provide a form of data lineage, it is not as extensive as this research
argues it should be. You can track how data flows through a pipeline, however upon
deletion of certain elements, all its information is lost. These are cases where, in or-
der to be reproducible, at least preservation of the fact that this deletion happened is
necessary. Ideally this also includes what information was deleted.

2.6.3 Apache Airflow

Apache has a fully open-source workflow manager called Apache Airflow4 that allows
workflows to be defined and configured in Python. Where Airflow shines in scheduling,
automated deployment, extensibility and user friendliness, it does not provide all the
features necessary for provenance tracking framework. Airflow is not made for data
processing and passing data around. It (ideally) only passes around metadata and
status messages. When actual data processing needs to happen, the average Airflow
workflow launches a Spark5 job which does the actual processing. Although Airflow
supports a very experimental a form of data lineage, it can only track lineage on the
level of the messages send between the nodes in the workflow. As these messages mostly
consist of metadata and not of actual data itself, the tracking of data lineage is limited.
In order to further stimulate reproducibility of experiments, more fine-grained level of
data lineage is necessary.

3www.pachyderm.com
4airflow.apache.org
5spark.apache.org
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2.6.4 Luigi

Luigi6 is a tool very similar to Airflow. It was first developed by Spotify, is less ma-
ture and adapted by the community than Airflow, and runs into the same problems as
described for Airflow in terms of processing.

2.6.5 Kubeflow (Pipelines)

Kubeflow7 is a distributed, repeatable machine learning (ML) workflow deployment tool
for Kubernetes [3]. It is one of the tools that seems to follow the ideas posed by this
research, including the processing of data. A subsystem of Kubeflow called Kubeflow
Pipelines can be used as a standalone and is more focused on the ML workflows and
their deployment, whereas Kubeflow is a bit more generic. There are however three
main concerns with Kubeflow Pipelines (in its current stage):

1. Much of Kubeflow (Pipelines) is in its alpha or beta stages. This means that much
of it is subject to change and more error prone than desired.

2. Kubeflow is very resource intensive. Getting a local version running for Kube-
flow proved troublesome due to a number of factors. Initially due to installation
problems, which could be related to the alpha/beta status. Secondly, once set up,
Kubeflow spun up over 60 pods on the local machine. This consumed all of the
resources and made it slow down before it could even finish initializing.

3. Kubeflow has a focus on ML, rather than generic data science. It reasons from an
ML perspective, having terms like training set and test set tightly integrated in
the definition of Kubeflow workflows. Many data science experiments would not
require structures like these.

In the future this Kubeflow may become more and more feasible as it matures, provided
that the heavy weight local runs can be scaled down appropriately.

2.6.6 Flyte

Flyte8 is an open-source cloud native machine learning and data processing platform
developed by Lyft. It is similar to Kubeflow in its functionality, however it provides a
more light weight approach (which is still quite resource intensive), has a lesser focus on
ML, and seems to be more mature than Kubeflow. Flyte did however introduce compli-
cations with installing locally, and resource intensive non-distributed jobs. Nevertheless,
The design of Flyte can be used as an inspiration for this research. Flyte allows users to
create so-called “tasks“ which are fundamental building blocks of their pipelines. These
tasks can be functions which perform some computation on input data similar to what
is done in functional programming when a function is mapped on an array or a stream.
These tasks, which the user has to provide, can only be written in the Python language,
using the provided SDK. Unfortunately, Flyte lacks the ability to keep track of lineage
information in the pipelines it is able to run.

2.6.7 Remarks on Existing Tools

The existing tools and frameworks have their strengths, but unfortunately these do not
completely align with the vision for this research, as provenance tracking is its focus.

6github.com/spotify/luigi
7www.kubeflow.org
8flyte.org
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None of the aforementioned tools have this specific purpose. Additionally, all these
platforms are very resource intensive, especially when run on a local development ma-
chine. Smaller experiments still exist today and a true solution should not differentiate
between small and large experiments, but scale its required resources according to the
experiment in question.

A project whose vision most aligns with that of this research, focusing on provenance
tracking is e-Science Central [10]. This project requires the user to provide code for
experiments in Java or Matlab. This is quite restrictive, as many data science experi-
ments nowadays are also performed in languages like Python, Julia or R. Unfortunately,
during more recent years this project seems to have been abandoned. The website has
been taken down and its content is no longer referenced in academic works. This, once
again, leaves a need for a framework which uses modern tools and practices without
restricting users in what experiments they can perform. This research attempts to fill
this need by designing and providing a proof-of-concept for this framework.
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Chapter 3

Architecture

This chapter describes a high level architecture of a conceptual framework designed to
be capable of tracking provenance of change such that experiments remain reproducible.
This chapter refrains from delving into any implementation details (which are covered
in Chapter 4). Approaching the problem in this way ensures that the fundamentals of
the framework and its components become apparent. An additional advantage is that
when current tools become obsolete, this framework can be re-implemented using the
newest state of the art tools, whilst relying on the same general architecture.

Additionally, note that this document is not meant to provide a full software architecture
description as often done in software engineering (SE). The focus of this research is to
provide an architecture for a framework, not a software product specification. This
chapter will use terms that come from the SE domain in a less strict manner. Examples
of this are functional requirements that are more general and at a higher level than
expected from an architecture description in SE, as well as the absence of a 4+1-model.

3.1 Concepts and Ideas

3.1.1 Fragment Abstraction

In order to facilitate as many different kinds of experiments as possible, proper abstrac-
tions are necessary. This research defines a layer of abstraction over the data of an
experiment, such that no assumptions are made about the underlying data. To deal
with all the different shapes and sizes that data may be available in, this research states
that pipelines operate on fragment streams, rather than on (batches of) data directly.
A fragment is used to denote a subset of the data, not limited by files and their types.
For example, a fragment can refer to a single line from a CSV, a single image file,
or a set of files supposed to be processed as a single batch for example. As soon as
any definitions change, the content of a fragment could change as well. This abstrac-
tion does not necessarily mean that each fragment has to be independently processable.
Fragmenting can also be used in order to optimize for download size. One request and
associated download for 1 row of CSV data uses much more bandwidth than necessary
and can be countered by putting multiple rows/files into one fragment. Since fragments
abstract away from the actual data, it becomes the responsibility of the users to open
up a fragment and process its contents.

This abstraction changes the definition of a transformation step transforming one data
set into another, to a transformation step transforming a set of fragments. By transitiv-
ity, this also changes the definition of a pipeline to process streams of fragments rather
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than streams of data. Processing a large data set as a stream of data elements allows
for changes to the pipeline whilst the pipeline is running. This fragment abstraction
does not break this feature. The stream of fragments, just like a stream of data, can be
redirected to a newer version of the transformation step for example.

It is important to note that there is no restriction or necessary correlation between
the shapes of the input and output streams. This abstraction also captures any cases
where data is supposed to be processed in batches, because any fragment can contain
an arbitrary amount of data. In a special case this would mean that an entire data set
can be treated as a single fragment. A similar technique is employed by Apache Flink1

for processing batch data [25].

3.1.2 Automating Features for Accessibility

To support many disciplines, the system needs to be easy to use. In order to take
away as many pitfalls as possible, automation of processes is necessary. Such processes
can be identified by analyzing the common parts between data science experiments.
Simultaneously, the goal is to support any and all experiments that a scientist would like
to run. Automating some processes would require assumptions about what a scientist
is trying to achieve with his or her experiment. A few processes that can be automated
include:

• Feeding the output of one transformation step as input to another. In the case of
a distributed pipeline this means moving data across the network from one process
to another. As explained in Section 2.3, it can be difficult to do so reliably. Taking
this issue away for a non-computer scientist will increase the accessibility.

• Automatically rerunning the pipeline when either the data set or a version of a
transformation step has been updated.

• Dynamically updating transformation step(s) of a running pipeline after a trans-
formation step has been updated.

There are also a couple of processes which cannot be automated for the user:

• Defining the actual computations of transformation steps, only the scientist knows
how his experiment tries to achieve its goal. However they can be reused.

• Tracking which fragments are used to produce which other fragments. This is due
to the black box treatment of transformation steps. Many inputs could lead to
one output, one input could lead to many outputs, and any other combination is
an option. This is dependent on what the user is trying to achieve, which should
be boundless.

• Translating the data of a specific data set version into a fragment stream as ex-
pected by a transformation step, such that it can be processed. Storing data in a
versioned manner can be done, but it cannot cover all possible input formats that
a transformation step may require.

3.2 Requirements

The following three key quality attributes are deemed most important: accessibility,
portability and performance. These attributes are induced by the broad target that

1https://flink.apache.org
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the framework focuses on. Ideally any scientist using a piece of software for his or her
research should be able to integrate with an implementation of the framework. Most
scientists do not have a computing science background and therefore, for a framework
like this to be adopted, usage should be as simple as possible. Any scientist able to
write code for his or her research should be able to use this framework. Hence, the
accessibility attribute. Additionally, scientists will use a very broad spectrum of en-
vironments. Running the same experiment years later for validation should yield the
same results; this requires a high portability of the system with each current and future
platform to arise as a target. Finally, the performance attribute comes from the fact
that no scientist will use the framework if it takes exponentially more time as compared
to running it without. Additionally, as described by Section 2.6, distributed platforms
that currently supply some form of these features are often very resource intensive. This
makes a performant, lightweight alternative desirable.

Using the quality attributes and insights gained from Section 3.1 and Chapter 2, a list
of requirements can be determined. These requirements together describe a system that
supports provenance tracking and reproducibility of data science pipelines. The identi-
fied requirements are categorized into 4 main functional requirements. These are data
provenance, pipeline provenance, pipeline run time management, and user interaction.
For each of these, a general description is given together with a list of specific require-
ments belonging to this main requirement. Each of the requirements is prepended with
one of 4 labels referring to either Core, or to one of the quality attributes (denoted
Acc., Perf, Port). The former means that this is a core functionality of the system
that is not necessarily in support of any specific quality attribute. Following the set of
functional requirements is a set of non-functional requirements grouped into the three
key quality attributes. Some are annotated with another attribute indicating they are
multi-purpose.

FR 1 Data Provenance

As stated in Section 2.5, it is important to keep track of the version of your data set
in order to enable reproducibility. As is tracking how data is produced as the result of
running a pipeline. Therefore, one of the requirements is that the system supports a
data versioning element to use for versioning data sets as well as relating transformed
results to those versions.

1. [Core] Define a storage format within which data sets are stored.

2. [Core] Track all of the different available versions of the data set.

3. [Core] Commit additions, removals and modifications to the data set in order
to create new versions.

4. [Core] Support roll-backs to previously committed versions of a data set.

5. [Core] Store (intermediate) results of a pipeline execution related to a (ver-
sioned) data set.

6. [Core] Maintain lineage information about the data during the execution of a
pipeline.

7. [Acc.] Be agnostic towards where versioned data sets are stored as to ensure
vendor locked users can still use the framework (e.g. AWS-S3, local storage, private
storage).
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8. [Acc.] Store data sets remotely such that multiple users are able to work on the
same data set simultaneously.

FR 2 Pipeline Provenance

This research focuses on provenance tracking of pipelines. As described in Section 2.4,
in order to reproduce results it is critical to understand how a current version came to
be, along with all changes that make up that version. Besides data provenance, this
also requires that the system is able to track all subjects of change related to pipelines
and their code. This includes transformation steps, pipeline configurations, and their
executions.

1. [Core] Track the versions of all different aspects of a pipeline configuration.
This includes the transformation steps, the version of the framework, and the
DAG structure of the pipeline.

2. [Core] Track the versions of all different aspects of a pipeline run. This includes
the version of the data set used, the pipeline configuration, and any additional
user set parameters.

3. [Acc.] Accommodate the definition of pipelines consisting of N transformation
steps defined as a DAG through a simple format (e.g. JSON or YAML).

4. [Acc.] Allow the passing of (parameter) configurations to transformation steps
via the pipeline definition, in order to tweak the exact behaviour of a transforma-
tion step.

5. [Perf] Deploy updates to running pipelines dynamically and track these dynamic
update events.

FR 3 Pipeline Runtime Management

It is important that a defined pipeline can be executed by the system in order to allow
the execution of data science experiments. Therefore, it is necessary that there is a
component which is able to execute the user-defined pipelines.

1. [Core] Deploy pipeline runs based on their definitions over available resources

2. [Acc.] Deliver data to relevant endpoints without additional user specification
besides the pipeline.

3. [Acc.] Be agnostic towards the experiment performed in terms of programming
language, shape of data, and execution environment.

4. [Perf] Scale individual transformation steps when indicated by the user.

5. [Perf] Given intermediate results and lineage information, allow restarts of a
pipeline from an intermediate point, without having to re-execute all upstream
nodes.

6. [Port] Function in both a distributed and single (computation) node setup.
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FR 4 User Interaction

The user defining a data set or defining a pipeline should be able to interact with the
system in a user-friendly manner.

1. [Acc.] Present one or more user interfaces which allows the user to interact with
the various elements of the system.

2. [Acc.] Both results and lineage information of an executed pipeline should be
both presented to, and retrievable by the user.

3. [Acc.] Notify the users about the progress of a pipeline run.

NFR 1 Non-Functional Accessibility Requirements

This requirement describes non-functional requirements that further support the acces-
sibility quality attribute.

1. Try to explain from where inconsistencies originate in the case of inconsistent
results that arise from non-user-defined behaviour such as crashes or failed requests
that cannot be recovered from.

2. Redefining existing experiments within the scope of the system should require
minimal effort for a user

3. Users with enough skill to program their experiments should be able to use this
system

NFR 2 Non-Functional Performance Requirements

This requirement describes non-functional requirements that further support the per-
formance quality attribute.

1. Experiments executed within the system should at most take 1.5 times the run
time of the same experiment executed outside the context of the system.

2. Handle data sets larger than the memory capacity of a single node.

3. The system must be light weight such that it is able to run reliably on a single
machine.

NFR 3 Non-Functional Portability Requirements

This requirement describes non-functional requirements that further support the porta-
bility quality attribute.

1. Interaction with versioned data sets do not require a user to download the entire
data set. A client machine with insufficient disk space to fit the whole data set
should still be able to use the system.
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2. [Acc.] Data set development and manipulation works independently from pipe-
line definitions and their deployments such that users working on one of these do
not need knowledge nor dependencies of the other.

3.3 Architecture Overview

This section describes the set of architectural components and their interactions on a
high level. The components are divided into two categories: the infrastructure within
which pipelines are created, deployed and managed (Section 3.3.1), and the components
associated with such a pipeline run artifact (Section 3.3.2). Each of the components in
these sections will be covered in more detail in Section 3.4. This section is only meant
to give a general overview of the various components and their interactions.

3.3.1 Pipeline Infrastructure
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Figure 3.1: Component overview of the long-lived components

Figure 3.1 shows an overview of the longer lived components, together with a pipeline
execution artifact. The user interface is the entry-point of the framework. Users will
need to interact with the system and so, in order to make the system accessible to all
users, a clear and well-presented interface is needed. In the diagram above, the user
interface can be treated as the user as it is the only way to interact with the system.
From here the pipelines can be deployed by submitting pipeline run specifications to
the pipeline manager. Besides pipeline management and deployment, the user interface
also grants access to the data versioning features of the framework. The data versioning
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component is responsible for handling all requests regarding creation, updating and
versioning of data sets. The pipeline manager component is responsible for deploying,
tracking and further managing pipeline artifacts that a user wants to execute. It is also
responsible for keeping the user updated by passing on information to a notifications
component, which will then inform the user via the interface. Furthermore, in order to
allow for decoupled data set development and pipeline executions, there is a dedicated
storage interface for other components in the system such as the pipeline manager and
the transformation steps. Finally, there is a provenance tracker component which is
responsible for tracking provenance data regarding a pipeline execution. This includes,
but is not limited to, information such as data lineage on the fragment level.

3.3.2 Pipeline Artifacts
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Figure 3.2: Component overview of the run time components

After a user has submitted a pipeline run configuration to the pipeline manager, a
pipeline artifact is deployed. This artifact consists of three different types of components.
These types are fragmenters, transformation steps, and combiners. An example pipeline
is shown in Figure 3.2. The components of the artifact are created when a pipeline
artifact is deployed, and removed after it has completed.
The fragmenter acts as the source of data within a pipeline run. With that, it is also
the root of its associated DAG. This component is responsible for transforming the files
associated with a data set, into a stream of fragments. Since the goal of a pipeline is
defined by the user, it is important that the framework makes no assumptions about a
data set. Therefore, users can define how a fragmenter generates fragments from a data
set.
The transformation steps are the user defined operations that process fragments from
the fragment stream. Furthermore, each transformation step can save its intermediate
results. They also send provenance information about the fragments they process in
order to track their progress.
The combiner acts as the final step of the pipeline and is responsible for transforming
a fragment stream back into just a data set and storing it along the original dataset.
This means that a combiner typically acts as the sink of the DAG of a pipeline. The
combiner is created automatically without specifics provided by the user. This is possible
because both the format of fragments and storage format of datasets are defined by the
framework. So, in order to help users, this process can be automated.
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3.4 Architectural Components

3.4.1 Persistent Storage

In order to enable reproducibility over a larger time span, it is necessary that data sets,
their versions, the pipeline versions etc. are stored persistently. The persistent storage
component is a storage service where the data required by the framework can be stored.
The goal of this component is to allow users to re-run pipelines even years later, because
the data is still stored in the same manner.
In order to support as many users as possible, the framework needs to support many
different storage backends. Users may already be accustomed or vendor locked in to
one provider and so, supporting as many as possible furthers the accessibility of the
framework. The storage backend can be provided by either a cloud storage provider,
such as Amazon S32 or Google Cloud Storage3, or by some other persistent storage
connected to the framework. For testing and development purposes a storage medium
of a local machine can also be used.

It is important to note that the only way through which stored data should be accessible
is via either the storage interface component or through the data versioning component.
This is due to the fact that these two dictate the format and structure of the stored data.
This allows for a clean decoupling of the interface and the storage. The data might not
be needed for years, and can sit in archival storage without needing any CPU resources
to manage it. This saves resources and, especially for cloud instances, money. The
moment this data set is needed again, an instance of the storage interface or the data
versioning component can be started. This instance will mount the storage backend,
which makes the data available again.

3.4.2 Storage Interface

Each of the persistent storage providers might have different interfaces. This component
provides a common, easily extendable interface over these persistent storage providers.
This enables the users of the system to use any storage provider they want, whilst
using the framework. The storage interface is used to grant access to the stored data
in the format of the framework to the other components in the framework. These other
components include the pipeline artifacts, pipeline manager and the provenance tracker.
Each time these components need to retrieve or store data, they do so through this
storage interface.
The storage access of the data versioning component (Section 3.4.3) is separate from the
rest of the framework. This decoupling allows scientist to work with a data set without
having to use the rest of the framework and its dependencies.

3.4.3 Data Versioning

The data versioning component is responsible for managing the versioning of data sets.
A data set can have many different versions, each of these are related to their previous
versions. Newer versions are usually similar to an older one, but with some additions
or removals. This results in a tree like structure of versions, called a version tree. It
is important that all versions and the version tree itself are kept valid, since actions
such as rolling back to a previous version of a data set, or changing to another branch
in the version tree needs to be possible. The data versioning component performs this
validation and ensures these rollbacks and version changes are possible.

2https://aws.amazon.com/s3/
3https://cloud.google.com/storage
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After a new version of a data set has been submitted, the actual files of the new version
are stored in the persistent storage component. Other components in the framework are
then able to access the files of the different data set versions by requesting the files from
the storage interface component.
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Storage
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Dataset

Dataset

Dataset
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DV	Server DV	Server DV	Server

User
Interface

User
Interface

User
Interface
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Figure 3.3: Component architecture of the data versioning component

The data versioning component functions similar to version control software such as
Git4 in the following ways: there is a remote version, which is the ground truth. It has
a tree of versions and branches, each of which is immutable. Locally, users can pull the
latest version, stage any changes to the data set and then commit the results back to the
system. This gives the data versioning 3 layers as portrayed in Figure 3.3. One difference
with version control software for source code is that it is not necessary to download the
whole data set in order to make changes to a data set. This is necessary because data
sets might be too large in size to fit on a single machine. The storage is handled by the
persistent storage component. The local functionality is performed by the DV client,
which can be exposed through the user interface component. Validation, committing,
and pulling commits is handled by a subcomponent called the Data versioning server.
This server is a separate program that can run independently and the DV clients connect
to them. It can run on the same machine and be presented as one. This extra layer
of indirection however, allows for multiple users to connect to the same data versioning
server. This would enable special access control restrictions on data sets or storage
backends at this server level, which is useful in cases where data is classified. The fact
that different users can access data both via their own instances of a data versioning
server, or by connecting to the same server also ensures that scientists working remotely
on a joined project can more easily share (access to) data sets. This multiple users and
multiple providers pattern is also shown in Figure 3.3.

4https://git-scm.com/
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3.4.4 Pipeline Manager

The pipeline manager is the component responsible for managing the different aspects of
a pipeline run. The user provides a configuration for a pipeline run, which includes the
versions of the transformation steps, the version of the data set and other configurable
settings of a pipeline in a structured format. The pipeline manager is then able to
deploy the different steps of the pipeline and makes sure that the correct processes are
scheduled on the available processing nodes. It keeps track of the status of the pipeline
and ensures the individual steps of the pipeline complete successfully. If something goes
wrong in the execution of the pipeline, the manager is responsible for either restarting
the failed pipeline run, or reporting an error to other components in the framework. The
pipeline manager also makes sure that the resources used by the pipeline artifact are
freed after finishing. This component would also be the one to orchestrate any changes
to the pipelines, such as applying dynamic updates and ensuring these would result in
a new valid state of the pipeline.

3.4.5 Notification

Whenever a pipeline starts, the pipeline manager keeps track of the status of this
pipeline. The notification component is responsible for notifying the user about the
status of the pipelines and of any additional notifications that may prove necessary.
The user can be notified when a specific transformation step has finished, or when the
whole pipeline has finished running. The user can also be notified if there is something
wrong with the framework. For instance, if there is an error in the source code of a
transformation step, or if the persistent storage is not accessible. Depending on the im-
plementation of the user interface (e.g. CLI, web-interface, etc), these notifications can
then be visualized and displayed accordingly. The notification component is introduced
as a filter and aggregator such that, for larger experiments, the user is not flooded with
information. It is meant to present all this information in a concise way.

3.4.6 Provenance Tracker

The framework should be able to track the origins of the results of a pipeline. As stated
in Section 3.1.1, the data sets are processed as a stream of fragments. Because of this
it is possible to keep track of the lineage of each of the fragments. Each transformation
step keeps track of which input fragments are used to produce which output fragments.
The exact details cannot be automated, as only the user knows how many fragments
are used to create a new one. So the framework should present handles for this. The
information is sent to the provenance tracker component, which collects all of the frag-
ment lineage information of the pipeline run produced by the artifact. This information
includes which fragments are processed by which transformation steps, which fragments
are descendants of other fragments, and so, how data evolves throughout a pipeline. Af-
ter a pipeline has finished running, the lineage data is redirected to the storage interface
to be properly and persistently stored. This information differs from the notifications
send to the user, as this information is the raw provenance data that the notification
component at most aggregates over. Thanks to this component, an entire lineage path
is available for each fragment.

3.4.7 User Interface

The user interface is the main component through which the user can interact with the
framework. The user interface allows users to interact with the data versioning com-
ponent. Through this interface users can also submit a pipeline configuration together
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with a data set version to form a pipeline run. From here the ”deployment-request”
is submitted to the pipeline manager. The user interface also shows the user whether
the submitted request is valid, presents the user with information about its progress,
and receives other updates from the notification component. Important to note is that
this user interface could consist of multiple subcomponents. This component means to
envelop all user interface parts of the framework. For example, if in the implementa-
tion the data versioning would be accessed via a CLI and the pipeline manager via a
web-interface, these two would still be covered under this component. This component
is responsible for handling user interaction, how it does that, in which format, and in
how many parts this interface is presented, is an implementation detail.

3.4.8 Ephemeral Components

The ephemeral components, that make up a pipeline run artifact , are created by the
pipeline manager as the user submits a pipeline run configuration.

Transformation Steps

Abstraction

Transfor-
mation

OutputInput

Data	Flow

Figure 3.4: Abstract view of a transformation step

The user provides the code for the actual transformations. It is important that the
framework is agnostic towards as many aspects of the experiment, so the choice of
programming language and other dependencies should not be limited. This implies
that some kind of abstraction is needed to refrain from making assumptions about such
dependencies. A concrete example of such an abstraction is given in Chapter 4 using
modern pre-existing tools. In order to make it as accessible as possible, the framework
should take care of getting input data to the transformation step and moving the output
data out. Therefore, some kind of interface is needed to connect the framework to
the actual computations of the user. The abstraction layer, interfaces and the actual
transformation are all depicted in Figure 3.4.

Fragmenter

Data sets are not stored as a fragment stream, as the data set may be useful in differ-
ent situations or for different experiments. However, within this framework, pipelines
operate on streams of fragments. From this a need arises for some component that
transforms data from a version of a data set into a fragment stream to be processed
by the transformation steps of the pipeline. The fragmenter is this component. This
makes the structure of a fragmenter a special case of a transformation step. It processes
a single element fragment stream, i.e. the entire data set, and produces N fragments.
These fragments are the actual fragment stream of this pipeline. Due to the size of data
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nowadays, no machine could reasonably process entire (large) data sets as a single frag-
ment. This is why the fragmenter is still identified as a special component, because it
needs to deal with the entire data set at once, irregardless of its size. Ways to deal with
this can be to fragment based on metadata about the data set (files, types, etc.), then
downloading and attaching the data associated with only that fragment before passing
it on. The actual implementation is not covered here, but tackled in Chapter 4. Nev-
ertheless, this problem should be considered and any implementation should carefully
design an elegant way to deal with this.

Combiner

As mentioned in Section 3.3.2, the combiner acts as sink of a pipeline execution. It
is introduced for two reasons. The first being the fact that a user does not have to
deal with storing its output data back into the persistent storage. Both the fragment
abstraction and the storage interface are defined by the framework, and so this can be
taken care of for the user. Secondly, it functions as a component that can produce ”new”
data sets from the output of a pipeline. It can be useful for example to store the output
of one pipeline, not only as a transformed version of the original data set, but to store
it as an entirely new data set.
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Chapter 4

Implementation

In this section a proof-of-concept implementation is described. Note that the architec-
ture itself can be implemented it multiple ways. This section describes one possibility
using the tools currently available. Additionally, the time allocated for this research did
not allow for the full-fledged implementation of a framework of this size. This causes
the implementation that is described here to focus on core elements that demonstrate
the capabilities and limitations of the designed architecture. This includes the ability
to track provenance and to reproduce results, as well as pitfalls and complications dis-
covered during the implementation phase. The internal workings of the implemented
services is discussed conceptually, but the fine-grained details of the internal workings
of the services is left to the documentation found in the according code repositories.

The proof of concept framework introduced in this section is called Iterum. Iterum is
open source1, licensed under the open MIT license. It focuses on two systems which
together provide most of the functionalities described in Section 3.2. The first system
consists of a data versioning platform, and the second is a pipeline deployment frame-
work. The data versioning system can be used without the user having to install the
whole pipeline deployment framework, whereas the pipeline deployment framework re-
quires access to a version controlled data set created by the data versioning system.
The versioning of source code has long been handled by version control software such
as Git, which has proven to be an invaluable asset in the software development cycle.
Therefore the focus of this implementation lies not in version controlling source code and
configuration files (Dockerfiles, Kubernetes configurations, etc.), but rather on defining
the challenges faced by a provenance tracking framework in terms of such proven tools.

4.1 Implementation Overview

In Section 3.3 an overview of the different architectural components is given. In this
section, the mapping of these components to implemented software artifacts is described.

4.1.1 General implementation philosophy

The software artifacts are mostly implemented as microservices. This fits the paradigm
of distributed computing, whilst remaining useable in a single node setup. The software
artifacts expose their functionality over a web interface, which allows them to interact
with each other using predefined interface contracts.

1github.com/iterum-provenance
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Kubernetes

The framework makes extensive use of Kubernetes in order to manage (distributed) clus-
ter resources. Kubernetes provides a layer of abstraction on top of actual infrastructure
resources, which automates the deployment and the management of a set of distributed
nodes. This massively reduces the cognitive load on developers. The following abstrac-
tions provided by Kubernetes affect the design of the software artifacts:
A Pod2 is the smallest logical unit of computing that Kubernetes can schedule. A pod
consists of a set of (Docker) containers which function in conjunction with each other.
This means that the containers in a pod are always scheduled on the same physical node
in a cluster. Containers in a pod are able to share storage volumes and networks, which
is a concept that is used when scheduling pipeline run artifacts.
A Deployment3, is a long-lived workload of pod(s). A deployment usually remains
running until the user removes the deployment. Kubernetes tries to maintain the desired
state that is described by the deployment. This is done by restarting pods which have
crashed for example.
A Job4 is a short-lived variant of a deployment. The pods in the job run until the
pod exits either successfully or with an error. After the job has finished running, the
job is considered completed and the resources used are cleaned up. Iterum uses more
concepts provided by Kubernetes, but these are less relevant in the discussion of the
implementation.

Fragment Implementation

Part of the asynchronicity of Iterum is achieved by using a message queueing service to
communicate between the different steps of a pipeline artifact. Section 3.1.1 explains
that the concept of a fragment is used to process a data set as a stream. However,
the data in a fragment might be large and cannot be enveloped by message queue
appropriate messages. In order to accompany this, the fragments are split into fragment
descriptions and fragment data. These fragment descriptions contain references to the
data associated with that fragment. In this way, the fragment descriptions are small
and can be passed around via the message queue, but the actual data is stored in a
distributed storage and can be retrieved when needed.

Language Features

The performance quality attribute is one of the key drivers of the design of the frame-
work. The implementation should therefore carefully consider decisions that may impact
this. Picking a programming language is an example of such a decision. Personal pref-
erence should arguably not influence the choice of programming language, but rather
how well the qualities of a language match the need of the project. This framework
extensively uses both the Rust and Go programming languages. Language features
such as Goroutines and so-called channels from the Go language are used in order to
keep communication asynchronous and workloads concurrent. The borrow-checker from
Rust is used in order to keep data access consistent. Both languages are relatively young
and low-level, enabling high performance, whilst offering twenty-first century language
features, such as proper package management and tooling.

2kubernetes.io/docs/concepts/workloads/pods/pod
3kubernetes.io/docs/concepts/workloads/controllers/deployment
4kubernetes.io/docs/concepts/workloads/controllers/job
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4.1.2 Mapping of architectural components to software artifacts

Some of the architectural components are combined into single software artifacts. This
is due to time-constraints and the evolution of the architecture throughout the project.
This does not have large effects on the functioning of the framework, as the commu-
nication pathways between the combined components are similar to the ones described
by the original architecture. For example, the Provenance tracker component is com-
bined with the Pipeline run manager to form the larger ”Manager” component. Both of
these components communicate with the storage backend, and are therefore combined.
Figure 4.1 shows an overview of how the different architectural components map to the
software artifacts.
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Figure 4.1: An overview of the architectural components and how they relate to the
implemented software artifacts

The dashed boxes enveloping one or more architectural components imply a single soft-
ware artifact fulfilling the function of those architectural components. Furthermore, the
notification component has been omitted due to time constraints. This component does
not directly contribute to the provenance tracking capabilities, but more to the acces-
sibility. The choice was made to spend more time on the other components, since the
notification information can be retrieved instead of delivered. Finally, three additional
software artifacts are introduced: a message queueing service (RabbitMQ5), distributed

5www.rabbitmq.com
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storage (MinIO6), and the Kubernetes Admin which is part of Kubernetes.

4.2 Component Analysis

In this section, the software artifacts of Iterum are discussed and it is described how
they implement the features of the architectural components.

4.2.1 Infrastructural components

Manager

The manager combines the functionality of the architectural components of the Pipeline
manager and the Provenance tracker into one component. The manager communicates
with the Kubernetes API whenever a pipeline job needs to be scheduled, hence the
Kubernetes Admin.

A pipeline run artifact consists of 2 + N subcomponents: a fragmenter, a combiner
and N transformation steps; where N depends on the pipeline configuration. Each of
these subcomponents are packaged in a pod, and then scheduled as Kubernetes jobs.
This means that for each of the pipeline runs, the manager has to schedule 2 + N jobs.
Scheduling each of the subcomponents in a separate job, instead of one large job contain-
ing all of the subsystems, allows for fine-grained control over how the subcomponents
have to be scheduled. For instance, specifying the amount of pods per job, and therefore
per subcomponent, rather than pipeline-wide. This can then be used to parallelize part
of the workload where possible.

The transformation steps of a deployed pipeline produce lineage information for each
processed fragment. This lineage information is published on a lineage information
queue on the message queuing service. The provenance tracking component consumes
this queue, and ensures that the provenance information is properly stored on the storage
back end, together with the rest of the information regarding the pipeline.

Daemon

The daemon7 combines the architectural components of the Storage interface and the
Data versioning server. The users are able to interact with the data versioning daemon
via the user interface. Here they specify how new versions of a data set have to be added
to the data set. The data versioning component checks and manages new versions of a
data set. Valid updates to a data set are then acknowledged and stored in the persis-
tent storage associated with this data set. How the versioning of data is implemented
is further explained in the code documentation8. Since the storage interface only pro-
vides access to the data structured by the data versioning server, these group together
naturally into one software artifact.

For this proof of concept (PoC), only a local storage back end is supported. However,
interfaces are provided in the source code; if implemented, these will allow the usage
of other storage providers such as Amazon S3 and Google Cloud Storage. These extra
features would be necessary when using Iterum only for its data versioning features,
without running a Kubernetes cluster. Kubernetes uses another abstraction to provide
persistent storage called Persistent Volumes9. These persistent volumes can be provi-
sioned by many storage providers, but mounted as if they were local storage by pods in

6min.io
7this artifact was intended as a background process for system, hence the name
8https://github.com/iterum-provenance
9kubernetes.io/docs/concepts/storage/persistent-volumes
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the cluster. This means that a daemon, mounting a persistent volume provisioned by
Amazon S3 for example, can use this storage as if it is a local storage (back end). This
is why the extra storage back ends for daemon instances outside a Kubernetes cluster
were left less explored.

User interface

In general, each of the infrastructural components expose a REST API through which
requests can be made. All of the functionality of the framework is exposed through these
REST APIs. This allows for the creation of different user interfaces consuming these
APIs. The usage of a REST API allows for decoupling of the the user interface and
the rest of the application. In terms of extensibility of the current implementation, this
means that the creation of other user interfaces such as a web interface can be achieved
without additional effort in terms of integration.

For Iterum, a CLI is created which allows users to interact with the system10. This CLI
consumes the REST APIs of the Manager and the Daemon. The CLI currently consists
of two main subsystems, one to manage Iterum data sets, and another to manage (the
deployment of) pipelines. The data set management subsystem allows the user to create
a new data set, commit new versions, branch off, and remove data sets. In order to use
the versioned data set as an input for a pipeline run, the data set needs to synchronized
with a Data versioning server, which stores the data in the specified storage back end.
The CLI also provides the tools necessary to do so.
The pipeline subsystem of the CLI allows users to submit pipeline runs. The CLI passes
this specification on to the manager which is then able to schedule the pipeline. The
user can request the status of pipelines currently deployed using the CLI.

4.2.2 Additional Services

Three services have been added to the system in order to support the workings of the
pipeline run artifacts. All of these services are added in order to support the sending
and retrieving of fragments between the different subcomponents of a pipeline run.

Message Queue and Distributed Storage

As described before, a fragment is split into a fragment description and fragment data.
The fragment description is small enough to be passed around via channels on the
message queue, but the data belonging to the fragments is not. This data is stored on
the distributed storage. This is done such that it can be retrieved again by the consumer
of the associated fragment description that came off of the message queue.

Note that it is also possible to send the fragments between the different nodes in a peer-
to-peer fashion, without the help of the described services. For this PoC the decision
was made to add these services, as the usage of a centralized message queue simplifies
the communication between the subsystems of a pipeline run. Additionally, message
queuing systems provide fault-tolerance and persistence guarantees which are harder
to accomplish when the software artifacts communicate in a peer-to-peer fashion. The
same argument holds for the additional in-cluster distributed storage.

Kubernetes Admin

As stated before, the pipeline run artifacts are deployed as Kubernetes jobs. This
is done using the Kubernetes Admin. In a Kubernetes cluster, any user or service

10github.com/iterum-provenance/cli

29



account with the correct permissions is able to manage resources on a cluster11. The
Kubernetes API can be used to create, modify or delete resources, provided that the
user is authorized12. For the Iterum framework these functionalities are used to control
the creation and the management of the pipeline run artifacts. The software artifact of
the manager is deployed such that it is able to deploy new jobs, but also request the
status of the deployed jobs.

4.2.3 Ephemeral components

Every time a pipeline run is submitted to the Manager, some artifacts are scheduled
to run on the cluster. As described in 4.2.1, the different components are scheduled as
Kubernetes jobs. The lifetime of each of these artifacts is limited. These ephemeral
artifacts start when they are scheduled, and complete whenever there is no data left
to process. Figure 4.2 shows an implementation overview of these components. These
diagrams are explained in more detail throughout the rest of this section.
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Figure 4.2: Implementation of the ephemeral components with numbered interactions

11kubectl.docs.kubernetes.io/pages/kubectl book/resources and controllers
12kubernetes.io/docs/reference/access-authn-authz/rbac/
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Sidecar Concept

In this implementation of the framework, the user is able to provide any Docker image
containing the computational part of a transformation step. In Iterum, two containers
are combined in each of the pods of the Kubernetes job. One container being an instance
of the transformation step image the user provides, and the other container is a ”sidecar”.
This sidecar is responsible for communicating between the user-provided transformation
step and the other components of the pipeline run. The sidecar is the implementation
of both the abstraction and input/output interfaces described in Figure 3.4. Since
the transformation only needs to interact with the sidecar, the implementation of the
transformation can remain minimal, only focusing on the actual computation.

Even though the sidecar abstracts away from all communication logic between a user-
provided transformation and the rest of Iterum, the transformation still has to communi-
cate with the sidecar. Theoretically, the user can write this logic since common methods
are used to communicate (network sockets) using common formats (JSON). However,
to lower the entry barrier for the users, client libraries can be created which abstracts
this communication away as well. This PoC is accompanied by a Python library called
Pyterum13 which provides this functionality for the Python language. This language
was chosen as it is one of the main tools used by data scientists today. The concept of
a sidecar also helps in keeping these languages libraries as small as possible, since the
sidecar takes care of a lot of the work otherwise included in the language library. An
example of how a user-provided transformation step using Pyterum looks like can be
found in Appendix B.1.

Fragmenter

The fragmenter component consists of a so-called fragmenter sidecar combined with
the user-provided fragmenter. The interaction between these containers is shown in
Figure 4.2b. The numbers in this figure correspond to the following descriptions:

1. As the fragmenter sidecar is started, it retrieves the list of filenames associated
with the provided version of the data set from the storage interface.

2. The actual data from the files is retrieved in a one by one fashion.

3. The list of filenames is send to the user-provided fragmenter which uses this list
to fragment the file list as described by the image.

4. The fragmenter sends subsets of the provided list of files back to the sidecar. Each
subset indicates one fragment.

5. The fragmenter sidecar simultaneously uploads all files one by one to the dis-
tributed storage whilst the fragmenter is producing file lists.

6. Once all files associated with a fragment are uploaded a fragment description is
created using the file list generated by the fragmenter. The fragmenter sidecar
uploads the provenance information of the produced fragment (description) to the
provenance tracker py publishing it to a specialized message queue.

7. The fragmenter sidecar sends the fragment description to the message queue so it
can be processed by the first transformation step.

13github.com/iterum-provenance/pyterum
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Transformation step

A transformation step consists of a sidecar and the user-provided transformation. The
communication between the sidecar and the transformation step container uses a shared
volume and a shared network between the two images. The shared volume is used by the
sidecar to store downloaded files in order to make them accessible to the transformation
step provided by the user. The shared network is used to communicate from the sidecar
to the transformation step which fragment is ready to be processed. The transformation
step then lets the sidecar know which fragment has been processed. This allows for a
decoupled structure in which the sidecar coordinates with the framework and downloads
and stores the work to be done by the transformation step. Then, as the work becomes
available on the shared data volume of the pod, the sidecar informs the transformation
step that the workload is ready to be processed. Storing files on the shared volume allows
the sidecar to buffer the next few fragments and corresponding files to be processed,
improving the performance. Finally, it also increases the accessibility of the framework
as users can write their transformations as if they read in data from the disk. It is
very likely that they are familiar with these kinds of operations, making working within
the framework more natural. In Figure 4.2a the interaction between the containers is
shown. Similar to the description of the fragmenter sidecar, the numbers in this figure
correspond to the following descriptions:

1. The sidecar retrieves a fragment description from the message queue.

2. The sidecar downloads the file(s) associated with the description from the dis-
tributed storage.

3. The sidecar stores the downloaded file(s) in the volume shared by the containers
in this pod.

4. The sidecar passes the fragment description to the transformation step, indicating
its data is available for processing.

5. The transformation step can now retrieve the file(s) described by the fragment
description and process them in any way.

6. The transformation step stores the transformed data on the shared volume.

7. The transformation step informs the sidecar that a fragment has been processed
by sending a new fragment description.

8. The sidecar retrieves the new data associated with the new fragment description
from the shared volume

9. The sidecar sends provenance information regarding this new fragment to the
provenance tracker via the message queue

10. The sidecar then uploads the new data to the distributed storage

11. Finally, the sidecar publishes the new fragment description on its output channel
as input for the next step.

Combiner

After all of the fragments have been processed by the user-provided transformation steps,
the results need to be stored. The combiner is similar to sidecars described in previous
section. However, instead of communicating with the transformation step, the combiner
uploads the data to the storage interface. Figure 4.2c describes the interactions between
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the combiner and the rest of the framework. The numbers in this figure correspond to
the following descriptions:

1. The combiner retrieves fragment descriptions from the message queue.

2. The combiner downloads the file(s) associated with the description from the dis-
tributed storage.

3. The combiner uploads the data to the storage interface, associating it with the
original data set and the corresponding pipeline run.

4.3 How Iterum enables provenance tracking

The overarching goal of Iterum is to track the provenance of change in data science
pipelines. In order to do so, Iterum tracks the versions of various aspects of a pipeline.
Between these versions, differences can be identified and used to explain deviating re-
sults.
Iterum is strict in its specifications, only allowing pipelines to be executed if all its
elements are defined within its scope. For each transformation, an explicit Docker
image has to be specified along with a tag. This ensures that the exact same version of
a transformation is used every time. The pipeline configuration itself, is stored alongside
the results of the execution in the versioned data storage. This connects the data set,
output of the pipeline, and the definition of the pipeline run to each other. The input
data of a pipeline is specified by a commit hash, which defines a specific version of a
data set that will be used. The only data sets that are allowed as input for Iterum are
data sets versioned through Iterum and accessible via the Daemon.
Throughout the run of the pipeline, all intermediate results are stored on the distributed
storage component; ensuring that this information remains accessible. For each fragment
that passes through the pipeline, lineage information is gathered and stored in the
persistent storage as well. This allows the tracing of each and every output fragment
and file back through the pipeline, all the way to the original input data.
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Chapter 5

Evaluation

This chapter evaluates the results of this research in three parts. The first is an evalua-
tion of Iterum through two use cases. Secondly, it evaluates whether the implementation
and subsequently the architecture meet the requirements posed in Section 3.2. This is
done in order to understand whether the implementation is a proper representation of
the architecture and the architecture of the requirements. Finally, the reproducibility
and provenance tracking capabilities of the architecture are analyzed in more detail.
Pitfalls and limitations are identified and analyzed in order to understand where these
come from and what their impact is.

5.1 Use Case 1: FeatBoost

In order to assess the viability of the framework, two actual data science experiments
have been ported and re-implemented within the Iterum framework. The first use case
is an experiment involving a novel feature selection algorithm called FeatBoost [1]. The
algorithm can be used in conjunction with another classifier or predictor. Feature se-
lection is an essential part of data science as the size and complexity of data increases.
These algorithms often function as part of a larger system in which features are first
selected after which the resulting data set is processed by subsequent steps.

Iterum is better suited to work with data sets which can be processed as a stream, but
this use case demonstrates that batch jobs with less, but (possibly) larger, fragments
are also a valid approaches.

5.1.1 Experiment Definition

Input data set

A subset of the Isolet data set is used as the input for the pipeline [24]. This is one of
the data sets used to evaluate the FeatBoost algorithm. This data set is first versioned
using the data versioning component of Iterum in order for it to be used as an input
for the pipeline. The entire data set consists of a single file with a ’.mat ’ extension. It
contains 1560 records with 617 features each, totalling roughly 5MB in size.

Pipeline definition

For the purpose of using FeatBoost for Iterum, a basic pipeline consisting of two trans-
formation steps is used. The fragmenter of this pipeline fragments the file as a single
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fragment, producing a single element fragment stream. This is viable due to the rela-
tively small size of the data and the dependency of the algorithm on all data at once.
The first step of the pipeline is a preprocessing step, it parses the data from the file
into the correct Numpy structures1. The second step performs the actual FeatBoost
algorithm on the preprocessed data, which consists of first training the classifier on the
data and subsequently transforming the data into the set of selected features. This
transformed data is then send to the combiner, which is responsible for storing the data
back into the persistent storage along with the original data set.

5.1.2 Results

The results of the various editions of the experiment are displayed in Table 5.1. This
table shows run times for each of the transformation steps as well as the overall run
time. In the cases of Iterum, the sum of processing steps does not add up to the total.
This is due to the parallelization in Kubernetes and the preprocessing step finishing
up after the FeatBoost step is already running. The true time that the preprocessing
pod is online in Iterum is therefore also longer than the value depicted here. Due to
randomness of which pods initialize first it may have to wait a little before starting and
finalizing. These times do not scale, but are simply latency. The table shows six different
runs: A baseline python script containing the pipeline which is run on a local machine,
the same script run within a docker container, this docker container deployed as a job in
Microk8s, the implementation in Iterum run on Microk8s, the docker container deployed
as job on a Google Cloud cluster, and finally the Iterum implementation run on this
cluster. The final column shows whether the results of the experiment were identical to
the ones observed in the baseline experiment.

Lineage data on the fragment level is tracked. This is not explicitly presented here as
the data generate by this experiment is trivial. This is due to the simple chain of trans-
formation steps and the single fragment that is passed through it. A more interesting
example is presented in Figure 5.1 for the other experiment. For this experiment it
would just be a simple 3 element chain.

run times → Total Preprocess FeatBoost Fragmenter results

Local 00:19:18 < 00:00:01 00:19:18 N.A. baseline

Docker 00:19:49 < 00:00:01 00:19:49 N.A. identical

Microk8s 00:30:23 < 00:00:01 00:30:23 N.A. identical

Iterum 00:30:20 < 00:00:01 00:30:19 < 00:00:01 identical

GCloud 00:25:48 < 00:00:01 00:25:48 N.A. identical

Iterum 00:26:00 < 00:00:01 00:26:00 < 00:00:01 identical

Table 5.1: Results of various editions of the FeatBoost experiment and their run times

5.1.3 Evaluation

As described, this experiment revolves around a single element fragment stream running
through two transformation steps and a fragmenter and combiner in a sequential fashion.
Since the structure of the experiment is very simple, one would not expect Iterum to

1numpy.org
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impact the performance by much. This is verified by the performance seen in rows three
through six of the table. The slowdown clearly comes from running the experiment
on Kubernetes (running on top of an operating system), rather than the abstractions
introduced by Iterum. This slowdown due to Kubernetes is expected in these cases
as the pipeline is not very complicated and not very parallelizable, meaning that the
benefits of Kubernetes are used minimally. Measuring the Iterum performance impact
is not really possible with this experiment due to its simplistic nature, but will become
more apparent by analyzing results from the other experiment.

What this experiment does show is the ability to run batch jobs using Iterum, as well
as its ability to properly (re)create experiments. Each of the experiments shown in
Table 5.1 produces identical results, showing that Iterum does not interfere with the
possibilities. The single chain of lineage information is still very valuable. It shows
for each step of the pipeline, the version of this step, what data set goes in, and what
results it produces. This allows for reconstruction and analysis of what happened even
after the experiment finishes. All in all, Iterum does not limit the performance of this
experiment, but enables a better reproducibility thanks to the versioning of the pipeline
run configuration and the intermediate results combined with a lineage path of each
fragment.

5.2 Use Case 2: Egocentric Photo Streams

The second use case comes from a paper authored by Talavera et al[20]. In this paper,
a tool is introduced for automatic discovery of routine days of an individual based on
egocentric photos2. This tool consists of a pipeline made up of computational steps
which is able to classify the egocentric photos of one day into either a routine day or a
non-routine day. In addition to the tool, the paper introduces a data set consisting of
egocentric photos of users which is used to evaluate the tool.

5.2.1 Experiment Definition

The tool introduced in the paper consists of a couple of separate computation steps,
which can be mapped well to the transformation step abstraction of Iterum. Addition-
ally, some of the steps in the pipeline can start the computation without requiring the
whole data set to be present, enabling the data to be processed as a stream of fragments.
The pipeline presented in the paper can be described as follows:

1. Image semantics extraction using convolutional neural networks (CNNs) to gener-
ate labels per image.

2. Temporal document construction by aggregating all generated labels over certain
periods of time.

3. Generate topics per time slot using all temporal documents of a user (using LDA
[4]).

4. Unsupervised routine discovery using clustering methods per user. This results in
the prediction of a label per day.

(5.) Evaluate the results using the ground truth labels.

2Photos taken from the point of view of an individual
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Input data set

The paper introduces a data set called EgoRoutine, which consists of egocentric photos
of 7 users for a total of 104 days. This results in the distribution of pictures as depicted
in Table 5.2 totalling a size of roughly 69 GB. These images can be used to determine
what a user was doing at a certain time of the day.

User 1 2 3 4 5 6 7 Total

Num. days 14 10 16 20 13 18 13 104

Num. imgs 20521 9583 21606 19152 17046 16592 10957 115430

Table 5.2: The distribution of egocentric images per user

Pipeline definition

The pipeline is fairly straightforward to implement. The next step depends on the
previous step and so the resulting graph is simply a chain. The initial artifact is the
fragmenter, which generates one fragment per image and attaches some meta data about
the image such as the (time of) day, user, ground truth, and time slot. As the fragments
become available the first transformation step transforms the images into a list of labels.

In the original paper this labeling is done using three different types of CNNs. Each of
these detect a different aspect of a photo: object detection (Yolov3, Xception), scene
recognition (VGG16) and activity recognition (Cartas et al.) [17, 8, 18, 7]. In the
paper, an ablation study is performed to find out which CNN results in the best results.
It is concluded that a combination of multiple CNNs yields the best results. For this
implementation only the CNN used for object detection (Yolov3) was ported. The label
generation is by far the most resource intensive step and processing nearly 70 GB of
data on a single machine takes a very long time. Increasing the complexity of this step
by repeating this process two more times for the other labels was therefore omitted.
The results of the pipeline using only this object detection CNN are also included in the
original paper, so evaluating results in Iterum is still possible. In order to deal with the
still heavy workload of this step, Iterum provides the ability to spin up multiple instances
processing the input stream simultaneously. The implementation of this pipeline heavily
uses this fact by spinning up multiple of these ”labeler” transformation steps. This is
possible thanks to the way Iterum uses the Kubernetes abstractions. This step allows
for this approach since each fragment is processable independently of all the others.

1. As described, this transformation transforms the stream of images into a stream
of lists of labels per image.

2. This second step aggregates elements of this stream per user and per time slot.
All these labels are then converted into a document per time slot concatenating
all label lists of a user within that time slot. The result of this is a stream of lists
of labels aggregated per user per day per time slot.

3. The third transformation step aggregates all data per user in order to vectorize
the document as well as train the LDA model on these vectors. Then, for each
time slot a vector of probabilities for each topic is generated by the LDA model.
This results in a stream of topic probability vectors per user per day per time slot.

4. The next transformation again aggregates results per user day in order to compare
each day of a user with each other day. This comparison is performed using DTW
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[11]. Afterwards, the days are clustered into either the non-routine or routine
category.

5. The list of predicted labels is then send to the final transformation step, which
evaluates the performance of the pipeline by comparing the predicted labels with
the ground truth labels.

6. The results are then send to the combiner which stores the results back into the
Persistent storage.

5.2.2 Results

The predictions made by the pipeline are compared with the ground truth values, and
various metrics are computed using these results.

Comparison to the original experiment

Evaluated predictions of the pipeline can be found in Table 5.3. These results are pro-
duced when running the experiment in Iterum on the k3d implementation of Kubernetes.
The actual results of the experiment, as stated in the paper introducing the pipeline
[20], can be found in Table 5.4. Note that this table shows results per user, and these
results are retrieved by using multiple different CNNs for the labeler step. The complete
results per user when only using the Yolov3 CNN are not presented in the original paper,
though the average results over the users are. These are added as an extra column in
this table. Both versions of the experiment show similar results, though there are minor
variations.

User 1 2 3 4 5 6 7 Avg.

Acc. 0.79 0.60 0.63 0.70 0.92 0.50 0.85 0.71

F-1 0.75 0.58 0.50 0.70 0.92 0.46 0.84 0.68

Prec. 0.75 0.60 0.50 0.77 0.93 0.54 0.89 0.71

Rec. 0.86 0.62 0.50 0.77 0.93 0.57 0.83 0.73

Table 5.3: The accuracy, F1-score, precision, and recall respectively per user for the
experiment ran within the Iterum framework using only the Yolov3 CNN.

User 1 2 3 4 5 6 7 Avg. Avg. Yolov3

Acc. 0.79 0.74 0.75 0.90 0.92 0.56 0.92 0.80 0.71

F-1 0.75 0.70 0.71 0.89 0.92 0.50 0.92 0.77 0.68

Prec. 0.75 0.75 0.70 0.89 0.93 0.56 0.94 0.79 0.72

Rec. 0.86 0.79 0.75 0.89 0.93 0.60 0.92 0.82 0.74

Table 5.4: The accuracy, F1-score, precision, and recall respectively per user as presented
in the paper. The averages for running the experiment only using the Yolov3 CNN are
appended
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Comparison between different run-time environments

In order to analyze both the performance impact and reproducibility of Iterum, the
experiment is run in various run time environments. Baseline values were produced
by re-implementing a version of the original experiment. The average results per user
can be found in Table 5.5. For each of the editions of the experiment, the run times
of each transformation job are stated in Table 5.6. Note that for the Iterum variants
of the experiment, the data set is processed as a stream, and therefore steps further
in the pipeline start processing data as soon as it becomes available. The duration for
these jobs are therefore not a true representation of the total run time as they have
been online for a longer time and may have processed some data. The times represent
the amount of time it took the step to finish after the previous step completed. This
is still deemed a valid comparison since the other experiments show that the total run
time is dominated by the ”labeler” step anyway. The increased times for the timeslot
aggregation step for the Iterum experiments in comparison to the baseline are further
discussed in the evaluation.

Results Accuracy F-1 Precision Recall

Local 0.69 0.66 0.72 0.72

Docker 0.69 0.66 0.72 0.72

k3d 0.69 0.66 0.72 0.72

Iterum 0.70 0.66 0.70 0.70

GCloud 0.69 0.66 0.72 0.72

Iterum 0.71 0.68 0.71 0.73

Table 5.5: The accuracy, F1-score, precision, and recall for the experiment ran in dif-
ferent environments

Durations Fragmenter Labeler Time Aggr. Topics Clustering

Local N.A. 6:06:47 0:00:00 0:00:05 0:00:02

Docker N.A. 5:55:28 0:00:00 0:00:04 0:00:01

k3d N.A. 5:41:10 0:00:00 0:00:04 0:00:01

Iterum 0:22:05 6:48:43 0:19:10 0:00:08 0:00:11

GCloud N.A. 11:04:12 0:00:00 0:00:07 0:00:02

Iterum 0:43:46 10:18:09 0:50:31 0:00:15 0:00:14

Table 5.6: The duration of each transformation step per variant of the experiment. The
times required to compute the evaluation step are omitted, as all values were less than
1 second.

Distributed computing

To evaluate the distributed functionality of Iterum, the experiment was also performed
on a cluster of 3 computation nodes (using Google Compute Instances) rather than 1
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computational node. The results and the duration of these experiments can be found
in Table 5.7 and Table 5.8 respectively. Note that the single computational node still
uses 3 labelers, but these are all scheduled on one computational instance, therefore
still restricted by the resources available on this single instance. The experiment with 3
computational nodes uses 64 labelers, scheduled over 3 different nodes, also being able
to access the resources of these 3 nodes.

Results Accuracy F-1 Precision Recall

1 node 0.71 0.68 0.71 0.73

3 nodes 0.71 0.68 0.71 0.73

Table 5.7: The accuracy, F1-score, precision, and recall for the experiment ran on either
1 computational node with 3 instances of labelers, or 3 computational node with 64
instances of labelers.

Durations Fragmenter Labeler Time Aggr. Topics Clustering

1 node 0:43:46 10:18:09 0:50:31 0:00:15 0:00:14

3 nodes 0:58:08 2:38:56 0:50:04 0:00:13 0:00:16

Table 5.8: The duration of each transformation step for the experiment ran on either
1 computational node with 3 instances of labelers, or 3 computational node with 64
instances of labelers.

Data Lineage

Iterum collects multiple types of provenance information; one of which is the data lineage
information which links input fragments to output fragments throughout the pipeline.
An example of lineage information produced for the resulting fragment of a single user
is shown in Figure 5.1. It shows how lineage information is tracked at every transfor-
mation step, for each fragment passing through it. The tree construction comes from
the multiple aggregation steps performed for this experiment, eventually resulting in
one evaluation output for a user. The evaluation output is generated by aggregating
over multiple outputs of the previous step, as indicated by the horizontal dots. The
vertical dots imply that these sub-trees grow similarly to the one to the left of it. This
structure is repeated on the other levels as well. Every fragment is given an identifier,
which transformation step produced it and which data files it contains. By linking this
information to its predecessors and descendants a lineage tree can be constructed.

5.2.3 Evaluation

Table 5.3 and Table 5.4 show approximately the same results, though there are minor
differences between the two. First of all, the experiment performed in the original
paper produced results by using multiple different CNNs to extract semantics of images,
whereas the editions in this research only use the Yolov3 CNN. Both the full results and
Yolov3 averages from the original paper only deviate slightly from the results produced
by this research. One possible explanation for this is that Iterum does not guarantee
the ordering of the stream. The topic modeling step in the pipeline trains in batches,
and is therefore affected by this, yielding slightly different outcomes for the experiment.
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Fragment	ID:		
				h3h54k7a9s82kf8s9a8
File	Refs:				
				{...}
Processed	by:	
				su27fgkl3-evaluation-pod

Figure 5.1: An example of the kind of lineage information produced by Iterum

Another possibility for the differences in results is the usage of a different seed for the
topic modeling step.

Table 5.5 shows results of runs using different run-time environments. These results give
insight into how much overhead Iterum introduces. The results of each non-Iterum run
are the same, as the ordering of data points and the random seed were kept the same.
The experiments run with Iterum produce slightly different results; this is due to the
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lack of ordering of a stream.
In Table 5.6, the duration of each of the transformation steps is shown. The experiment
which ran on Google Cloud took more hours to complete than the experiment ran
on k3d. This difference is largely explained by the different amount of computational
resources available and the additional network overhead introduced by communicating
with remote nodes and disks (different hardware means different performance).

Iterum does however seem to introduce some overhead. The time it takes to perform
the timeslot aggregation is higher than expected, the most likely explanation for this
is the high IO overhead introduced by Iterum. Whereas the single job pipeline reads
in the pictures for step one and can continue with all results (string labels) in memory,
Iterum reads and writes each result to a file multiple times for each transformation step.
Additionally, the network overhead of serving 115k small files can also have an impact on
the GCloud cases, both with and without Iterum. The reason the GCloud experiment
takes such a long time is that it possibly had to retrieve its data from a different node
or non-local disk. This introduces a delay. Also minimal paralellization will have had
an effect.
These two reasons would also explain why the other steps do not show this performance
dip, as results are aggregated and the 115k file set is reduced to less than 1000. This
effect is amplified in the GCloud case, due to possible absence of data locality. For
example, resources such as persistent disks can be in physically different locations than
the CPUs for example.

In Table 5.8 the time it takes to run the experiment on either 1 node or 3 nodes is
shown. Using more nodes yields clear speed ups of the experiment; yet using 64 labelers
is somewhat excessive. The speed increase is limited by two factors: speed at which the
fragmenter produces fragments, and the processing time of a fragment for a labeler. The
latter is in turn impacted by the computational resources available to the labeler. When
more labelers are created, the resources are divided, but after some threshold all labelers
slow down due to low availability of CPU resources. However, there are more labelers
working in parallel, so the overall performance remains about the same. Having many
instances guarantees that the workload would be properly distributed over all available
computational resources[23].

5.3 Requirements Evaluation

This section evaluates how well the different requirements described in Section 3.2 are
met by Iterum. It serves as an analysis of how representative the implementation is of
the designed architecture and, in turn, how well the architecture represents the defined
requirements.

5.3.1 Data Provenance

This evaluation is left to the other thesis [21]

5.3.2 Pipeline Provenance

Tracking changes of code and text-based files is largely considered a solved problem
thanks to tooling such as Git. Iterum tries not to reinvent the wheel, but rather redefine
its challenges in terms of proven concepts and abstractions. Not only Iterum, but also
others have made the discovery that this can be useful. Docker and Kubernetes for
example, rely on Dockerfiles and YAML-structured files respectively. This text-based
approach is often times versioned using Git. This idea changes the challenge from ”how
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to track provenance of change of pipeline elements?”, to ”How to (formally) define these
elements such that they can be tracked using existing methods?”. Iterum, as well as the
overall architecture, provides an approach to this newly formulated challenge.

1. Track the versions of all different aspects of a pipeline configuration. This includes
the transformation steps, the version of the framework, and the DAG structure of
the pipeline
Iterum specifies pipelines in a specific structured text-format. Thanks to this,
changes between versions can be tracked using normal version tracking software
such as Git. The pipeline specification contains references to transformation steps
and how these are linked together in a DAG structure. This means that the exact
versions of transformations can be recreated. Their execution environment and
dependencies are also covered thanks to the specification of the transformations
via Docker images.

2. Track the versions of all different aspects of a pipeline run. This includes the
version of the data set used, the pipeline configuration, and any additional user
set parameters
The pipeline run configuration also includes a reference to the data set that is
used as the pipeline input, along with its version. The additional parameters of
a pipeline are specified in this same JSON structure. This simple format enables
that the version of the pipeline, its evolution over time, and the changes that lead
to these versions can all be tracked using version control software such as Git.
Which runs were executed with which pipeline is also tracked thanks to the data
set specification that is part of the pipeline run configuration. These configurations
are always stored alongside the results of a pipeline artifact. This ensures that if
the results of a pipeline are available, the pipeline definition that lead to them is
too.

3. Accommodate the definition of pipelines consisting of N transformation steps de-
fined as a DAG through a simple format (e.g. JSON or YAML)
Iterum allows the specification of pipelines via a JSON structure which can be sub-
mitted to the Manager. This definition consists of 4 parts: data set, fragmenter,
transformation steps, and combiner. Iterum does not provide a clear distinction
between pipeline run configurations and pipeline configurations, but rather defines
one JSON file that contains both. The DAG structure can be formed by specifying
input- and output channels for each of the transformation steps.

4. Allow the passing of (parameter) configurations to transformation steps via the
pipeline definition, in order to tweak the exact behaviour of a transformation step
Iterum supports the passing of parameter configurations by allowing the specifica-
tion of a ”config” field in the JSON specification. This allows variable parameters
to be passed to each transformation step in order to tweak their behaviour without
having to create and push a new Docker image to the image registry. As these pa-
rameters are part of the pipeline definition, changes to them are naturally tracked
along with it.

5. Deploy updates to running pipelines dynamically and track these dynamic update
events
Iterum does not focus on long-lived pipelines. The idea is that a pipeline artifact is
deployed for one experiment that processes all data once. Dynamic updates would
imply that the definition of the experiment changes during this execution. This is a
pitfall that would increase the difficulty of consistently reproducing results as this
will require timing of the update to be reproduced. Nevertheless, in cases where a
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single artifact has been running for days it may not be feasible to restart. If Iterum
were to be adopted for general pipeline deployment (including long-lived pipelines
that consume new data as it becomes available for example), then a dynamic
update feature as well as tracking these updates would be very useful. Iterum, as
of yet, does not support this feature. However, the design of Iterum has carefully
considered the extension towards such a feature. The use of sidecars and message
queues allows for a very clean update mechanism. Upon an update request, the
manager can inform the sidecar to stop consuming, therefore the transformation
will slowly complete all messages it has left. Once finished, this transformation pod
can be spun down. Simultaneously, the new transformation pod can be started
and as it comes online immediately start consuming from the message queue. Due
to the update a backlog of messages may be created, but thanks to the message
queue this will not pose a problem, it only fills up with messages. This will at most
delay the execution. The only thing left is to track that this change happened,
which old and new versions are swapped, and store which data was processed by
which version of the transformation. All this information will be either derivable
from or directly available in a dynamic update request send to the manager, and
so Iterum allows for an extension to this feature.

5.3.3 Pipeline Runtime Management

The requirements described by Func. Requirement 3 focus on the pipeline deployment
functionalities of the designed framework. Iterum focuses on this aspect, since it is
considered one of the two core systems for which it is developed. In the deployment and
execution of pipeline artifacts performance and accessibility play a large role, which is
why most requirements focus on these aspects.

1. Deploy pipeline runs based on their definitions over available resources
This requirement is one of the core features that the Iterum framework provides.
Defined pipeline runs can be submitted to the Manager component which deploys
the associated artifacts by making calls to the Kubernetes API. Kubernetes is then
responsible for distributing the workload over the available resources.

2. Deliver data to relevant endpoints without additional user specification besides the
pipeline
As described by Section 4.2.3, this is one of the reasons that the sidecar is in-
troduced. The sidecars for both fragmenters and transformation steps are used
in order to fulfill this requirement. Based on the pipeline run specification the
sidecar retrieves fragment descriptions from the message queues. Based on this
description, data is then downloaded from the distributed data storage. Results
from the transformation are uploaded and posted as description accordingly. This
abstracts sending and retrieving data such that the user can focus on writing the
actual transformation.

3. Be agnostic towards the experiment performed in terms of programming language,
shape of data, and execution environment
This requirement in the strictest sense is not entirely met by Iterum. The fragment
abstraction covers the shape and type of data, such that is free to be chosen by the
user. Thanks to tools like Docker and Kubernetes, the environment is abstracted
away from the execution. A major focus of these tools is to create reproducible
execution environments. The programming language is the element that is not
entirely met by Iterum. Due to some processes that cannot be automated as
described in Section 3.1.2, an interface between the user-defined transformation
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and the sidecar is needed. This so-called language client library can be kept tiny
thanks to all the work done by the predefined sidecars. In the extreme case this
library can be implemented on a per case basis as it uses three easy to parse
message types in a JSON format over (network) sockets. These are elementary
concepts supported by every major language. Moreover, this language client is
provided for the Python language as it is one of the major languages in data
science today.

The fact that users can provide Docker images for transformation steps, and that
what happens within the transformation steps is considered to be a black box, en-
sure that a user is also able to communicate with other services outside the context
of Iterum or its architecture. This opens the door towards, for example, perform-
ing a batch processing job using a Spark cluster which is accessible from within
the Iterum cluster. Users can then still use the provenance tracking capabilities
of Iterum, which Spark lacks, whilst also reaping the benefits of performing com-
putations using a Spark cluster. Note that by using services outside the control
of Iterum some of the guarantees regarding reproducibility are lost, as the appli-
cations are theoretically possible to connect to services with an changing internal
state. A user creating such a pipeline will need to take these dire consequences
into account, by choosing non-stateful applications for example.

4. Scale individual transformation steps when indicated by the user
Iterum provides this functionality by allowing the specification of how many in-
stances of a transformation step should be initialized. The manager then invokes
the Kubernetes API to spin up multiple copies to complete the associated job in
parallel. It is important to note that users should themselves realize whether this
is a valid option as ordering and which message goes to which step can not be
guaranteed. This comes from the fact that all copies created in this way consume
from the same input queue(s) and send to the same output queue(s). This fea-
ture is exploited by the implementation of the use case described in Section 5.2,
by initializing multiple labeler transformations. The processing of images can be
done in an independent fashion, so this is a prime example where this is a valid
approach.

5. Given intermediate results and lineage information, allow restarts of a pipeline
from an intermediate point, without having to re-execute all upstream nodes
This requirement is not entirely met by Iterum, however all its prerequisites are.
Intermediate results of each transformation step are saved, as well as lineage paths
of every fragment. This information together allows the reconstruction of a frag-
ment stream by moving up through the lineage hierarchy up until the point from
where to restart. Each fragment at this level has both a description and data saved
in the intermediate results. So, when fed to the new starting point, the pipeline
run can be restarted from that intermediate point. Iterum does not support this
feature, but based on the prerequisites that have been met, its implementation
should be fairly straightforward.

6. Function in both a distributed and single (computation) node setup
Iterum enables this thanks to the usage of Kubernetes and its many implementa-
tions. If Kubernetes runs on the associated resources, so will Iterum. On clouds
and clusters Kubernetes can be installed, for local development light weight alter-
natives can be used such as Microk8s3 and K3s4.

3microk8s.io
4k3s.io
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5.3.4 User Interaction

User interaction has been less of a focus for Iterum. This is due to the fact that the
time constraints of this research did not allow for a full-fledged implementation of the
architecture. In order to show the provenance tracking capabilities of the system, the
allotted time was spent on developing the provenance tracking features of Iterum. From
the perspective of this research, these features are more interesting than the user expe-
rience, even though for a production-ready version these features are critical in order to
improve the accessibility. As discussed in Section 6.3 and Appendix C, proper UI design
is critical and need investigation in the future.

1. Present one or more user interfaces which allows the user to interact with the
various elements of the system
The CLI presented in Section 4.2.1 is responsible for handling the user interaction.
As described, it consists of two parts, each of which is responsible for interacting
with one of the major subsystems (data versioning and pipeline run deployment).
This is done by consuming the REST APIs exposed by the other software artifacts.
Presenting additional user interfaces can be achieved by consuming these REST
APIs, similar to the CLI.

2. Both results and lineage information of an executed pipeline should be both pre-
sented to, and retrievable by the user
The CLI allows the user to retrieve lineage information of specific fragments. The
user is also able to retrieve an overview of the fragments connected to a pipeline
run. For each of these fragments, the user can retrieve information about how this
fragment relates to other fragments in the pipeline.

3. Notify the users about the progress of a pipeline run This feature has not been
implemented, as the notification component was given a low priority. Due to the
available tools it is however possible to inspect the progress of the pipeline in
multiple ways. This is an active action by the user, rather than the user getting
informed. Getting the status of pods is a functionality that the Kubernetes CLI
provides and can be used to inspect which parts of the pipeline have finished
running or resulted in an error. By inspecting the logs of the containers in those
pods, users can gain insight into potential problems. This process could easily be
automated for users such that they can view this information at any time, rather
than retrieving it themselves. In short, Iterum does not provide an interface to
check this information, nevertheless it is possible for the user to retrieve it.

5.3.5 Non-Functional Requirements

Accessibility

User experience is critical to the success of a framework that aims at such a diverse
set of users. Scientists able to write code to express their experiments should be able
to use this framework, making accessibility one of the most important non-functional
requirements. As Iterum is not in a production-ready state, this requirement could not
be evaluated with actual users. Instead the use cases were developed by the developers
of the framework, this makes fully evaluating this requirement impossible. Nevertheless,
many choices in the design of Iterum have been made from the perspective of a user,
these choices are outlined here.

1. Try to explain from where inconsistencies originate in the case of inconsistent
results that arise from non-user-defined behaviour such as crashes or failed requests
that cannot be recovered from
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Fulfilling this requirements is very complex, since it implies catching all possible
errors and fixing them if possible, if not report them. This is a feature that every
software strives for. Many possible complications arise from bad communication,
incomplete messaging, and network failure. Many of these functionalities can be
checked. To minimize the effort Iterum relies on proven tools such as Kubernetes,
RabbitMQ and MinIO. If an error does occur in one of the Iterum components,
such as the sidecars, these are all logged and made available to the user. Iterum
tries to complete the sunny-day scenario first, then retrying multiple attempts
on failure if possible, and eventually, when there is no recovering from the error,
informing the user of what went wrong.

2. Redefining existing experiments within the scope of the system should require min-
imal effort for a user
Changing an existing experiment which has already been run can be changed with
minimal effort. The user is able to retrieve the pipeline run configuration in its
JSON format. The user is able to change any configurable parameters in this spec-
ification. This includes available versions of transformation steps5, changing the
DAG structure, using a different (version of a) data set, and adjusting configurable
parameters. After the user has adjusted the experiment, it can be resubmitted and
Iterum will deploy the generated artifacts.

3. Users with enough skill to program their experiments should be able to use this
system
Programming a transformation on some data set will likely include the parsing
of that data set into the context of the program, followed by the actual trans-
formation, before finally saving the results. Iterum keeps this flow more or less
intact such that, given that a user is able to code this for his experiment, the user
is also able to do that within Iterum. The only additional steps the user has to
take are Dockerizing the application, defining the pipeline in a JSON format, and
using the Iterum language library which will provide abstractions that feed the
data per fragment to the program. Whilst users only have to learn these relatively
easy steps, Iterum takes care of challenges such as moving data over the net-
work, deploying the artifacts, publishing and consuming messages and persistent
distributed storage.

Performance

Performance is very important for a framework such as this, since it will have a large
impact on whether such a system is adopted. If the run times increase exponentially, or
certain actions or experiments are unavailable due to performance limitations, users will
not use the framework. Iterum boasts the usage of distributed tools and paralellization,
but also makes some less performant choices.

1. Experiments executed within the system should at most take 1.5 times the run time
of the same experiment executed outside the context of the system
The framework does introduce overhead, as data needs to be transmitted over a
network between the different steps of the computation. This would not necessar-
ily have been present when performing the experiment outside Iterum. Addition-
ally, the many IO operations that Iterum performs when moving data around the
pipeline also poses an inherent limitation. However, as shown by the use cases,
Iterum still performs really well in the single node setup that the experiments

5Dockerized, using an Iterum language library, and pushed to a container registry available to Ku-
bernetes
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were tested in. Performance decrease is mostly due to the extra abstractions of
Kubernetes rather than Iterum. Based off of these experiments, Iterum manages
to stay under the performance cap.

2. Handle data sets larger than the memory capacity of a single node
Due to the fragment abstraction pipelines process streams of fragments. Each
fragment is downloaded file by file and streamed directly to the storage of the
pod. This allows for both uploading and downloading of the files associated with a
fragment description irregardless of the size. As long as user defined transformation
steps do not attempt to read files that are larger than the memory resources
available to the Kubernetes pod, this problem will not occur.

3. The system must be light weight such that it is able to run reliably on a single
machine
The data versioning component of Iterum is able to run on a single machine.
However, as datasets become larger, connecting to an external storage back end
such as a cloud storage provider becomes necessary, rather than local storage on
the machine of the user. The pipeline component of Iterum requires a Kubernetes
cluster to run, but there are light weight implementations which allow for this
on a single machine. Experiments with either a small amount of data or light
computational load can be run on a single machine. For larger, or more complex
experiments, a Kubernetes cluster consisting of multiple (more powerful) nodes
can be used. This is not a limitation of Iterum as these cases would often already
require larger, more elaborate setups in order to complete, even outside the context
of Iterum.

Portability

1. Interaction with versioned data sets do not require a user to download the entire
data set. A client machine with insufficient disk space to fit the whole data set
should still be able to use the system
The CLI enables users to add or remove data from a data set. Files added to a
new version of the data set are uploaded to the data versioning server, allowing
users to remove the files from their local machine. Removing files does not require
any data as references to the remote data are enough. Users can therefore add
files to, and modify or remove files from a data set without actually having the
(entire) data set downloaded on the client machine.

2. Data set development and manipulation works independently from pipeline defini-
tions and their deployments such that users working on one of these do not need
knowledge nor dependencies of the other
Iterum is split into two subsystems. One focuses on data versioning, the other on
pipeline management. This split appears in nearly every component. The CLI has
subcommands for these two options and the Daemon software artifact implements
the architectural components used for the Data versioning component and for the
Storage interface. Both Daemon and CLI can run outside the scope of Kubernetes
and therefore the data versioning can be decoupled from the pipeline management.
They can however both run within the context of the Kubernetes cluster. Users
can therefore create new versions of data sets, and at the same time other users
can submit pipelines using existing versions of that same data set.
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5.4 Architecture Evaluation

This section evaluates the architecture by assessing both the provenance tracking ca-
pabilities and the ability to reproduce experiments. This combines the design of the
framework, its implementation, and its performance on the presented use cases into an
overall evaluation of the framework.

5.4.1 Limitations

Iterum attempts to implement the architecture described in Chapter 3. Section 5.3 and
Sections 5.1 and 5.2 show the merits, but also some limitations of this implementation.
In this section, the limitations that have not yet been covered (in detail), are discussed.
Due to the architecture being very generic, it does not show many inherent limitations;
due to which most of the limitations arise from the implementation.

Dependency on Kubernetes

One of the important dependencies of this project is Kubernetes. Kubernetes provides
the abstractions used for scheduling and deploying the different software artifacts used
in Iterum. However, depending on one software dependency for a significant amount of
functionality is also a liability for a project. The API of Kubernetes might change with
time and older features might not be supported anymore. Even though this may seem
a limitation, Kubernetes is open-source and does not seem likely to change drastically
as many users depend on it. The benefits of using Kubernetes easily outweigh the
(potential) drawbacks. In addition to this, the architecture as described in 3 is not
dependent on Kubernetes, only Iterum is. The architecture can be re-implemented
using other software dependencies when current tools become outdated or otherwise
impractical to use.

IO Operation Count

As explained before, Iterum splits the fragments into a fragment description and frag-
ment data. The data of a fragment is presented to a transformation step as a file written
on a shared volume, but is also retrieved from the transformation step as a file written
to that shared volume. Using files to send and receive data from a transformation step
allows Iterum to handle larger files which might not fit in memory of a single compu-
tation node, and it allows the user to process any kind of file present in a data set.
However, reading and writing this many files to disk introduces IO overhead. Parts of
which could be avoided when processing a data set outside Iterum. Additionally, the
data is not messaged directly between transformation steps, but rather passed around
via a remote distributed storage. This is yet another additional read-write operation.
In total this means three read and three write operations and sending the data over the
network twice per fragment and per transformation step.

Restrictive Sidecars

Sidecars help in keeping individual language libraries small whilst simultaneously greatly
increasing the accessibility of the framework by abstracting away from communication
and data flow between transformation steps. However, the use of these sidecars also
comes with a downside; they also restrict access to these abstracted complexities. This
disallows a user to implement efficient selective consumers for example by not being
allowed to communicate with the message queues directly. Giving more advanced users
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the option to optimize for their use case by omitting (the restrictions posed by) sidecars
would be a way to deal with this limitation.

Streams with Significant Order

Some experiments produce different results depending on the order of how the data is
processed. One example of where this occurs is in the training of a neural network,
where the weights of the network can be updated each time a data element is presented.
If data items are presented in a random order, the weights of the network get updated
slightly differently. A small change in the weights can lead to (larger) differences in
results in the end. This problem can be reduced by using batch training rather than
on-line training, this would require the user to adapt the experiment. The severity
of this limitation changes based on the definition of reproducibility that one has. In
exact experiments that perform some calculation reproducible means to be able to get
the exact same results. However, in data science, many experiments involve training
some kind of model in order to predict future values. Evaluation of these models is
usually done by measuring performance scores such as accuracy, recall and f1-scores.
Even though a trained model may be slightly different because of the order it sees the
data samples in, its performance may still be very close to that of the original one.
In many cases this is seen as reproducible, and sometimes even as a feature. The
model is then robust enough not to care about the order of the input whilst performing
(approximately) the same.

Ideally, Iterum should provide an option in which ordering of the fragment stream can
be guaranteed for some transformation steps. Especially for cases where the order is
important beyond yielding an exact copy of a trained model. In this way, more types of
experiments can be fully reproduced.

Data versioning: Handling of files other than binary files

The data versioning component was initially designed to work well with data sets that
consist of files where the files themselves do not change, but the composition of files does.
One example is a data set consisting of photos, where photos are added or removed in
newer versions of the data set, but in general the photos themselves are not modified.
This is because the data versioning components stores both the complete original file
and the modified file in the storage backend, even though 99% may be the same.

To illustrate this limitation: there might be a data set consisting of one large CSV file,
10MB in size. Changing one value in this CSV file results in a different file. Iterum
stores a new version of the data set with this modification as a completely different file,
storing almost 10MB of the data redundantly. To circumvent this, modified files can
also be stored as the differences in the file, and the reference to the original file. This
would reduce the amount of data storage required, but it require a system to be created
which is able to reconstruct files from a list of differences and the original file.

Work required from the user

Many of the provenance tracking and reproducibility features provided by Iterum are
contingent on the users using the provided abstractions properly. Iterum provides the
handles necessary for the user to version their data, create reproducible experiments,
and gain insight into their results, but this requires users to actually version their data,
code and pipelines. For instance, a user might have a pipeline with some transformation
steps. One of the transformation steps uses a latest version of a code repository, and
submits the pipelines using this latest version. However, this latest version changes over
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time. At this point, Iterum is unable to tell the user that this will not yield reproducible
experiments. A similar thing holds for the tracking of lineage information. Iterum can
only track the lineage of the data if the user supplies the predecessors for each fragment
they produce properly.

5.4.2 Architecture Representation by Iterum

As described in 4.1.2, each of the architectural components is mapped to a software
artifact. However, some of the architectural components are combined. Since the com-
munication pathways are similar, combining them does not affect the functionality of
implementation. However, combining the source code for two different components does
introduce some coupling, which is best avoided. One impractical repercussion is that
the Daemon always needs to be available to the software artifacts of a pipeline run,
whereas they only require the Storage interface component implemented by it. The
same is true in reverse for the Data versioning component not needing to be present
within the cluster.

Other than the aforementioned deviations, the architectural components are mapped
clearly onto the design of the implementation. Iterum introduces some additional com-
ponents, such as the sidecars, message queue, and distributed storage; these are used
in the implementation of the communication pathways between the other components.
Iterum currently lacks some features described by the architecture, but this is due to time
constraints and prioritization. Iterum is in a pre-alpha stage and functions as a proof-of-
concept implementation; its design still carefully considers the envisioned requirements,
as described throughout this research. From this it can concluded that Iterum is in fact
a valid representation of the (most relevant components of the) architecture, implying
that Iterum can be used to validate the conceptual architecture.

5.4.3 Reproducibility

The architecture as well as Iterum enable a user to track all kinds of changes throughout
their experiment. From data to code, to pipelines configurations. However, none of this
will work as long as the user does not work with the suggested tools and versions his
structures using appropriate tools. Given that the user has defined the pipeline run
configuration properly, Iterum allows the user to reproduce the experiment. This means
proper usage of source code versioning tools such as Git (e.g. tagging releases), but
also pushing Docker images to registries, and also tagging these with versions. The
same goes for the pipeline configurations. Iterum enables pipeline definitions through
a simple format, which can be versioned using tools such as Git again. If all of this is
done properly, users can easily run experiments of others, whilst being assured that the
transformations, data, and environment are identical to that of the original user. Most,
if not all, of these processes could be automated for Iterum in a future version as well.

5.5 Motivation for scientists to use Iterum

The ability to reproduce experiments is not only useful for scientists trying to verify
work of others, but also for the creators of the experiment itself. Since these creators
will be the ones to implement their experiment within Iterum, there should be a benefit
for them as well, not only such that others can recreate them. Being able to track all the
described types of provenance and presenting this information in a clean manner can be
of tremendous help to the original scientist as well. Understanding how his experiment
evolved over time, seeing, in hindsight, which parameters produced those interesting
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results that one time, and being able to conclusively see exactly which data flowed
where is all very relevant information to scientists creating experiments. Conclusively
knowing and having all this information is not the only benefit though, it also opens
doors towards even more interesting features such as sensitivity analysis, parameter
tuning, and skipping parts of a pipeline because results up till there have already been
computed some time in the past. These are not features that were within the scope of
this research, and were there left largely unexplored. However these types of features
can all be powered by the type of information that Iterum and its architecture track.
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Chapter 6

Conclusions

This chapter reflects on the research questions posed in Section 1.2.1. It correlates the
presented framework, its implementation, and their evaluations in order to answer all
questions generated by the identified challenges of this research. The chapter first delves
into the sub-questions before answering the main research question. In the final section,
pointers are presented to possible future work extending this research.

6.1 Sub-questions

What are the various elements of change provenance related to (data science)
pipelines?
Section 2.4 identifies and discusses the various elements of provenance of change. Notable
elements are the distinction between pipeline configurations and pipeline runs, dynamic
updates, and proven tools to track both source code and execution environments. As
long as all their evolution with time is properly tracked, experiments can be reproduced
and insight can be gained into the obtained results. This is shown by Iterum and how
it enables recreating and executing specific versions of experiments. It also allows for
more insight into obtained results by tracking lineage on the fragment level, which is
covered in more detail in the other thesis [21].

What tools exist that support provenance tracking of pipelines?
Various platforms that perform part of the provenance tracking cycle exist; these are
described in Section 2.6. None of the existing tools seem to focus solely on the provenance
tracking and reproducibility. In addition, none of the tools provide handles for all
the different elements of the provenance tracking process that were identified by this
research. Most platforms that were described provide some kind of workflow or pipeline
deployment tool; they are defined either through code or through configuration files.
Similarly to Iterum, these can be tracked using traditional version tracking tools. Many
of these tools however provide workflow capabilities rather than true data pipelines as
described in Section 2.6.1. Additionally, none of the appropriate tools were viable to
run on a single machine in order to support smaller experiments.

How can an (adaptive) data science pipeline framework be designed, which
is able to respond correctly to the different changes that can occur?
Chapters 3 through 5 describe this process, by analyzing the requirements, designing,
and subsequently implementing a framework. It covers both tracking of data as well as
pipeline deployments. It allows experiments to be reproduced by defining a specifica-
tion format, as well as deploying pipeline artifacts based on these specifications. The
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implementation provides handles for extensions towards more complex topics such as
dynamic updates and data visualization both by design and by implementation.

Which provenance elements can be tracked prior to the execution of a
pipeline?
All of the elements needed to define a pipeline configuration can be tracked prior to the
actual execution. This includes transformation steps, their code and environments, but
also the configuration of transformation steps in their DAG structure. As described in
Section 2.2, pipelines can be split in both a pipeline definition and pipeline runs. The
former maps to elements that can be tracked prior to the execution of the pipeline run.

Which elements of provenance, that can be tracked, are specific to a pipeline
execution?
The elements that cannot be tracked before an experiment is run, are the actual inputs
used by a pipeline. This means a reference to a data set version used as the input, as
well as any additional configurable parameters that a pipeline may have. Other elements
include the evolution of the pipeline throughout its execution; meaning dynamic updates
of the structure, as well as any errors that may arise. The evolution of data throughout
the pipeline can also be tracked as described in the other thesis [21].

6.2 Main Research Question

How can one track changes to code of (data science) pipelines in order
to provide provenance and reproducibility of the pipeline execution?

This research has presented a novel approach towards tracking provenance of change re-
garding (data science) pipelines. Initially, different elements of change provenance were
explored. Following this, existing tools and products available were investigated, which
revealed that not all aspects were covered by any one such tool. To address the perceived
reproducibility problems within academic research a conceptual framework for prove-
nance tracking and reproducibility was introduced. A proof-of-concept implementation
was constructed and two use cases from the domain of data science were implemented in
order to evaluate the validity of this framework. These use cases show that such a frame-
work helps to keep experiments reproducible. Due to its major focus on accessibility it
should be able to help users from many different domains construct their experiments.
A key part of reproducible research is definitively knowing which versions of pipeline
elements are used by an experiment; a process aided by the presented framework, yet
users still need to work carefully in order to fully use its full potential. In order to create
an implementation of the presented framework, all the key aspects presented by both
this- and the other thesis need to be considered [21]. This research has shown that if
this is done, a true provenance tracking solution can be created for both distributed-
as well as localized setups. Using all generated provenance information and versioning
handles provided, experiments can be kept reproducible.

6.3 Future Work

The future work topics are split into two types; extensions and features that could
be explored for Iterum, and more general topics for reproducibility and tracking of
provenance of change.
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6.3.1 Research Extensions

Exploring the applications of Iterum and the architecture outside of academic research
This research focuses on reproducing results and provenance tracking specifically for
academic research. The features that Iterum and the overarching architecture describe
are not only useful in these settings, but for software development in general. Companies
dealing with data processing and pipelines will also benefit from being able to explain
how their results came to be. Researching which of the features and how and where
these can be applied outside the context of academic research will expose more, possibly
unforeseen, challenges.

Re-implementing the architecture using a more mature pipeline deployment tool
This research shows that this architecture is able to track provenance data and that
this level of provenance tracking is enough to successfully explain and reproduce results.
Building a proper, complete, fault-tolerant pipeline deployment tool is a challenging task
in its own right. Existing projects such as Kubeflow (Pipelines) or Flyte already attempt
to solve this challenge. Another implementation of the architecture could use these tools
and focus mostly on the provenance tracking aspects, rather than pipeline deployment,
provided the requirements can be met (e.g. possibility to reasonably perform local runs).

6.3.2 Iterum Specific Extensions

This section is not meant to list a set of future features for Iterum, but to define some
general topics that were either left unexplored or omitted. The description of such a
future feature set is instead left to the documentation of the code.

Making provenance information produced by Iterum insightful to a user
Gathering information and properly conveying that information are different tasks.
Iterum currently focuses on gathering and tracking all of the provenance information,
but the ability to properly convey all of the tracked information to the user is yet to be
implemented. For example, visually correlating changes in experiments to results would
be a more intuitive way for users to understand their experiments rather than simply
presenting the information using a command line interface. Researching and developing
a proper way to display the provenance information is an important part of furthering
the accessibility aspect of Iterum. Appendix X shows some mock-ups of how a graphical
user interface for Iterum could look like.

Investigating impact of- and recovery from process failure
Iterum is evaluated in sunny day scenarios. Since the experiments take at most a few
hours, few random failures could occur (e.g. network errors, disk failure). If failure
was detected, either randomly or due to bugs, the experiments were run again. As
experiments grow bigger, executing multiple times becomes unfeasible and more fault
tolerance is needed. The design has already taken this into account by not acknowledging
messages before completion for example. However, many more failure modes exist, such
as failed message delivery, request overload, etc. It is important that their repercussions
are thoroughly investigated and (more) measures are taken against them.

Dynamic updates and long-lived pipelines
Iterum focuses on pipelines that can be run till completion. Dynamic updates of running
pipelines as well as long-lived pipelines that may process data as it becomes available
are possible extensions. A few options for adding dynamic updates are discussed in
5.3.2, and long-lived pipelines can be (partially) realized by utilizing a different type of
fragmenter. Undoubtedly, these topics are more complex than they seem at first sight
and so, research into these topics is important.
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Appendix A

Overlap

As discussed in Section 1.2.2, there are two theses which write about the same research,
focusing on different perspectives. Since both theses originate from the same research,
and introduce the design and implementation of the same framework, there is some
overlap between these theses.
The overlapping sections are:

• Section 1.1

• Section 1.3

• Sections 2.1-2.3

• Section 2.6

• Chapter 3

• Chapter 4

• Sections 5.1-5.2

• Section 5.3.3-5.5

• Section 6.3

• Appendices
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Appendix B

Code snippets

t s i n = TransformationStepInput ( )
t s o u t = TransformationStepOutput ( )

# L i s t e n f o r fragments
for fragment in t s i n . consumer ( ) :

# Empty fragment means s t op
i f fragment == None :

print ( f ”Got k i l l message , f i n i s h i n g up . . . ” )
t s o u t . produce done ( )
t s o u t . c l o s e ( )
break

# Process fragment
r e s u l t = proce s s ( fragment )

# Produce output fragment ,
# l i n k i n g the o l d fragment to the new
out fragment = LocalFragmentDesc (

f i l e s=r e s u l t . f i l e s ,
p r e d e c e s s o r s =[ fragment . metadata . id ] )

# P u b l i s h new fragment
t s o u t . produce ( out fragment )

# Let Iterum know t h a t the fragment i s processed
t s o u t . done with ( fragment )

Listing B.1: Example transformation step in Python using Pyterum
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Appendix C

Mock-ups for a GUI

Iterum currently focuses on tracking the different types of information necessary for
the scientists to gain insight into their experiment. Chapters 4 and 5 shows that this
information is tracked; however, it can only be shown to the user in a text-based format
via the command line interface. Interaction with a system using a CLI is not some-
thing which is generally considered to be user-friendly, especially for people outside the
realm of computing science. Neither is the data such as lineage trees suited for textual
representation.

For this reason, Iterum would benefit immensely from the addition of a graphical user
interface (GUI), which is able to display the produced information in a more intuitive
manner. The actual implementation of this GUI is outside the scope of this research,
but in this appendix, some mock-up designs are shown which show what a GUI for
Iterum could look like.

C.1 Pipeline builder

Figure C.1 shows a drag-and-drop tool where scientists can create pipeline configurations
for their experiments. Using their own transformations, or by sharing them enables
researchers to collaborate more easily. Versions need to be picked specifically in order
to guarantee provenance over the configuration.

C.2 Pipeline deployment

Figure C.2 shows that previously created pipelines can be deployed by selecting a specific
data set version to be used as input for the experiment. By selecting the transformations,
specific parameters can be set for those steps in order to further tweak the behaviour of
the pipeline.

C.3 Previous pipeline executions

Figure C.3 shows which pipelines have been executed in the past, showing details on
which data set version was used as an input, when the execution started and finished,
and the rest of the pipeline configuration associated with this pipeline execution. It
shows an overview of all the available provenance information and can be linked to the
lineage trees, intermediate results and original pipeline configuration and data sets in
order to provide full insight into the versions that were used.
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C.4 Experiment analysis

Figure C.4 shows a view where the user can correlate the different input parameters with
different output metrics in order to understand how changes in parameters affect the
results. This would be more of an extended feature, allowing data scientists to perform
analysis on their results as well. These features have not been covered in this research,
by would be a natural extension of such a platform. It allows a user to gain insight into
correlations between parameters and across multiple deployments of the same pipeline,
only with different parameters. This yields a form of sensitivity analysis and parameter
tuning.

C.5 Fragment lineage analysis

Figure C.5 shows a view where a lineage tree is constructed from the lineage data
captured by the provenance tracker of Iterum. In this view, the users can scroll through
the input data, intermediate results and output data, seeing how the data changes
between each transformation of the pipeline. By selecting any one file or fragment the
user can instantly gain insight into how this has evolved throughout a pipeline. This
process could also be applied to analyze lineage and history between data set versions,
rather than how data is transformed by a pipeline.
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Figure C.1: A GUI concept of what a pipeline builder view might look like
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Figure C.2: A GUI concept of what a deploy new pipelines view might look like
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Figure C.3: A GUI concept of what a pipeline execution inspection view might look like
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Figure C.4: A GUI concept of what an experiment analysis view might look like
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Figure C.5: A GUI concept of what a lineage analysis view might look like
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