
D E T E R M I N I N G T H E R AT I O N A L E O F A R C H I T E C T U R A L
S M E L L S F R O M I S S U E T R A C K E R S

thorsten rangnau - s3570282

Prof. Paris Avgeriou

Dr. Mohamed Soliman

27th August 2020

Thorsten Rangnau - s3570282: Determining the rationale of architectural
smells from issue trackers, 27th August 2020

A B S T R A C T

Architectural Smells are design fragments which can span over mul-
tiple components of a system’s architecture and have system level
impact. Thereby, they increase maintenance efforts and costs. This
phenomenon is addressed by researchers who have focused on differ-
ent smell types, smell detection mechanisms, or resolving techniques.
So far, little is known about why architectural smells are incurred
into software. However, understanding this can help to avoid adding
smells into software. One way to find the rationales behind incurring
architectural smells is to find versions in which new smells are added
into the system and analyse the corresponding documentation avail-
able through issue repositories. Since architectural smells evolve over
time, one difficulty in detecting a new smell instance is to detect all
smell variations related to the same smell.

In this case study, six open source software projects are analysed. To-
gether they comprise over 28,000 different software versions with over
62,980 smell variations related to 1,153 architectural smell instances.
Analysing these instances allows to extract the motivation (e.g. Bug-
fix), the priority, and developer characteristics of the versions that
incurred the smell. Furthermore, analysing discussions in documen-
tation artifacts allows to understand the rationale behind incurring
new smells.

The findings of this study show that smells can evolve in a tree-like
structure. Additionally, the motivations behind incurring new smells
seems to differ from project to project. Although, most smells are
added through resolving an issue with priority level ‚Major’. Two
findings suggest that developers are not aware of incurring new smells:
(1) developers with the most changes incur the most smells, and (2)
no discussions about smells during review processes. This implies
that smells are incurred with a „hidden" trade-off between a quality
(e.g. performance) and maintenance.

In conclusion, the findings suggest that developers are not aware of
incurring architectural smells. In addition, the tree-like structure of
the smell evolution provides new impulses for future research in this
area.

iii

Design today has reached the stage,
where sheer inventiveness can no longer sustain it.

— Christopher Alexander, 1963

A C K N O W L E D G E M E N T S

I would like to thank my supervisors Prof. Paris Avgeriou and Dr.
Mohamed Soliman for their great support during my master project.

I would further like to thank the Center for Information Technology
of the University of Groningen for their support and for providing
access to the Peregrine high performance computing cluster.

v

C O N T E N T S

i master thesis 1

1 introduction 3

2 background 9

2.1 Fundamentals of Technical Debt 9

2.2 Fundamentals of Stability 11

2.2.1 Dependencies . 12

2.2.2 Principles of Package Coupling and Dependency
Management . 14

2.3 Fundamentals of Architectural Smells 17

2.3.1 Instability Architectural Smells 18

2.3.2 Cyclic Dependency 19

2.3.3 Unstable Dependency 19

2.3.4 Hub-Like Dependencies 20

2.3.5 Tool Support . 21

2.4 Fundamentals of Design Decisions 22

2.4.1 Architectural Design Decisions 22

2.4.2 Rationale . 24

3 related work 27

3.1 Research on Architectural Smells 27

3.2 Research on Architectural Design Decisions 29

3.3 Research on Self-Admitted Technical Debt 32

4 case study design 35

4.1 Rationale for Case Study Design 35

4.2 Goal and Research Questions 36

4.3 Case Selection . 40

4.4 Data Collection . 45

4.4.1 Pre-Analysis . 46

4.4.2 Quantitative Analysis 59

4.4.3 Qualitative Analysis 65

5 results 69

5.1 Smell Evolution . 69

5.1.1 Distribution of Smell Types 69

5.1.2 Evolution of Architectural Smells 70

5.2 Issue Types . 80

5.2.1 Smell Instances by Issue Type 80

5.2.2 Issue Types Incurring Architectural Smell Types 82

5.3 Issue Priorities . 84

5.3.1 Smell Instances by Issue Priority 84

5.3.2 Issue Priorities Incurring Architectural Smell Types 85

5.4 Developer Impact on Architectural Smells 88

5.4.1 Developer Experience Level 88

vii

viii contents

5.4.2 Number of Developer per Smell 89

5.5 Qualitative Analysis . 90

5.5.1 Trade-off Categories 90

5.5.2 Analysis of Individual Issues 93

6 discussion 103

6.1 Architectural Smell Evolution 103

6.1.1 General Findings of the Evolution of Architec-
tural Smells . 103

6.1.2 Evolution of Architectural Smells 103

6.1.3 Size of Smell Tree Evolution 104

6.1.4 Duration of Smell Tree Evolution 105

6.2 Impact of Issue Types on Architectural Smells 105

6.2.1 Number of Smells Incurred by each Issue Type 105

6.2.2 Distribution of Issue Types Incurring Architec-
tural Smells . 106

6.3 Impact of Priorities on Architectural Smells 107

6.3.1 Number of Smells Incurred by each Issue Priority107

6.3.2 Distribution of Issue Priorities Incurring Archi-
tectural Smells 108

6.4 Impact of Developers on Architectural Smells 108

6.4.1 Experience Level of Developers in Correspond-
ing Project . 108

6.4.2 Number of Developers Participating in Incur-
ring Smells . 109

6.5 Rationales for incurring Architectural Smells 109

6.5.1 Hidden Trade-offs 109

6.5.2 Ripple Through Effect 110

6.5.3 Building Smells Up Over Time 111

6.5.4 Incurring a Complete Smell at Once 112

6.6 Challenges . 112

7 threats to validity 117

7.1 Splittings for Unstable and Hub-like Dependencies . . 117

7.2 Missing Role Information of Components 117

7.3 Simple Name Sorting . 118

7.4 Wrong Smell Detection 118

8 conclusion 121

ii appendix 123

a appendix 125

a.1 Protocols . 125

a.1.1 Protocol 4 . 125

a.1.2 Protocol 5 . 125

a.1.3 Protocol 6 & 7 . 126

a.1.4 Protocol 8 & 9 . 126

a.1.5 Protocol 10 . 126

a.1.6 Protocol 11 . 127

contents ix

a.2 Number of Resolved Issue Types by Projects 127

a.3 Resolved Issue Priorities by Projects 127

a.4 Validation of Architectural Smells 128

bibliography 129

L I S T O F F I G U R E S

Figure 1 Technical Debt Quadrant by Martin Fowler [15] 10

Figure 2 Technical Debt Landscape by Ozkaya, Nord, and
Kruchten [29] . 10

Figure 3 Dependencies between classes. 13

Figure 4 Afferent dependency of package a. 14

Figure 5 Efferent dependency of package a. 14

Figure 6 Differences of cyclic- and acyclic package struc-
ture. 15

Figure 7 Stable and unstable dependencies following [26] 16

Figure 8 Symmetric shapes of cyclic dependencies fol-
lowing [1] . 19

Figure 9 Asymmetric shapes of cyclic dependencies fol-
lowing [1] . 20

Figure 10 Hub-Like dependency on packages where pack-
age a is the hub 20

Figure 11 Overview on the structure of ADDs incurring
an architectural smell 25

Figure 12 Overview on the research process of this case
study . 46

Figure 13 Step 1 to 4 of creating smell tree 24 of Sqoop.
There is one splitting at the root which is indi-
cated by a black frame. 57

Figure 14 Three smell variation coexisting at the same
time in a system 58

Figure 15 Total number of smells incurred in each project 70

Figure 16 Distribution of the evolution of the smell tree
in Tajo . 74

Figure 17 Distribution of the evolution of the smell tree
in Tika . 74

Figure 18 Distribution of the evolution of the smell tree
in PDF-Box . 75

Figure 19 Distribution of the evolution of the smell tree
in Sqoop . 75

Figure 20 Distribution of the evolution of the smell tree
in Phoenix . 75

Figure 21 Distribution of the evolution of the smell tree
in Active MQ . 76

Figure 22 Smell Tree 8 for SQOOP-3273 79

Figure 23 Smell Tree 76 for TAJO-1125 80

Figure 24 Total number of smells incurred by issue type 81

Figure 25 Percent of smells incurred by issue type 82

x

List of Figures xi

Figure 26 Total number of smells incurred by issue priority 85

Figure 27 Percentage of smells incurred by issue priority 86

Figure 28 Distribution of smells incurred by developer . 88

Figure 29 Ripple through effect of incurring architectural
smells . 111

Figure 30 Building up the smell over a certain period of
time . 111

Figure 31 Incurring the entire smell at the same time . . 112

L I S T O F TA B L E S

Table 1 Projects for Data Store Systems 43

Table 2 Projects for Middleware 44

Table 3 Projects for Frameworks 44

Table 4 Projects for Analytic Engines for Big Data Pro-
cessing . 44

Table 5 Projects for Libraries 44

Table 6 Overview on detected smells for each project . 59

Table 7 Coverage of issue keys by analysed projects . . 61

Table 8 Projects analyzed in this study 61

Table 9 Information about the number root smells with
gaps in the commit history, the number of re-
solved smells, and the number of dicarded smells 62

Table 10 Evolution of smell variations 72

Table 11 Evolution of smell variations by smell type . . 73

Table 12 Smell Variation sizes during evolution 76

Table 13 Smell Variation sizes during evolution by smell
types . 78

Table 14 Shrinking occurrences of smell variation sizes
during smell evolution 78

Table 15 Number of issues by issue type incurring smell
types or combinations of them (t). Behind each
value is the normalized and rounded ratio (%)
for comparing the issue types among projects.
Values are normalized by using the total amount
of resolved issues of that particular issue type. 83

Table 16 Number of issues by priority incurring smell
types or combinations of them (t). Behind each
value is the normalized and rounded ratio (%)
for comparing the issue priorities among projects.
Values are normalized by using the total amount
of resolved issues of that particular issue priority. 87

Table 17 Correlation between attributes representing the
developer experience in a project 89

Table 18 Overview on number of developers incurring
a new architectural smell into a software project 89

Table 19 Categories of hidden trade-offs: system quali-
ty/inner system quality 90

Table 20 TAJO-1125 . 93

Table 21 TAJO-1026 . 94

Table 22 TAJO-1153 . 94

Table 23 TIKA-1010 . 94

Table 24 TIKA-2276 . 95

xii

List of Tables xiii

Table 25 TIKA-67 . 95

Table 26 TIKA-506 . 95

Table 27 PDFBOX-1689 96

Table 28 PDFBOX-2386 96

Table 29 PDFBOX-2423 97

Table 30 SQOOP-3273 . 97

Table 31 SQOOP-390 . 98

Table 32 SQOOP-374 . 98

Table 33 PHOENIX-1646 99

Table 34 PHOENIX-1514 99

Table 35 AMQ-5591 . 100

Table 36 AMQ-3880 . 100

Table 37 AMQ-5269 . 101

Table 38 Protocol 6 and Protocol 7 126

Table 39 Protocol 8 and Protocol 9 126

Table 40 Number of Resolved Issues for each project . . 127

Table 41 Resolved Issues for each project 127

Table 42 Validation of Smells for TAJO 128

A C R O N Y M S

ADD Architectural Design Decision

AS Architectural Smell

LOC Lines of Code

TD Technical Debt

xiv

Part I

M A S T E R T H E S I S

1
I N T R O D U C T I O N

The idea that changes in software systems - applied over a longer
time period - lead to difficulties in maintaining an application, is not
a new one. In 1994, David Parnas already described the importance of
keeping the development and maintenance costs resulting from Soft-
ware Aging at a minimum level. Costs of maintenance increase with
the size of the project because software often grows in complexity
and degrades in system quality [30]. Potentially, this effect increases
the number of new bugs introduced during incremental changes [42].
A more specific variation of the degradation phenomena is entailed
in the notion of Architectural Smells (ASs). An AS is a design deci-
sion that negatively affects internal system qualities on an architec-
tural level such as maintainability, extensibility, or adaptability [16].
Surveys conducted on their evolution revealed that in general ASs in-
creases in number over the lifespan of the software system [36].

Means to address this issue are covered in the maintenance phase of
a software project which involves refactoring actions with the goal to
diminish the complications arising from increasing software complex-
ity. Williams and Carver consider this phase of the software life-cycle
as the most expensive one. It is therefore advisable to reduce need-
less sources of supplementary work (due to e.g. bad design practices)
to a minimum in order to keep software maintenance manageable
[42]. One field that attracts the attention of the software engineering
community is the notion of Technical Debts (TD) which play an im-
portant role in managing software projects. TD describe software con-
structs that are expedient in the short term, but create a technical con-
text that increases complexity and costs in the long term [2]. Hence,
a software project can benefit from these constructs but also suffer
from them if not addressed properly. Especially in the last decade, re-
searchers and software practitioners alike increasingly show interest
in this phenomenon and study the effects that incurring TD has on
software maintenance. One crucial sub-topic for instance is technical
debt management. Debts can occur on several levels of abstraction
such as architecture, design, or implementation. ASs are a subcate-
gory of TD [24] and this study focuses on them.

Garcia et al. found that ASs especially - but not only - affect inner sys-
tem qualities [16]. Furthermore, those smells span over multiple com-
ponents of the software architecture and have system level impact
[35]. Sometimes engineers accept compromises by using TD deliber-

3

4 introduction

ately in order to achieve an urgent goal. However, undetected ASs
in a software system are expensive. This is because resolving them
(sometimes referred to as paying back the debt [11]) requires a lot of
effort in identifying, understanding, and analysing them [9]. There-
fore, principles and best practices are required to support software
engineers in managing and resolving smells in their projects. This
can help to keep the system under question in a maintainable state.

In order to support the management of technical debt, several studies
are conducted so far with the focus on - among others - categorization
of ASs, identification methods, resolving techniques, or evolution of
smells. For instance, Garcia et al. argues that a catalog of ASs enables
practitioners to detect existing smells in their architecture [16]. In [36],
several characteristics about the evolution of certain smell types over
time in a software system have been found. This supports prioritiza-
tion of ASs in the technical debt management of a project.

However, all these techniques focus on removing existing smells form
an architecture in order to establish better system qualities. Unfortu-
nately, little is known about how to avoid the detrimental advent of
ASs. We believe that with understanding why software engineers in-
cur smells in a software system can help to slow down the degrading
effect on software quality. We further understand that the causes for
adding smells to a software system is captured in the rationale for the
design decision that leads to the parturition of AS. Understanding the
rationale will help software engineers to (1) avoid the inadvertently
implementation of smells and (2) guide them in making trade-off de-
cisions when deliberately introducing ASs towards a certain value in
another quality dimension.

Once a smell is added into a software design, it creates a gap between
a hypothetical ideal state of the system in which it can be maintained
effortlessly and the current architecture [9]. In the context of ASs this
means that the current architecture lacks the ability for maintaining
and extending it to a certain degree. As already mentioned it is desir-
able to keep the number of smells to a minimum and thereby prevent
the system’s architecture to deviate too much from the hypothetical
ideal state. Unfortunately, exact details on decisions for incurring ASs
are unknown and the reasons for them are unrevealed. Nonetheless,
these information can help to avoid this kind of TDs in a software
system.

In the past two decades several studies have been conducted on de-
cisions related to architectural design (e.g. [7, 21, 23, 38]). In fact, an
AS is defined as an architectural design decision which impacts the
internal system qualities directly [39]. In general, an architectural de-

introduction 5

sign decision is composed by a rationale and a consequence [38]. The
rationale is the reason behind the design decision and describes why
a change in the architecture is made [21].

In the mid 2000ers, Bosh and Jansen suggested Software Architecture
as a set of architectural design decisions [21]. They described that ar-
chitectural design decisions are composed by entities (including the
rationale) that realizes one or more requirements on a given archi-
tecture. An important aspect is that a design decision can yield into
new requirements that are in turn be addressed by new design de-
cisions. In addition, each decision is also related to a change in the
system’s architecture. This creates a chain of decisions depending on
each other where each also pinpoints to a change in the architecture.

This leads to the conclusion that an AS is a part of the decision chain
since it is an architectural decision itself. Furthermore, it is composed
by the same elements as a general design decision, including the ra-
tionale. This can help in identifying the reasons for incurring smells
into a software system. Our perspective on the rationales for ASs is
twofold. Imagine a requirement for a change of the architecture such
as a new feature or a bug-fix. It can happen that the engineers en-
counter further requirements while making decisions on how to sat-
isfy the initial requirement [10]. They address the new requirements
with a new decision [21]. Imagine further, that this decision leads to
changes in the architecture that add one or more ASs. Thus, several
decisions exist that have an influence on why ASs are incurred in soft-
ware. We divide these decisions into several kind of decisions. First,
there are decisions that motivates the changes which eventually incur
smells. Those motivations can be implementing a new feature or fix-
ing a bug. These decisions influence ASs indirectly. Second, there are
the actual decisions for adding the architectural constructs that form
the smell. The second kind of decisions address ASs directly.

The aforementioned process repeats over the lifetime of the system
for every architectural change. Therefore, a glance into the history of
the system may help to reveal the rationales for incurring ASs. Essen-
tially, this is what this study aims to analyse in the context of ASs.
Therefore, we need to find a way to extract this information from
available software documentation that directly points to the decision
being made to introduce one or more ASs.

As Shahbazian et al. describe in [38], modern software development
offers access to the history of a system via issue trackers and code
repositories. In fact, studies have been already conducted where issue
trackers such as Jira1 were used in order to extract design decision [38,

1 https://www.atlassian.com/software/jira

https://www.atlassian.com/software/jira

6 introduction

39]. Apart from this, several tools are available that can detect ASs in
a software project. A selection of such tools is listed in [3]. Some stud-
ies even focused in analysing the evolution of smells in a software
project’s history [13, 36]. However, neither of these works discussed
the rationale for AS. As far as we know our study is the first attempt
to combine the techniques mentioned above and thereby extract the
reasons why developers incur ASs into their software systems.

As described in [38], the rationale for a decision is partially captured
by issue items such as type or description in Jira. Therefore, it is our
understanding that it is possible to extract rationales for decisions
which motivates the changes that lead to new AS instances. We at-
tempt to gain these motivating decisions from issue repositories fol-
lowing a quantitative analysis approach. Therefore, we first identify
versions in which a particular smell instances is newly incurred. Sub-
sequently, we can extract information about the motivation (i.e. issue
type) or priorities for the changes of that versions from issue repos-
itories. Finally, we can aggregate these information which will help
us to unravel the reasons for incurring ASs via a quantitative analysis.

The rationale for adding the constructs that form the AS may be more
difficult to extract. Several authors indicate that software engineers
add ASs either intentionally or unintentionally to their projects. We
were able to find evidence for the latter (e.g. [39]). However, we could
not find any empirical evidence in previous work about deliberately
incurring AS. Former studies have shown that software practitioners
add code smells - another sub category of TD - deliberately in order
to achieve value in a different dimension than internal software qual-
ity [6, 31, 34]. Along with this, several authors argue that the same is
done with AS. Examples for this can be found in [9]. Yet, we were not
able to find any proof for this in our literature research. In fact a for-
mer study on Self-Admitted Technical Debt (SATD) found four different
types of debts in software systems not covering architectural smells
[34]. Nonetheless, if ASs are introduced intentionally as a trade-off
towards another system quality, then it would be interesting to study
those scenarios in order to guide engineers in decision making pro-
cesses as described above.

One way to preserve this knowledge is to use the issues related to a
software version introducing ASs and extract the rationale for adding
the architectural constructs forming the smell by analysing its com-
ments. We find that developers sometimes use the comment func-
tion of issue trackers to discuss design and implementation decisions.
With a qualitative analysis of these comments we expect to find (1)
a first proof for deliberately implementing smells and if so (2) what

introduction 7

goals needed to be achieved with this decision.

With this study we contribute to enlarge the knowledge about the
rationale for ASs. Therefore we analyse six open source Java projects
from the Apache Software Foundation (ASF)2. The source code of all
these projects is available on GitHub3 and their corresponding issues
are managed using Jira. The source code is analysed utilizing the
existing smell detection tools Arcan [13] and ASTracker [36]. This fa-
cilitates the identification of software versions in which a new AS
instance is added. Subsequently, it is possible to connect this version
to the corresponding issue in Jira. In fact, this is where the actual
empirical study of our work begins. We aim to quantitatively achieve
information that can help us to find the reasons for adding ASs into
software.

We further use these issues to qualitatively analyse the discussions of
the developers entailed in each issue. This helps us to identify the ra-
tionale for adding a certain architectural fragment that incurs a new
AS instance. In particular the qualitative analysis shows whether soft-
ware practitioners introduce smells deliberately or not and if so what
are the benefits of this trade-off decisions.

Finally, the results of our study show that there are certain situations
in which ASs are incurred more likely. However, the motivations for
this cannot entirely be explained by issue types or priorities. The
quantitative analysis showed that there is no proof for AS instances
that have been incurred deliberately. In addition, some smells are un-
intentionally incurred in order to improve a certain system quality
such as performance or security.

The remainder of this thesis is structured as follows. Section 2 depicts
important background information, whereas literature related to this
study is discussed in Section 3. The design of the empirical case study
and the research questions are presented in Section 4. The findings
of this thesis are presented in Section 5 and discussed in Section 6.
Subsequently, we present threats to validity in Section 7 and finally,
Section 8 concludes the thesis and outlines suggestions for future
work.

2 https://www.apache.org/

3 https://github.com/

https://www.apache.org/
https://github.com/

2
B A C K G R O U N D

This section discusses background information that make up the foun-
dation for the research conducted in this study. Therefore, we present
the fundamentals of TDs in Section 2.1. Subsequently, we describe
the notion of dependencies and stability among packages in Sec-
tion 2.2 which form well known principles in architectural design.
Furthermore, we explain the architectural smells (AS) and their sub-
categories in Section 2.3. We especially, delve into instability architec-
tural smells which are based on the notion of stability. We also discuss
the impact of this specific smell category on maintainability because
our case study has a focus on these smells. Finally, Section 2.4 pro-
vides an overview of the concepts of architectural design decisions
and how this is related to our work.

2.1 fundamentals of technical debt

The concept of Technical Debts (TD) was coined by Ward Cunningham
in 1992 to describe the need for a refactoring of a system in order to
address non-functional aspects to non-technical stakeholders [11, 29,
37]. This definition was later refined by the participants of the Dagh-
stuhl Seminar 16162 about the management of TD in Software Engineer-
ing. They understand that going into TD is when software developers
make technical compromises which are expedient in the short term,
but lead to increasing complexity and costs in the long term [2]. They
further discovered that TDs are mostly incurred unintentionally and
that it mostly has a negative impact on maintainability and evolvabil-
ity.

Martin Fowler specified the Technical Debt Quadrant in order to demon-
strate possible scenarios derived from his experience why developers
go into TDs in software projects [15]. The quadrant is divided into
two columns (Reckless and Prudent) and two rows (Deliberate and In-
advertent) resulting in four cells. The Reckless/Deliberate cell describes
situations in which software teams are aware of breaching good de-
sign practice. Yet, they believe they cannot afford spending time on
following overall accepted design principles. Other software practi-
tioners may be ignorant of those principles acting reckless and are
even unaware the they going into debts with their approach (Reck-
less/Inadvertent cell). There may be development teams that are aware
of breaching design or implementation principles but nonetheless go
into TDs to for example meet a certain release date. They know that

9

10 background

they eventually have to pay back the debt and may already spend
some thoughts about how to resolve these problems. This scenario is
addressed by the Prudent/Deliberate cell. Finally, the Prudent/Inadver-
tent cell describes excellent software designing teams. They tend to
always create the best possible code but still find design flaws after
some reflection time. Following Fowler[15], this is inevitable since de-
veloping software is to always keep up learning and improving the
own skills. Figure 1 shows the technical debt quadrant by Fowler.

Figure 1: Technical Debt Quadrant by Martin Fowler [15]

Ozkaya, Nord, and Kruchten mentioned that several authors have been
trying to divide technical debts into subcategories [29]. One problem
that occurred with this is that the use of the TD metaphor was ex-
aggerated. In order to clearly differentiate between technical debts
and other issues of software maintenance management, they created
the technical debt landscape shown in Figure 2. The landscape dis-
tinguishes between visible and invisible elements. Visible elements
are those that add new functionality or fix bugs. The invisible ele-
ments concern the changes necessary to bring the system from the
current state to a hypothetical ideal state in terms of maintenance.
They named those elements as "invisible" to emphasis that the neces-
sity for these changes can be only seen by software engineers but not
by non-technical stakeholders. Furthermore, the invisible elements fa-
cilitate the TDs.

Figure 2: Technical Debt Landscape by Ozkaya, Nord, and Kruchten [29]

2.2 fundamentals of stability 11

After delimiting the term TD from other software issues, one can
subdivide debts into a collection of different TD types. These types
encompass and describe different levels of abstractions where debts
can occur. For example Li, Avgeriou, and Liang classified TD types into
ten coarse-grained categories [24]. The types comprise of Requirements
TD, Architectural TD, Design TD, Code TD, Test TD, Build TD, Docu-
mentation TD, Infrastructure TD, Versioning TD, and Defect TD. Each
of those types can be further organized into sub-types. This study
focuses on the specific sub-type of Architectural TD and hence only
these sub-types are discussed in this study for the sake of brevity1.

Architectural TDs have six sub-types, namely architectural anti-patterns,
complex architectural behavioral dependencies, violations of good architec-
tural practices, architectural compliance issues, system-level structure qual-
ity issues, and AS [24]. In correspondence with [27], this leaves us with
the conclusion that ASs are a subcategory of TDs. Categorizing ASs
as TD enables us to apply the same characteristics to both.

Finally, we want to provide a demonstrating example that explains in-
curring debts on architectural level. At the beginning of this thesis in
Section 1, we described that software aging degrades a system’s qual-
ity which is also known as architectural drift or system erosion [41].
In this case, the architecture often deviates from its original intent and
makes maintenance more time consuming and more expensive, while
the reliability of a system decreases. This is due to design decisions
made without considering the impact on inner system qualities [27].
Then, a software system incurs a TD on architectural level and such
a short-term compromise can lead to significant long-term problems.
If not resolved, this effect gets stronger and the system gains more
quality or maintainability interest on its debt.

2.2 fundamentals of stability

In 1994, Martin analysed the quality of object oriented design [25]. In
particular he focused on the dependencies among subsystems of the
design in order to find what makes a systems more robust, reusable,
or maintainable. He identified stability of the dependencies as crucial
factor in achieving a certain quality of a system in these dimensions.
Furthermore, Martin defined stability as the likelihood of a change
in a subsystem where another subsystem depends upon. In addition,
he described a metric called Stability Metric in order to determine the
stability between subsystems.

1 for a complete list of all TD types and sub-types please refer to [24]

12 background

Moreover, Martin introduced stability as a mean to determine how
packages of a software system should be interrelated [26]. It uses the
relationships among packages, also known as dependencies, to de-
fine principles that help to improve the structure of an application in
order to keep it in a maintainable state. Designing a system by fol-
lowing these principles, reduces problems that usually occur when
software teams work in parallel on different parts of the system.

Consider that “bad relationships" among packages result in a rigid
structure of an application. A rigid structure is a structure that is
hard to change and hence undesired [25]. This is due to fact that a
single change in such a heavily interdependent software design may
influence other parts of the system as well. As a consequence those
parts have then also to be changed. In other words, such a system has
the tendency to break in many places when a single change is made.

2.2.1 Dependencies

In order to understand these “bad relationships" among packages
one needs to first understand their origins. In an object-oriented pro-
gramming language such as Java2, relationships can be formed only
among classes. They are called dependencies (D), defined as follows
[14], and illustrated in Figure 3:

D1 Dependencies between classes: Class A invokes a method of
class B where the direction of the dependency goes from class
A to class B (A depends on B) as shown in Figure 3a.

D2 Hierarchy dependency: The child class A depends on the par-
ent class B where the direction of the dependency goes from
class A to class B (A depends on B) as shown in Figure 3b.

D3 Interface dependency: The implementing class A depends on
the interface B where the direction of the dependency goes from
class A to interface B (A depends on B) as shown in Figure 3c.

2 In this study we focus only on Java projects - see more in Section 4

2.2 fundamentals of stability 13

(a) Dependencies between
classes.

(b) Hierarchy dependency.

(c) Interface dependency.

Figure 3: Dependencies between classes.

Those dependencies can occur between classes of the same package
or between classes of different packages. The latter cases are impor-
tant to understand the principles of package coupling. There are two
dependencies among packages important for this study [14, 25]:

AD: Afferent Dependency: Package a contains class A and package b
contains class B. Class B depends on class A. Thus, package a has
an afferent or incoming dependency coming from package b. The
direction of the package dependency is from package b to package
a. Figure 4 demonstrates an afferent dependency of package a.

ED: Efferent Dependency Package a contains class A and package b
contains class B. Class A depends on class B. Thus, package a
has an efferent or outgoing dependency going to package b. The
direction of the package dependency is from package a to package
b. Figure 5 shows the efferent dependency of package a.

14 background

Figure 4: Afferent dependency of package a.

Figure 5: Efferent dependency of package a.

The dependencies among all packages create a graph which is called
the package-dependency graph where the packages are the nodes and
the dependencies are the edges [26].

2.2.2 Principles of Package Coupling and Dependency Management

In order to keep a software system in a maintainable state, Robert C.
Martin introduced two principles related to dependencies. The smells
that we analyse in this study are basically violations of these princi-
ples. In order, to understand them we provide a brief description of
the two principles.

Acyclic-Dependency Principle (ADP) - The Acyclic-Dependency
Principle says:

Allow no cycles in the package-dependency graph [26].

One problem that occurs in software projects where multiple
changes are made in parallel is the Morning-after Syndrome [26].
It describes the situation where developers are in believe that
all problems related to their work are fixed when they finish in
the evening. However, the next morning everything is broken.
This is because other developers made changes to another part
of the system over night where the former part was dependent
on.

2.2 fundamentals of stability 15

In order to avoid these situations it is crucial to keep the num-
ber of dependencies a package that needs to be changed has as
minimal as possible. However, when there is a cycle in the de-
pendency graph, packages in need of a change might depend
on more packages than necessary. This leads to a higher main-
tenance effort.

Consider a packet structure as displayed in Figure 6a. Package
e only depends on package f. Hence, if someone makes changes
in package e, she only needs to check whether there are also
changes in package f and tests accordingly. In contrast to this,
consider the packet structure in Figure 6b. Here package e also
depends on package a which forms a cycle since package a de-
pends on package d which depends on package e. In addition,
package a is direct and indirect dependent on all other packages
of the application. One making changes to package e has also
to check check and test against all other packages. The effort
for maintenance has increased with the cycle. This effect exacer-
bates the more complex the system becomes and hence cycles
should be avoided.

(a) Acyclic packet structure. (b) Cyclic packet structure.

Figure 6: Differences of cyclic- and acyclic package structure.

Stable-Dependency Principle (SDP) - The Stable-Dependency
Principle says:

Depend in the direction of stability [26].

Martin describes stability as a characteristic of a an item that is
related to the amount of effort that is required to change it [26].
The more stable something is the more work is needed to make
a change on it. As implied in the description of the previous
principle, it is easier to change a package with no or only few
dependencies to other packages than to a package with a lot of

16 background

afferent dependencies. Following this, a package with multiple
incoming dependencies is a stable package since it takes a lot
of effort to change it (Figure 7a). Contrary to this, an unstable
package is a package that only has efferent dependencies (Fig-
ure 7b).

Some packages are more stable than others. The Stability Metrics
help to compare the degree of stability of all packages in the ap-
plication as defined by [25]. Definition 1 to 3 define the metrics.
Most important is the Instability Metric of Definition 3. It can be
calculated using Equation 1. The metric has the range from [0,
1] where I = 0 indicates a maximally stable package and I = 1

a maximally unstable package.

Definition 1 Ca: Afferent Couplings: The number of classes outside
this package that depend on classes within this package.

Definition 2 Ce Efferent Couplings: The number of classes inside
this package that depend on classes outside this package.

Definition 3 I: Instability: Index that shows the positional stability
of this package. It is is calculated by Equation 1:

I =
Ce

Ca +Ce
(1)

(a) Stable dependency. (b) Unstable dependency.

(c) Example of instability metrics. (d) Violation of SDP.

Figure 7: Stable and unstable dependencies following [26]

2.3 fundamentals of architectural smells 17

The package structure depicted in Figure 7c may serve as an
example for clarification. There are four packages containing
a various number of classes. The classes have dependencies
to other classes outside of their packages (arrows with solid
line). Using Equation 1 one can calculate the Instability Metric
for every package. Package a has three outgoing dependencies
and no incoming one. Applying equation 1, it has an Instability
Metric of Ipackage a = 3

0+3 = 1. This package is very unsta-
ble and can therefore be easily changed without any side ef-
fect on other packages. Calculating the Instability Metric for the
other packages in the same way derives in the following results:
Ipackage b = 0.6, Ipackage c = 0, and Ipackage d = 0.3. We can
now say that package c is the most stable package and that pack-
age d is more stable than package b. We already know that package
a is the package with the least stability. In addition, a closer look
at the package dependencies (arrows with stressed line) reveals
that this example follows the SDP since each package depends
on a package that is more stable than itself.

The previous example showed that not all packages are stable.
Indeed, this is not desirable especially when the system should
be changed effortlessly for e.g. maintenance purpose [26]. There-
fore, the design of the system needs to address packages that
are required to be changed easily and make them as unstable as
possible.

In Figure 7d we provide an example of a package structure that
violates the SDP. The package in the middle has three other
packages that are depended on it. It is the most stable package
in this example and thereby requires a lot of effort in changing
it. Consider that the package at the bottom is one that needs to
be flexible (unstable). Its incoming dependency from the stable
package however makes it hard to change. This is a clear vio-
lation of the SDP and the designers of this system disregarded
that their decision makes it harder to maintain the system.

2.3 fundamentals of architectural smells

The one type of Architectural Technical Debt this study is focusing on
is the poignant combination of software architecture constructs called
Architectural Bad Smells or simply Architectural Smells. An AS is a
design decision that has a detrimental impacts on the quality of a
software system [16]. Software engineers can incur an AS intentional
or unintentional. However, the resulting architecture of that decision
is not faulty but rather expedient towards the functionality [17]. The

18 background

negative effect of the smell focuses on the internal software qualities
such as maintainability or extendability.

As the name suggests, ASs span over multiple components of a soft-
ware project and have system level impact [35]. The components in-
volved engender architectural constructs whose characteristics reduce
the ability of maintaining the system such as adding new features or
sustainably fixing defects or alike [17]. One may imagine an “hypo-
thetical“ ideal state of the system in which common design rules were
applied. Incurring ASs leads to a deviation of the system’s architec-
ture and this ideal state [9]. This inevitably creates a gap between
desired and existing architecture. Furthermore, as the complexity of
a system increases over time, so will the number of ASs [36].

The impact of the smell is always on inner qualities. Nonetheless,
this does not necessarily apply only to maintainability or extensibil-
ity but can effect other qualities such as performance or security as
well [17]. As a consequence, undetected ASs are expensive because
paying back the debts requires huge effort in identifying, understand-
ing, analysing activities [9]. These are required in order to thoroughly
and sustainably remove the smell from the project. This is eventually
necessary in order to keep the system in a maintainable state.

There are two main reasons for the origins of an AS [9]. The first
one is due to the structural complexity a system achieves during its
lifespan. This is often inadvertently introduced as the number of de-
pendencies between system components grows and design goals are
violated. The second one may be that the team expects some kind of
strategic value from deliberately violating design principles. This can
also be understood as a trade-off decision towards another quality di-
mension but against inner system qualities [16]. A thinkable situation
may be that the development team is eager to meet a certain release
date which may be easier to achieve without following the rules of
good software design. These two origins of AS follow the column di-
mension of the technical debt quadrant by Martin Fowler (see Section
2.1).

2.3.1 Instability Architectural Smells

Three specific smells that got the attention of the research commu-
nity are called Instability Architectural Smells3. This group of ASs are
named after the instability metrics defined by Martin [14, 25] which
are described in Section 2.2. These metrics describes whether a pack-
age of a software application can be changed without impacting other
packages within the same application [14]. All three ASs that we de-

3 We will address those also as ASs

2.3 fundamentals of architectural smells 19

scribe in this section are related to these metrics. The smells are cyclic
dependency, unstable dependency, and hub-like dependency. We de-
scribe them in detail in the following sections.

2.3.2 Cyclic Dependency

The cyclic dependency is an AS that violates the ADP [40] which is
described in Section 2.2.2. This smell composes of a subsystem that
forms a chain of dependencies that break the desired acyclic nature
of the dependency structure [14]. Al-Mutawa et al. conducted a re-
search on the shape of cyclic dependency. They identified two groups
of shapes (symmetric and asymmetric). Figure 8 and 9 provide an
overview of the different shapes [1].

(a) Tiny (b) Clique (c) Circle

(d) Chain (e) Star

Figure 8: Symmetric shapes of cyclic dependencies following [1]

2.3.3 Unstable Dependency

The unstable dependency occurs when a component or package of a
system depends on a another component or package that is less sta-
ble than itself [13]. This is a clear violation of the SDP which is dis-
cussed in Section 2.2.2. Figure 7d illustrates an unstable dependenc.
As already mentioned, the stability of a component derives from the
number of dependencies the component depends on and the num-
ber of other components depending on it. Imagine three components
depend on component A. Then, a change in component A may have af-
fects on the three other components. Therefore, component A is stable
and hence requires a higher effort in changing it. If now component A
depends on component B which is an - maybe by intention - unstable
component, each change in component B may influence component A
may influence the three former packages. This structure has a detri-

20 background

mental impact on the inner quality attributes of the system and is
hence an AS.

(a) Multi-hub

(b) Semi-clique

Figure 9: Asymmetric shapes of cyclic dependencies following [1]

2.3.4 Hub-Like Dependencies

This smell arises when a component has a large number of efferent
and afferent dependencies [40]. Figure 10 depicts this smell. As one
can see, there are several spots that are hard to change in this smell.
First, package a may be very hard to change since it is a stable pack-
age where each change may influence on of the depending packages.
Similar to this, changing on of the packages package a relies on, may
result in the same problem.

Figure 10: Hub-Like dependency on packages where package a is the hub

2.3 fundamentals of architectural smells 21

2.3.5 Tool Support

There are a lot of tools available that support the detection of ASs [3].
In this section we present the tools that we use in this study.

Arcan - Arcan is a tool developed by academia in order to de-
tect and report architectural anomalies [13, 14]. It can parse Java
source code and detect the three ASs that we described above.
Theses types are, cyclic dependency, unstable dependency, and
hub-like dependency. Arcan makes use of graph technologies
that helps with representing the dependency graph of an ap-
plication. The detection process includes reading of the Java
bytecode, analysis and graph generation, architectural smell de-
tection, and output. In the bytecode Rrading phase the pre-
compiled files from the given Java application are read. This
allows to extract content information about the structure of the
project. Subsequently, this information is used for dependen-
cies analysis and dependency graph generation. The generated
graph is then used in order to identify the specific ASs. Once
detected the information of the smells are stored in a graph file.

Apart from the process description found in literature, our work
with Arcan revealed that this tool is also capable in parsing
uncompiled Java projects. In addition, we also found that Arcan
is able to use a Git repositories and create a graph file for every
single software version of a project.

ASTracker - ASTracker4 is a publicly available application de-
veloped by Darius Sas for the research on AS evolution [36]. It
uses the graph files generated by Arcan for each version and
maps every smell in each version to its closest successor in the
next version. It also calculates the new smell characteristics and
alike. Finally, ASTracker generates CSV or graph output files.

Designite - Designite is a commercial tool to identify TD in a
software project5. It can detect a lot of different types of ASs [3].
This includes , unstable dependency, and hub-like dependency.
Compared to Arcan, Designite uses slightly different detection
algorithm to detect smells in the source code. Nevertheless, we
use Designite to evaluate detected smells. Unfortunately, as far
as our knowledge is, Designite is not able to parse multiple
versions of a project as Arcan is capable of. For this study we
use a free academia version available for students and teachers.

4 https://github.com/darius-sas/astracker

5 http://www.designite-tools.com/

https://github.com/darius-sas/astracker
http://www.designite-tools.com/

22 background

2.4 fundamentals of design decisions

As mentioned earlier, an AS is an architectural design decision. There-
fore, we provide crucial information about these decisions in this sec-
tion.

2.4.1 Architectural Design Decisions

Jan Bosch defined Architectural Design Decisions (ADD) as follows
[7]:

We define an architecture design decision as consisting
of a restructuring effect on the components and connec-
tors that make up the software architecture (and result-
ing system) as a consequence of the design decision, de-
sign constraint imposed on the architecture and a ratio-
nale explaining the reasoning behind the decision. In our
definition, the restructuring effect includes the splitting,
merging and reorganisation of components, but also ad-
ditional interfaces and required functionality that is de-
manded from components.

In addition, an ADD is the outcome of a design process during the
evolution of the system [21]. This corresponds to the definition of AS
in Section 2.3 as these smells are defined as ADDs with a negative im-
pact on system qualities. In other words an AS is a detrimental ADD.

The structure of an ADD composes of a rationale, design rules, de-
sign constraints, and additional requirements [21]. In addition, Shah-
bazian et al. added a consequence which is a description of the changes
in the architecture the decision is resulting in [38]. These features can
be mapped to ASs where the rationale is the reason for the smell. De-
sign rules in an AS decision reflect in the violation of design princi-
ples such as the ADP or SDP. The design constraints manifests in the
reduction of inner system qualities that constrain e.g. maintenance
of the system. The additional requirements represents the required
means of TD management derived by introducing this smell. Finally,
the consequence of the smell is that subsystem that forms the struc-
ture of the implemented AS.

ADDs can be divided into four different kinds of decisions called Ex-
istence Decisions or Ontocrises, Ban/Non-existence Decisions or An-
ticrises, Property Decisions or Diacrises, and Executive Decisions or
Pericrises [23]. The Ontocrises adds structural or behavioral elements
to the system. Its consequence results in the most visible artifacts of
the architecture such as components and connectors. The Anticrises
restricts elements from being present in the design or implementation.

2.4 fundamentals of design decisions 23

Those elements are very hard to detect since they have no manifesta-
tion at all in the system. Diacrises are decisions that are equally hard
to be traced. This decision type refers to overarching traits or system
qualities. The last ADD type, the Pericrises encompasses decisions
that are only implicitly connected to design elements or their qual-
ities. It captures decisions concerning financial, methodological, or
educational means with an impact on developing the system. Align-
ing ASs to one of these types is not as straight forward as it may
appear at the beginning. Technically, a smell adds a construct of de-
sign elements to the architecture (Ontocrises). However, by changing
the structure of the system, ASs also affects the inner system quality
(Diacrises).

Philippe Kruchten describes that ADDs have a certain state during the
design process [22]. For example, a design decision can start with an
idea for how to satisfy a requirement, may become tentative during
discussions, and finally be decided and approved by the development
team. It is hard to include the smell decision in this schema because
we believe that the decision states, described byKruchten, refers to in-
tentional decisions. Yet, we were not able to find proof that ASs have
been deliberately incurred into software architecture.

Contemplating the evolution of software architectures, reveals that
their structure changes over time. These restructuring effects are the
implications of ADDs since each decision changes the structural el-
ements [7]. These structural changes affect also system qualities di-
rectly [38, 39]. This is a general explanation of ASs as they (1) adding
structural complexity to the system and (2) change the inner system
qualities negatively.

Another key issue and part of several studies is the way of docu-
menting ADDs. In [23], Kruchten, Lago, and van Vliet describe four
documentations practices for ADDs and their rationales:

1. Implicit and undocumented - being unaware of decisions or
dismisses them as “of course knowledge"

2. Explicit but undocumented - specific reason for decision but
remains undocumented

3. Explicit but explicitly undocumented - specific reason for deci-
sion but (tactically) hide reason

4. Explicit and documented - specific reason for decision and doc-
umented to preserve knowledge

24 background

2.4.2 Rationale

This study focuses on the rationale for ASs. Since these smells are
ADDs as explained in Section 2.4 and each decision has a rationale,
we provide useful information on them in this section.

The rationale is the justification for an ADD which adds some value
to why the decision was made [21, 23]. There are two facets of ratio-
nales: intrinsic and extrinsic. An intrinsic rationale is the property of
an ADD and hence belongs to the very same. An extrinsic rationale
represents the relation of one decision to another.

There are multiple relations between ADDs resulting in a graph-like
structure. Jansen and Bosch for example described that a decision for
using a certain technology results in a decision of how to implement
that technology in the system under question [21]. A list of different
types of relations can be found in [23]. For this study these different
types are not important but the fact that there is a relation between
decisions is. Considering multiple decisions related to a decision for
a smell entails in a decision chain that relates multiple extrinsic ratio-
nales to this smell decision.

Following this, we present one example that clarifies the affiliation of
smells to its extrinsic rationale. Assume that fixing a bug in a soft-
ware system results in an AS. This smell is an ADD and hence has an
intrinsic rationale (for instance: inadvertent, deliberate, and so on, see
Section 2.1). However, it also has one or more incoming extrinsic ra-
tionales that relate the decision incurring the smell with the decision
to fix the bug. Hence, fixing the bug becomes the extrinsic rationale
for the smell. Similarly, the decision which developer is working on
resolving the issue is also connected to the decision that incurs the
smell.

Putting all information together Figure 11 provides an overview of
such a decision chain which results in incurring an AS. As one can
see there is a delta that represents the changes in the system. These
changes are the result of the corresponding decision (bigger green
circle). The delta entails several smells that eventually incur a smell.
Furthermore, we can see that the decision of for the changes has a
rationale (bigger yellow box). Besides this there are other, preceding
decisions in the figure (D1 and D2) each with its corresponding ra-
tionale. One example could be that D1 represents the decision for a
change where the rationale is fixing a bug. This leads to the D2 de-
cision which states that a certain developer should fix this bug. The
rationale for this may be that the selected developer has good knowl-
edge of that part of the system where the bug is present. This devel-

2.4 fundamentals of design decisions 25

oper than makes the changes and - intentionally or not - decides to
incur an AS. This example may serve as a demonstration how deci-
sions and their rationale can influence the creation of a smell instance.

Figure 11: Overview on the structure of ADDs incurring an architectural
smell

3
R E L AT E D W O R K

This section presents research related to our work. Since this study
relies and combines methods and findings form different fields of
software engineering we describe those areas separately. Therefore,
Section 3.1 describes related work on Architectural Smells. In Section
3.2 we outline the previous work on Architectural Design Decision. Fi-
nally, Section 3.3 provides an overview on Self-Admitted Technical Debt.

3.1 research on architectural smells

Garcia et al. identified certain architectural structures in software
with a negative effect on inner system qualities - maintainability, ex-
tensibility, adaptability, and so on - in 2009 [16]. They noticed fre-
quently recurring design fragments recovered from architectures of
existing systems which they called Architectural Bad Smells. The method
used in this study was to analyse existing software systems through
reverse-engineering the architectures of eighteen software systems.
With their work they (1) introduced and defined the notion of ASs
and (2) described four smell types which they had discovered dur-
ing their research (Connector Envy, Scattered Functionality, Ambiguous
Interface, and Extraneous Connector). In addition, they have not only
provided a description of the identified smells but also defined qual-
ity impacts and trade-off descriptions for them. All in all, this re-
search enables software architects to detect ASs in software projects
and asses the corresponding impact on relevant qualities. They later
refined their work in [17] and demanded further research on catego-
rization, detection, and resolving methods of ASs. However, Garcia
et al. do not describe an approach in how one can detect smells in ex-
isting software. Additionally, they did not investigate on the reasons
why ASs are incurred into software.

In his work “Agile Software Development: Principles, Patterns, and Prac-
tices" [26], Martin consolidated his research on dependencies among
subsystems and defined principles in software design resulting in a
higher stability of the application. Those are the Acyclic-Dependencies
Principle, Stable-Dependencies Principle, and Stable-Abstraction Principle.
These principles can help software practitioners to design an applica-
tion with a certain quality among inner system qualities. Although
this work is not about ASs, it is the foundation for a specific group
of smell types called Instability Architectural Smells which most of the
literature presented in this section has the focus on. Therefore, this

27

28 related work

work is different from our work because it does not address the ra-
tionale for ASs. In addition, it provides theoretical background on
software design derived by the experience of the author but not an
empirical case study.

In 2016, Fontant et al. picked up on the notion of ASs and combined
it with the instability metrics defined by Martin [14]. Thereby, they in-
troduced three specific ASs which they called Instability Architectural
Smells. Those smells describe violations of the three principles by Mar-
tin, namely cyclic dependency , unstable dependency, and hub-like depen-
dency. Besides their theoretical work, they presented the ASdetection
tool Arcan which is capable of identifying their three presented ASs
in Java source code. The tool has been tested on seven open source
projects and the existence of the smells has been compared with re-
sults of other tools for the smell types cyclic dependencies and unsta-
ble dependencies.
One year later, this work was refined and detection algorithms and
performance of Arcan was improved in order to provide better sup-
port for software teams to automatically detect smells in their projects
[13]. The new Arcan version was tested against the two software
projects DICER and Tower4Clouds. The results were manually verified
with a precision of 100% for both projects and a recall of 60% and
66%, respectively.

Sas, Avgeriou, and Fontana conducted research on the evolution of
instability ASs in 2019 [36]. They reused the Arcan tool in order to
detect all smells for each version of a software project. In order to
combine the results and track the smells of each version, they devel-
oped a tool called ASTracker1. With this they analysed 14 different
open source Java projects. Their findings suggest that the three ASs
types cyclic, unstable, and hub-like dependencies diverge in multi-
ple aspects such as growth rate or time each smell instance affect the
system. These insights led to the conclusion that maintenance effort
should focus first on resolving unstable and hub-like dependencies.
Cyclic dependencies - especially when recently introduced - are very
likely to disappear within the next few releases.

In 2019, Fontana, Azadi, and Taibi compared nine AS detection tools
provided by academia and industry [3]. In their work they presented
a catalogue of smells where detection of each smell is guaranteed at
least from one tool. For each smell they discussed the different ap-
proaches each tool follows in order to detect that particular smell.
They encountered a lack of standardization manifesting for example
in different naming for the same problem (e.g. hub-like dependency
is also known as hub-like modularization or link overload). The com-

1 https://github.com/darius-sas/astracker

https://github.com/darius-sas/astracker

3.2 research on architectural design decisions 29

parison of the tools revealed that the tool Designite 2 can detect the
most smell types. Finally, they classify architectural smells in order to
enable intuitive understanding of an AS and in order to get a better
idea of refactoring methods.

This study is based on the findings and insights of the aforemen-
tioned work. We use the detection mechanisms and tools presented
in [13] and [36]. We further use the tool Designite in order to validate
smells detected in a particular version. Nonetheless, our study is dif-
ferent from the studies presented in this section since their focus is
on describing, detecting, and thus supporting refactoring methods of
ASs. The aim of our study is to apply an empirical analysis in order
to find the rationales for introducing ASs into a software system. As
already mentioned, we believe that this will help to avoid implement-
ing smells on the one hand but also guide trade-off decisions when
deliberately add smell.

3.2 research on architectural design decisions

As mentioned in Section 2.3, ASs are defined as an Architectural De-
sign Decision with a negative affect on inner system quality. We un-
derstand that a smell is formed by the restructuring effects on the
architecture of that decision. It is hence the consequence or solution
of the decision for incurring (deliberately or inadvertent) ASs. With
this study we aims to extract the rationales for this decision. Ratio-
nales are a crucial part of design decisions and it is hence helpful to
discuss previous work on design decisions.

In 2004, several software architects became aware that the traditional
view on software architecture depending on the key concepts of com-
ponents and connectors suffers from a number of key problems that
lead to high maintenance cost and violations of design principles.
Therefore, some architects suggested to extend this traditional view
and consider Architectural Design Decisions (ADD) as part of software
architecture [7, 21, 22]. In 2004, Jan Bosch described the problems of
the traditional view of software architecture at this time in a posi-
tion paper [7]. He claimed that the software design community need
to take the next steps and adopt the perspective that software archi-
tecture is a composition of ADD. He further identified four relevant
aspects of such a decision: restructuring effect, design rule, design con-
straint, and rationale. In contrast to our work, Bosch describes a gen-
eral view on design decisions. In our work we have the focus on the
rationale for ASs. Furthermore, Bosch suggests a paradigm change
for describing software architecture. In our study we conduct an em-

2 http://www.designite-tools.com/

http://www.designite-tools.com/

30 related work

pirical case study in order to derive the rationales for ASs.

In the same year, Philippe Kruchten picked up the idea of represent-
ing ADDs as first-class entities of software architecture and suggested
a design decision model [22]. This model distinguishes several kinds
of decisions, describes their attributes, and defines relationships be-
tween them. Kruchten stated that this model should enable archi-
tects to better include their decisions into the architecture of complex
software-intense systems and allow to create decision graphs provide
an overview of interrelated design decisions. This will then support
support reasoning about this high level abstraction of software archi-
tecture. Similarly to Bosch, Kruchten provides a model that can be
used to extract information on design decisions. However, as well as
Bosch, this work describes a model to capture software architecture
related information. It does not conduct an empirical study on the
rationale of ASs.

In 2005, Bosch and Jansen presented a new perspective on software
architecture describing the architecture of a system as a composition
of a set of ADD [21]. This perspective makes decisions an explicit part
of software architecture. They claim that the resulting Archium model
reduces knowledge vaporization and thereby alleviating software ero-
sion. The model composes of the architectural, design decision, and
composition sub-model. Thus, it is possible to describe an architec-
ture using the notion of deltas (representation of a change), design
fragments, and design decisions (entailing also but not only the ratio-
nal). The notion of deltas implies that a decision can lead to another
decision. In fact, the example provided in their work explicitly de-
scribes such a situation where a decision for integrating an existing
anti-fraud system as a subsystem into the system under question is
followed by a decision of how this integration should be done. The
practicality of the model is demonstrated and validated by applying it
to a case scenario. While an AS is incurred by a delta and information
on the rationale can thereby be extracted with the Archium model, this
study does not focus on finding rationales for AS. Although, Bosch
and Jansen apply the principles of a case study to demonstrate the
practicality of their work, they do not conduct an empirical study
which is different to our study.

Falessi et al. picked up the idea of capturing the rationale for de-
sign decisions (also known as design rationale documentation (DRD))
in 2013 and investigated what information items are likely to be re-
quired for executing an activity in working on a software system
[12]. This is because they state that documenting everything is in-
adequately inefficient and too onerous to be used in industrial soft-
ware development. Therefore, they suggest to reduce the amount of

3.2 research on architectural design decisions 31

documentation through a value based customization. Meaning that
only those rationales are captured that are likely to be used in future
activities. They hence conducted two controlled experiments includ-
ing 75 master students of computing science. Each student had to
perform an activity on a system using multiple information includ-
ing DRD for the specific system. They then had to categorize these
information as useless, required, or optional. Their findings suggest
that customizing the DRD documentation can reduce the amount of
documentation that needs to be done by 50%. They hope that their
findings can motivate software practitioners in documenting the cus-
tomized crucial design decision rationales required and supporting
future activities in their software systems. This study can have an
beneficial but also disadvantageous effect on our study. One the one
hand, it may motivate open source software developers to put effort
in documenting their design decisions and on the other hand, lead to
a customization of the DRD that prevents of documenting the ratio-
nales for incurring ASs.

In 2015, Groher and Weinreich conducted a survey on architectural
decision making processes in industrial software development [18].
They found out that decision making processes are influenced mostly
by organizational (team size/organisation), individual (experience,
education, passion), cultural (degree of freedom), business (domain,
costs, risks, time-to-market), and project (duration, kind of project)
factors. Surprisingly, domain and company size may not have such
a great influence on architectural decisions making than one may ex-
pect. In addition, they found out that most teams work in an agile
environment where developers w.r.t their responsibilities are mostly
free to make decisions. However, they also found evidence that usu-
ally either more people are involved in high-impact decision making
situations or people with designated roles are consulted. These find-
ings have been derived by interviewing 25 experts from industry. This
study is related to our study because it provides information what
factors influence decision making. We can pick up those factors and
include them in our case study to find the rationales for incurring
ASs. The study of Groher and Weinreich however, differs from our
study since they investigate the general area of decision making pro-
cesses in software development but not in incurring ASs in particular.
In addition, their method is based on interviews where our study fo-
cuses on analysing documentation artifacts related to versions that
incur smells.

Shahbazian et al. adapted the aforementioned findings on ADDs in
2018 in order to recover undocumented decisions from issue tracking
systems [38]. They agreed that rational and consequences are impor-
tant parts of the decisions and refined the decision category to simple,

32 related work

compound, and crosscutting decisions. With utilizing and combining
information derived form GitHub and Jira they created a technique
of recovering design decisions. This technique was applied to two
highly complex software systems (Hadoop and Struts) in an empiri-
cal study. They showed the possibility of preserving design decisions
form history information such as Git commits and Jira issues.

Our research follows the presented literature in that way that we use
the findings of [7, 21, 22] concerning the relation of ADDs and the
rationale for this decision. We further use a similar approach to ex-
tract the design decisions form existing code and issue repositories
as in [38]. We also conduct an empirical analysis on open software
projects. However, the main contribution of our work is to find the
rationales for ASs and not to recover ADDs in general. Also our ap-
proach differs in the extraction mechanism of the decisions. We apply
existing AS detection tools in order to gather versions where one or
more smells are incurred in the system. We than map these version
this smell occurs to combine it with the Jira issue to extract the ra-
tionale. At this point we use the principle of [21] that a decision can
lead to another decision. With this we are able to extract a rationale
for change decision and for the smell itself.

3.3 research on self-admitted technical debt

The Technical Debt (TD) metaphor was first used 1992 by Ward Cun-
ningham in order to describe the situation where immature code is
used in order to meet a deadline or to deliver software quicker to the
market [11]. Cunningham described that even if the software is func-
tioning well, developers may have gone into debt. He argued that
a little debt can be tolerated when it allows gaining value such as
speeding up development. Nonetheless, it becomes dangerous when
the debt is not paid back. Further, it can bring the entire software en-
gineering process to a stand-still in case of a high debt load.

While other researchers focused on the implications and management
of TD Potdar and Shihab examined the impact of technical debts that
are intentionally introduced into software called Self-Admitted Tech-
nical Debt (SATD) [31]. They analysed the source code of four large
open source software projects in order to quantifying the amount of
SATD, the reasons behind the intended admission, and whether the
debts are removed after their introduction. The results suggested that
2.4 - 31.0% of the files in the project contained SATD. Furthermore,
time pressure or complexity seem to be no reason for deliberately in-
troducing TDs. However, it appears that more experienced developers
tend to add more SATD. Finally, only 26.3 - 63.5% of the intentionally

3.3 research on self-admitted technical debt 33

introduced debts had been removed afterwards.

In 2015, Maldonado and Shihab focused on the different types of
TD introduced by SATD [34]. They conducted an empirical analysis
on 33K comments derived from five open source software projects
in order to determine different types of TD. They found five differ-
ent types of debts, namely design debt, defect debt, documentation
debt, requirement debt, and test debt. Maldonado and Shihab fur-
ther discovered that the majority of the SATD introduced in the anal-
ysed systems are design debts. The second most frequent type was
requirement debts. The remaining types occurred in a low frequency
considering that they represent less than 10% of the debts they found.

The contributions of our work follow a similar approach as Potdar
and Shihab. We are also trying to find out how much of the ASs are
self admitted. As the results of Maldonado and Shihab indicated that
no architectural debts are added intentionally, this would be a first
proof that ASs are actually a sub-category of SATD s. In addition,
we try to find the rationales for intentionally adding ASs similar to
finding the rationales for SATD. However, the scope of our study is
different. We are focusing only on ASs but not on TD in general as it
is done in [31]. Furthermore, our detection approach is a different one
since we apply existing smell detection methods and tools in order
to connect versions of software systems to issues in the correspond-
ing tracking tools. The presented related work on SATD parses code
comments to detect the debt instances. Finally, our study also aims to
cover the rationales for inadvertently introduced architectural smells.

4
C A S E S T U D Y D E S I G N

This study is about the rationale developers make when inducing
ASs into their software system. In this section we describe our study
design that will help us to derive this rationale. We therefore first pro-
vide information on the principles and theoretical basis according to
which this study is designed (Section 4.1). We then phrase the goal
of our study and formulate the corresponding research questions in
Section 4.2. Subsequently, Section 4.3 depicts how the projects that
have been used were selected. Finally, Section 4.4 concludes with de-
scribing the processes necessary to derive the data that is required to
answer our questions.

4.1 rationale for case study design

In order to find the rationales for incurring ASs into a software system
we conducted a case study. A case study “is an empirical inquiry that
investigates a contemporary phenomenon within its real-life context"
[43]. As ASs are such a contemporary phenomenon we decided to
design our study following the guidelines for “Case Study Research
in Software Engineering" described in Runeson et al. [33].

A case study allows a study design that includes a high degree of re-
alism, allows a flexible study setup, and tolerates intentional subject
selection [33]. These characteristics are beneficial because real world
examples will indicate faulty behavior during software development.
In addition, the flexibility of case studies supports an iterative study
design where the setup of the study can be aligned to new findings
encountered during the collection of data. Finally, selecting the study
subjects intentionally allows to study those software projects where
(1) information about the project is accessible and (2) only subjects
can be selected where the documentation quality meets the require-
ments to answer the research questions of our study.

As far as our knowledge goes, no other case study has been con-
ducted yet with the objective to investigate the reasons for incurring
ASs. Several hypotheses have been proposed why software practition-
ers add smells into a system as mentioned before. However, we could
not find any evidence and hence have no theoretical background that
explains why ASs are added to a system. Therefore, our case study
design has to be inductive as explained in [33]. More in detail, this
case study will result in observations that may reveal patterns on

35

36 case study design

which we can define tentative hypotheses, i.e. if we find a certain
characteristic in the evolution of architectural smells we can apply
this in our study design. In the best case, we are then able to define a
theory, based on our empirical research, that provides an explanation
for incurring new AS instances into software.

The process of a case study is divided into the case study design, prepa-
ration for data collection, collecting evidence, analysis of collected data, and
reporting [33]. The case study design will define, among others, the
goals of this study and provide details about the cases and units of
the study. Elements that belong to the case study design such as ra-
tionale and purpose of this study have been already provided in our
introduction in Section 1. Similarly, theoretical background informa-
tion and related work have been discussed in Section 2 and Section
3, respectively. The goal and research questions will be presented in
Section 4.2. A description of the case selection and units of analysis
is explained in Section 4.3.

The preparation for data collection defines the procedures and protocols
for data collection [8]. This step describes how the data sources have
been selected for this study. An important aspect is that the flexible
design approach of case studies allows an iterative refinement of the
data collection. This way one can report how raw data was filtered
and what characteristics have been found during the analysis of the
data sources that have been transpired to be useful. In addition, this
step also defines how the resulting data is organized. This will help
to increase the quality of the study because it ensures that no data is
lost due to disorganisation. The description of the data collection is
presented in Section 4.4

Subsequently, the step of collecting evidence describes how the data
used in this study was collected. This includes for example the tool-
ing that was applied to the raw data derived from the data sources.
In addition, it describes how the data is stored and how someone can
access the data in order to provide transparency of our research pro-
cess. For this study, this is the detection of ASs and the extraction of
data the presumably entails the rationale for incurring the smells.
Finally, the reporting of the findings and the analysis of the collected
data presents the findings and describes how the data is analysed and
interpreted. For our study, these aspects are discussed in Section 5

and Section 6.

4.2 goal and research questions

The objective of this study is to achieve knowledge on the rationale
for ASs. As far as we know this study is the first that focuses on this

4.2 goal and research questions 37

topic. We apply the Goal-Question-Metric (GQM) approach [4] in or-
der to specify our goal.

The GQM helps to specify goals for a project in a purposeful way
[4]. It establishes a framework that not only allows the interpretation
of data with respect to the stated objective but also to trace the way
from the objective description to the data. In general, it defines a goal
that encompasses its purpose, the issue it is defined for, objects that
are used to measure it, and which point of view it takes. The goal is
then specified by various questions characterizing the assessment of
achieving the goal. Finally, metrics define how the data derived from
the object of measurement is associated with every of the aforemen-
tioned questions. Thus, the metrics allow to answer the questions in
a quantitative way. The goal formulation for this study is:

Analyse the rationale for incurring architectural smells using is-
sue and commit information related to a software version which
incurs a new architectural smell instance from the point of view
of software engineers in the context of Apache open source projects
mostly written in Java with the purpose to find the reasons for
incurring architectural smell in software.

In general, all research questions of this study specify the objective of
our study. Therefore, each question focuses on a different aspect of
the rationale for ASs. The questions are presented below and we five
here a brief overview on the focus each question has. RQ1 focuses on
the evolution of architectural smells. RQ2 focuses on the issue types
that motivate software developers to incur ASs w.r.t the three instabil-
ity architectural smell types mentioned in Section 2.3. RQ3 examines
whether the prioritization of issues can indicate whether architectural
smells are incurred. Next, RQ4 seeks to find how different developer
constellations resolving issues influence the introduction of smells.
Lastly, RQ5 studies the decisions, made by the developers and cap-
tured in their discussions on code or issue repositories, for adding a
ASs to the system during development. The research questions are
answered by dividing them into several sub-questions which further
specify the aspect the particular question focuses on.

RQ1 What are the characteristics of the evolution of architectural
smells?

a) How do architectural smells evolve across software project
lifetime?

b) How big do architectural smells evolve?

c) How long does it take architectural smells to evolve?

38 case study design

The research on the evolution of architectural smells has just
begun. However, only understanding the evolution of architec-
tural smells enables us to determine when a new smell actu-
ally is incurred into the system. This is important for this study
since the main goal is to understand the reasons why smells
are incurred into software. The most important information to
answer this question comes from the architectural smell itself.
It composes by all variations of it that are involved in its evolu-
tionary changes over time. Therefore, the first metric that we de-
fine is the total number of smells newly incurred in the project.
Another metric that helps us understanding the evolution of
smells consider the number of variations per smell and the cor-
responding time-span in which the variations are added. Other
metrics that we use for this research question are the number
of smell expansions and the number of splitting points. Addi-
tionally, we use several information about the size of the smell
variations measured by the number of components involved in
the particular information. All these metrics enable us to create
commonly known statistical measurements that provide infor-
mation on how smells evolve during their life-spans.

RQ2 What are the issue types motivating developers to incur Archi-
tectural Smells?

a) How many smells are incurred by the different issue types?

b) How is the distribution of issue types introducing new
smell instances?

The aim of this research question is to find the motivation for
incurring architectural smells. An answer may indicate specific
situations in which it is more likely that a new smell instance
is added to the architecture. This information can be used in
the management of software development. Engineers can take
precautions to prevent polluting the system unnecessarily with
ASs when they work on issue types that are more likely to incur
smells. The metrics used to answer this research questions are
derived form the Jira issue and the architectural smells them-
selves. Every smell is aligned to a specific version of the Git
commit history. This version is usually related to a Jira issue
which determines the issue type. Additionally, the smell tells
us about its smell type. The first metric used to extract infor-
mation from these attributes is the number of smells that are
incurred by each issue type and the ratio of it. The second met-
rics accumulates the number of issue types that incur a specific
smell type or combinations of smell types. In order to compare
these data the second metric is normalized by the total number
of issues for the corresponding project.

4.2 goal and research questions 39

RQ3 How does the prioritization of issues influence incurring archi-
tectural smells?

a) How many smells are incurred by which issue priority?

b) What are the priority levels of issues which trigger archi-
tectural smells?

This research question investigates how software practitioners
prioritize issues that incur smells. Answering this question can
reveal whether the categorization made by developers is ade-
quate with regards to architectural design flaws. If for example
the bulk of smells are incurred in the priority category “Trivial"
or “Minor", one can see this as an indication that developers
are not aware about development situations that result in archi-
tectural significant changes. This information may be helpful
to guide software teams in their prioritization of development
tasks. The metrics that can be use for this question are similar
than those defined for RQ2. However, they replace all issue type
information with those of issue priority which results in num-
ber of smells incurred by each issue priority and the number
of issues ordered by priority that incur a specific smell type or
combination of these types.

RQ4 How does the alignment of developers impact introducing ar-
chitectural smells?

a) What is the experience of developers, who commit archi-
tectural smells?

b) How many developers participate in incurring architectural
smells?

Another important aspect of why smells are incurred into the
system is the choice of developers. Therefore, RQ3 focuses on
the what kind of developers and how many work on the system
changes that introduce new ASs. One may assume that an expe-
rienced developer is more aware of the problems arising from
a degradation in inner system quality and hence avoids incur-
ring ASs during development. Additionally, one may also agree
that more developers working on the same issue combine their
knowledge and preserve commonly accepted design principles.
An answer to these research questions can thereby guide devel-
opment teams in personnel decisions. If for example, inexperi-
enced developers add more smells to a system then experienced
once and a group of developers working on an issue together
incurs less smells than a single developer. Then, a solution to
prevent adding new smells may be to group experienced and
inexperienced developers and avoid developers working alone
on an issue. The metrics defined for this question are number

40 case study design

versions that incur architectural smells by a single developer
and number of versions incurring architectural smells by two
or more developers. Furthermore, the number of versions with
architectural smell that a specific developer incurred.

RQ5 What are the reasons mentioned in the documentation for in-
curring an AS instance?

a) How many AS are admitted deliberately?

b) What are trade-offs made by incurring AS?

RQ5 focuses on the rationale for the decision that is made for
incurring ASs to the system. The answer to this question may
be - according to our knowledge - the first proof or indication of
whether developers incur ASs deliberately to achieve a certain
goal as often declared in various literature. Further, when this
answer is positive, what are the motives also known as trade-
offs for doing this. If the findings suggests that ASs are only
added inadvertently, the software engineering community is in
need to find ways to prevent this from happening. In case the
findings suggest that developers pollute the system deliberately,
these situations need to be studied in order to determine the
value that is gained form it. This may create a trade-off cata-
log towards other system qualities at the expense of inner sys-
tem qualities such as maintainability and so on. Such a catalog
would be a valuable tool in technical debt management. The
metrics used to answer this research question are of qualitative
nature. We use Issue Context, Issue Information, Smell Type(s), a de-
scription of how the smell was newly incurred into the system,
Reason for approval, and Rationale for smell in order to provide all
information required to understand why an architectural smell
was incurred into the software project.

4.3 case selection

This case study is designed as a single embedded case study with
several units of analysis following the categorization for case studies
in software engineering by [33]. We see the open source projects of
the ASF as the context of this case study. Therefore, we cannot claim
that our findings have a general applicability. However, they can indi-
cate certain behavior of incurring architectural smells into a software
system. This may point future research into a certain direction that
investigates our findings in a different context, i.e. commercial soft-
ware projects etc.

The case that we are studying is, as already mentioned, the rationale
for incurring ASs into open source projects. For this we analyse the

4.3 case selection 41

smells of six different open source projects under the supervision of
the ASF. Hence, all smells of one project take the role of a unit of
analysis. We further subdivide these units into different types of cor-
responding documentation artifacts. These artifacts are related to the
particular software version that incurs a new smell instance. Those
are namely, version commits that encapsulates the changes that have
been made for this version, Jira issues related to the version commits,
and malicious documentation artifacts that are attached to either com-
mits or issues. Furthermore, all attributes belonging to an commit or
issue such as ids, comments, or assigned developer are part of these
sub-units as well.

Apache was chosen because it is the largest open source foundation
in the world according to their home page1. In addition, the tools
used in this work (see more details below) require Java projects and
the ASF oversees more than 200 projects of this programming lan-
guage. Furthermore, Apache projects are also used in other software
engineering studies because of their well maintained code and issue
repositories (e.g. in [39]). Table 8 provides a list of all projects com-
pletely analysed in this study.

We defined the process of selecting the projects in Protocol 1. We first,
provide an overview on this protocol and later describe each step in
detail:

Protocol 1:

1. Project Selection - select all Java Projects of the ASF

2. Categorize Project - align each project to one of the aforemen-
tioned categories

3. Extract Comment Information - Request the number of com-
ments for each Jira issue of each project. This step was per-
formed via an automated python script using Python Jira API2

and results where stored in a spreadsheet for further analysis.

4. Ensure adequate project size - Discard projects with less than
1000 issues.

5. Rank projects - determine rank of remaining projects using
these metrics:

a) Calculate percentage of commented issues

b) Calculate the average of all commented issues

c) Normalize both metrics using min-max-normalization

1 https://www.apache.org/ - accessed 01.07.2020

2 https://jira.readthedocs.io/

https://www.apache.org/
https://jira.readthedocs.io/

42 case study design

d) Sum both normalized metrics and sort by highest value

6. Evaluate comment quality - Manually determine the quality
of the comments by random sampling from the top ranked
projects until 5 projects for each category have been found.

Step 1: Project Selection

All systems that are analysed in this case study need to fulfill certain
requirements. First, as already mentioned, they need to be written
mostly in Java. Second, the projects issue have to be managed on Jira
and publicly accessible. Finally, the code repository of each system
must be a managed by the version control system Git and hosted as a
public project on GitHub. The decision for Jira stems from two main
reasons. First, Jira in combination with ASF allows open access to the
information we require to answer our research questions. Second, Jira
has a general structure that supports us with creating protocols for
extracting the information we require in the same way for all projects
we analyse. Additionally, the Jira API allows a (partial) automation of
executing the processes derived by the protocols. A similar reasoning
applies for Git and GitHub.

Step 2: Categorize Projects

However, these requirements are almost fulfilled by all 237 Java projects
of the ASF and analysing all of them is out of scope of this study.
Therefore, we present a filter process that led to the six analysed
projects. In order to get a broad applicability of the results, the projects
selected for this study must belong to different software domains. Af-
ter examination, we manually divided the projects into six categories
because the categorization of the ASF is in some cases too specific, in-
definite, or misleading. We categorize the projects in order to ensure
that the projects we analyse belong to different domains, to ensure a
broader applicability of our findings. Our categories entail data store
systems, middleware systems, frameworks, analytic engines, libraries, and
web management. We understand data store systems as those system
concerned with persisting data such as database management systems,
data warehouse systems, or support tooling for those systems. The mid-
dleware category describes software systems that provide communi-
cation among several applications such as messaging systems [19].
A framework is an integrated set of components that collaborate to
produce a reusable architecture for a family of applications [28]. Un-
der analytic engine we categorize those software applications that are
used for analysing large amounts of data. A library is a “controlled
collection of software and related documentation designed to aid in
software development, use, or maintenance" [20]. More in detail, this

4.3 case selection 43

collection can be used to reuse certain behavior within a software pro-
gram without the need of the development team to implement this
behaviour themselves. The last category composes by software appli-
cations that can be used for web management such as search engine
development and alike.

Step 3 & 4: Extract Comment Information & Ensure Adequate Project Size

As discussed later in this section, a crucial part of deriving the ratio-
nale for incurring ASs is analysing the discussions of the developers
within issues. We found that not in all Apache projects those discus-
sions are documented in Jira. Therefore, we selected projects where
the amount of comments and the quality of the comment content are
promising to capture the rationale for ADDs. Accordingly, we auto-
matically analysed the comments for each issue and calculated the
ratio of commented issues and the average number of comments per
issue for each project. We further discarded all projects with less then
1000 issues in order to guarantee that the system’s architecture has
evolved enough to consists of ASs.

Step 5 & 6: Rank Project & Evaluate Comment Quality

After applying min-max normalization to the aforementioned comment
metrics of the remaining projects, we achieved an ordered list of all
projects sorted by category. For those projects we manually evaluated
the quality of the comments by taking random samples beginning
with the best rated projects until we found five projects for each cat-
egory. A list of all 25 projects can be found in Table 1 to 5

3. Unfortu-
nately, we had to discard more projects due to errors in the execution
of our analysis pipeline which is discussed later.

Project
Number

of Issues
Number of
Comments

Issues with
comments

Commented
issues in %

Avg. comments in
commented issues

Derby 7,059 60,781 6,731 96 9.03

Cassandra 15,493 105,146 14,445 94 7.27

Tajo 2,182 16,165 1,915 88 8.44

Directory
Studio

1,231 3,857 1,102 90 3.5

Accumulo 4,745 22,728 3,733 79 6.08

Table 1: Projects for Data Store Systems

3 A list of all projects and their corresponding normalized values can be found on
https://github.com/ThorstenRangnau/Jira-Project-Analyzer

 https://github.com/ThorstenRangnau/Jira-Project-Analyzer

44 case study design

Project
Number

of Issues
Number of
Comments

Issues with
comments

Commented
issues in %

Avg. comments in
commented issues

MINA 1,083 4,698 1,007 93 4.66

Sqoop 3,130 15,802 2,579 83 6.12

Axis2 5,877 17,574 5,393 92 3.25

ActiveMQ 7,140 22,475 6,459 91 3.47

Camel 14,570 46,830 11,618 80 4.03

Table 2: Projects for Middleware

Project
Number

of Issues
Number of
Comments

Issues with
comments

Commented
issues in %

Avg. comments in
commented issues

ZooKeeper 3688 35457 3205 87 11.06

Mani-
foldCF

1635 9581 1584 97 6.04

Bigtop 3313 18196 3018 92 6.02

OFBiz 11348 52625 10715 95 4.91

Cocoon 2362 8284 2158 92 3.83

Table 3: Projects for Frameworks

Project
Number

of Issues
Number of
Comments

Issues with
comments

Commented
issues in %

Avg. comments in
commented issues

Hadoop
YARN

9888 129867 8954 91 14.50

Hadoop
HDFS

14419 176055 13444 94 13.09

Hadoop
Common

14662 157523 13863 95 11.36

Hadoop
Map/
Reduce

6941 68484 6320 92 10.83

Phoenix 5716 43205 4936 87 8.75

Flink 16283 114222 14238 89 8.02

Table 4: Projects for Analytic Engines for Big Data Processing

Project
Number

of Issues
Number of
Comments

Issues with
comments

Commented
issues in %

Avg. comments in
commented issues

PDFBox 4775 36027 4700 99 7.66

Log4j 2 2781 17179 2492 90 6.89

Commons
Math

1505 7816 1457 97 5.36

Tika 3041 16612 2808 93 5.91

Commons
Lang

1481 7187 1406 95 5.11

Table 5: Projects for Libraries

4.4 data collection 45

4.4 data collection

This section provides information about the collection of data re-
quired to answer the research questions defined above. We divide
the data collection into three steps: pre-analysis, quantitative analysis,
and qualitative analysis. The pre-analysis part concerns all activities
required to identify the versions in which a new smell is incurred in
the system and the mapping to the corresponding Jira issues. These
activities are described in Section 4.4.1. The quantitative analysis (Sec-
tion 4.4.2) concerns all steps necessary to process and aggregate the
data from GitHub and JiraḞinally, Section 4.4.3 describes the steps
taken in order to analyse the data qualitatively. Especially, the two
latter steps include a detailed description of how the data is aligned
to the metrics defined in Section 4.2. These metrics are important in
order to answer the research questions.

Before we start and explain the processes to derive the data being
used in this study, we want to provide some information about the
data that we collect as well as the underlying methods of the collec-
tion.

Usually, case studies tend to use qualitative data which are consid-
ered to be ‘richer’ [33]. It can however be beneficial to use both quan-
titative and qualitative data in a case study because the quantitative
data provide a better understanding of the studied phenomenon. In
this study we use both types of data which is also known as mixed
method case study.

Runeson et al. describes three degrees of data collecting techniques
which determine what kind of data source is being used in the case
study [33]. The first degree concerns methods extracting informa-
tion from the data source directly such as interviews or observations.
The second degree is when one collects data indirect form a direct
source (video of an interview, monitoring developer working with
software engineering tool, etc.) In this study we use the third degree
of data source. We collect our data independently from the informa-
tion source via work artifacts. More precise, the developers (direct
data source) document their work in a Jira issue or a Git commit
which we then analyse. We chose to use third degree data sources
because it allows us to independently design our case study from the
data source4.

The entire research process that results in the data that is used to an-
swer the research questions is depicted in Figure 12. As described

4 A wise decision as we encountered during the error prone process of the smell
detection.

46 case study design

above this process is divided into three major steps: pre-analysis,
qualitative analysis, and quantitative analysis. We will describe all
three steps in detail in the subsequent sections.

Figure 12: Overview on the research process of this case study

4.4.1 Pre-Analysis

As Figure 12 indicates, the pre-analysis composes of three processing
steps: Arcan analysis, ASTracker analysis, and smell tree creation. In
this section we discuss them individually. All processes of the pre-
analysis phase are defined by the following protocol.

Protocol 2:

1. Arcan Analysis - start Arcan analysis

a) Clone Git project to disc

b) Checkout first commit

c) Start Arcan configured to scan every version

d) Check analysed time-span of project and discard project if
too less versions are scanned

e) Check logs for errors and missed packages and discard
project if errors are to severe or source code packages are
excluded although part of the system

2. Filter Arcan Files - filter versions not included in default branch

3. Detect Version gaps - Determine the gaps for each version

4.4 data collection 47

4. ASTracker Analysis - start ASTracker analysis of filtered Arcan
files

5. Create smell trees - align Algorithm 1 for cyclic dependen-
cies, unstable dependencies, or hub-like dependencies and store
smell trees to disc in a csv file

Step 1: Arcan Analysis

For the smell detection we used Arcan (in combination with AS-
Tracker) and Designite to varify the existence of the smells. We chose
to apply Arcan within the analysis pipeline because it provides au-
tomatic scanning of each version of a software project which is man-
aged by Git.

As indicated, Arcan takes all software versions of a project as input
and creates a graph-file for each version as output. At first, Arcan
creates a dependency graph which includes all dependencies among
packages [13]. This graph is then used in order to detect the smells
that are present in the system. Hence, all information about the smells
of a specific version are included in the corresponding graph-file.
Eventually, the Arcan analysis results in all smells per version of a
software system.

Problems with Arcan Analysis

We encountered several problems with Arcan. In order to give an
overview we first present a list of all these problems. Subsequently,
we describe the indications of these problems, e.g. projects that we
had to discard because of this problem.

1. Long run-time - The first problem with using Arcan was that
its functionality for analysing all versions of a software project
was assumed to skip several versions and only scan every 100

versions of the commit history in Git. This is however not appli-
cable in our study since this raises the risk of missing those ver-
sions that are actually incurred in one of the skipped versions.
Although, Arcan is capable of detecting the smells incurred in
these gaps, it aligns them to the wrong commit id. This of course
biases our results and has to be fixed. Nonetheless, we were able
to configure Arcan such that no versions were skipped (which
did not work 100% and is discussed below). Scanning every ver-
sion however proved to increase the execution time of a single
project exorbitantly (for example ActiveMQ has 10,630 versions).
Since execution was not applicable to a single laptop machine,
we switched the execution of Arcan to the Peregrine HPC Clus-

48 case study design

ter5, the high performance computation cluster of the University
of Groningen.

2. Sequential execution - Unfortunately, during the development
of Arcan, scalability and/or parallel processing presumably have
not been addressed at all. Therefore, we have not been able
to parallelize the execution of Arcan in order to speed up the
performance. However, this is important to achieve an accept-
able run-time during scanning all versions of a software project.
Even on the HPC cluster we were not able to analyse all 30

projects entirely due to exeeding resource limits, namely al-
lowed computation time (max. 240 h) or available memory. Luck-
ily, Arcan stores all created graph files to disc once they were
created which enabled us to partially analyse several projects.
This is acceptable for this study since we can still extract useful
information of a project even if only half of its versions are anal-
ysed. However, we had to discard some projects here because
even applying the maximum run-time of 10 days and a maxi-
mum memory allocation of 128GB resulted in analysing less of
the first year of the project. These projects are: Accumolo, Camel,
and Log4J2.

3. Excluding source code - Another crucial problem of this first
part of the pre-analyse phase was that Arcan excluded several
source files of a project. A closer analysis of this problem re-
vealed that the problem was in the software project itself but
not in Arcan. This is because the developers of those projects
did not follow the package structure convention recommended
by Maven6. Nonetheless, it is possible to configure Arcan such
that it receives a list of directory path in which it will search
for source code. We deemed this however as out of scope of
this thesis because this requires manually detecting all packages
that include source code of the entire project. Especially the fact
that the package structure most likely changes as the projects
evolves over time requires to find all packages in all versions.
Eventually, we decided to discard those projects from the anal-
ysis. Those projects where Derby, OFBiz, and ManifoldCF.

4. Problems with Git API - Furthermore, Arcan appears to have
sometimes a problem with checking out the next version/com-
mit, as we encountered several exceptions for this in the log
files. Because of this Arcan ignores these versions in the analy-
sis. Although technically not failing, this provided us with the
problem that Arcan detected smells that may be incurred in
those versions are aligned to the wrong version which would

5 https://wiki.hpc.rug.nl/start

6 https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.

html

https://wiki.hpc.rug.nl/start
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

4.4 data collection 49

again bias our results. This error is presumably due to the Java
Git API used by Arcan which seems to have difficulties with
checking out a version when the changes between this version
and the current version are to big. However, we were able to
mitigate this problem to a minimum with checking out the first
commit of the project before starting the Arcan analysis. How-
ever, there was one project where this problem still remained
probably due to a greater refactoring of the package structure.
This project was ZooKeeper which we also discarded.

5. Scanning wrong versions - We also discovered that Arcan anal-
ysed sometimes versions of a software project that are not part
of the default branch (master or trunk). Unfortunately, each soft-
ware project seems to have its own branching strategy and it is
hard to determine which branch is the one that is used for re-
leases. Nonetheless, we follow in this study the strategy to only
include those versions that are committed to the default branch.
Therefore, we filtered all non-master commits out of the anal-
ysis (Step 2) Since, we were not able to determine why Arcan
included non-default branches into the analysis we discarded
all graph files that were created for these non-default branch
versions.

6. Skipping versions - We further observed that Arcan skipped
several commits that are actually included in the master branch.
This phenomenon is partially due to the master branch filtering
that we mentioned before, however we also found this without
the filtering. Our workaround for this was to find these gaps
in the commit history (Step 3). This allows us subsequently to
either discard smells that are identified in a version that follows
such a gap or to manually determine whether the smell was
incurred in this version or find the correct version. We further
describe this process in Section 4.4.2.1. In addition, the number
of gaps that we found are displayed in Table 9.

7. Miscellaneous errors - Finally, there were some other problems
that we were not be able to mitigate in the Arcan analysis. For
some projects the analysis with Arcan failed due to internal ex-
ceptions during the execution. We discarded these projects be-
cause even if we could technically process the graph files from
Arcan we decided to not bias our results due to unknown prob-
lems. Those projects were, Flink, Axis2, and BigTop.

Step 4: ASTracker Analysis

The second step of the pre-analysis phase is the ASTracker analysis.
Here, ASTracker takes all graph-files created by Arcan as input and
creates a list of all incurred smells over the life-time of the project [36].

50 case study design

Therefore, the graph-files are scanned chronologically and the smells
that are present in Version 1 are mapped to the smells in Version 2.
Afterwards, the same happens with the smells of Version 2 and Ver-
sion 3, and so on. ASTracker maps the smells by their similarity. This
is done by applying the Jaccard similarity index which determines the
percentage of components that are included by a smell in the current
version and in the smells of the previous version. The components
are identified by their full package name. This way one can track the
evolution of a single smell through the entire history of the system.
The results of this mapping are then stored in a csv-file. In this file,
the smells are ordered by the smells they belong to. In addition, for
each smell one can see in which version this smell was detected first.

Problems with ASTracker Analysis

Unfortunately, we also encountered several problems with applying
ASTracker. Again, we first list them and describe them subsequently
in detail.

1. Long run-time - At the beginning of our analysis we encoun-
tered a similar problem regarding memory usage and perfor-
mance while executing ASTracker as we did with Arcan. As
well as Arcan, ASTracker was originally designed to analyse ev-
ery 100th version of a software project. Processing all graph files
generated by Arcan overstrained ASTracker and its execution
exceeded the available resources even for smaller projects. For-
tunately, we were in contact with the developer of this tool, who
supported us with a new, better performing version. However,
we still ran into problems with executing those projects with
many versions and very large graph files (Cassandra: around
25,000 files with around 10MB each). Here we needed to use
high memory machines that provided more than 128GB RAM.

2. Wrong versions - After we were able to execute ASTracker and
evaluated the results, we could not always find evidence for
smells that ASTracker marked as new for a certain version. Very
obvious wrong results claimed that adding descriptions in a
single documentation file should have resulted in several new
cyclic and unstable dependencies. Yet, evaluating the smells be-
ing present in a certain version with the tool Designite revealed
that around 90.9% of all smells are actually present in the sys-
tem in this version. We accept the missing 9% due to different
detection algorithm or divergent configurations by the two tools
[3]. However, this does not explain why a text-file change incurs
multiple ASs.

3. Imprecise similarity mapping - Further investigation revealed
that the version we use for ASTracker only tracks a smell if it

4.4 data collection 51

is able to find the very same smell in the consecutive version.
If it is not present there but re-appears in the following ver-
sion it is regarded as a new smell. Additionally, we discovered
that the Jaccard similarity index may not fit very well for linking
smells together. This latter discovery may also be an explanation
why certain smells are “incurred" out of the sudden in a version
without any clue how it could be added in the diffs of the corre-
sponding Git commit. We created two workarounds to mitigate
this problem: removing of redundant smells and a heuristic for
linking smells together.

Step 5: Smell tree creation

Since the goal of this study is to identify the rationale for incurring
instability ASs, we need to find these versions where a new smell is
added to the system. In order to find those we first take only those
smells and their corresponding versions of the ASTracker analysis
which indicate that this smell is newly incurred into the system. We
then compare all components of all smells and sort out redundant
smells without regarding the order of the smells. We keep the earliest
occurrence of this smell. This way we ensure that we really receive
the version in which the smell is incurred.

However, even with filtering the duplicated smells we still receive
smells where we could not find evidence that these smells are indeed
incurred in the version ASTracker indicates. A closer look at the re-
maining smell list revealed that these smells may be still related to
one another. We support this assumption since even after filtering
the duplicated smell instances, the number of smells supposably in-
curred in one version is very high. This lead to the assumption that
not all smells are yet properly aligned to one another.

As mentioned earlier we believe that the mapping strategy of AS-
Tracker may not be efficient for our work as we require. Also we
mentioned that ASTracker was originally not created for such a fine-
grained analysis as it is conducted in this study. This may be the rea-
son why not all smells are accurately connected to each other. We mit-
igated this problem with a simple heuristic that maps similar smells
together and thereby creates a tree-like structure that represents the
smell evolution of a single smell over time. Algorithm 1 provides an

52 case study design

overview on our approach.

input : Set S containing all smell variations of one smell
type sorted by component name

output : Set ST containing all smell trees

1 begin
2 // align smell variations starting with the same two

components
3 SV ← AlignSmellVariations(S)

4 for i← 0 to len(SV) − 1 do
5 // get a Set of all smell variations of one smell
6 smell← SortByDate(SVi)

7 // set oldest smell variation as root of smell tree
8 STi ← SetRoot(smell0)

9 for j← 1 to len(smell) − 1 do
10 if TreeHasOnlyRoot(STi) then
11 // align node to root if tree only has a root

node
12 STi ← AlignNode(smellj, root)
13 else
14 // create a list for all m1 and m2 values
15 m1,m2

16 for k← 0 to len(STi) − 1 do
17 // compute m1 and m2 for each
18 m1k ← ComputeM1(smellj, STik)
19 m2k ← ComputeM2(smellj, STik)
20 end
21 parent← FindParentNode(m1, m2)
22 STi ← AlignNode(smelli,parent)
23 end
24 end
25 end
26 end
Algorithmus 1 : Create smell trees for all smells of one smell
type

This heuristic takes a set of all smell variations for one smell type.
It will align the smell variations based on the components. We re-
ceive the components involved in a smell variation from ASTracker.
Unfortunately, we receive no information on the role a component
has in the smell. For example, if the smell is star shaped cycle we
do not know if the first component of the component list is the cen-
ter component or a component that forms a beam. The same counts
for the unstable dependencies and hub-like dependencies. Because of
this we leave the order of the components as it is. We simply align
all smell variations to the same smell where the first two components

4.4 data collection 53

are the same. This leaves of course the risk of aligning the wrong
components together since we have no idea what the role of the com-
ponents is. Nonetheless, our experiments with this heuristic resulted
in promising smell roots which indicates that we indeed found the
very first variation of smell that is incurred in the designated version.

After aligning all smell variations to one smell we find the root node
by sorting the variations by date and take the oldest. Then we iterate
over all remaining smell variations and align them to the most sim-
ilar tree node. In the first iteration one obviously needs to align the
smell variation to the root of the tree because it is the only node being
present in the tree at this moment. Note that they are already sorted
by date so that aligning a new node to the tree will automatically cre-
ate a tree where each parent node is older than the child node.

In order to align the remaining smell variations we use two metrics
we call component difference (m1) and component coverage(m2) in order
to determine the best fitting parent node. To find the best parent node
one has to calculate m1 and m2 for each the node in the tree. Both
metrics are calculated using information about the components of the
smell variation that has to be added to the tree and the tree node it is
compared with.

The m1 metric determines the difference in the number of compo-
nents. It is depicted in Algorithm 2. We found out by creating the
smell trees manually that a smell mostly grows or shrinks. In addi-
tion, we found that growing or shrinking rate is usually only marginal
(one or two components). Therefore we not only calculate the abso-
lute value of the difference of two component numbers but also bene-
fit the growing or shrinking rate of a single component by subtracting
one from the aforementioned difference.

One additional reason for this is that we found out that a smell varia-
tion with the component length seldom fits as a child node to a smell
variation with the same component length7 As a result for this metric
one can say that the minimum of all m1 values calculated for a smell

7 One exception is when only the root node is present in the tree but there we do not
use the metrics at all but simply add the variation as child node to the root node.

54 case study design

variation determines the node where the current smell variation evo-
lutionary fits the best.

input 1 : Set c1 with the components of the current smell
variation

input 2 : Set c2 with the components of the current smell
node of the tree

output :m1 difference of component numbers with
benefit for growing/shrinking by 1

1 begin
2 // benefit growing/shrinking of three with subtracting

1

3 diff← len(c1) − len(c2) − 1

4 // make value positive to allow comparison of
shrinking

5 m1← |diff|

6 end
Algorithmus 2 : Heuristic to calculate m1 metric: Function
ComputeM1 in Algorithm 1

Although m1 determines the best evolutionary development of a smell
tree, it only considers the number of components involved in a smell
variation but not the components themselves. For this reason, the m1

value for comparing the two smell variations SV1 with components
(A, B, C, D, E, F, G, H) and SV2 with components (A, B, I, J, K, L, M,
N, O) although SV3 may fit better to the smell variation SV3 with the
components (A, B, I, J, K, L, M) simply because SV3 has not enough
components considering only the m1 metric.

input 1 : Set c1 with the components of the current smell
variation

input 2 : Set c2 with the components of the current smell
node of the tree

output :m2 the coverage of c2 components over c1
components in percentage

1 begin
2 // calculate how many components of c2 are in c1

3 coverage← CalculateCoverage(c1, c2)
4 // divide coverage by number of components in c2

5 m2← coverage/len(c2)

6 end
Algorithmus 3 : Heuristic to calculate m2 metric: Function
ComputeM2 in Algorithm 1

In order benefit those smells that are logically a better fit to be mapped
to a certain smell variation but that are discriminated by the afore-
mentioned aspect, the m2 metrics becomes an important factor. This

4.4 data collection 55

metric calculates the coverage in percent of the components entailed
by a tree node compared to the current smell variation that needs to
be added to the tree. The values ranges from 0 to 1 where 0 means
that the two smell variations are not related to one another at all and
1 means that all components of the tree node are also present in the
current smell variation. Lastly, the higher the value of m2 the more
similar are the compared smell variations.

However, m2 does not consider the size of the smell which is why we
combine m2 and m1 in order to determine the best parent node of
the tree. As on can see in from Line 16 to 20 in Algorithm 1, the m1

and m2 metrics are calculated for every existing node of the tree. The
combination of both metrics for each node are then used to determine
the parent node.

This is done by first determining the best values for m1 and m2 of
the given sets for those metrics. As a remainder, the lower the value
for m1. For m2 it is the other way around and the highest value (not
possible to be higher than 1) is the best. Subsequently, the algorithm
determines if there is one or more tree nodes that have a perfect value
for both m1 and m2 metrics. If there is no node that has both met-
rics as optimal as possible the algorithm determines the best nodes
where the either m1 or m2 is has the best value. In the case there
are multiple nodes with either both best values or one best value we
found that using the oldest node as tree is the best way to create the
tree. However, we also found that this situation , especially for both
metrics the best value category, are very rarely and mostly there is a
single node with a best value that can be determined as the parent
node. Furthermore, the focus of this study is on the rationale for in-
curring a new smell. And although one can interpret the evolution
smell tree as a way of “incurring" new smell (variations) to the sys-
tem, our focus lays more on the root nodes as on rationale of the
root nodes as on the rationale of the evolution of a smell. Finally, we
found one node where the algorithm can determine the parent smell
for a smell variation and hence this algorithm is capable of creating

56 case study design

an evolution tree for all smell variations of one AS of one smell type.

input 1 : Set m1 containing all values for metric1 of the
compared tree nodes

input 2 : Set m2 containing all values for metric1 of the
compared tree nodes

output :parent identifier of tree node where current
smell variation has to be aligned to

1 begin
2 // determine best value of m1

3 minM1← min(m1)

4 // determine best value of m2

5 maxM2← max(m2)

6 if NodeHasBothBest(m1, m2, minM1, maxM2) then
7 bothBestNodes←

GetBothBestNodes(m1, m2, minM1, maxM2)
8 parent← GetEarliestNode(bothBestNodes)
9 else
10 oneBestNodes←

GetOneBestNodes(m1, m2, minM1, maxM2)
11 parent← GetEarliestNode(oneBestNodes)
12 end
13 end
Algorithmus 4 : Heuristic to find parent node for smell vari-
ation: Function FindParentNode in Algorithm 1

In order to demonstrate the applicability of this algorithm, we pro-
vide a demonstrating example from our findings. This example uses
4 smells from smell tree 24 of the Sqoop project. Please consider these
four smells with their corresponding components:

Smell 1: - com.cloudera.sqoop.mapreduce, org.apache.sqoop.mapreduce

Smell 2: - com.cloudera.sqoop.mapreduce, org.apache.sqoop.mapreduce,
com.cloudera.sqoop.mapreduce.db, org.apache.sqoop.mapreduce.db

Smell 3: - com.cloudera.sqoop.mapreduce, org.apache.sqoop.mapreduce,
org.apache.sqoop.mapreduce.hcat

Smell 4: - com.cloudera.sqoop.mapreduce, org.apache.sqoop.mapreduce,
org.apache.sqoop.mapreduce.db, org.apache.sqoop.mapreduce.hcat

We further describe step-by-step how we align these four smells to a
smell tree using our new approach. Figure 13 visualizes each of these
steps:

1. Set Smell 1 as Root Smell (Figure 13a)

4.4 data collection 57

2. Align Smell 2 as child node to the Root Smell as Smell Variation
1 (Figure 13b)

3. Compare Smell 2 with Root Smell and Smell Variation 1:

a) Root Smell: m1 = 3− 2− 1 = 0 and m2 = 2/2 = 1

b) Smell Variation 1: m1 = 4− 2− 1 = 1 and m2 = 1/2 = 0.5

c) Add Smell 2 to Root Smell as Smell Variation 2 because
both metrics for the Root Smell have the best values. The
metrics for Smell Variation 1 are both not optimal (Figure
13c)

4. Compare Smell 3 with Root Smell, Smell Variation 1, and Smell
Variation 2:

a) Root Smell: m1 = 4− 2− 1 = 1 and m2 = 2/2 = 1

b) Smell Variation 1: m1 = |4−4−1| = 1 and m2 = 3/4 = 0.75

c) Smell Variation 2: m1 = 4− 3− 1 = 0 and m2 = 1/2 = 0.5

d) Add Smell 3 to Smell Variation 2 as Smell Variation 3. Two
components have one metric best, Root Smell has m2 best
and Smell Variation 2 has m1 best. Smell Variation 2 is cho-
sen because it is the younger tree node8. Smell Variation
1 has no optimal value and is therefore not considered as
parent node (Figure 13d)

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 13: Step 1 to 4 of creating smell tree 24 of Sqoop. There is one splitting
at the root which is indicated by a black frame.

Our algorithm is based on two assumptions. First, we believe that
smells can evolve. Consider a simple example of a cyclic dependency

8 Please bare in mind that the four smells have been ordered by age

58 case study design

with the shape of a star. If one adds a tiny cycle between a compo-
nent not yet involved in this smell and the middle component of the
star it will add a new beam to the it. The question is whether this
new construct is a new smell or a variation of the former smell. We
believe that the latter is the case which is in line with e.g. [32, 36]. A
similar situation occurs in case of removing a beam from the star. In
addition, similar situations can be applied to unstable dependencies
and hub-like dependencies.

Our approach with aligning the evolution of smells to a tree like struc-
ture allows another interesting view on the evolution of AS. A tree
suggests that a smell can evolve in two different directions which we
call splitting. Consider a cycle of three components with A −→ B −→
C −→ A. Now consider that one adds two other components between
A and B which obviously results in a cycle of five components (A
−→ Comp1 −→ Comp2 −→ B −→ C −→ A). We found however, that
sometimes the former smell (A,B,C) is not removed but remains. Fur-
ther we saw that after the cycle grew to the five component cycle the
original smell grew in another direction and a new components was
added between A and C (A −→ B −→ C −→ Comp3 −→ A). The
question that arises now is whether the three resulting smells are one
smell or three smells. We understand that those smells are three dif-
ferent variations of the same smell because they originate from the
very same smell. Figure 14 illustrates this phenomena.

Figure 14: Three smell variation coexisting at the same time in a system

Applying this new approach to the results of ASTracker results in a
list of smell trees in which one can actually observe how the smells
detected are incurred in the Git diffs of the version that was found
by ASTracker. Finally, the output of the pre-analysis is a list of smell
trees including the root smell (the first occurrence of this smell) and

4.4 data collection 59

their corresponding smell variations. We will present the impact of
the filtering and tree creation in Section 5.

As a conclusion of this chapter, we present an overview on the analy-
sis progress of the pre-analysis in Table 6

9. Here the analysed versions
are depicted, in how many versions we detected smell variations, how
many smell variations have been detected, and in how many smells
they have been aggregated.

Projects
Analysed

versions
Versions

with smells
Smells

Variations
Incurred

Smells

Tajo 1,311 1,306 44,126 208

Tika 4,704 4,285 59,413 78

PDFBox 8,774 8,765 919,161 342

Sqoop 796 787 18,285 100

Phoenix 2,543 2,542 335,068 279

ActiveMQ 9,694 9,686 1,108,140 146

Table 6: Overview on detected smells for each project

4.4.2 Quantitative Analysis

The steps of the quantitative analysis are divided into collecting data
from the issue and version repositories and aggregating these data
into the metrics defined in Section 4.2. The data we are using here
are mostly qualitative e.g. name of committer, issue type and so on.
Nonetheless, we are structuring these data such that they become
quantitative, i.e. accumulating the number of a specific issue type
that incurs ASs. This is a valid principle for case studies as explained
in [33].

4.4.2.1 Collecting Data from Repositories

The steps for collecting the data from the repositories are defined
in Protocol 3. We first provide this protocol and describe then these
tasks more in detail:

Protocol 3:

1. Gather Github information - request information for all smell
variations using the corresponding commit sha

a) extract the Jira issue key from the commit message

b) extract committer and author name from GitHub

9 We only present the results of the projects that were totally analysed in this thesis.
We had to discard more projects during the qualitative analysis.

60 case study design

2. Check coverage of issue keys - discard project if issue key cov-
erage of the extracted smell variations is not at least 65 %.

3. Gather Jira information - store issue type and priority to csv-
file

4. Resolve commit gaps - manually confirm the version in which
the detected smell was incurred and either update information
or discard smell

5. Resolve Jira Sub-task type - manually update issue informa-
tion for all root smells with issue type Sub-task

Step 1: Gather Github information

The first step in collection the data required to answer the research
questions defined above is to request the information from GitHub
and align them to the specific smells. From the ASTracker results we
received the Git commit sha for every smell variation. We use this
hash value to request the commit message, the committer of this ver-
sion, and the author of that commit.

In order to answer RQ4, we used the committer and author name of
a commit. We found that the PyGithub API10 that we used to extract
the information from GitHub has two ways of extracting the infor-
mation for committer and author. The two developer names (com-
mitter and author) are available via commit.committer/author and
the commit.gitcommit.committer/author. The difference is that the
first provides the full written name (mostly first and last name) of the
developer and the second is the username (mostly a nickname). How-
ever, sometimes only the gitcommit name was available. We checked
and found that both names are related to the same developer. We
stored both names in order to align at least one committer/author
name to the version. All information derived from GitHub is stored
in a csv-file.

Step 2: Check Coverage of Issue Keys

From the commit message we can extract the issue key. We do this
with applying a regular expression pattern searching for the key
prefix of that particular project followed by a hyphen and a num-
ber. Unfortunately, not every commit message contains the issue key.
However, missing the key makes it impossible to map a version in-
curring ASs to a Jira issue. We checked randomly picked samples

10 https://pygithub.readthedocs.io/en/latest/introduction.html accessed on
30.07.2020

https://pygithub.readthedocs.io/en/latest/introduction.html

4.4 data collection 61

of all projects that we considered in the analysis before the analy-
sis. Despite this we encountered the problem that for some projects
the extracted smell versions only had a very low issue key coverage
in the commit messages. We considered all projects as inadequate
for our analysis with an issue key coverage of 65% and below and
discarded these projects. The projects affected by this are: Cocoon,
Commons-Lang, Commons-Math, Directory Studio, Mina, and Cassandra.
We documented the coverage of issue keys in Table 7. Additionally,
Table 8 shows the remaining projects that we were able to actually
investigate for the AS rationale.

Project Coverage Decisions

Tajo 95.6% accepted

Tika 75.3% accepted

PDF-Box 78.4% accepted

Sqoop 95% accepted

Phoenix 85% accepted

Active MQ 66% accepted

Cocoon 0% discarded

Commons Lang 24% discarded

Commons Math 33% discarded

Directory Studio 20% discarded

Mina 17% discarded

Table 7: Coverage of issue keys by analysed projects

Project Domain Commits Issues
Average

LOC
Age

Tajo Data Store 2,275 2,182 257K 8.5 years

Tika Library 4,757 3,041 160K 13.25 years

PDFBox Library 8,998 4,775 22.2K 6 years

Sqoop Middleware 968 3,130 328K 11 years

Phoenix Analytics Engine 3,215 5,716 319K 6.5 years

ActiveMQ Middleware 10,630 7,140 487K 14.5 years

Table 8: Projects analyzed in this study

Step 3: Check Coverage of Issue Keys

The final step of gathering the data for this study is to use the issue
key in order to request the data from Jira. We used the Python Jira
API11 to request data from Jira. This way we have been able to extract
the following information: issue type, issue priority, number of comments
per issue. Similarly, to the information from GitHub we also added the

11 https://jira.readthedocs.io/en/master/ - accessed on 26.08.2020

https://jira.readthedocs.io/en/master/

62 case study design

acquired Jira information to the already existing csv-files.

Before we could actually start and analyse the data we needed to re-
solve two important issues: (1) resolving wrong commits due to gaps
in the commit history as explained above and (2) finding the correct
issue type and priority for the Jira issues labeled as Sub-Tasks.

Step 4: Resolve Commit Gaps

As already mentioned in our discussion about Arcan, the gaps in
the commit history endanger that the data we use are biased. Indeed
we found still versions mapped to a smell root where we could not
find any evidence in the corresponding commit diff of that version
that proofed that the smell was actually incurred with these changes.
Therefore, we manually checked all commits of the root gaps which
had a gap due to filtering for master branches or left out commits by
Arcan.

In case we have not been able to confirm a smell in a version we
searched in the parent commit to find the correct version where the
smell was actually incurred. When found the correct version we man-
ually updated the Git and Jira information. In case we could not de-
termine the correct version where the smell was incurred we ignored
the smell entirely in our analysis. However, the number of smells that
we discarded turned out to be marginal compared to the total number
of root smells as Table 9 indicates.

Tajo Tika PDFBox Sqoop Phoenix ActiveMQ

Gaps 97 0 28 0 34 6

Resolved 72 0 6 0 3 0

Discarded 25 0 22 0 31 6

Table 9: Information about the number root smells with gaps in the commit
history, the number of resolved smells, and the number of dicarded
smells

Step 5: Resolve Jira Sub-task Type

The last step in cleaning up of the dataset was to find the parent issue
and thereby the correct issue type and priority for all issue with issue
type Sub-task. For this we manually accessed the particular issue and
changed the issue type and priority accordingly. We did this because
Sub-tasks do not indicate the motivation for changing the system. Ad-
ditionally, larger issues (of type New Task, Improvement, Bug etc.) are
divided into Sub-tasks for means of dividing work among developers.

4.4 data collection 63

4.4.2.2 Aggregating Data

After collecting all data, one needs to aggregate them in order to
answer research questions RQ1, RQ2, RQ3, and RQ4 by using the
metrics defined for each question. In this section we describe how we
manipulated the data in order to fit them into the metrics. This will
help us subsequently to answer the research questions.

Metrics related to RQ1

RQ1 defines several metrics that we use in order to answer this ques-
tion. The first metric includes the number of smells incurred in the
system. We use the already described smell tree structure in order
to count the number of smells. Here we simply count all root smells
for every smell type. Thus, we acquire the number of smells incurred
during the life-span of the project for each type. With simply sum-
ming them up we get the total number of smells in the system. Please
note that we consider all smells newly incurred according to our algo-
rithm. For this research question we do not require any information
from Jira and miss-mapping of the version that incurred the smell
and Jira issues does not affect the metrics required to answer RQ1.
Protocol 4 describes how the number of incurred smells is derived
and can be found in the Appendix Section A.1.1.
The next metric concerns the number of smell variations and its char-
acteristics. Again, we use the information from the smell trees to (1)
count the number of all smell variations for each smell, (2) number
of splittings and expansions, (3) the time-span during which all smell
variations are added to the smell tree, and (4) characteristics about
the size of the smells determined by the amount of components in-
volved in every smell variation. The characteristics about the size of
the smells are: size of the first smell variation, largest size during
the evolution, smallest size during the evolution, and size of the last
smell variation. Finally, we also determine whether the size of the
smells is shrinking in during its evolution and whether the size actu-
ally shrinks below the size of the first small variations at some point
during the evolution. Afterwards, we calculate the basic measures
of central tendency and location. Protocol 5 describes the aforemen-
tioned activities (Appendix Section A.1.2).

Metrics related to RQ2 and RQ3

Since the metrics for these two research questions are similar and the
aggregation of the data follows the same processes, we explain them
together. The first part of these research questions is to provide an
overview on the distributions of smells among smell types and issue
types or issue priorities, respectively. Therefore, we simply take all the
smell roots and order them by their corresponding issue type for RQ2
and by issue priority for RQ3. Subsequently, we count the number of

64 case study design

architectural smells incurred by the issues belonging to the particular
issue category (e.g. bug, improvement, etc. for issue type and major,
minor, etc. for issue priority) for each AS type. We found in our analy-
sis that an issue can incur multiple smells from several types. Finally,
we sum the values for all smell types such that we acquire the total
amount of ASs for each issue category. Please note that we do not con-
sider smell roots without an issue key in this analysis. Table 7 shows
how many smells we consider in this part of our analysis. Protocol 6

and 7 in Appendix Section A.1.3 provide an overview on this process.

Afterwards, we process the data such that we can calculate the num-
ber of issues, sorted by issue type/priority that incur a specific smell
type or combinations of it. This way we can determine whether there
is a relation between a specific AS type and a specific issue type/pri-
ority. In order to achieve this we again order all smell roots by their
issue type/priority and determine what type of smell each issue in-
curs. However, we do not count the number of smells here because
finding the relation between smell type and issue type/priority, one
only requires the information which smell type was incurred and not
necessarily how many smell instances. We found in our analysis that
an issue can incur combinations of smell types. For example, it can
happen that an issue incurs one cyclic dependency and one unsta-
ble dependency. In this case we count this issue to the combination
of these two smell types but not to the category cyclic dependency
or unstable dependency. At last, we sum up the number of issues
for each issue type/priority that incur ASs. Protocol 8 and 9 provide
an overview on the described aggregation process (Appendix Section
A.1.4).

Metrics related to RQ4

The metrics to answer RQ4 are the number of the developers that in-
cur a smell in a particular version and the number of smells incurred
by a specific developer.

For the first one we found out that some commit versions the author
is a different developer than the committer of that version. The dif-
ference is that the author in Git is the person that originally made
the changes of that version the commit creates12. The committer on
the other hand is the person who last applied this version. We con-
clude that if committer and author are two different developers, min-
imum two developers have been working on that version. Scenarios
where this happens may involve changes of the original code during
review by the reviewer or similar. If author and committer are the
same person, than we have to assume that at least only one person

12 https://stackoverflow.com/questions/18750808/difference-between-author-and-committer-in-git

accessed 05.08.2020

https://stackoverflow.com/questions/18750808/difference-between-author-and-committer-in-git

4.4 data collection 65

has been working on this code. We therefore, use the information for
author and committer in order to determine how many people have
been working on the code that incurs one or more ASṖrotocol 10 in
Appendix Section A.1.5 provides a systematic overview on how we
derived the first metric for RQ4.

The second metric provides information on how many smells are in-
curred by a single developer. We use the information gathered to an-
swer the first metric for RQ4 and aggregate them by developer. Sub-
sequently, we plot these information in a scatter diagram where each
data point represents a developer. On the x-axis we put the number of
smells a developer has and on the y-axis we put the number of com-
mits. Although, we have information about the contributors publicly
accessible, we cannot determine the developers programming experi-
ence or skills. Therefore, we use the number of commits developers
have made in a particular project in order to determine their experi-
ence in that project. We assume that a developer with more commits
has more knowledge and experience in a certain project than one will
less commits. We use the author information in order to map a ver-
sion to a specific developer since that person is the one that originally
written the code. In case we could not map the developer information
received via the PyGithub API to the developer information available
on the GitHub page of the corresponding project, we discard these
information. Protocol 11 provides an overview on how this metric is
derived (Appendix Section A.1.6).

4.4.3 Qualitative Analysis

The qualitative analysis focuses on answering RQ5. Here we describe
how we derive the information that are defined by the metrics. Please
note that the qualitative analysis is intertwined with the quantitative
analysis to that extend that the activities of the quantitative analysis
acquires the information such as issue types for a project that incurs
architectural smells. We choose to use these information for the se-
lection of issues that we analyse more in depth in order to extract
the analysis. For example, if a project incurs smells only in Bugs and
Improvements we only select those issue types for the analysis. In ad-
dition, we only analyse those issues that have the priority of the two
most priority types. Moreover, we randomly select the issues from
the list of smell roots following the aforementioned rules.

Metrics related to RQ5

In order to extract the metrics from the issue we first need to confirm
that the version belonging to the issue actually incurs the smell. We
do this by analysing the Git diff of the corresponding commit. Addi-
tionally, if available we use already compiled versions of the project

66 case study design

that are released after the version and visualize the dependency struc-
ture using the tool Structure 10113. This helps us to understand the
relations between the packages involved in the smell. If we cannot
confirm that the smell is incurred in this version we do not analyse
this issue in the qualitative analysis. However, this does not neces-
sarily mean that the smell was not incurred in that version. As the
evolutionary research of architectural smells seems to be still in its
infancy it is not entirely clear how to detect a new smell using the
changes made in a new version of a software system. Nonetheless,
confirming that the designated smell was actually incurred in this
version helps not only to increase the quality of our study but also
supports us with understanding the smell which is beneficial in the
analysis.

We document our analysis using the tool Atlas.ti14. Here one can mark
specific sentences and code them as e.g. issue context, reason for ap-
proval, or rationale for smell. This way we create transparency of our
work so that others can understand our work and reproduce it. Pro-
tocol 12 provides an overview on how we conducted the quantitative
analysis which are discussed subsequently in detail.

Protocol 12:

1. Confirm smell - check whether we can understand how the
smell was incurred in this version. Discard issue if cannot be
confirmed.

2. Analyse issue description - analyse issue description in order
to understand issue context and issue/smell information

3. Analyse discussion - analyse the discussion on Jira in order to
find evidence for incurring the AS

4. Analyse additional sources - include other available data sources
attached to the issue

5. Summarize findings and extract rationale - Summarize the find-
ings of analysing the issue and based on this and decide on the
most likely rationale for incurring the smell(s)

Step 1: Confirm Smell

In order to confirmed that a smell is incurred in a specific version,
we compared the affected components forming the smell with the
changes made for this version commit. This is however not as straight

13 https://structure101.com/ accessed 08.08.2020

14 https://atlasti.com/ accessed 08.08.202

https://structure101.com/
https://atlasti.com/

4.4 data collection 67

forward as it may appear in the first place, since every smell type man-
ifests differently in the commit changes. The easiest one is the cyclic
dependency smell. Here one merely has to check whether the compo-
nents involved in the smell have been changed or smell components
have been added to other smell components.

This is similar for the hub-like dependency smell because one can
see if there are new dependencies added to a component or one com-
ponent is added to other components. As reminder, a hub-like com-
ponent is a component with many in and outgoing dependencies.
Nonetheless, one risk remains for validating this smell type because
in order to ensure the correctness of a smell one has to know the role
of a component in a smell. An information that ASTracker does not
provide. Although, this information is available in the Arcan results,
it is very hard to extract them from the graph-files and is out of scope
of this thesis. However, we had not many situations in which we had
to manually confirm a hub-like dependency.

The unstable dependency type smell is the hardest one to confirm.
This is because the smell is not always formed by adding a new de-
pendency to a component. This can also happen when someone is
removing a dependency from a component not indicated in the af-
fected components at all. Assume that a stable component where an-
other, more unstable component is dependent upon (is allowed by the
SDP) looses some dependencies due to a change in another compo-
nent. Further assume that with removing this component the stable
component becomes less stable than the former unstable component
(which is now more stable that the former stable component). Now
a smell is formed that cannot be detected in the commit diffs of that
version since the changes will only be visible in a class of the compo-
nent not involved in the smell at all. We call this ripple through effect
and will elaborate on this in Section and 6.

Step 2: Analyse Issue Description

After we confirmed that the smell was incurred in the smell we read
through the issue description. This helps us to extract the metrics Is-
sue Context and Issue information (type, priority, etc.). Furthermore, we
use the findings from the pre-analysis to fill the Smell Type metric.

Step 3 & 4: Analyse Discussion & Analyse Additional Sources

We then analyse the discussion of the issue. This helps us to deter-
mine the reasons the changes of that version have been approved
by the reviewers. However, the discussion behavior is different from

68 case study design

open source project to open source project. In some projects the dis-
cussion about the code changes are done on another platform (e.g.
GitHub or ASF’s review platform). If those sources are available we
include them of course in our analysis.

Step 5: Summarize Findings and Extract Rationale

Finally, we try to summarize our analysis and determine the rationale
for the architectural smell. This can be tricky because it happens that
the community does not discuss the smell or even the components
that are affected by the smell at all. In this case one can assume that
the decision for incurring a smell had not been made deliberately.
Contrary to this, not mentioning the smell is no proof on unintention-
ally incurring ASs. We therefore agree that no discussion on a smell
merely indicates unintentionally incurring a smell but cannot hold as
proof.

5
R E S U LT S

This section introduces all statistics and insights derived from the
data collected in this study. 1. In Section 5.1, the results that de-
scribe the evolution of ASs are presented. Section 5.2 introduces the
statistics concerning the issue types that motivate developers to incur
smells into software. Furthermore, Section 5.3 presents the priority
that issues have that lead to ASs. In Section, 5.4 the characteristics
of developers that work on a particular software version that adds
smells to the system are depicted. Finally, Section 5.5 introduces the
findings of the qualitative analysis concerning the rationale for incur-
ring ASs.

5.1 smell evolution

The first important step to analyse the rationales behind incurring
ASs is to find the versions in which they first appear. However, these
versions first need to be found. As aforementioned, the results of the
tooling pipeline delivered a large amount of “new" smells for which
we could not confirm that they had been incurred in that particular
version as indicated by ASTracker. We also described how we created
a new mapping approach in order to find all smell instances that are
related to each other. We call theses instances smell variations and
believe that they all belong to the very same smell instance. A good
starting point to find the first version is to understand the evolution
of a smell. On one hand, this allows to pinpoint the first variation of
each smell (we call this variation root smell), but on the other hand, it
also allows to study the evolution of each particular smell and show
how it spreads throughout the system.

5.1.1 Distribution of Smell Types

In order to get a first overview on the architectural smells that in-
curred in each system, we first sorted them by their corresponding
smell type. Figure 15 shows the distribution of all smells in each
system. The first interesting aspect that one can see is that Hub-like
Dependencies have the fewest instances in every project. They only
account for one to six percent of all smell instances in the analysed
projects. The majority of all smell instances is divided between Cyclic

1 All data and results that we presented here can be accessed through https://github.

com/ThorstenRangnau/Jira-Project-Analyzer

69

https://github.com/ThorstenRangnau/Jira-Project-Analyzer
https://github.com/ThorstenRangnau/Jira-Project-Analyzer

70 results

and Unstable Dependencies. However, their distribution differs from
project to project. Whereas Cyclic Dependencies represent between
56 and 63 percent of all smells in Phoenix and ActiveMQ, Unstable
Dependencies make up between 53 to 67 percent of all smells in Tajo,
Tika, PDF-Box, and Sqoop.

(a) Tajo: (b) Tika: (c) PDF-Box:

(d) Sqoop: (e) Phoenix: (f) ActiveMQ:

Figure 15: Total number of smells incurred in each project

5.1.2 Evolution of Architectural Smells

As previously mentioned in Section 4.4.1, our new mapping approach
revealed that the evolution of smells can follow a tree-like structure.
In this subsection, we present the findings that the analysis of the
new structure revealed. Therefore, we first present information on
the characteristics of the smell variations involved in the smell trees
that have been created by our approach. These characteristics concern
the number of smell variations involved in a smell tree, the number
of expansions and splitting points, and the duration it takes such a
tree structure to evolve. Subsequently, we present information on the
size of the different smell variations related to an architectural smell
instance. These findings suggest that smells not only grow but also
shrink during their evolution. Afterwards, we present information on
the shrinking behavior of smell variations involved in an architectural
smell instance. Finally, we depict an example of a smell tree that has
been detected during by our mapping approach.

5.1 smell evolution 71

5.1.2.1 Characteristics of Smell Variations

Several smell instances compose of more than one smell instance as
can be seen in Table 10. A closer look at the mean of smell variations
per smell indicates that smells seem to evolve differently from project
to project. For example, Tika has the lowest average of smell varia-
tions with 2.5 while PDF-Box has the largest one with 103.4. Compar-
ing the results of the general evolution of architectural smells with
Table 8 suggests that the number of smell variations is not related
to either size or age of a project. While Active MQ is the oldest and
largest project analysed in this study, its average number of smell vari-
ations per smell is lower than the much younger and smaller project
PDF-Box. The average number of splittings and expansions seems to
be related to the mean of smell variations. The more smell variations
per smell, the more splittings and expansions.

Another interesting metric is the average duration it takes for a smell
to evolve. In general, the duration it takes a smell to evolve seems to
be different from project to project. Also, the smells appear to evolve
independent from the age of the project. Again, the smells in Ac-
tiveMQ appear to evolve in a much shorter time-span than those of
PDF-Box or Phoenix, which are both younger and smaller than Ac-
tiveMQ. One may think that the evolution of the smells is connected
to their size. Comparing Tika and Sqoop, as well as PDF-Box and
Phoenix, shows that this does not hold. Tika has the smallest average
of smell variations but the average duration of smell evolution takes
more than double the time as of the smells of Sqoop, which has in
general double the smell variations per smell than Tika.

Another indication that ASs expand differently from project to project
can be seen in the minimum and maximum values. Here, we can see
that the project with the highest mean for the number of smell vari-
ations (PDF-Box) does not have the smell with the most smell varia-
tions which is Phoenix with 8473 smell variations for a single smell.
Additionally, the project with the longest duration in the evolution
of smell variations (Phoenix) does not have the smell which takes the
longest to evolve completely. This project is PDF-Box with 138 month.

However, one thing appears to be similar in every project and there
are always smells that concise of only one smell variations. This also
explains why the minimum value for splittings, expansions, and du-
rations is always 0.

The evolution of the smell tree can happen in two different ways
which we call expansion and splitting. An expansion happens when
a new smell variation simply adds further components to an already
existing smell variation. Splitting of the smell happens when a smell

72 results

variation adds further, but different components, to an already exist-
ing smell variation that has already expanded into another variation.
The smell with the most expansions was detected in Phoenix with
6682 expansions. The smell with the most splitting can also be found
in Phoenix. Here we detected a smell instance with 1685 splittings.
Please note that our algorithm detects not only positive expansion,
but also negative (i.e. an expansion can say that the number of compo-
nents of the new smell variation may grow or shrink compared to its
predecessor). Furthermore, splitting can also incur a smell variation
with a smaller size than the smell variations to which it is directly
related. Therefore, the high number of expansions and smells does
not necessarily mean that the size of the smell variations constantly
grows.

Total

#
sm

el
l

va
ri

at
io

ns

#
sp

li
tt

in
g

#
ex

pa
ns

io
ns

du
ra

ti
on

(i
n

m
on

th
)

Mean

Tajo 4.7 0.8 3.1 5.3

Tika 2.5 0.2 1.4 12.9

PDF-Box 103.4 22.6 80.0 17.9

Sqoop 4.9 1.0 3.1 5.9

Phoenix 86.5 19.1 66.7 22.4

Active MQ 12.5 2.9 8.8 15.0

min/max

Tajo 1/73 0/18 0/55 0/55

Tika 1/28 0/4 0/23 0/104

PDF-Box 1/7802 0/1685 0/6116 0/138

Sqoop 1/224 0/60 0/164 0/77

Phoenix 1/8473 0/1791 0/6682 0/68

ActiveMQ 1/542 0/134 0/408 0/122

Table 10: Evolution of smell variations

Maybe a closer look at the different smell types provides further in-
formation on the evolution of ASs. Table 11 aggregates the smell evo-
lution by smell type. Here one can clearly see that the most smell
variations are usually attached to cyclic dependencies. However, there
are two exceptions. Tajo and Tika have the most smell variations allo-
cated to the hub-like dependencies. A similar picture can be drawn

5.1 smell evolution 73

by the average number of splittings and expansions. Here, as well
all projects, despite Tika, have the highest values in the cyclic depen-
dency category.

The division into the different smell types reveal that in general the
duration of the smell evolution takes the longest for that smell types
that also have the highest average of smell variations. There is only
one exception where this observation cannot be seen. In Phoenix, the
average duration is higher for hub-like dependencies than for cyclic
dependencies, although the cyclic dependencies have on average the
most smell variations.

Furthermore, we can see that the smell expansions and splittings
are usually higher in cyclic dependencies. The aforementioned smells
with the highest expansions and splittings also belong to this smell
type. Again, the only exceptions are Tajo and Tika; here, expansions
and splittings are higher for the hub-like dependencies.

Cyclic Unstable Hub-like

#
sm

el
l

va
ri

at
io

ns

#
sp

li
tt

in
g

#
ex

pa
ns

io
ns

du
ra

ti
on

(i
n

m
on

th
)

#
sm

el
l

va
ri

at
io

ns

#
sp

li
tt

in
g

#
ex

pa
ns

io
ns

du
ra

ti
on

(i
n

m
on

th
)

#
sm

el
l

va
ri

at
io

ns

#
sp

li
tt

in
g

#
ex

pa
ns

io
ns

du
ra

ti
on

(i
n

m
on

th
)

Mean

Tajo 7.7 1.6 5.4 7.9 1.8 0.2 0.8 2.8 11.5 0.8 9.9 13.5

Tika 3.1 0.4 1.8 20.6 1.3 0.1 0.4 7.6 12.6 1 10.6 35.8

PDF-Box 272.5 60.1 211.9 33.1 1.9 0.2 0.8 8.0 6.6 0.8 5.1 18.4

Sqoop 10.5 2.6 7.3 13.0 1.2 0 0.2 1.2 2 0 1 1.8

Phoenix 134.8 30.0 104.4 31.0 2.0 0.2 0.9 5.5 14.8 2.8 11.3 53.5

Active MQ 21.3 5.2 15.5 24.4 1.3 0 0.2 3.0 1.6 0 0.6 0

min/max

Tajo 1/73 0/18 0/55 0/55 1/18 0/5 0/12 0/34 4/28 0/2 3/25 0/37

Tika 1/15 0/3 0/12 0/95 1/4 0/1 0/3 0/104 3/28 0/4 2/23 5/89

PDF-Box 1/7802 0/1685 0/6116 0/138 1/18 0/4 0/14 0/108 1/28 0/4 0/25 0/66

Sqoop 1/224 0/60 0/164 0/77 1/3 0/0 0/2 0/22 1/3 0/0 0/2 0/5

Phoenix 1/8473 0/1791 0/6682 0/68 1/45 0/10 0/35 0/65 9/22 1/5 7/17 43/68

ActiveMQ 1/542 0/134 0/408 0/122 1/5 0/1 0/3 0/49 1/3 0/0 0/2 0/0

Table 11: Evolution of smell variations by smell type

As we have already seen, the evolution of an architectural smell in-
stance differs from project to project. This also gets evident from
analysing the measures of location, created for the characteristics of
the smell variations belonging to a smell tree. Those measures are
depicted in Figure 16 until Figure 21. Here, the distribution of the
characteristics are depicted by using boxplot with whiskers diagrams.
One can find for each characteristic (variation, splitting, expansions,
durations) four diagrams, one for each smell type plus one for the

74 results

accumulated smells depicted as total.

As one can see, the distribution of the values for characteristics is
different for each project. This suggests that the evolution of archi-
tectural smells depends on the project itself. However, the diagrams
also suggest that for almost all characteristics for each project, the dis-
tribution of the values converges towards the lower quartile or even
towards the minimum value. As one can easily see, the value for the
median, the lower quartile, and the minimum are often the same. In
fact, that is for around 58 percent of all diagrams. Similarly, most of
the rest of the diagrams have the median closer to the lower quartile
than to the upper one. In addition, most of the diagrams are located
at the bottom of the y-axis which suggests that the values for the
measures of location mostly have a low value. Some outliers from
this can be seen for hub-like dependencies in several projects such as
Tajo, Tika, and Phoenix.

Figure 16: Distribution of the evolution of the smell tree in Tajo

Figure 17: Distribution of the evolution of the smell tree in Tika

5.1 smell evolution 75

Figure 18: Distribution of the evolution of the smell tree in PDF-Box

Figure 19: Distribution of the evolution of the smell tree in Sqoop

Figure 20: Distribution of the evolution of the smell tree in Phoenix

76 results

Figure 21: Distribution of the evolution of the smell tree in Active MQ

5.1.2.2 Sizes of Smell Variation during Smell Evolution

Also of note, the smell evolution is the size of the smell variations
involved in a smell. It helps to understand how the smell evolves
(i.e whether it grows or whether it shrinks over time). The size is
calculated by the number of components that form the smell. Table
12 provides the mean of the component size for the first, the last,
the largest, and the smallest smell variations for every project. Addi-
tionally, it also provides the minimum and maximum values of these
metrics.

Total

First Last Largest Smallest

Mean

Tajo 4.3 5.2 5.5 4.0

Tika 3.4 4.5 4.6 3.4

PDF-Box 5.1 6.2 7.1 4.3

Sqoop 3.7 4.3 4.5 3.5

Phoenix 4.3 5.8 8.0 3.6

ActiveMQ 4.1 4.9 5.6 3.7

min/max

Tajo 2/38 2/40 2/41 2/38

Tika 2/22 2/41 2/41 2/22

PDF-Box 2/60 2/60 2/60 2/60

Sqoop 2/20 2/20 2/21 2/20

Phoenix 2/32 2/31 2/41 2/30

ActiveMQ 2/21 2/21 2/21 2/21

Table 12: Smell Variation sizes during evolution

Considering all smells together, the findings show that for all projects
the average size of the first smell variation is smaller than the size of

5.1 smell evolution 77

the last one. This suggests that in general the number of components
in architectural smells grow over time. However, for all projects, ex-
cept Tika, the smallest smell variation is on average smaller than the
first one. This is not proof and requires further investigation, but it
suggests that it is possible that a smell variation shrinks in size below
the size of the smell root.

The project with the highest mean for the size of the first component
is PDF-Box with 5.1. The one with the smallest average is Tika with
3.4. Similarly, PDF-Box also accounts for the highest mean for the
last smell variation with 6.2. The smallest mean in this category is
Sqoop with 4.3. The project with the largest average smell variations
is Phoenix with 8.0, and the project with the smallest average varia-
tions in this category is Sqoop with 4.5. The highest average value for
the smallest smell variations can be found in PDF-Box. The smallest
average in this category can be found in Tika.

Furthermore, we found that in all projects the smell with the smallest
root starts with two versions. This can be expected since the archi-
tectural smell types that we investigated require a relationship be-
tween at least components. The smallest latest smell variation com-
poses as well by two components. This does not necessarily mean
that this smell actually shrinks during its evolution, but it can also be
explained by a smell that starts with two components and only has
one smell variation (does not evolve at all).

Comparing the four metrics for the three architectural smell types
(Table 13), one can see that largest smell variations can be found
in the hub-like dependencies. Cyclic dependencies appear to be the
smell types with the second highest average values for the same
metrics, and unstable dependencies have the lowest average values
here. However, another picture can be drawn in the smell variations
with the maximum values. Although, the smell with the largest first,
last, largest, and smallest variation size is still a hub-like dependency,
there are projects where the second largest smell in all four categories
can be found in a hub-like dependency (PDF-Box).

78 results

Cyclic Unstable Hub-like

Fi
rs

t

La
st

La
rg

es
t

Sm
al

le
st

Fi
rs

t

La
st

La
rg

es
t

Sm
al

le
st

Fi
rs

t

La
st

La
rg

es
t

Sm
al

le
st

mean

Tajo 3.7 4.9 5.5 3.3 2.9 3.3 3.4 2.8 28.8 34.9 35.1 28.1

Tika 2.7 3.7 3.9 2.7 2.5 2.8 2.8 2.5 16.6 26.2 26.2 16.6

PDF-Box 4.4 6.6 7.8 3.5 3.5 3.8 4.2 2.9 28.5 31.5 35.8 26.6

Sqoop 3.7 4.9 5.3 3.8 3.0 3.2 3.3 2.9 13.25 13.75 14 13.25

Phoenix 4.6 6.7 9.9 3.6 3.0 3.3 3.5 2.8 25.2 27.8 34 22.5

ActiveMQ 4.7 6.3 7.4 4.2 2.7 2.7 2.5 2.8 14 15.3 15.3 14

min/max

Tajo 2/9 2/11 2/12 2/9 2/9 2/9 2/9 2/8 23/28 26/40 27/41 20/38

Tika 2/4 2/7 2/8 2/4 2/6 2/7 2/7 2/6 12/22 16/41 16/41 12/22

PDF-Box 2/14 2/19 2/21 1/11 2/24 2/24 2/26 2/21 14/60 14/60 14/60 13/60

Sqoop 2/10 2/12 2/14 2/8 2/9 2/10 2/9 2/10 10/20 11/20 11/20 10/20

Phoenix 2/15 2/23 2/26 2/8 2/12 2/11 2/16 2/10 2/32 2/31 2/41 2/30

ActiveMQ 2/14 2/14 2/28 2/14 2/8 2/8 2/8 2/8 10/21 11/21 10/21 11/21

Table 13: Smell Variation sizes during evolution by smell types

5.1.2.3 Shrinking Behavior of Smell Variations

As mentioned above, there are indications in the data that a smell
variation can shrink below the size of the smell roots. In addition,
one may expect that it is more likely that smells are mostly growing
during their evolution. Therefore, we want to investigate how often it
occurs that a smell variation shrinks compared to its predecessor and
how often a smell variation shrinks below the size of its smell root. As
can be seen in Table 14, shrinking and shrinking below the size of the
smell root (which we call root shrinking) happens for all smell types
in all nearly all projects. The only exception for general shrinking can
be found in Active MQ for hub-like dependencies. Root shrinking did
not occur in Tika for cyclic dependencies and not in Active MQ for
hub-like dependencies.

Project Cyclic Unstable Hub-like Total

Sh
ri

nk
in

g

R
oo

t
Sh

ri
nk

in
g

Sh
ri

nk
in

g

R
oo

t
Sh

ri
nk

in
g

Sh
ri

nk
in

g

R
oo

t
Sh

ri
nk

in
g

Sh
ri

nk
in

g

R
oo

t
Sh

ri
nk

in
g

Tajo 52% 26% 13% 10% 88% 25% 32% 17%

Tika 19% 0% 4% 2% 40% 20% 10% 3%

PDF-Box 56% 33% 12% 10% 53% 24% 30% 19%

Sqoop 38% 18% 4% 4% 25% 0% 18% 9%

Phoenix 70% 41% 8% 7% 75% 50% 49% 29%

ActiveMQ 54% 32% 8% 7% 0% 0% 34% 21%

Table 14: Shrinking occurrences of smell variation sizes during smell evolu-
tion

5.1 smell evolution 79

However, the amount of shrinking and root shrinking differs from
project to project. In general the most shrinking can be detected in
Phoenix, where 49 percent of all smells minimum shrink once during
their evolution. The least shrinking can be found in Tika where only
10 percent of all smells are affected by this. Root shrinking occurs
mostly in Phoenix with 29 percent and the least in Tika. Comparing
the shrinking behavior of the different smell types, one can see that
in these six projects the most shrinking occurs in hub-like and cyclic
dependencies. In conclusion, we can see that shrinking differs form
project to project. However, there are indications that may suggest
that shrinking and root shrinking most likely happen for hub-like
and cyclic dependencies.

5.1.2.4 Smell Tree Examples

Figure 22: Smell Tree 8 for SQOOP-3273

Two examples of the smell trees that were created during this study
are presented here. The first one in Figure 22 shows the tree that is
created for smell 8 of the Sqoop project and is related to SQOOP-3273.
The second one in Figure 23 for smell 76 of the Tajo project is related
to TAJO-1125. Both figures show the different aspects of the evolution
of smell variations (growing/shrinking/swapping and splitting).

80 results

Figure 23: Smell Tree 76 for TAJO-1125

5.2 issue types

This section describes the results that are collected for the issue types.
It first presents the number of smells incurred by each issue type and
subsequently lays out the findings on how many issues of a certain
type incur architectural smells. From our findings we understand the
meaning of the issues types as follows:

1. New Feature - adds new functionality to the system

2. Improvement - improves the system in a certain quality, e.g
performance

3. Bug - fixes an error in the system

4. Task - configuration management e.g. merging, release prepara-
tion

5. Test - demands a specific tests

6. Wish - wish for specific system behavior

5.2.1 Smell Instances by Issue Type

The first metric that concerns issue type is the number of smells that
are incurred by an issue type. Figure 24 and 25 both show the results
for each project. In Figure 24 we can see the absolute number of smell
instances that is incurred. Furthermore, the smell instances are split
by smell type. The distribution of smell instances by issue type differs
from project to project. However, in three projects, the most instances

5.2 issue types 81

are incurred by improvements (Tajo - Figure 24a, Tika - Figure 24b,
and PDF-Box - Figure 24c). In Sqoop, Phoenix, and ActiveMQ are the
most smell instances incurred by the issue type “Bug" (Figure 24d,
24e, and 24f). In general, the number of smell instances of each smell
type seem to follow the distribution of the total smells for each project
(i.e. most total smell instances are incurred by improvements, most
cyclic dependencies are incurred by improvements, etc.). Although
there are minor deviations from this pattern, e.g. there is the same
number of cycles incurred by improvements and bugs in Tika (Figure
24b) or more hub-like dependencies incurred by a task then by an
improvements in PDF-Box (Figure 24c).

(a) Tajo (b) Tika

(c) PDF-Box (d) Sqoop

(e) Phoenix (f) ActiveMQ

Figure 24: Total number of smells incurred by issue type

Figure 25 shows the same distribution of smell instances incurred by
issue type as Figure 24 but shows the proportions of the instances
in percent compared to the total number of smell instances incurred
in the corresponding project. Here one can see that the ratio of total
smells incurred by the issue type with the most smells is over 50% of

82 results

the total amount of smell instances for three of the projects (Tajo 25a,
Phoenix 25e, and ActiveMQ 25f). For the remaining projects the ratio
for the total smells of the issue type with the most smell instances
converges around 40%.

(a) Tajo (b) Tika

(c) PDF-Box (d) Sqoop

(e) Phoenix (f) ActiveMQ

Figure 25: Percent of smells incurred by issue type

5.2.2 Issue Types Incurring Architectural Smell Types

The next metric is concerned with the number of issue types that
incur a specific smell type, or combinations of smell types. This is
because an issue can incur multiple smells from multiple smell types.
The values are aggregated by smell type combination. These combina-
tions are only cyclic dependency, only unstable dependency, only hub-like
dependency, cyclic and unstable dependency, cyclic and hub-like dependency,
unstable and hub-like dependency, and cyclic, unstable, and hub-like depen-
dency. The results are presented in Table 15. It presents the total count
of issues of a specific issue type. In addition to this, it presents the

5.2 issue types 83

normalized ratio of the issue types compared to the total count of
resolved issues of this particular issue type2.

Attr cyclic unstable hub-like cyc/un cyc/hub un/hub cyc/un/hub total

t % t % t % t % t % t % t % t %

Tajo

N. Feat 5 6 11 13 1 1 3 4 - - - - - - 20 24

Impr. 15 4 18 4 - - 69 17 - - - - 2 .4 44 11

Tasks - - 2 1 - - 3 2 - - - - 1 .6 6 4

Bugs 7 1 7 1 1 .1 2 .3 - - - - - - 17 3

Total 27 2 38 3 2 .1 18 1 - - - - 3 .2 88 7

Tika

N. Feat - - 4 2 1 .7 1 .7 - - 1 .7 - - 7 5

Impr. 1 .1 17 2 - - 2 .2 - - - - - - 20 3

Bugs 5 .5 9 1 2 .2 1 .1 - - - - - - 17 2

Task - - 2 1 - - 1 .5 - - - - - - 3 2

Total 6 .3 32 2 3 .2 5 .2 - - 1 .05 1 .05 48 2

PDF-
Box

Task 4 5 3 4 - - 1 1 - - 2 3 2 3 12 15

Wish - - 1 5 1 5 - - - - - - - - 2 10

Impr. 13 2 20 3 2 .3 8 1 - - - - 3 .4 46 7

N. Feat 1 1 2 2 - - 1 1 - - - - - - 4 5

Bug 18 .8 29 1 2 .09 6 .2 - - 1 .04 - - 56 3

Total 36 1 55 2 5 .1 16 .5 - - 3 .09 6 .2 121 4

Sqoop

N. Feat 1 1 1 1 1 1 - - - - - - - - 3 4

Task 1 1 5 6 - - 4 5 - - - - - - 10 11

Impr. 4 1 1 .3 - - 1 .3 - - - - 2 .6 8 3

Bug 6 .6 8 .9 - - 3 .3 - - - - - - 17 2

Total 12 .8 15 1 1 .07 9 .6 - - - - 2 .1 39 3

Phoenix

N. Feat 4 4 4 4 - - - - - - - - - - 8 9

Test 8 8 - - - - 1 1 - - - - - - 9 9

Bug 64 3 25 1 - - 6 3 - - - - - - 92 5

Impr. 13 3 4 .9 - - 1 .2 - - - - - - 18 4

Task 5 .6 2 .2 - - - - - - - - - - 7 .9

Total 91 3 34 1 - - 8 .2 - - - - 1 .03 135 4

Active
MQ

N. Feat 4 2 5 3 - - 3 2 - - - - - - 12 7

Bug 22 .9 9 .4 1 .04 5 .2 - - 2 .09 - - 39 2

Impr. 8 .9 6 .7 - - 1 .1 - - - - - - 15 2

Task 2 1 1 .6 - - - - - - - - - - 3 2

Total 36 1 21 .6 1 .03 9 .2 - - 2 .05 - - 69 2

Table 15: Number of issues by issue type incurring smell types or combina-
tions of them (t). Behind each value is the normalized and rounded
ratio (%) for comparing the issue types among projects. Values are
normalized by using the total amount of resolved issues of that
particular issue type.

2 Find the amount of issue types in the appendix in Section A.2

84 results

A first look at Table 15 already reveals a general finding for incurring
architectural smells. The combination of cyclic and hub-like depen-
dencies are never added together. In addition, the combination of
unstable and hub-like dependency as well as the combination of all
three smell types is incurred together only in a few projects. Only
adding cyclic and unstable dependencies at the same time can be
found in every project.

The number of issues that incur architectural smells differs from project
to project. It varies from only two percent of all issues in Tika and
ActiveMQ to seven percent in Tajo. In five projects, the issue type
new feature incurs most often a smell. Only in PDF-Box are the most
smells incurred through a Task. Furthermore, the distribution of the
remaining issue types differs from project to project.

5.3 issue priorities

In this section we present the findings concerning the issue priorities.
First, there are the number of smell instances incurred by the issue
priority. Second, we show the number of issues that incur architec-
tural smells or combinations of it.

5.3.1 Smell Instances by Issue Priority

Figure 26 show the results from the number of smell instances that
are incurred by issue priority. It reveals that for all projects the most
smells are incurred by a major issue. The same pattern can seen for
the different smell types for each project.

A closer look at the ratio of smells incurred by issue priority shows
that more than fifty percent of all issues are incurred by an issue
with priority level major. The lowest rate can be found in Tika with
55% and the highest rate has Phoenix with 89%. The second most
number of smells is incurred by an issue with priority level minor for
all project.

5.3 issue priorities 85

(a) Tajo (b) Tika

(c) PDF-Box (d) Sqoop

(e) Phoenix (f) ActiveMQ

Figure 26: Total number of smells incurred by issue priority

5.3.2 Issue Priorities Incurring Architectural Smell Types

The second metric of RQ3 is concerned with the number of issue
priorities that incur a specific smell type, or combinations of smell
types. As already explained above, an issue can incur multiple smells
of different smell types at the same time. The results are presented in
Table 16. It presents the total count of issues of a specific issue priority
that incurs one or more architectural smell instances. In addition to
this, it presents the normalized ratio of the issue priority compared
to the total count of resolved issues of this particular issue priority3.

3 Find the amount of issue priorities in the Appendix in Section A.3

86 results

(a) Tajo (b) Tika

(c) PDF-Box (d) Sqoop

(e) Phoenix (f) ActiveMQ

Figure 27: Percentage of smells incurred by issue priority

After normalizing the total issues of a corresponding issue priority
that incur architectural smells, the results show that in three projects,
it is more likely that smells are incurred by an issue with priority
level critical. These projects are PDF-Box, Swoop, and Phoenix. In two
projects, the priority level most likely to incur architectural smell is
major. This counts for Tajo and ActiveMQ. In the remaining project
Tika, the issues with priority level minor are more likely to incur new
architectural smells.

5.3 issue priorities 87

Attr cyclic unstable hub-like cyc/un cyc/hub un/hub cyc/un/hub total

t % t % t % t % t % t % t % t %

Tajo

Major 20 2 31 4 2 .2 13 2 - - - - 3 .3 69 8

Minor 3 .9 6 2 - - 2 .5 - - - - - - 11 3

Trivial 2 1 1 .5 - - 1 .5 - - - - - - 4 2

Critical 1 1 - - - - 1 1 - - - - - - 2 2

Blocker 1 2 - - - - - - - - - - - - 1 2

Total 27 2 38 3 2 .1 18 1 - - - - 3 .2 88 7

Tika

Minor 3 .5 12 2 1 .2 2 .4 - - - - - - 18 3

Major 3 .3 17 2 2 .2 3 .2 - - 1 .09 - - 26 2

Trivial - - 3 2 - - - - - - - - - - 3 2

Total 6 .3 32 2 3 .1 5 .3 - - 1 .05 - - 47 2

PDF
Box

Critical 2 3 4 6 - - 1 1 - - - - - - 7 10

Minor 11 2 16 2 3 .4 2 .3 - - - - 2 .3 34 5

Major 21 1 29 1 2 .09 10 .5 - - 3 .1 2 .09 67 3

Trivial 1 1 2 2 - - - - - - - - - - 3 3

Total 36 1 55 2 5 .2 15 .4 - - 3 .09 6 .2 120 4

Sqoop

Critical 1 4 - - - - - - - - - - - - 1 4

Minor 2 .9 3 1 - - 2 .9 - - - - - - 7 3

Major 9 .3 12 .4 1 .03 6 .1 - - - - 2 .06 30 .9

Total 12 .1 15 .2 1 .01 8 1 - - - - 2 .02 39 .6

Phoenix

Critical 5 6 1 1 - - - - - - - - - - 6 7

Major 74 3 32 1 - - 8 .3 - - - - - - 114 5

Minor 8 2 1 .3 - - - - - - - - - - 9 3

Trivial 2 3 - - - - - - - - - - - - 2 3

Blocker 1 .6 - - - - - - - - - - - - 1 .6

Total 91 3 34 1 - - 8 .3 - - - - 1 .03 134 4

Active
MQ

Major 24 .7 19 .6 - - 9 .3 - - 2 .06 - - 54 2

Blocker 1 1 1 1 - - - - - - - - - - 2 2

Trivial 2 1 - - - - - - - - - - - - 2 1

Critical 2 .9 1 .5 - - - - - - - - - - 3 1

Minor 7 .8 - - 1 .1 - - - - - - - - 8 .9

Total 36 .8 21 .4 1 .02 9 .2 - - 2 .04 - - 69 1

Table 16: Number of issues by priority incurring smell types or combina-
tions of them (t). Behind each value is the normalized and rounded
ratio (%) for comparing the issue priorities among projects. Values
are normalized by using the total amount of resolved issues of that
particular issue priority.

88 results

5.4 developer impact on architectural smells

RQ4 concerns the influence that developers have on incurring archi-
tectural smells. In this section, we present the results reflected by the
two metrics defined for this research question.

5.4.1 Developer Experience Level

This section compares the compares the experience a developer has in
a project and the number of smells the same developer has incurred
in this project. The results are depicted in Figure 28. There is a scatter
plot for each project. Each data point is related to one developer of the
corresponding project. The x-axis represents the number of incurred
smells and the y-axis is the number of commits. The more to the right
a data point is, the more smells this developer has incurred and the
higher the data point is, the more commits this developer has added
to the project.

(a) Tajo: (b) Tika:

(c) PDF-Box: (d) Sqoop:

(e) Phoenix: (f) ActiveMQ:

Figure 28: Distribution of smells incurred by developer

5.4 developer impact on architectural smells 89

Comparing the results of all projects, one can see that there is a gen-
eral tendency of how the data is distributed. We can see that for all
projects the data follows more or less a linear dependency, i.e. the
more commits a developer has, the more smells she incurs.

This effect is lucid for Tajo, Tika, and Phoenix. The data for ActiveMQ
is more scattered but one can see the tendency towards a linear de-
pendency. PDF-Box and Sqoop both have a few outliers but the ten-
dency is still weakly linearly dependent. Without the claim for sta-
tistical significance, we calculated the correlation coefficient for every
project. The results are presented in Table 17. One can identify that all
values are positive. Furthermore, the tendency is also visible for the
number of lines a developer has added or removed from the system.
We included these attributes in order to mitigate the difference in
committing behavior, i.e. one developer makes small commits while
another makes huge commits. Only one project shows a weak to neu-
tral linear dependency which is PDF-Box.

Project Tajo Tika PDF-Box Sqoop Phoenix ActiveMQ

commits/smells 0.99 0.92 0.1 0.4 0.92 0.74

added lines/smells 0.96 0.61 0.21 0.86 0.93 0.37

removed lines/smells 0.98 0.61 0.75 0.74 0.93 0.17

Table 17: Correlation between attributes representing the developer experi-
ence in a project

5.4.2 Number of Developer per Smell

Table 18 shows the distribution of the smells incurred by a single de-
veloper and by multiple developers. Here one can observe, that nearly
all versions that incurred one or more smells have been created by a
single developer. A few smells in Tajo and Pheonix have versions that
incur architectural smells and have been worked on by multiple de-
velopers.

Project Single Developer
Multiple

Developers

Tajo 174 7

Tika 77 0

PDF-Box 319 0

Sqoop 99 0

Phoenix 231 15

Active MQ 135 5

Table 18: Overview on number of developers incurring a new architectural
smell into a software project

90 results

5.5 qualitative analysis

In this section, we provide the results of the qualitative analysis. First,
we provide a list of categories that include trade-off situations be-
tween a certain quality and maintenance. Subsequently, we present
the findings for every issue that we analysed ordered by project.

5.5.1 Trade-off Categories

The qualitative analysis of 18 randomly selected issues did not reveal
any discussions on incurring architectural smells. We found several
issues that incur smells with the goal to add, fix, or extend functional-
ity. In addition, we found nine issues with a certain quality objective.
This is interesting because it indicates an unintentional trade-off be-
tween this particular quality and inner system quality. This is because
each of these issues incurs one or more instability architectural smells.
Table 19 aggregates the issues by their quality goal and provides a list
of hidden trade-off categories. Some of these issues trade not only a
single quality with maintainability. Therefore, several issues appear
in more than one category as an example.

Category # Found in Incurred Smells

performance 3

TIKA-2276,
AMQ-5269,
SQOOP-390

CD: 3, UD: 4, HD: 0

time-to-market 1 TAJO-1125 CD: 6, UD: 5, HD: 2

memory consumption 1 TAJO-1026 CD: 1, UD: 0, HD: 0

readability 1 SQOOP-3273 CD: 3, UD: 5, HD: 2

backwards compatibility 1 SQOOP-374 CD: 0, UD: 1, HD: 0

security 1 AMQ-3880 CD: 3, UD: 1, HD: 0

configuration management 1 TAJO-1153 CD: 1, UD: 1, HD: 0

code quality 1 SQOOP-3273 CD: 3, UD: 5, HD: 2

separation of concern 1 PDFBOX-2386 CD: 1, UD: 0, HD: 0

keeping legacy code 1 PHOENIX-1646 CD: 1, UD: 0, HD: 0

Table 19: Categories of hidden trade-offs: system quality/inner system qual-
ity

For better understanding the categories presented in the previous ta-
ble, we discuss each category before we delve into the individual
analysis of each of the 18 issues. We generalize these categorize from
their scenario. Thus, the general implication on software maintenance
become more clear.

Hidden Performance Trade-off

The hidden trade-off between performance and maintainability oc-
curs when a change of the system has the goal of optimizes the

5.5 qualitative analysis 91

amount of time a system needs to perform a certain process. For
example, in AMQ-5269 the developers improved sockets to close a con-
nection immediately instead of waiting for a certain time-out runs out.
This decreased the execution time of socket tests (and presumably the
execution time of the affected processes at run-time). However, this
trade-off incurs several smell instances the developers are not aware
of.

Hidden Time-to-market Trade-off

This hidden trade-off occurs, when development is done under pres-
sure. This happens for example when a certain change of the system
is required to finish another development task. Another reason can
also be that the system is changes in such a way that other tasks that
are developed in parallel are hard to be integrated into these changes.
This happens especially when large parts of the system’s structure
is changes. Developers may tend to finish these major refactorings
as fast as possible in order to prevent blocking of other tasks longer
than necessary. This can affect the quality of the development itself
but also related processes such as code-review or testing. However,
this can lead to unintentionally incur several architectural smells. We
found an example for this in TAJO-1125. Here the request for a code-
review was satisfied within a few hours.

Hidden Memory Consumption Trade-off

It can happen that the amount of certain data, present in the system
at run-time, is limited. One way to resolve this is to store these data to
e.g. a database. This may enable the system to keep its memory con-
sumption within the prescribed boundaries. This can however lead
to new architectural smell instance. In Tajo, memory limitations pre-
vented from storing the query history. Therefore, TAJO-1026 changed
the system to store this history persistently which incurred a cyclic
dependency.

Hidden Readability Trade-off

It can sometimes happen that certain software constructs makes it
hard for a developer to understand or read the code. Increasing the
code readability can lead to incurring architectural smells. This hap-
pened in SQOOP-3273.

Hidden Backwards Compatibility Trade-off

Sometimes developers are forced to keep an old structure in order
to support older, external software that relies on these old structures
(backwards compatibility). However, they decide to improve the sys-
tem in a certain way. Hence, they have to come up with a solution

92 results

that suits both desires (new improvement/support of legacy systems).
This can lead to incur architectural smells as happened in SQOOP-374.

Hidden Security Trade-off

Security is an important issue in modern software development. Secu-
rity issues in e.g. transaction protocols are often addressed by specifi-
cations. Implementing these specifications can however lead to incur
smell instances (see AMQ.3880.

Hidden Configuration Management Trade-off

From time to time several (new) versions have to be aligned to be
each other (merging) or the system has to be prepared for a major
release. We understand this phenomenon as configuration manage-
ment. Yet, the changes that are required for this can add new archi-
tectural smells.

Hidden Code Quality Trade-off

Code smells belong - as well as architectural smells - to technical
debt [24]. They have a negative impact on code quality. We found a
scenario where removing a huge amount of code smells have been
removed during a refactoring but these changes added new architec-
tural smell (SQOOP-3279). Here one trades code quality with architec-
tural quality.

Hidden Separation of Concern Trade-off

It can happen that a minor system function grows during the system’s
evolution. In fact, this function can evolve such that it becomes so big
that one wants to separate this component from the original structure
where it was entailed. This follows the commonly known separation
of concern principle. Though, it can happen that this separation leads
to adding new smell instances. In this situation, one trades separation
of concern with maintainability. We found this in PDFBOX-2386.

Hidden Keeping Legacy Code Trade-off

Sometimes a bug affects a part of the system which was formed by
an mediocre or imperfect design decision. However, this legacy de-
sign decision may require to make further mediocre design decisions
in order to fix the bug that affects this part of the system. One pos-
sibility may be to refactor the system to remove the first imperfect
design decision and then fix the bug. However, it can be that devel-
opers decide against this because of the additional effort. They rather
accept another mediocre design decision which enables them to fix

5.5 qualitative analysis 93

the bug in short time. It can be that this approach can lead to incur
architectural smells. We found an example for this in PHOENIX-1646.

5.5.2 Analysis of Individual Issues

In this section, we present the results of the qualitative analysis for
all analysed issues ordered by project. For each issue, we describe
the context of the issue, the issue type and priority, the number of in-
curred smells, which newly added dependencies formed the smells4,
the documentation artifacts, the reason the developers approved the
changes made for this issue, and the rationale for incurring the smell.
In case there is no rationale mentioned in the documentation, we ex-
tracted the rationale from the information available.

5.5.2.1 Tajo

Issue: TAJO-1125 Description

Context of Issue

Over the time the project was growing, as well as the complexity of the
packages logical, planner, optimizer, expressions, and expression
optimizer. Since they were all part of tajo-core module, every client
that wanted to use them was required to use the entire module.
Therefore, the developers decided to separate them into its own
module.

Issue Information Type: Improvement, Priority: Major

Smell Type(s) CD: 6, UD: 5, HD: 2

Smell incurred through

All components involved in the smells have been moved to the new
package structure. We confirmed their existence and provide one
example here for the sake of brevity: The circle between
org.apache.tajo.plan.logical, org.apache.tajo.plan.verifier,
org.apache.tajo.plan.visitor is formed since logical imports verifier,
verifier imports visitor, and visitor imports logical.

Sources of Analysis GitHub commit diffs, Jira issue

Reason for approval

The developer responsible for the changes demanded a quick review. In
addition, another developer claimed that the changes being made are in
need of a fast release in order to continue with another ticket. This is
why they reviewed the code quickly.

Rationale for Smell

The bulk of smells is caused by the restructuring of the modules.
However, the developers did not only separate the components that
where described in the issue but also others. In the comments only one
of these additional separations has been justified (StorageConstants in
order to follow the localization principle. Nonetheless, there is no
discussion on whether one of these new dependencies may incur any
ASs. Hence, we have no evidence that the developers incurred them
deliberately. In addition, the demand for the quick review may indicate
that they did not have the time to be aware of the problem. We can
therefore assume that the rationale for the smell is an unintentional
trade-off between time-to-market and maintainability.

Table 20: TAJO-1125

4 Note: in case of too many incurred smells we only provide the proof for one or two
of these smells.

94 results

Issue: TAJO-1026 Description

Context of Issue

One problem of Tajo was the way it stored the query history. This led to
only keeping the very recent query history due to memory limitations.
Therefore, the developers proposed to store the query on the hadoop
file system.

Issue Information Type: New Feature, Priority: Minor

Smell Type(s) Cyclic Dependency

Smell incurred through
Adding org.apache.tajo.worker to org.apache.tajo.util.history

and adding org.apache.tajo.util.history to
org.apache.tajo.master.querymaster

Sources of Analysis GitHub commit diff, GitHub pull-request review page, Jira issue

Reason for approval
The changes had been approved because the reviewer only encountered
small configuration issues. He did not find the bad dependencies that
formed the smell.

Rationale for Smell

The reasons why the developer incurred the bad dependencies are not
discussed at all. They did not even find them in the review. We cannot
find any hints for deliberately incurring the smells. Therefore, we
assume that the smell was incurred unintentionally. We can see that the
smell is an unintentional trade-off between memory consumption and
maintenance.

Table 21: TAJO-1026

Issue: TAJO-1153 Description

Context of Issue
This issue is about configuration management for merging structure
and behaviour for off-heap tuples into the master branch. This is
because other tickets require this functionality.

Issue Information Type: Task, Priority: Major

Smell Type(s) 1 xCyclic Dependency and 1x Unstable Dependency

Smell incurred through

CD: Adding org.apache.tajo.tuple to
org.apache.tajo.tuple.offheap and vice versa forms the tiny cycle.
Hence all dependencies that form the smell are added in this version.
UD: The package org.apache.tajo.tuple is with 0.92 less stable than
org.apache.tajo.tuple.offheap with 0.88. Yet, offheap depends on
tuple

Sources of Analysis GitHub commit diffs, Jira issue

Reason for approval
Reviewer agrees without comments. He did not find the bad
dependencies

Rationale for Smell

The rationale is neither discussed nor can one find clues in the available
documentation for it. We assume that the two smells are hence incurred
unintentionally. This is an unintentional trade-off between
configuration management and maintenance.

Table 22: TAJO-1153

5.5.2.2 Tika

Issue: TIKA-1010 Description

Context of Issue
In case a RTF doc embeds another document, the hex bytes of that
embedded document cannot be decoded properly. This issue fixes this.

Issue Information Type: Bug, Priority: Major

Smell Type(s) 1x Cyclic Dependency

Smell incurred through
Adding dependency to org.apache.tika.parser.rtf from
org.apache.tika.parser.microsoft

Sources of Analysis github commit, Jira Issue

Reason for approval Fixed functionality is working and was tested. No mentioning of AS.

Table 23: TIKA-1010

5.5 qualitative analysis 95

Issue: TIKA-2276 Description

Context of Issue

The developers detected that the TajoConfig-class is created multiple
times in unit testing and as a consequence the run-time is high.
Therefore, they decided to reduce the run-time by reusing existing
instances of TajoConfig where possible.

Issue Information Type: Improvement, Priority: Major

Smell Type(s) 2x Cyclic Dependency , 1x Unstable Dependency

Smell incurred through

Adding dependency org.apache.tika.extractor to
org.apache.tika.parser, already existing was
org.apache.tika.config to org.apache.tika.extractor and
org.apache.tika.config to org.apache.tika.parser and
org.apache.tika.parser to org.apache.tika.config

Sources of Analysis github commits, Jira Issue

Reason for approval not discussed

Rationale for Smell

With incurring the smell the developers were able to decrease the
run-time of their tests (and presumably of parsing documents in
production environment) from 68 to 4 seconds. However, there is no
evidence that they deliberately incur the dependency that forms the
cycle or the smell itself. Therefore, one may assume that this trade-off
situation was unintentional.

Table 24: TIKA-2276

Issue: TIKA-67 Description

Context of Issue

The developers have decided to add a functionality that automatically
detects the document type that should be parsed and dispatches that
document to the adequate parser implementation for this document
type.

Issue Information Type: New Feature, Priority: Major

Smell Type(s) 1x Unstable Dependency, 1x Hub-like Dependnency

Smell incurred through

Adding org.apache.tika.mime to org.apache.tika.parser. Most
likely exceeds the median threshold for in- and outgoing dependencies
in org.apache.tika.parser and hence forms the HD. Similarly, may
org.apache.tika.parser be more stable than org.apache.tika.mime.

Sources of Analysis GitHub commit, Jira issue

Reason for approval Not discussed

Rationale for Smell
No rationale discussed on Jira nor indicated through the diffs on
GitHub which is why we assume that the smell was incurred
unintentionally

Table 25: TIKA-67

Issue: TIKA-506 Description

Context of Issue
The developers saw that there were parts of .doc and .docx files that
have not been extracted from Tika at that time. Therefore, they wanted
to improve the extraction of those parts.

Issue Information Type: Improvement, Priority: Major

Smell Type(s) 1x Unstable Dependency

Smell incurred through

Adding org.apache.tika.parser.microsoft to
org.apache.tika.parser.microsoft.ooxml which most likely makes
the more stable stable package ooxml dependent on the more unstable
package microsoft

Sources of Analysis GitHub commit, Jira issue

Reason for approval Not discussed, not even mentioned that it was approved

Rationale for Smell
No rationale discussed on Jira nor indicated through the diffs on
GitHub which is why we assume that the smell was incurred
unintentionally

Table 26: TIKA-506

96 results

5.5.2.3 PDF Box

Issue: PDFBOX-1689 Description

Context of Issue
Rendering of certain PDFs does not result in the desired output and
several characters are replaced.

Issue Information Type: Bug, Priority: Major

Smell Type(s) 1x Cyclic Dependency, 1x Unstable Dependency

Smell incurred through

Cycle: Add org.apache.fontbox.ttf to org.apache.fontbox.util

which forms a tiny cycle. The reverse dependency already existed in
org.apache.fontbox.ttf. Unstable Dependency: Most likely because
org.apache.fontbox.ttf and org.apache.fontbox.util.autodetect

are added to org.apache.fontbox.util which are both less stable than
org.apache.fontbox.util and thereby form the smell.

Sources of Analysis GitHub commit, Jira issue

Reason for approval Bugfix is providing the desired functionality

Rationale for Smell

No rationale for the smell was mentioned in the sources that we found.
However, the rationale for adding a new class that eventually incurred
both smells is to manage font styles from the local operation system
and provide an automatic way to detect them. Therefore, one can say
that there was a trade-off made between maintainability and automatic
customization of the system. Nonetheless, there is no evidence that the
developers made this trade-off deliberately but rather unintentionally.

Table 27: PDFBOX-1689

Issue: PDFBOX-2386 Description

Context of Issue
As a result of the evolution of PDFBox, several components that are
concerned with content streams are moved out of the util package into
their own package.

Issue Information Type: Improvement, Priority: Minor

Smell Type(s) 1x Cyclic Dependnency

Smell incurred through
Adding dependency from org.apache.pdfbox.util to
org.apache.pdfbox.contentstream and vice versa.

Sources of Analysis GitHub commit, Jira issue

Reason for approval Not mentioned

Rationale for Smell

Not discussed at all. We therefore assume that this smell was incurred
unintentionally. However, the motivation for this refactoring is to move
the content stream components to the packages they belong to. We can
therefore assume that it is an unintentional trade-off between
separation of concern and maintainability.

Table 28: PDFBOX-2386

5.5 qualitative analysis 97

Issue: PDFBOX-2423 Description

Context of Issue

Major refactoring of the way PDFBox handles the page tree of the pdf.
Therefore, it demands to re-write the PDPage component and removes
the PDPageNode construct in order to get rid of a too low level access to
raw data.

Issue Information Type: Improvement, Priority: Major

Smell Type(s)
CD (contentstream to annotation, annotation to form, form to graphics,
graphics to contentstream; various other dependencies between these
packages)

Smell incurred through

Adding dependency from
org.apache.pdfbox.interactive.annotation to
org.apache.pdfbox.contentstream and from
org.apache.pdfbox.graphics.form to
org.apache.pdfbox.interactive.annotation

Sources of Analysis GitHub commit, Jira issue

Reason for approval
Delegate to another issue because the original task was resolved but
bugs remained.

Rationale for Smell
Not discussed here. We therefore assume that the smell was incurred
unintentionally. The issue improves functionality.

Table 29: PDFBOX-2423

5.5.2.4 Sqoop

Issue: SQOOP-3273 Description

Context of Issue

A lot of Sqoop functionality is captured by classes in
com.cloudera.sqoop packages. In order to increase readability, the
developers decided to move and include all these classes to already
existing Sqoop packages.

Issue Information Type: Improvement, Priority: Major

Smell Type(s)
3x Cyclic Dependency, 5x Unstable Dependency, 2x Hub-like
Dependency

Smell incurred through

CD: adding org.apache.sqoop.metastore to
org.apache.sqoop.manager, org.apache.sqoop.tool to
org.apache.sqoop.metastore, and org.apache.sqoop to
org.apache.sqoop.mapreduce.postgresql forms semi clique involving
org.apache.sqoop, org.apache.sqoop.manager,
org.apache.sqoop.metastore, org.apache.sqoop.tool,
org.apache.sqoop.mapreduce.postgresql, adding
org.apache.sqoop.lib to
org.apache.sqoop.mapreduce/mapreduce.sqlserver,
org.apache.sqoop.validation to org.apache.sqoop.mapreduce,
org.apache.sqoop.mapreduce/mapreduce.db to
org.apache.sqoop.mapreduce.sqlserver forms semi-clique involving
org.apache.sqoop.lib, org.apache.sqoop.mapreduce,
org.apache.sqoop.validation, org.apache.sqoop.mapreduce.db,
org.apache.sqoop.mapreduce.sqlserver; UD: aforementioned new
depenedencies presumably form the five unstable dependencies since
most of the components added or changed are involved in these smells
5, HD: similar than smells of UD6

Sources of Analysis GitHub commit diff, Jira issue, apache review platform

Reason for approval
Review was satisfying after suggestions were implemented
(unfortunately, no review comments available) and test passes

Rationale for Smell

The developers did not mention the problems arising from the multiple
new dependencies. However, they agree that the code is now more
readable and navigation has improved with the changes. Furthermore,
these changes removed 2,500 code smells. Since there is no proof that
the dependencies have been added deliberately, we interpret them as
unintentional. Hence, this version unintentionally makes a trade-off
between readability and maintenance (both inner system qualities). In
addition, it swaps 2,500 code smells with 9 ASs.

Table 30: SQOOP-3273

98 results

Issue: SQOOP-390 Description

Context of Issue
Adding new functionality and increasing performance of exporting
data into PostgreSQL

Issue Information Type: New Feature, Priority: Major

Smell Type(s) Unstable Dependency

Smell incurred through

Components involved in smell are org.apache.sqoop.mapreduce,
org.apache.sqoop.orm, org.apache.sqoop.util,
org.apache.sqoop.mapreduce.db. All packages are added to
org.apache.sqoop.mapreduce and org.apache.sqoop.util which
presumably means that org.apache.sqoop.orm and
org.apache.sqoop.mapreduce.db are less stable than either one or both
of (mapreduce or util)

Sources of Analysis GitHub commit diff, Jira issue

Reason for approval Not mentioned

Rationale for Smell

No discussion about why the dependencies that were added and
caused the unstable dependency smell. Hence, we interpret this smell
as unintentionally incurred. The smell can be seen as an unintentional
trade-off between performance and maintainability.

Table 31: SQOOP-390

Issue: SQOOP-374 Description

Context of Issue

SQOOP-369: preparation for release of version 1.4.0, SQOOP-390:
migrate tool packages to new space name which is a mean of preparing
the release of sqoop under the Apache Incubator which requires to
remove the com.cloudera.sqoop packages (the classes formerly
capturing the functionality merely depend now on the classes of the
new name-space). In addition, the classes of the old name-space are
now marked as deprecated as a mean of backwards compatibility.

Issue Information
Type: Task (SQOOP-374 is Sub-task of SQOOP-369 which is a Task),
Priority: Major

Smell Type(s) Unstable Dependency

Smell incurred through

17 (deprecated) classes extends a corresponding class of
org.apache.sqoop.tool which was maximum unstable before the
changes and is depended upon com.cloudera.sqoop.manager and
com.cloudera.sqoop.metastore.hsqldb which both had a certain
degree of stability (0.56 manager, 0.75 metastore.hsqldb). With adding
17 hierarchy dependencies and 79 normal dependencies afferent
dependencies to org.apache.sqoop.tool it becomes more stable than
manager and metastore.hsqldb with now 0.48. However,
org.apache.sqoop.tool also depends on manager and
metastore.hsqldb which then forms the unstable dependency

Sources of Analysis GitHub commit diff, Jira issues, namespace migration guide for sqoop7

Reason for approval Code review appears to be satisfying

Rationale for Smell

The rationale for the smell is the need for backwards compatibility. The
migration guide specifies the way the afferent dependencies from
org.apache.sqoop.tool to com.cloudera.sqoop.tool. Although they
mention the “weirdness in inheritance" (in comments of this issue), the
main reason for incurring two unstable dependencies is that nobody is
aware of the other dependencies that org.apache.sqoop.tool has to
manager and metastore.hsqldb. This example may serve as an
indication for ripple through effects in unstable dependencies because
the changes in a package that is not involved in the smell causes it. If
only the way of migrating the old packages to the new namespace
would be the reason for the smell then also org.apache.sqoop.orm

would be involved in an smell. We can therefore, consider the smell as
unintentionally incurred with a trade-off between backwards
compatibility and maintenance.

Table 32: SQOOP-374

5.5 qualitative analysis 99

5.5.2.5 Phoenix

Issue: PHOENIX-1646 Description

Context of Issue Error in expression tree requires a different way of creating the indexes.

Issue Information Type: Bug , Priority: Major

Smell Type(s) 1x Cyclic dependency

Smell incurred through

Adding dependency from org.apache.phoenix.schema.types to
org.apache.phoenix.parse that closes the cycle between
org.apache.phoenix.parse, org.apache.phoenix.schema, and
org.apache.phoenix.schema.types

Sources of Analysis GitHub Jira

Reason for approval tests passed

Rationale for Smell

The developers do not mention the cycle that is created. However, they
provide information why they add the part that forms the smell. They
further mention that other ways are possible but riskier to loose
information. The risk of loosing information seems to be due to older
design decision (optimizations stored in constants). We can therefore
assume that there is an unintentional trade-off between keeping legacy
code and maintainability.

Table 33: PHOENIX-1646

Issue: PHOENIX-1514 Description

Context of Issue
Break up PDataType in order to prepare the system for adopting new
HBase type encoding

Issue Information Type: Task, Priority: No priority

Smell Type(s) 3x Cyclic dependency

Smell incurred through
Moving PDataType enum from ’org.apache.phoenix.schema to
’org.apache.phoenix.schema.types, which closes the cycle from those
two components to ’org.apache.phoenix.exception.

Sources of Analysis GitHub Jira

Reason for approval passed review and tests

Rationale for Smell
They did not discuss the smells. We therefore assume that they are
unaware of the cycles. This issue improves functionality.

Table 34: PHOENIX-1514

7 https://cwiki.apache.org/confluence/display/SQOOP/Namespace+Migration - ac-
cessed 10.08.2020

https://cwiki.apache.org/confluence/display/SQOOP/Namespace+Migration

100 results

5.5.2.6 ActiveMQ

Issue: AMQ-5591 Description

Context of Issue
Implementing new defined JMS specifications for broker side in order
to allow JMS clients to operate with the AMQP (Advanced Message
Queing Protocol8)

Issue Information Type: Improvement, Priority: Major

Smell Type(s) 1x Cyclic Dependency, 1x Unstable Dependency

Smell incurred through

CD: Adding org.apache.activemq.transport.amqp.protocol to
org.apache.activemq.transport.amqp closes the cycle. UD:
Presumably adding the less stable package
org.apache.activemq.transport.amqp.protocol to the more stable
package org.apache.activemq.transport.amqp

Sources of Analysis GitHub commit diff, Jira issue,

Reason for approval Not mentioned

Rationale for Smell Unintentional - no proof for deliberate incurring smell.

Table 35: AMQ-5591

Issue: AMQ-3880 Description

Context of Issue Add wss (WebSocket Secure9) transport

Issue Information Type: New Feature, Priority: Major

Smell Type(s) 2x Cyclic Dependencies

Smell incurred through

Adding org.apache.activemq.transport.https to
org.apache.activemq.transport which closes (1) the tiny cycle
between both packages and the circle between
org.apache.activemq.transport,
org.apache.activemq.transport.https, and
org.apache.activemq.transport.http

Sources of Analysis GitHub commit diffs, Jira issue

Reason for approval Not mentioned

Rationale for Smell

No discussion on why the dependency that created the smell is
available. Hence, we have to assume that the smell was incurred
unintentional. However, from the issue context we see that the smell is
involved in a trade-off between maintenance and security.

Table 36: AMQ-3880

8 https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol - accessed
10.08.2020

9 https://en.wikipedia.org/wiki/WebSocket - accessed 10.08.2020

https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://en.wikipedia.org/wiki/WebSocket

5.5 qualitative analysis 101

Issue: AMQ-5269 Description

Context of Issue
Shutting down a socket connection does not work properly which
causes unnecessary delay of execution, particularly in tests.

Issue Information Type: Bug, Priority: Major

Smell Type(s) 1x Cyclic Dependency, 2x Unstable Dependency

Smell incurred through

Adding org.apache.activemq.transport.nio to
org.apache.activemq.transport.tcp which closes the circle between
org.apache.activemq.transport.tcp,
org.apache.activemq.transport.nio, and
org.apache.activemq.transport.broker and presumably adds the less
stable package org.apache.activemq.transport.nio to the more stable
package org.apache.activemq.transport.tcp

Sources of Analysis GitHub commit diff, Jira issue

Reason for approval Code review appears to be satisfying and testing was successful.

Rationale for Smell

Adding the dependency that closes the circle and established the
unstable dependency was not discussed. Hence, we have to assume
that it was not added intentionally. Since the changes by this version
allows a faster execution (especially of the tests) we interpret incurring
the smell as an unintentional trade-off between performance and
maintainability.

Table 37: AMQ-5269

6
D I S C U S S I O N

This section discusses the results that have been found in this study.
We therefore, answer the research questions and discuss the meaning
of the findings. We present the discussion by research questions.

6.1 architectural smell evolution

This section discusses the findings related to RQ1. We present first
some general findings and subsequently delve into the specific sub
questions.

6.1.1 General Findings of the Evolution of Architectural Smells

We found that hub-like dependencies have the least occurrences in
all six projects. They cover only one to six percent of all smells. This
leads to the conclusion that they are not that much incurred into a
software system. This results confirm with the findings of Avgeriou,
Das, and Fontana in [36].

Our findings further suggest that cyclic and unstable dependencies
are the most newly incurred smell types. They both share around 95

of the newly incurred smells. This tendency follows as well the find-
ings in [36].

6.1.2 Evolution of Architectural Smells

We found that architectural smells evolve in a tree-like structure. More
in detail, we think that this structure can only be created for cyclic de-
pendencies. This is because on architectural level there can only be
one dependency from package a to package b. This implies that a
package can only have either a dependency to another package or
not. Following this, two smell variations attached in a splitting to the
same parent node is not possible because they would compose to
the same smell variation. A “smell tree" for unstable dependencies is
hence a chain without splitting. The same counts for the hub-like de-
pendencies. Smell trees for unstable and hub-like dependencies with
splitting are only possible with a focus on design level. Here one class
of a package can have other in- and out-coming dependencies than
another class of the same package. Only this would enable different

103

104 discussion

smell variations for unstable and hub-like dependencies.

Other interesting facts concerning the evolution of architectural smells
is the shrinking and growing. We observed that the size of smell varia-
tions, measured on the number of involved components of a variation,
may grow or shrink during its evolution. We further found that some
smells shrink below the size of the root smell.

Unfortunately, it is out of scope of this study to investigate the reasons
for this. The smell-tree evolution was not the main focus of this thesis
and was only discovered by chance while investigating the birth of a
smell.

6.1.3 Size of Smell Tree Evolution

We found that smell trees can evolve to quite a huge tree of over
8,000 smell variations. Nonetheless, we could show that these huge
trees are exceptional cases, as the results show that most smell trees
only compose of a few smell variation.

Another aspect that smell trees seem to have in common in the fact
that cyclic dependencies appear to grow larger than unstable depen-
dencies and hub-like dependencies. One reason for this could be the
mapping that we used in this study, since we mapped the smells to-
gether using the order of the names. This works well for cycles but
we have to assume that this is risky for unstable and hub-like depen-
dencies. Without knowing which component is the stable or unstable
component, our algorithm may map smells together that do no be-
long to each other. However, we are certain that the general idea of
smell trees (or rather evolution chains) also applies to unstable and
hub like dependencies. In future work we therefore recommend to
map the smell variation by using the role of the components.

In contrast to the aforementioned findings, we could observe that the
smell trees seem to evolve in size individually for each project. For ex-
ample we could not detect any relation between the size of a project
and the size of smell trees. One may assume that a tree of a larger
project grows larger. However, comparing size and tree evolution of
Active MQ and Phoenix reveals that this does not hold. We found
similar situations while comparing other projects, e.g. Tajo and PDF-
Box. We can therefore conclude that smell trees evolve different from
project to project.

6.2 impact of issue types on architectural smells 105

6.1.4 Duration of Smell Tree Evolution

Similar to our findings concerning the evolution of the tree sizes,
we can say that the duration of the smell tree evolution differs from
project to project. Especially the evolution cyclic dependencies is wider
spread in some projects than in others.

In addition, hub-like dependencies evolve over a very long time in
Phoenix, while in Sqoop all smell trees of this smell type evolve rather
quick.

One exception concerns the unstable dependencies. Here we found
that the duration of the evolution converges towards zero in all projects,
which means that most of the smells only composes by one smell vari-
ation and neither grow nor shrink. Yet, this behaviour could also be
explained by neglecting the role of the components during the smell
tree creation.

6.2 impact of issue types on architectural smells

In this section we discuss the findings that provides an answer to
RQ2. This research question is subdivided into two detailed questions
concerning the number of smells incurred by each issue type and the
distribution of issue types that incurred new architectural smell.

6.2.1 Number of Smells Incurred by each Issue Type

As the results reveal, there is not a single issue type that incurred
the most smells for all projects. However, one can say that the most
smell instances of the analysed projects are incurred by improvements
and bugs. An explanation for this is hard to determine. Yet, one can
assume that there is a certain situation in the most software projects
that lead developers to incur more smells than normally. Our findings
suggest however, that this can hardly be explained by the issue types
alone. One may argue that improvements are more likely to change
the architectural structure because by its very definition it is to im-
prove a certain quality of the system which is are primarily achieved
through the architecture of a software system [5]. Yet, we found that
bugs compose usually by minor changes1. It may even be that the
smells incurred by improvements and bugs are mostly formed by
building up dependencies over time and only the last “closing" de-
pendency is added in one of these two issue types (see more in Sec-
tion 6.5). Nonetheless, we need more research in this area to be able

1 Often only one class is changes and the corresponding test which should not be
reflected in the dependency graph

106 discussion

to explain this phenomenon.

Another interesting fact is that each smell type is also incurred the
most by that issue type that incurred the most total smells, i.e. the
most smells are added by improvements, then the most cyclic depen-
dencies are added by an improvement as and so on. This strengthens
the assumption that there are specific situations in software developer
that encourage developer to incur more smells. As well as for the to-
tal number of incurred smells above, our data does not suggest any
clue why this happens.

Similarly, the fact that usually more than 40% of the smells are in-
curred by a single issue type (in some projects even more than 50%)
also indicates the aforementioned special situations. Again, we can-
not provide an explanation at this point. Furthermore, our findings
may suggest this specific situation in a software project, however, as
already mentioned, the issue type itself may not provide the infor-
mation for this. One argument for this is the subjective developers
have on the issue types. We found issues marked as improvement
but were concerned with bug-fixing or a new feature that actually
improved the system performance and so on.

Taking everything into consideration, we can say that there is a spe-
cific situation in every software project that leads to incurring more
smells. Furthermore, this situation somehow connected to improve-
ments and bugs. Nonetheless, the issue type itself cannot be accounted
for as a general explanation for this phenomenon.

6.2.2 Distribution of Issue Types Incurring Architectural Smells

Our results show that the distribution on how often an issue type
incurs architectural smells differs from project to project. It further
shows that a new feature is that issue type that most likely incurs
new ASs. This is different to the issue types that incur most smells.
In order to not get confused with these two different views on the
relation between issue types and smell types we present one clarify-
ing example. Assume that a project has 100 versions where - for the
sake of better understanding - every version incurs one or more smell
instances. All versions are managed in 100 issues, 3 improvement, 7

new features, 90 bug fixes. In addition, there are 200 independent
smell instances incurred in the 100 versions. It may further be that
a single improvement incurred 100 cyclic dependencies at the same
time (for the sake of brevity and better understanding we only con-
sider cyclic dependencies here). The 4 of the 7 new features incurred
together 10 cycle and each of the bug fixes adds a single smell in-
stance to the system. In this case we can say that most of the smells

6.3 impact of priorities on architectural smells 107

(50%) are incurred by the issue type improvement. The second most
by bug fixes and the least by new features. However, it is more likely
that a bug fix incurs a new smell (100%) than a new feature(57%) and
an improvement(33%).

A simple explanation why new features incurs smells more likely
than other issue types is that it usually adds new functionality to
a system. This inevitably increases the complexity of the system be-
cause it adds more LOC to the system. In addition, this new func-
tionality is used by other parts of the system which is realized by
dependencies between the components that use this newly added
functionality and the new functionality itself.

Besides this, the findings suggest that a new smell is incurred rather
seldom. This is suggested by the relatively low percentage of issues
that incur a certain smell2. This can be seen as a good sign because
it implies that if one wants to prevent developers from incurring new
smells she only needs to prevent these few situations. On the flip side
of the coin it may be hard to determine these rare situations and their
detection may be challenging.

With the results that helps answering this research question we found
another interesting phenomenon. It can happen that sometimes an is-
sue incurs a smell instance of a different smell type at the same time.
Our findings show that this happens the most for the combination of
cyclic and unstable dependencies but never for cyclic and hub-like de-
pendencies. This suggest that there may be a relation between these
two types that we are so far unaware of. In addition, we encounter
this in all projects. The remaining combinations of smell types in-
curred at the same type are rather seldom and we could not find
them in all projects.

6.3 impact of priorities on architectural smells

In this section we discuss the findings that provides an answer to RQ3.
This research question is subdivided into two detailed questions con-
cerning the number of smells incurred by each issue priority and the
distribution of issue priorities that incurred new architectural smell.

6.3.1 Number of Smells Incurred by each Issue Priority

The results show that the most smells are incurred by an issue with
priority level major in all six projects. Their ratio is minimum 55%.

2 Note: we are talking here about the smell root not smell variations which are not
studied in this thesis in detail.

108 discussion

These findings suggest that there is something in major issues that
leads developers to incurring architectural smells. However, similar
to RQ2 the findings do not explain why this happens. As we dis-
cussed earlier, the results regarding the issue priorities point to a
specific situation in which developers incur more smell than normal.
Our findings can be used to investigate this phenomenon further to
narrow down situations in which developers incur more smells.

6.3.2 Distribution of Issue Priorities Incurring Architectural Smells

The results suggest that the priority level has a different influence
among projects. Again, we have a different focus on the relation of
between smell types and issue priorities as we focus here on how
many issues of a certain priority incur a certain smell not how many
smells are incurred by a certain issue type3. In some projects, major
prioritized issues are more likely to incur smells and in other projects
it is the priority level critical. An explanation for this may be subjec-
tive prioritization in each project. This suggests that the priority level
is not a good attribute to determine the situation in which developers
most likely incur architectural smells.

6.4 impact of developers on architectural smells

This subsection discusses the findings of research question RQ4.

6.4.1 Experience Level of Developers in Corresponding Project

The findings regarding the experience level of a developer in a certain
project suggest that the more changes one makes the more smells
she incurs. An explanation for this may be that developers are not
aware of incurring architectural smells. In this case smells would be
incurred as an unintentional by-product of any changes in the sys-
tem. If this holds then it makes sense that the developer with the
most changes in a system incurs the most smell instances.

One problem in using the number of commits as a factor for experi-
ence one has in a system is the different commit behavior of develop-
ers. Where one developer includes changes of 100 LOC in a commit
another developer may include only 10 LOC in it. In this case the lat-
ter will make 10 times more commits for the same changes compared
to the first developer. We mitigated this problem with including the
number of added and removed LOC in calculating the coefficient.

3 Compare with the example we gave in Section 6.2.2

6.5 rationales for incurring architectural smells 109

As it turns out all three attributes (number of commits, number of
added/removed LOC) show the same tendency.

However, our findings cannot be used as proof for this because the
amount of data is too little to actually calculate significant statistics
on this. We therefore can use this result merely as an indicator sug-
gesting that developers incur smells unintentionally.

6.4.2 Number of Developers Participating in Incurring Smells

The results suggest that versions were the code was committed by
multiple developers, usually do not incur architectural smells. We
found only two projects with a few versions created by multiple de-
velopers which incur architectural smells.

Nonetheless, we were not able to normalize these results. This is be-
cause requesting the information whether a commit was touched by
a single or by multiple developers interferes with problems regarding
rate limits of the GitHub API. Nonetheless, we manually found that
there are commits with multiple developers in every project. There-
fore, we can rule out that our findings are because of non-existing
multiple developer commits in the projects.

Another aspect that are not reflected in the findings is that we only
observed whether one or multiple developers have made changes on
the code. We cannot consider the influence of discussions in code re-
view that other developers have. For example, it is possible that only
one developer works on the code and revives feed back from another
developer via code review (sometimes made on platforms that are
not publicly accessible).

In conclusion, we therefore see these findings as an indication that
coding practices relying on team work such as pair programming
may prevent incurring new smells. There needs to be more research
in this area in order to make a reliable statement on this matter.

6.5 rationales for incurring architectural smells

In this section we discuss and evaluate the findings of the qualitative
analysis. We present the concept of Hidden Trade-offs, smells that are
build up over time, and smells that are incurred at once.

6.5.1 Hidden Trade-offs

We did not find any proof for deliberately incurred architectural smells.
Furthermore, the absence of discussions about architectural smells

110 discussion

suggests that developers are not aware of incurring architectural smells
at all. In combination with the fact that several issues improved a cer-
tain system quality (e.g. performance, security), while they incur ar-
chitectural smells at the same time, leaves us with the conclusion that
developers sometimes make unintentional arrangements in which
they trade their inner system quality against the quality they aim
to improve. We call this phenomenon hidden trade-offs.

The impact of this of this observation is manifold. First, it can help
to improve quality attribute driven design methods as for example
described by Bass, Klein, and Bachmann in [5]. Such methods can be
extended by engineering principles that assure to achieve the quality
objective without decreasing inner system qualities. If this is not ap-
plicable, one can at least analyse the quality requirements for possible
hidden trade-offs and consider those in technical debt management
right from the beginning of the existence of the newly incurred archi-
tectural smell instances.

In addition, the findings give the research community a new impulse.
It is for example possible to analyse the ratio of these hidden trade-
offs. If it turns out that these trade-offs are predominantly made for
a specific quality or group of qualities, one can apply this knowledge
into software engineering principles and hence improve estimation
techniques for architectural smells. All these means can help to pre-
vent software practitioners to incur smells to their systems.

6.5.2 Ripple Through Effect

The analysis of SQOOP-374 identified a ripple through effect for un-
stable dependencies. Here changes in the code in one component
leads to incurring a new smell that manifests in other components.
The developer may not be aware of this if she is not aware of the
dependencies of the component that she imports in that part she
wants to change. This implies that it is hard to identify an unsta-
ble dependency on code level. This phenomenon may serve as an-
other indication that developers are unaware of incurring architec-
tural smells. We depict this effect in Figure 29. Here one can see that
the org.apache.sqoop.tool package only has dependencies to other
packages but no other package depends upon it. It therefore has the
stability value of 1 and is hence unstable (as explained in Section 2.2).
It depends among others on the more stable packages manager and
metastore.hsqldb (compare with Figure 29a). However, the changes in
SQOOP-374 require to remove several classes from com.cloudera.sqoop.tool
to org.apache.sqoop.tool. Furthermore, in order to ensure backwards-
compatibility, the old classes of com.cloudera.sqoop.tool extend the
new classes. This way org.apache.sqoop.tool earns 96 outgoing de-

6.5 rationales for incurring architectural smells 111

pendencies and turns from unstable (I = 1) to a more stable package
(I = 0.49, see Figure 29b). It is now more stable than the two other
packages it already depended upon which forms the unstable de-
pendency in the end. The changes that lead to this smell are made
however only in the com.cloudera.sqoop.tool package.

(a) Before (b) After

Figure 29: Ripple through effect of incurring architectural smells

6.5.3 Building Smells Up Over Time

As AMQ-5269 showed, a smell is sometimes build up over a certain
amount of time. As one can see in Figure 30 the circle between the
three packages concise of two old dependencies and one new one.
The new one inevitably closes the cycle. However, the developer re-
sponsible for this last dependency is not aware of the "half-closed"
cycle while he is working on the his development task. It is therefore
hard to determine for developers without further knowledge on the
dependencies of the packages he is working on. This finding shows
that smells build up over time and the moment where the last depen-
dency that finishes the smell cannot be entirely hold responsible for
creating the smell. In addition, the ripple through effect presented in
Section 6.5.2 can also categorized as a build-up-over-time smell.

Figure 30: Building up the smell over a certain period of time

112 discussion

6.5.4 Incurring a Complete Smell at Once

A totally different situation then the two previously presented smells
can be found in TAJO-1125. Here restructuring with separating func-
tionality into its own package module lead to incurring a smell com-
pletely at the same time. As one can see in Figure 31, all dependencies
that form the smell are added in the very same version. We believe
that such a situation should to be easier to be aware of by the atten-
tive developer. This is because she adds all dependencies at once and
is hence be able to see all dependencies in her current changes. We
therefore, think that being aware of an architectural smell is easier
when incurred at once.

Figure 31: Incurring the entire smell at the same time

6.6 challenges

In this study we encountered several challenges and pitfalls during
the analysis of the 25 original selected projects. In this section we want
to discuss those challenges. This may help researchers in future work
to improve studies on finding the rationale for architectural smells.

The first problem is the scalability of the available smell detection
tools. Especially, analysing all versions of a software project with Ar-
can turned out to be time consuming. Depending on the internal
structure of the project under question, we have not been able to
execute the analysis on a local machine. We therefore, switched to
the Peregrine High Performance Computation (HPC) Cluster of the
University of Groningen. This cluster provides configurable execu-
tion nodes of various size. Yet, even with a huge amount of resources
it was not possible to execute several projects. There are two reasons
for this. First, the Arcan execution appears to be totally sequential.
With increasing number of version (often accompanied by increasing
project complexity) the execution takes obviously longer and longer4

4 Without proof we assume an exponential growth in execution with increasing project
size

6.6 challenges 113

for every software version. Technically, one could start the execution
and await the program to be terminated after a few weeks. This leads
however to the second reason why it was not possible to execute all
projects properly. The HPC limits the reservation of the running exe-
cution nodes by 240h. If this limit exceeds, the job is interrupted and
the execution terminates. Fortunately, Arcan stores the graph file for
every version after analysing this particular version to disc. Nonethe-
less, the analysis for several projects covered only a few month of the
first period of the project life-span. It is therefore desirable for future
work to have a smell detection tool with parallel or concurrent execu-
tion.

Another problem lies in the selection of the versions that Arcan anal-
ysis. Although configured to analyse only a certain branch (e.g. mas-
ter/trunk), Arcan includes version of another branch in the analysis.
One reason for this may be the software library Arcan uses for access
to the Git project. Another reason may also be that most of the ASF
projects are managed using SVN and the GitHub repository is only a
mirror for the project. It is conceivable that there are problems with
the transition of the project from one technology to another one (SVN
to GitHub). However, these are only assumption and requires further
investigations to fix these problems.

In addition, Arcan sometimes skips versions in its analysis. This cre-
ates gaps in the analysis of the project and leads to indicating wrong
versions in which a smell is incurred. Assume that there is the version
v1 in which a cycle is incurred. However, Arcan skips this version and
continues analysing version v2. It will detect the cycle in v2 and later
ASTracker marks it as incurred in v2. This however, biases our anal-
ysis because it inevitably maps these version to the wrong issue. In
order to omit this problem we aimed to detect these gaps and man-
ually analyse all version in order to determine the correct version in
which a smell was incurred. However, this is a time consuming and
tedious task. One reason that we were able to identify why Arcan
is skipping some versions are exceptions during the analysis of the
skipped version. One source of the exceptions are problems with the
Git library checking out the next version of the project. If such an
exception occurs, Arcan simply discards this version and continues
with the next version.

Another problem concerning the tooling that we used is the original
purpose the tooling was developed for. Especially, ASTracker was cre-
ated to scan every 50’s version or so of a problem. This high-level
scanning allows to determine if a smell was remains or disappears
and derives in information on the long-term evolution of a certain
smell type. In our analysis we required ASTracker to analyse every

114 discussion

version though. This lead to two problems. Fist, in case the corre-
sponding graph files created by Arcan were very big, ASTracker re-
quired a lot of resources for execution5. In addtion, ASTracker was
created to map only already existing smells to each other if the smell
is still present in the next version. If it is not it will be considered
as a new smell. This results in a huge amount of architectural smell
instances designated as a new smell. We find a workaround for this
problem with our approach of creating the smell trees.

The next challenge that we encountered is to verify whether a project
had passed the smell detection pipeline successfully. The log files
from both Arcan and ASTracker are rather big. Manually, detecting
problems deems to be a tedious and time consuming task. This in-
cludes for example to also verify if Arcan detected all project directo-
ries with the source code. Since, this structure differs from project to
project, it is hard to verify this. Furthermore, this structure is likely
to change while a project evolves. This needs to be automated if one
aims to apply this case study to a larger set of projects. One way may
be to automatically scan all directories that contain source code for
all versions and compare them with the source code directories indi-
cated in the log files of Arcan.

A general problem lies in the similarity mapping techniques in order
to map smells from version to version. So far this happens using the
names of the components involved in a smell. Both ASTracker and
our approach are only using these information. In order to find a
better mapping technique, we suggest to include the dependencies
among packages into the mapping. Another approach may be to to-
tally omit the need for mapping smells of different versions together,
but to use the information entailed by the delta of every version, i.e.
commit diffs in Git. This way one would be able to detect the smells
directly when they are incurred (in the correct version). This allows
to receive further information about how the smell was incurred (e.g.
whether the entire cycle was added at once or "closing" a cycle via
adding a new dependency to an already existing "half-cycle"). Using
only the deltas for each version may also increase the performance
of the analysis. The downside of this approach is however that one
needs to create a complete new tooling for this. In addition, parallel
or concurrent execution of such a tool may be rather ambiguous.

Lastly, the aforementioned problems of the analysis pipeline lead us
to manually verify all smells in the qualitative analysis. This task is
very tedious and slows this analysis remarkably down. For example,

5 It was nearly impossible to map the over 20,000 graph-files for Apache Cassandra,
with a size of 8 to 14 MB each, using a high memory node of 512 GB and a run-time
of 240h

6.6 challenges 115

detecting the ripple through effect of the unstable dependency took
around twelve hours. A more reliable tooling can omit this process
and allow a stronger focus on analysing the rationale for incurring a
smell.

7
T H R E AT S T O VA L I D I T Y

In this section we present the threats to validity that may bias our
findings.

7.1 splittings for unstable and hub-like dependencies

Creating the smell trees using the heuristic presented in this study
resulted in trees for unstable and hub-like dependencies that include
splittings. However, on an architectural level, this is not possible. This
is because packages on this level have either a dependency to another
package or not. Thus, the smell tree for these two smell types has
to be a chain. An exception is if someone observes these smell types
on the design level. Here, there is a focus on dependencies between
classes. In this case, a package can include two classes that form two
different unstable or hub-like dependencies to other packages.

Nonetheless, this study is about architectural smells, and we consider
the creation of smell trees (including splitting) as a threat to validity.
However, this only affects the findings on the evolution of architec-
tural instances but not the findings regarding the rationale of incur-
ring architectural smells.

7.2 missing role information of components

Another flaw in the creation of the smell trees is neglecting role in-
formation in aligning smell variation to a smell instance and in map-
ping smell variations to one another. One example may serve as an
clarifying explanation. Consider the components of the two smell
variations both part of an unstable dependency [’A’,’B’,’C’,’D’] and
[’A’,’B’,’C’,’E’]. One may think that these components belong to the
same smell. However, there is no information on the roles these com-
ponents have. They are only variations of the same smell if, for ex-
ample, the component ’C’ is the most stable component in both vari-
ations and depends on the other less stable components. If the more
stable component differs for each smell variations, then they do not
belong to the same smell instance.

Although this information is technically available, it is hard to extract
it for every smell variation. They are entailed in the Arcan graph files
for the corresponding version the smell variation was created in. It

117

118 threats to validity

requires a lot of effort to write a program that automatically extracts
the information about the role of each component in a smell varia-
tion. We deemed it to be out of scope of this work and hence had to
assume that the order of the components derived from the ASTracker
output already indicated the roles.

The impact of this threat may influence finding the root smell be-
cause it can be that the wrong smell variations are aligned to the
same smell instance. Unfortunately, we have no means to estimate
how much smell instances are affected by this.

7.3 simple name sorting

Sorting the smell variations by the names of their components name
and map all variations with the same first two components together,
is a simple work around. We had to find a suitable solution within the
scope of our work in order to find the smell root. Although this ap-
proach subsequently resulted in our observation that smell instances
evolve in a tree-like structure, it bears the risk of splitting smell vari-
ations and aligns them to different smell instances than they would
logically belong to.

A more elaborated approach would have been to compare all compo-
nents belonging to a smell variation and map all variations together
that have the same components. However, this requires a broader
knowledge about how smell variations of the same smell instance of
the same smell type are related to each other which is a task for future
research.

7.4 wrong smell detection

Another threat to the validity of our findings concerns the results
created by Arcan and ASTracker. Even with mapping the smell vari-
ations to their corresponding smell instances, we sometimes found
versions for smell roots that we were not able to confirm. We found,
for example, commit diffs that only contained changes in .txt-files
for documentation. However, it is impossible that those changes incur
new cyclic dependency.

In the beginning of this study, when we created the pipeline to anal-
yse the projects, we validated the findings of Arcan using Designite.
This confirmed that around 91% of the smells were actually present
in the system (see Appendix Section A.4). Taking this into account,
we can use our results from validating the randomly selected soft-
ware versions as described above to estimate an error for our findings.

7.4 wrong smell detection 119

Therefore, we assume that our data has an error of 9%.

It is not possible to validate all findings. This has two reasons. The
first one is that it is not possible to automatically analyse all versions
with Designite. Hence, there is a need to manually trigger the analy-
sis of every software version with Designite. This is again out of the
scope of this thesis. The second reason for not being able to validate
all smells is that Arcan and Designite incorporate different detection
mechanisms for architectural smells. Therefore, it is likely to not al-
ways find the same smells in a software version.

8
C O N C L U S I O N

In this thesis we analysed six Apache open source software projects
in order to determine the rationale for incurring architectural smells.
With our research, we discovered a new approach to map smell in-
stances of different software versions to the same smell. With this
approach we were able to analyse over 28,000 software versions with
over 62,980 smell variations related to 1,153 architectural smell in-
stances. Furthermore, we could determine the exact version in which
a new smell instance was added to the system. This enabled us to
study these situations and extract information from various documen-
tation artifact. With these information we are able to shed some light
on why developers incur architectural smells into their software sys-
tems.

In our work we, discovered that architectural smells evolve in a tree-
like structure involving smell variations that are related to the very
same smell instance. The first smell variation - we called smell root -
pinpoints the “birth" of a smell. The tree character manifest especially
for cyclic dependencies and we reported smells that can spread quite
far over a software system.

The qualitative analysis of the smell roots revealed that smells can
be incurred in two manners. First, by adding all dependencies that
form a smell in the same version. Second, to build up the depen-
dency structure over time to finally incur the smell with adding only
a small part of the smell at the end. We expect that the latter situation
is more dangerous for software systems because it is harder for devel-
opers to realize that they incur architectural smell instances with their
changes. We discovered one special form of building up architectural
smell instances over time for unstable dependencies which we called
the “ripple" through effect. We deem this effect as particularly tricky
for developers because the components that form the smell are not
touched in the changes of this version.

During our qualitative analysis, we could not find any proof for archi-
tectural smell instances that were incurred deliberately. However, we
found that developers are most likely unaware of incurring architec-
tural smells. Moreover, this sometimes happens in hidden trade-off
situations where maintainability of the system is traded unintention-
ally with another system quality (e.g. performance). This suggests

121

122 conclusion

that architectural smells are a by-product of software development.

Another finding suggests that developers are not aware of incurring
architectural smells. Usually the developer who makes more changes
in the system incurs the most smells. Oppositely, the less changes
a developer makes the less smells she incurs. This can be explained
with the more changes one makes the more smell instances are added.
We therefore see this as a further indication that developers are un-
aware of architectural smells and that smells are incurred as a by-
product.

We found evidence for specific situations in which architectural smells
are more likely to be incurred. We also discovered that most smell
instances stem from the issue types improvements and bugs with a
major priority level. However, we could rule out that these issue types
are more likely to incur architectural smells than other issue types.

In order to enhance the quality of research on the rationale of in-
curring architectural smells, we recommend further studies on more
accurate smell similarity mapping techniques. We suggest to not only
include the component names, but also their relationship between
one another in the mapping. This will result in a better similarity
mapping and can help to further the knowledge of the evolution of
architectural smell instances on a lower level. With a more accurate
mapping technique, one can depict the evolution of smell instances
of different types on a more detailed level.

Another question that derives from our work is why architectural
smells evolve in a tree-like structure. A detailed investigation on this
phenomenon can help to understand why and how architectural smells
spread through the system. Answering this question would provide
a great benefit in preventing and managing architectural smells.

We further suggest to apply this case study to more projects. As we
have determined several pitfalls and challenges in analysing the evo-
lution of architectural smells on a detailed level, we think one is better
prepared to extend the research to a larger set of open source projects.
This would increase the character of the quantitative analysis and give
the findings a higher empirical weight.

As our qualitative analysis needed to be cut short due to the chal-
lenges we encountered, we strongly advise to deepen this analysis.
Our findings already increased our understanding of why and how
architectural smells are incurred in software. Therefore, conducting
this analysis on a much larger scale has great potential to reveal fur-
ther secrets on the rationale for architectural smells.

Part II

A P P E N D I X

A
A P P E N D I X

a.1 protocols

This section presents the low level protocols.

a.1.1 Protocol 4

1. Count smell roots - use the created smell trees stored in csv and
count all smell roots by smell type.

2. Aggregate information - calculate the overall number of smells
per smell type and in total.

3. Store to csv - store the results to csv

4. Plot in report - present the data in a pie chart in Section 5.

a.1.2 Protocol 5

1. Count smell variations, splittings, and expansions - determine
the number of variations that belong to each smell as well as the
number of splittings and expansions

2. Calculate duration of evolution - use the version data of the
first and the last variation of each smell to determine the dura-
tion of its evolution in month.

3. Determine smell size characteristics - extract the start and end
size of the smell variations, as well as the smallest and largest
size by using the number of components involved in every smell
variation.

4. Investigate shrinking - determine whether the size of the smell
variations shrinks during its evolution by comparing the size of
the previous variation with the current one. In addition, check
whether the size is getting smaller than the size of the first smell
variation for each smell.

5. Calculate measures of central tendency - calculate the mean
and other statistical metrics belonging to the measures of central
tendency for the information extracted in this protocol.

6. Calculate measures of location - calculate the min, max and
other statistical metrics belonging to the measures of location
for the information extracted in this protocol.

125

126 appendix

a.1.3 Protocol 6 & 7

Protocol 6 Protocol 7

1. Order all smell roots by issue type.

2. Count number of smells incurred
for each smell type by each issue
type.

3. Sum the number for each smell
type to get total number of smells
for each issue type.

1. Order all smell roots by issue
priority.

2. Count number of smells incurred
for each smell type by each issue
priority.

3. Sum the number for each smell
type to get total number of smells
for each priority type.

Table 38: Protocol 6 and Protocol 7

a.1.4 Protocol 8 & 9

Protocol 8 Protocol 9

1. Order smell roots by issue type.

2. Count the number of issues of
each issue type incurring an AS
type or combinations of them

3. Sum the total amount of issues
incurring ASs for each issue type.

1. Order smell roots by issue priority.

2. Count the number of issues of
each issue priority incurring an AS
type or combinations of them

3. Sum the total amount of issues
incurring ASs for each issue
priority.

Table 39: Protocol 8 and Protocol 9

a.1.5 Protocol 10

1. Fetch developer information for each version - Request author
and committer information for every commit sha that incurs a
smell

2. Aggregate information - in case author and committer are the
same we add this to versions with smells that have been worked
on by only one developer. Other wise we consider this version
as to be worked on by minumum two developers

3. Store findings - we store the findings for each project in a csv
file

A.2 number of resolved issue types by projects 127

a.1.6 Protocol 11

1. Aggregate developer information - aggregate the information
requested for metric 1 of RQ4 using the author information of
every commit.

2. Extract developer experience - manually map the number of
commits made by every developer in the specific project to the
aggregated information

3. Plot diagram - we crate the diagram by using number of com-
mits and number of smells incurred by that developer

a.2 number of resolved issue types by projects

In this section we present the number of resolved issues for each
project by issue type.

Project N. Feat. Bug Impr Task Wish Test Total

Tajo 85 614 417 160 1 3 1,280

Tika 133 866 738 172 16 3 1,928

PDF-Box 88 2182 647 79 21 9 3,026

Sqoop 76 918 293 88 0 22 1,397

Phoenix 89 1862 409 759 3 98 3,220

ActiveMQ 176 2214 851 159 11 20 3,431

Table 40: Number of Resolved Issues for each project

a.3 resolved issue priorities by projects

In this section we present the number of resolved issues for each
project by issue priority.

Project Major Minor Critical Blocker Trivial Total

Tajo 852 345 82 41 174 1,494

Tika 1,091 557 56 57 192 1,953

PDF-Box 2,158 687 72 51 96 3,064

Sqoop 3,321 216 25 48 87 6,761

Phoenix 2,406 332 86 161 60 3,045

ActiveMQ 3,341 896 221 89 172 4,719

Table 41: Resolved Issues for each project

128 appendix

a.4 validation of architectural smells

This subjection presents the results of introduced smells, randomly se-
lected for different TAJO version, detected by ASTracker. These smells
are then compared with an analysis of the same version by Designite.
Table 42 presents the finings per version. In average, Designite con-
firms that more than 90 % of the smells detected by ASTracker are
actual smells.

Version CD UD Total %

TAJO-843(1) 21/21 10/12 31/33 93.3%

TAJO-983(1) 16/16 1/1 17/17 100%

TAJO-591(1) 20/20 10/11 30/31 96.7%

TAJO-385(1) 14/14 8/9 22/23 95.6%

TAJO-1752(1) 27/30 30/30 57/60 95%

TAJO-2163(1) 50/53 34/35 84/88 95.4%

TAJO-1497(1) 22/27 27/27 49/54 90.7%

TAJO-1345(1) 19/27 30/32 49/59 83%

TAJO-307(1) 20/21 12/13 32/34 94.1%

TAJO-971(1) 31/33 13/14 44/47 93.6%

TAJO-1043(1) 33/33 11/11 44/44 100%

TAJO-1491(1) 25/27 16/16 41/43 95.3%

TAJO-57(1) 4/4 10/11 14/15 93.3%

TAJO-245(1) 15/17 14/14 29/31 93.5%

TAJO-129(1) 6/6 8/8 14/14 100%

TAJO-1684(1) 16/18 20/20 36/38 94.7%

TAJO-1179(1) 24/27 24/24 48/51 94.1%

TAJO-1065(1) 36/37 15/15 51/52 98%

TAJO-1939(1) 22/26 32/32 54/58 93.1%

TAJO-2168(1) 56/58 33/34 89/92 96.7%

TAJO-36(1) 3/4 10/10 13/14 92.8%

TAJO-755(1) 13/14 18/18 31/32 96.8%

TAJO-2175(1) 46/49 23/24 69/73 94.5%

TAJO-1700(1) 19/21 2/2 21/23 91.3%

TAJO-692(1) 7/8 7/7 14/15 93.3%

TAJO-371(1) 8/11 15/15 23/26 88.4%

TAJO-1581(1) 31/34 32/32 63/66 95.4%

TAJO-532(1) 11/13 18/18 29/31 93.5%

Table 42: Validation of Smells for TAJO

B I B L I O G R A P H Y

[1] H. A. Al-Mutawa, J. Dietrich, S. Marsland, and C. McCartin.
“On the Shape of Circular Dependencies in Java Programs.”
In: 2014 23rd Australian Software Engineering Conference. 2014,
pp. 48–57.

[2] Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn
Seaman. “Managing Technical Debt in Software Engineering
(Dagstuhl Seminar 16162).” In: Dagstuhl Reports 6.4 (2016). Ed.
by Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Car-
olyn Seaman, pp. 110–138. issn: 2192-5283. doi: 10.4230/DagRep.
6.4.110. url: http://drops.dagstuhl.de/opus/volltexte/
2016/6693.

[3] Umberto Azadi, Francesca Arcelli Fontana, and Davide Taibi.
“Architectural Smells Detected by Tools: A Catalogue Proposal.”
In: Proceedings of the Second International Conference on Techni-
cal Debt. TechDebt ’19. Montreal, Quebec, Canada: IEEE Press,
2019, 88–97. doi: 10.1109/TechDebt.2019.00027. url: https:
//doi.org/10.1109/TechDebt.2019.00027.

[4] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach.
“The Goal Question Metric Approach.” In: Encyclopedia of Soft-
ware Engineering. Wiley, 1994.

[5] Leonard J. Bass, Mark Klein, and Felix Bachmann. “Quality
Attribute Design Primitives and the Attribute Driven Design
Method.” In: Revised Papers from the 4th International Workshop
on Software Product-Family Engineering. PFE ’01. Berlin, Heidel-
berg: Springer-Verlag, 2002, pp. 169–186. isbn: 3-540-43659-6.
url: http://dl.acm.org/citation.cfm?id=648114.748917.

[6] Gabriele Bavota and Barbara Russo. “A Large-Scale Empirical
Study on Self-Admitted Technical Debt.” In: Proceedings of the
13th International Conference on Mining Software Repositories. MSR
’16. Association for Computing Machinery, 2016, 315–326. isbn:
9781450341868. doi: 10.1145/2901739.2901742. url: https:
//doi-org.proxy-ub.rug.nl/10.1145/2901739.2901742.

[7] Jan Bosch. “Software Architecture: The Next Step.” In: Software
Architecture. Ed. by Flavio Oquendo, Brian C. Warboys, and Ron
Morrison. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 194–199. isbn: 978-3-540-24769-2.

[8] Pearl Brereton, Barbara Kitchenham, David Budgen, and Zhi Li.
“Using a protocol template for case study planning.” In: Proceed-
ings of EASE 2008 (Jan. 2008).

129

https://doi.org/10.4230/DagRep.6.4.110
https://doi.org/10.4230/DagRep.6.4.110
http://drops.dagstuhl.de/opus/volltexte/2016/6693
http://drops.dagstuhl.de/opus/volltexte/2016/6693
https://doi.org/10.1109/TechDebt.2019.00027
https://doi.org/10.1109/TechDebt.2019.00027
https://doi.org/10.1109/TechDebt.2019.00027
http://dl.acm.org/citation.cfm?id=648114.748917
https://doi.org/10.1145/2901739.2901742
https://doi-org.proxy-ub.rug.nl/10.1145/2901739.2901742
https://doi-org.proxy-ub.rug.nl/10.1145/2901739.2901742

130 bibliography

[9] Nanette Brown et al. “Managing Technical Debt in Software-
Reliant Systems.” In: Proceedings of the FSE/SDP Workshop on Fu-
ture of Software Engineering Research. FoSER ’10. Association for
Computing Machinery, 2010, 47–52. isbn: 9781450304276. doi:
10.1145/1882362.1882373. url: https://doi.org/10.1145/
1882362.1882373.

[10] Dennis M. Buede. The Engineering Design of Systems: Models and
Methods. 2nd. Wiley Publishing, 2009. isbn: 0470164026.

[11] Ward Cunningham. “The WyCash Portfolio Management Sys-
tem.” In: SIGPLAN OOPS Mess. 4.2 (Dec. 1992), 29–30. issn:
1055-6400. doi: 10.1145/157710.157715. url: https://doi.
org/10.1145/157710.157715.

[12] Davide Falessi, Lionel Briand, Giovanni Cantone, Rafael Capilla,
and Philippe Kruchten. “The Value of Design Rationale Infor-
mation.” In: ACM Transactions on Software Engineering and Method-
ology To appear (http://tosem.acm.org/index.php) (Dec. 2013).
doi: 10.1145/2491509.2491515.

[13] F. A. Fontana, I. Pigazzini, R. Roveda, D. Tamburri, M. Zanoni,
and E. Di Nitto. “Arcan: A Tool for Architectural Smells Detec-
tion.” In: 2017 IEEE International Conference on Software Architec-
ture Workshops (ICSAW). 2017, pp. 282–285.

[14] F. A. Fontana, I. Pigazzini, R. Roveda, and M. Zanoni. “Auto-
matic Detection of Instability Architectural Smells.” In: 2016
IEEE International Conference on Software Maintenance and Evo-
lution (ICSME). 2016, pp. 433–437.

[15] Martin Fowler. TechnicalDebtQuadrant. 2009. url: https://martinfowler.
com/bliki/TechnicalDebtQuadrant.html (visited on 06/06/2020).

[16] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic. “Iden-
tifying Architectural Bad Smells.” In: 2009 13th European Con-
ference on Software Maintenance and Reengineering. 2009, pp. 255–
258.

[17] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad
Medvidovic. “Toward a Catalogue of Architectural Bad Smells.”
In: Proceedings of the 5th International Conference on the Quality of
Software Architectures: Architectures for Adaptive Software Systems.
QoSA ’09. Springer-Verlag, 2009, 146–162. isbn: 9783642023507.
doi: 10.1007/978-3-642-02351-4_10. url: https://doi.org/
10.1007/978-3-642-02351-4_10.

[18] I. Groher and R. Weinreich. “A Study on Architectural Decision-
Making in Context.” In: 2015 12th Working IEEE/IFIP Conference
on Software Architecture. 2015, pp. 11–20.

[19] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. USA: Addison-
Wesley Longman Publishing Co., Inc., 2003. isbn: 0321200683.

https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1145/157710.157715
https://doi.org/10.1145/157710.157715
https://doi.org/10.1145/157710.157715
https://doi.org/10.1145/2491509.2491515
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://doi.org/10.1007/978-3-642-02351-4_10
https://doi.org/10.1007/978-3-642-02351-4_10
https://doi.org/10.1007/978-3-642-02351-4_10

bibliography 131

[20] “ISO/IEC/IEEE International Standard - Systems and software
engineering – Vocabulary.” In: ISO/IEC/IEEE 24765:2010(E) (Dec.
2010), pp. 1–418. doi: 10.1109/IEEESTD.2010.5733835.

[21] Anton Jansen and Jan Bosch. “Software Architecture as a Set of
Architectural Design Decisions.” In: Proceedings of the 5th Work-
ing IEEE/IFIP Conference on Software Architecture. WICSA ’05.
USA: IEEE Computer Society, 2005, 109–120. isbn: 0769525482.
doi: 10.1109/WICSA.2005.61. url: https://doi.org/10.1109/
WICSA.2005.61.

[22] Philippe Kruchten. “An Ontology of Architectural Design De-
cisions in Software-Intensive Systems.” In: 2nd Groningen Work-
shop on Software Variability (Jan. 2004).

[23] Philippe Kruchten, Patricia Lago, and Hans van Vliet. “Build-
ing up and Reasoning about Architectural Knowledge.” In: Pro-
ceedings of the Second International Conference on Quality of Soft-
ware Architectures. QoSA’06. Springer-Verlag, 2006, 43–58. isbn:
3540488197. doi: 10.1007/11921998_8. url: https://doi.org/
10.1007/11921998_8.

[24] Zengyang Li, Paris Avgeriou, and Peng Liang. “A Systematic
Mapping Study on Technical Debt and Its Management.” In:
Journal of Systems and Software (Dec. 2014). doi: 10.1016/j.jss.
2014.12.027.

[25] Robert C. Martin. “Object oriented design quality metrics: an
analysis of dependencies.” In: 1994. url: https://linux.ime.
usp.br/~joaomm/mac499/arquivos/referencias/oodmetrics.

pdf.

[26] Robert Cecil Martin. Agile Software Development: Principles, Pat-
terns, and Practices. USA: Prentice Hall PTR, 2003. isbn: 0135974445.

[27] R. Mo, J. Garcia, Y. Cai, and N. Medvidovic. “Mapping archi-
tectural decay instances to dependency models.” In: 2013 4th
International Workshop on Managing Technical Debt (MTD). 2013,
pp. 39–46.

[28] V. Okanović. “Designing a web application framework.” In: 2011
18th International Conference on Systems, Signals and Image Process-
ing. June 2011, pp. 1–4.

[29] I. Ozkaya, R. L. Nord, and P. Kruchten. “Technical Debt: From
Metaphor to Theory and Practice.” In: IEEE Software 29.06 (Nov.
2012), pp. 18–21. issn: 0740-7459. doi: 10.1109/MS.2012.167.

[30] David Lorge Parnas. “Software Aging.” In: Proceedings of the
16th International Conference on Software Engineering. ICSE ’94.
IEEE Computer Society Press, 1994, 279–287. isbn: 081865855X.

[31] A. Potdar and E. Shihab. “An Exploratory Study on Self-Admitted
Technical Debt.” In: 2014 IEEE International Conference on Soft-
ware Maintenance and Evolution. 2014, pp. 91–100.

https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1007/11921998_8
https://doi.org/10.1007/11921998_8
https://doi.org/10.1007/11921998_8
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1016/j.jss.2014.12.027
https://linux.ime.usp.br/~joaomm/mac499/arquivos/referencias/oodmetrics.pdf
https://linux.ime.usp.br/~joaomm/mac499/arquivos/referencias/oodmetrics.pdf
https://linux.ime.usp.br/~joaomm/mac499/arquivos/referencias/oodmetrics.pdf
https://doi.org/10.1109/MS.2012.167

132 bibliography

[32] R. Roveda, F. Arcelli Fontana, I. Pigazzini, and M. Zanoni. “To-
wards an Architectural Debt Index.” In: 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA).
2018, pp. 408–416.

[33] Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell.
Case Study Research in Software Engineering – Guidelines and Ex-
amples. Feb. 2012. doi: 10.1002/9781118181034.

[34] E. d. S. Maldonado and E. Shihab. “Detecting and quantifying
different types of self-admitted technical Debt.” In: 2015 IEEE
7th International Workshop on Managing Technical Debt (MTD).
2015, pp. 9–15.

[35] Ganesh Samarthyam, Girish Suryanarayana, and Tushar Sharma.
“Refactoring for Software Architecture Smells.” In: Proceedings
of the 1st International Workshop on Software Refactoring. IWoR
2016. Association for Computing Machinery, 2016, 1–4. isbn:
9781450345095. doi: 10.1145/2975945.2975946. url: https:
//doi-org.proxy-ub.rug.nl/10.1145/2975945.2975946.

[36] D. Sas, P. Avgeriou, and F. Arcelli Fontana. “Investigating In-
stability Architectural Smells Evolution: An Exploratory Case
Study.” In: 2019 IEEE International Conference on Software Main-
tenance and Evolution (ICSME). 2019, pp. 557–567.

[37] Carolyn Seaman, Robert L. Nord, Philippe Kruchten, and Ipek
Ozkaya. “Technical Debt: Beyond Definition to Understanding
Report on the Sixth International Workshop on Managing Tech-
nical Debt.” In: SIGSOFT Softw. Eng. Notes 40.2 (Apr. 2015),
pp. 32–34. issn: 0163-5948. doi: 10.1145/2735399.2735419. url:
http://doi.acm.org/10.1145/2735399.2735419.

[38] A. Shahbazian, Y. Kyu Lee, D. Le, Y. Brun, and N. Medvidovic.
“Recovering Architectural Design Decisions.” In: 2018 IEEE In-
ternational Conference on Software Architecture (ICSA). 2018, pp. 95–
9509.

[39] Arman Shahbazian, Daye Nam, and Nenad Medvidovic. “To-
ward Predicting Architectural Significance of Implementation
Issues.” In: Proceedings of the 15th International Conference on Min-
ing Software Repositories. MSR ’18. Association for Computing
Machinery, 2018, 215–219. isbn: 9781450357166. doi: 10.1145/
3196398.3196440. url: https://doi.org/10.1145/3196398.
3196440.

[40] Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma.
Refactoring for Software Design Smells: Managing Technical Debt.
1st. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2014. isbn: 0128013974.

https://doi.org/10.1002/9781118181034
https://doi.org/10.1145/2975945.2975946
https://doi-org.proxy-ub.rug.nl/10.1145/2975945.2975946
https://doi-org.proxy-ub.rug.nl/10.1145/2975945.2975946
https://doi.org/10.1145/2735399.2735419
http://doi.acm.org/10.1145/2735399.2735419
https://doi.org/10.1145/3196398.3196440
https://doi.org/10.1145/3196398.3196440
https://doi.org/10.1145/3196398.3196440
https://doi.org/10.1145/3196398.3196440

bibliography 133

[41] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Archi-
tecture: Foundations, Theory, and Practice. Wiley Publishing, 2009.
isbn: 0470167742.

[42] Byron J. Williams and Jeffrey C. Carver. “Characterizing Soft-
ware Architecture Changes: A Systematic Review.” In: Inf. Softw.
Technol. 52.1 (Jan. 2010), 31–51. issn: 0950-5849. doi: 10.1016/
j.infsof.2009.07.002. url: https://doi.org/10.1016/j.
infsof.2009.07.002.

[43] Robert K. Yin. Case Study Research: Design and Methods (Applied
Social Research Methods). Fourth Edition. Sage Publications, 2008.
isbn: 1412960991. url: http://www.amazon.de/Case-Study-
Research-Methods-Applied/dp/1412960991%3FSubscriptionId%

3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%

3D2025%26creative%3D165953%26creativeASIN%3D1412960991.

https://doi.org/10.1016/j.infsof.2009.07.002
https://doi.org/10.1016/j.infsof.2009.07.002
https://doi.org/10.1016/j.infsof.2009.07.002
https://doi.org/10.1016/j.infsof.2009.07.002
http://www.amazon.de/Case-Study-Research-Methods-Applied/dp/1412960991%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D1412960991
http://www.amazon.de/Case-Study-Research-Methods-Applied/dp/1412960991%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D1412960991
http://www.amazon.de/Case-Study-Research-Methods-Applied/dp/1412960991%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D1412960991
http://www.amazon.de/Case-Study-Research-Methods-Applied/dp/1412960991%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D1412960991

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Master Thesis
	1 Introduction
	2 Background
	2.1 Fundamentals of Technical Debt
	2.2 Fundamentals of Stability
	2.2.1 Dependencies
	2.2.2 Principles of Package Coupling and Dependency Management

	2.3 Fundamentals of Architectural Smells
	2.3.1 Instability Architectural Smells
	2.3.2 Cyclic Dependency
	2.3.3 Unstable Dependency
	2.3.4 Hub-Like Dependencies
	2.3.5 Tool Support

	2.4 Fundamentals of Design Decisions
	2.4.1 Architectural Design Decisions
	2.4.2 Rationale

	3 Related Work
	3.1 Research on Architectural Smells
	3.2 Research on Architectural Design Decisions
	3.3 Research on Self-Admitted Technical Debt

	4 Case Study Design
	4.1 Rationale for Case Study Design
	4.2 Goal and Research Questions
	4.3 Case Selection
	4.4 Data Collection
	4.4.1 Pre-Analysis
	4.4.2 Quantitative Analysis
	4.4.3 Qualitative Analysis

	5 Results
	5.1 Smell Evolution
	5.1.1 Distribution of Smell Types
	5.1.2 Evolution of Architectural Smells

	5.2 Issue Types
	5.2.1 Smell Instances by Issue Type
	5.2.2 Issue Types Incurring Architectural Smell Types

	5.3 Issue Priorities
	5.3.1 Smell Instances by Issue Priority
	5.3.2 Issue Priorities Incurring Architectural Smell Types

	5.4 Developer Impact on Architectural Smells
	5.4.1 Developer Experience Level
	5.4.2 Number of Developer per Smell

	5.5 Qualitative Analysis
	5.5.1 Trade-off Categories
	5.5.2 Analysis of Individual Issues

	6 Discussion
	6.1 Architectural Smell Evolution
	6.1.1 General Findings of the Evolution of Architectural Smells
	6.1.2 Evolution of Architectural Smells
	6.1.3 Size of Smell Tree Evolution
	6.1.4 Duration of Smell Tree Evolution

	6.2 Impact of Issue Types on Architectural Smells
	6.2.1 Number of Smells Incurred by each Issue Type
	6.2.2 Distribution of Issue Types Incurring Architectural Smells

	6.3 Impact of Priorities on Architectural Smells
	6.3.1 Number of Smells Incurred by each Issue Priority
	6.3.2 Distribution of Issue Priorities Incurring Architectural Smells

	6.4 Impact of Developers on Architectural Smells
	6.4.1 Experience Level of Developers in Corresponding Project
	6.4.2 Number of Developers Participating in Incurring Smells

	6.5 Rationales for incurring Architectural Smells
	6.5.1 Hidden Trade-offs
	6.5.2 Ripple Through Effect
	6.5.3 Building Smells Up Over Time
	6.5.4 Incurring a Complete Smell at Once

	6.6 Challenges

	7 Threats to Validity
	7.1 Splittings for Unstable and Hub-like Dependencies
	7.2 Missing Role Information of Components
	7.3 Simple Name Sorting
	7.4 Wrong Smell Detection

	8 Conclusion

	Appendix
	A Appendix
	A.1 Protocols
	A.1.1 Protocol 4
	A.1.2 Protocol 5
	A.1.3 Protocol 6 & 7
	A.1.4 Protocol 8 & 9
	A.1.5 Protocol 10
	A.1.6 Protocol 11

	A.2 Number of Resolved Issue Types by Projects
	A.3 Resolved Issue Priorities by Projects
	A.4 Validation of Architectural Smells

	Bibliography

