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Abstract

Dementia refers to a clinical syndrome characterized by a progressive cognitive decline
that interferes with the ability to function independently and its subtypes are classified
according to the cause of dementia. Alzheimer’s disease is the most common subtype
of dementia. It is a neurodegenerative disease causing dementia, which comprises about
60% to 80% of cases. The sensitivity and specificity of the clinical diagnosis of these
conditions suggest a substantial amount of misdiagnosis. The objective of this study was to
perform a quantitative analysis of FDG-PET images, a reliable biomarker showing synaptic
dysfunction and neurodegeneration, from patients experiencing dementia. This study will
form a basis to explore the potential of eventually developing a classification model. For this,
two clustering analysis, HCA and K-means were investigated, first, on the data matrix of
Healthy controls and Alzheimer’s disease and later mild cognitive impairment, an objective
cognitive impairment condition with the preserved function, subject type was also included.
Principal component analysis, a feature extraction unsupervised machine learning algorithm,
was performed on image data to transform the high dimensional image to low dimensional
principal component space, to be then used for clustering. K-means clustering resulted in
a good separation between Healthy controls and Alzheimer’s disease. From the results, it
can be inferred that quantitative analysis of functional images from dementia cohort holds
potential to be utilized in the development of a classification model.
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1 Introduction

Dementia is an umbrella term referring to a clinical syndrome characterized by a progressive
cognitive decline that interferes with the ability to function independently (Sheehan,
2012). Alzheimer’s disease (AD) affects more than 30 million people around the world
(Alzheimer’s.Assoc., 2018) and is the most common neurodegenerative disease responsible for
dementia, comprising 60% to 80% of cases (Duong et al., 2017). The sensitivity of current clinical
diagnostic criteria for AD ranged from 71% to 87% and specificity from 44% to 71%, suggesting
substantial rates of AD misdiagnosis among patients with cognitive impairment (Phung et al.,
2009). Patients with mild deficits who do not meet the criteria for dementia are considered
to have mild cognitive impairment (MCI), an objective cognitive impairment with preserved
function (Duong et al., 2017). Annually, it is estimated that 10–15% of patients diagnosed
with MCI progress to AD dementia (Farias et al., 2009). With the advent of new treatment
options for challenging brain diseases, the need for accurate early detection and differential
diagnosis is becoming increasingly evident. However, the early stages of many neurodegenerative
disorders may be essentially asymptomatic or clinically non-specific because of the shared
involvement of common final pathways (Spetsieris et al., 2009). Various classification approaches
have been developed but visual comparisons or quantitative differentiation using conventional
statistical methods such as ANOVA and linear discriminant analysis are often inconclusive
because of several factors and probable loss of information with univariate approaches (Spetsieris
et al., 2009). 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is considered
a useful tool in the evaluation of patients with neurodegenerative disorders (Matias-Guiu
et al., 2017). FDG-PET shows synaptic dysfunction and neurodegeneration and, hence, is a
reliable biomarker, since it depicts specific brain regions impaired in each patient (Matias-Guiu
et al., 2018). Thus, FDG-PET images of subjects were used to perform a novel approach of
classification for this study.

One possible approach for classification is the unsupervised method of Clustering analysis
(Hennig et al., 2016), which is a set of data exploratory technique that groups the data into
clusters, where a cluster refers to a collection of data points aggregated together because of
certain characteristics. These characteristics can be distances, similarities or differences within
the attributes of data. Clustering is one of the most commonly used unsupervised machine
learning algorithms for processing data. Cluster analysis of a multivariate dataset aims to
partition a large data set into meaningful subgroups of subjects, such that each data point
is assigned to a cluster where there are high intra-cluster (within cluster) similarity and low
inter-cluster (between cluster) similarity. Several types of clustering techniques are available for
use, such as hierarchical clustering, soft/hard partitional clustering, density-based clustering,
model-based clustering and grid-based clustering (Xu and Tian, 2015). As every technique
utilizes a different and specific optimization method, two techniques that preferred the data
most, were used for clustering. Namely, Agglomerative hierarchical clustering (HCA), and
K-means clustering techniques, both unsupervised machine learning algorithms are applied for
cluster analysis.

The first clustering method to be used for this study was a hierarchical method, that takes
into account the linkage between data points (Jain, 2010). Hierarchical clustering algorithms
divide or merge a particular dataset into a sequence of nested divisions. The hierarchy of these
nested partitions can be of two types: agglomerative (i.e. bottom-up) or divisive (i.e. top-down).
In the agglomerative method, clustering begins by considering every data point as a cluster on
its own, so each cluster is a singleton. It then progressively merges two data points that are
closest to each other based on the distances from the distance matrix, then the distances are
recalculated between the new and old clusters and again the closest clusters are merged. This is
repeated until all clusters are merged into one single cluster including all points. This procedure
of the hierarchical clustering involves the construction of a hierarchy of treelike structure known
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as a dendrogram, a reference is shown in Figure 1 (Jafarzadegan et al., 2019). One advantage of
HCA is that the number of clusters is not specified in advance and a dendrogram may aid with
determining the optimal number of clusters by visual analysis. However, the ward method for
merging the clusters in HCA may also be used. Ward criterion minimizes the total within-cluster
variance and finds the pair of clusters that leads to a minimum increase in total within-cluster
variance after merging.

Figure 1: Dendrogram (Jafarzadegan et al., 2019).

Another clustering method used in this study is K-means clustering, it is one of the simplest
and most used clustering algorithms, aiming to cluster similar data points together (Xu and
Tian, 2015). K-means is a hard partitioning clustering method as it segregates the data in such
a way that each data point belongs to only one cluster. K-means starts with the first group of
randomly selected centroids, which are used as the beginning points for every cluster, and then
assigns every data point to the cluster with the closest centroid. The distance of centroid to
data point is calculated using the specified method for calculating distance. With the addition
of data points, the centroid of every cluster is updated. It can be calculated as the median
or mean of the cluster. Now, the distance of every data point to the updated centroids are
calculated again, this is done for every cluster and data points are reassigned to the closest
centroid cluster. Iterative calculations are performed to optimize the positions of the centroids,
which means that there are no longer data points which switch from cluster to cluster, thus
fixing the centroid position. There are different options to measure the distance, such as the
Euclidean distance and the city block or Manhattan distance. In Euclidean distance, each
centroid is the mean of the points in that cluster and for city-block, each centroid is the median
of the points in that cluster. For evaluating the cluster consistency the silhouette evaluation
criterion was utilized. Each cluster is represented by a so-called silhouette coefficient, which is
based on the comparison of its tightness and separation and shows which objects lie well within
their cluster, and which ones are merely somewhere in between clusters (Rousseeuw, 1987).

FDG-PET images used as input contain a high number of voxels, where each voxel holds
some functional information. Every voxel is a variable, and with this vast number of variables,
it is difficult to study the relationship between them. By reducing the dimension of the variable
space, that is by systematically narrowing the number of variables, there are fewer relationships
between variables to consider. Broadly there are two ways to reduce dimensionality; feature
extraction and feature elimination. For feature elimination, the variables which are thought to
best predict the result are kept and rest are dropped and so, the contribution of unused variables
is eliminated. Whereas, for feature extraction new independent variables are created, where each
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new independent variable is a combination of each of old independent variables. This way the
contribution from all the variables is sustained. Principal Component Analysis (PCA) is a
statistical multivariate analysis tool for dimensionality reduction and data visualisation, which
is used for feature extraction for this study. It utilizes the innate multivariate information
associated with neuronal connectivity to assess the spatial covariance structure of the data
and attribute relevant portions of the total variance to statistically independent (orthogonal)
metabolic patterns (networks) (Rencher, 1995; Petersson et al., 1999). PCA takes the
multivariate data matrix as input, uses an orthogonal transformation to produce a set of linearly
independent output called principal components (PC’s) or Eigenvectors. This transformation
projects the high-dimensional data into a low-dimensional space composed of PCs. PCA defines
a new orthogonal coordinate system that best describes the intrinsic variability of the data,
where few PC’s retain most of the variability of the data. These high variation PC’s and their
corresponding eigenvalues may be further used for cluster analysis.

The goal of this study was to perform clustering analyses on a cohort of dementia patient
data to eventually develop a robust classification model that may identify and predict different
dementia conditions. An automated model for quantitative analysis of imaging data is expected
to be a useful tool in aiding a clinician in the diagnostic process.

3



2 Materials and Methods

2.1 Patient information

A cohort of sixty-six subjects was selected from a larger ongoing study at the memory clinic of
the University Medical Centre Groningen (UMCG), Groningen, The Netherlands. The study
was conducted in agreement with the Declaration of Helsinki and subsequent revisions. Patients
with an MMSE score higher than 18 were considered mentally competent to give informed
consent. This cohort of subjects had a minimum MMSE score of 22, therefore all subjects were
considered mentally competent to give informed consent, which was approved by the Medical
Ethical Committee of the UMCG (2014/320).

Subjects were first diagnosed by consensus of a multidisciplinary team based on clinical
assessment following the guidelines of the National Institute on Aging Alzheimer’s Association
criteria (NIA-AA) (McKhann et al., 2011) for the AD patients, and on the Petersen criteria
(Petersen et al., 2001) for the MCI patients. Healthy subjects presented no cognitive complaints
and a mini-mental state exam score (MMSE) higher than 28. All subjects underwent standard
dementia screening. Multimodal neuroimaging was also performed, including PIB and FDG
PET scans, as well as T1-3D magnetic resonance imaging (MRI). After this, clinical diagnoses
were reconsidered under the National Institute on Aging and the Alzheimer’s Association
Research Framework (Knopman et al., 2018). Subjects were then reclassified as AD, MCI, or
healthy controls (HC) based on the PET images. A summary of the demographic characteristics
is shown in Table 1.

Table 1: Demographic characteristics of patients

Diagnosis HC AD MCI

Number of Subjects 18 18 24
Age (Years) 68 ± 5 66 ± 8 65 ± 7
MMSE Score 30 ± 1 24 ± 4 27 ± 2

2.2 Image Acquisition

All subjects underwent a static FDG-PET examination. Scans were performed with either a
Siemens Biograph 40mCT or 64mCT scanner (Siemens Medical Solution, USA). Since both
systems were of the same vendor and the same generation, the acquisition and reconstruction
protocols were harmonized, and the calibration of the systems was equally done, there were no
differences between data acquired by the scanners. Patients were in standard resting conditions
with eyes closed during the scans. The radiotracer was synthesized at the radiopharmacy facility
at the Nuclear Medicine and Molecular Imaging department at the UMCG, according to Good
Manufacturing Practice, and it was administered via venous cannula.

Static FDG-PET scans were acquired 30 min after injection (203 8) and lasted for 20
min. All subjects were fasted for at least 6 h before injection, and glucose levels in plasma were
measured before the scan, and the PET scan was only performed if glucose levels were lower than
7 mmol/l (Boellaard et al., 2010). All PET images were reconstructed from list-mode data using
3D OSEM (3 iterations and 24 subsets), point spread function correction, and time-of-flight.
The resulting images had a matrix of 400 400 111, with isotropic 2-mm voxels, and smoothed
2-mm Gaussian filter at full width and half maximum (FWHM).
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2.3 Pre-processing

Image registration was performed using PMOD software package (version 3.8; PMOD
Technologies LLC). The T1 3D MRI was normalized to the Montreal Neurologic Institute (MNI)
space using probability tissue maps, and the Hammers atlas was used to define the grey matter
of the cerebellum volume of interest (VOI). FDG-PET images were aligned to the MRI of each
subject respectively. Then, PET images were smoothed using a Gaussian filter of 6-mm at
full width and half maximum, and all voxels out of the brain were removed from the image.
Standardized uptake value ratios (SUVR) images were generated by normalizing the uptake of
each voxel to the mean uptake of the cerebellum VOI. All PET images were transformed into
atlas space for further analyses.

2.4 Data Analysis

Data analysis was performed using MATLAB (version R2020a). First, the individual patient
images in the standard MNI space were filtered using a binary mask (Figure 2), defining the
volume of interest of the original image, to eliminate any voxels outside the brain region. These
masked images were then read in a data matrix, one patient at a time sequentially, so that
every row of the data matrix represented a subject and every column, a voxel from the subject’s
brain, thus making dimension of data matrix as number of Subject X number of Voxel. The
entire brain volume was transformed into a row vector for every subject, before combining all
subject data in one matrix. Afterwards, the data matrix was normalized using standard Z-score
per subject (i.e. row) and per voxel (i.e. column).

Figure 2: Axial, coronal and Sagittal view of the binary mask used for filtering voxels.

By performing principal component analysis on the normalized data matrix, subject data
were translated from the high dimensional voxel space to a lower-dimensional, but high variance,
principal component space. For every principal component (PC) (i.e. eigenvector), there
was an associated score (i.e. eigenvalue). Scores were generated for every subject per PC’s
by a dot product between the PC and the subject’s image. These scores were further used
for the analysis of the images with unsupervised clustering techniques of HCA and K-means.
Silhouette evaluation criterion was used to determine the optimal number of PC-score to be
used. Silhouette coefficient for two to eight number of clusters was generated when the input for
evaluation was only first two PC-score. Later, this was done again but now for three PC-score,
and every time the silhouette co-efficient for two clusters was noted. This resulted in a plot
of the number of PC-score vs silhouette coefficient, but for two clusters. From this plot, the
highest value of silhouette co-efficient was chosen for the optimal value of PC-score.

Lastly, Clustering analysis was performed on optimal PC-score. For HCA clustering, the
ward method for linkage was utilized to perform clustering on optimal PC-score and generate
a dendrogram. On the X-axis of dendrogram every data point is replaced with its final clinical

5



diagnosis for a clearer insight into merging and Y-axis, as per usual, is the distance. To utilize
the cluster information from dendrogram a labelling criterion was drawn, where based on the
majority of the subject type present in a particular cluster, that cluster was labelled. Labels were
HC-Cluster, AD-Cluster, MCI-Cluster or non-determined if no type was dominant. Clusters
from the dendrogram were plotted in principle component space, for a different visualization.
For K-means clustering, two methods of calculating distances were investigated: Euclidean and
City-block distance. The number of iterations was kept as 200 and the entire clustering, using
new initial cluster centroid positions, was repeated 5 times. Using the resulting indices, clusters
were plotted in principle component space for K-means. As, with K-means results, it was
difficult to label the clusters, inference and cluster position from HCA clustering result were
formed as the basis for cluster labelling.

Initially, the data matrix with eighteen HC and twenty-four AD patients were subjected to
clustering. Silhouette evaluation criteria for determining optimal PC-score was used for two
clusters. Later, twenty-four MCI patients were added to the previous data matrix of HC and
AD patients and the entire process of generating principal components to be used for clustering
was performed again, but this time the silhouette evaluation criteria for three clusters was
generated for determining optimal PC-score. For data matrix with HC, AD and MCI subject
data put together, alongside K-means clustering result, expected K-means clusters were plotted
for comparative analysis. This was done only for K-means, clusters were generated using the
final clinical diagnosis and city-block distance, Euclidean distance was not used as it showed
fluctuating results while investigating on HC and AD data matrix. Data points going against
the general trend of its type (i.e. placed in a different cluster rather than with the data points
of the same type) were marked as misclassified data points. This was determined by comparing
the resulting cluster indices with the final clinical diagnosis that was available.
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3 Results

3.1 For data matrix with HC and AD subject type

Initially, clustering analysis was performed on the data matrix containing eighteen HC and
twenty-four AD patients. Principle component analysis of this data matrix resulted in 41 PC’s.
Figure 3 shows the amount of variance of individual PC’s with respect to the total variance for
all 41 PC’S.

Figure 3: Scree plot for all 41 PC’s obtained form the data matric of HC and AD subject type.

Figure 4: (a): shows highest variance, that, is PC-1 (eigenvector) for a set of HC subjects and
AD patients in all three planes. (b): is PC-2 from the same data matrix.
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Two highest variance PC’s generated from HC and AD data matrix are shown in Figure 4.
The range of the voxel values was made symmetrical setting the background of the image to
zero. The blue region highlights the high variance brain region with negative values and red
region highlights the high variance brain region but with positive values. Figure 4a is the
highest variance PC, comprising approximately 16% of the total variance, whereas Figure 4b is
the second-highest variance PC, comprising approximately 12% of the total variance.

Silhouette evaluation criterion for linkage method (HCA) concluded two highest variance
PC-score, as the optimal number of PC-score to be used for generating two clusters. Figure 5
displays the silhouette coefficient vs the number of PC’s.

Figure 5: Silhouette coefficient for two cluster (y-axis) for matrix of different PC-score, ranging
from 2 to 9 high variance PC-score (x-axis).

The dendrogram generated for ward linkage method using two PC-score is shown in
Figure 6a. On X-axis, final clinical patient diagnosis is displayed, where 1 is for HC and 2
is for AD. Dendrogram clearly shows the presence of two clusters, where the red cluster can be
labelled as HC-Cluster and blue as AD-Cluster, based on labelling criteria. Figure 6b. presents
the translation of dendrogram as clusters in principle component space, for a different visual
display. This cluster display also highlights the misclassified data points, marked as a black
cross.
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Figure 6: (a): Dendrogram generated using ward linkage method for HC and AD patient group.
On the X-axis is the final clinical diagnosis and Y-axis is the distance between clusters. (b):
cluster visualized in principle component space. Misclassified data points are highlighted.

HCA used two PC-score comprising 28% of the total variance and based on misclassification
criterion resulted in 16 misclassifications, that is, 38% of data points were wrongly placed in
the clusters. A Confusion matrix for HCA is shown in Table 2. Using HCA, there was 33%
of misclassification and corresponding 66% of correct classification of HC subject type within
the training data set. Whereas for AD patient type, the misclassification was 42% and the
corresponding correct classification was 58% within the training data set.

Table 2: Confusion matrix for HCA clustering results for data matrix containing HC and AD
patient type

For HCA technique
True diagnosis
HC AD

Predicted diagnosis
AD 6 14
HC 12 10

Number of subjects 18 24

Silhouette evaluation criterion for K-means clustering concluded that the two highest
variance PC-score were optimal for classifying data into two clusters, for both Euclidean and
city-block distance. Figure 7a and Figure 7b displays the silhouette coefficient vs the number
of PC’s for Euclidean distance and city-block (Manhattan) distance, respectively.
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Figure 7: Silhouette coefficient for two clusters(y-axis) for increasing set of PC’s (x-axis). (a):
for the Euclidean distance and (b): for the city-block distance.

K-means clustering using two PC-score resulted in the clusters shown in Figure 8 for
Euclidean method for generating distance matrix. Using knowledge of labelled cluster from HCA
clustering result in Figure 6, the red cluster was labelled as AD-Cluster and blue as HC-Cluster.
Multiple clustering results for the same input were observed with different misclassified data
points ranging from 5 to 9 misclassification.

K-means clustering using two PC-score resulted in the clusters shown in Figure 9 for
City-block method for generating distance matrix. Using knowledge of labelled cluster from
HCA clustering result in Figure 6, the red cluster was labelled as AD-Cluster and blue as
HC-Cluster.
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Figure 8: K-means clustering in principal component space using Euclidean distance. Clustering
utilized two high variance PC-score. Misclassified data points are highlighted.

Figure 9: K-means clustering in principal component space using City-block distance.
Clustering utilized two high variance PC-score. Misclassified data points are highlighted.

Both the distance approach used two PC-score for clustering, comprising 28% of the total
variance. Multiple clustering results were seen for Euclidean distance, ranging from 5 to 9
misclassifications, whereas for city-block distance results were constant with 5 misclassifications.
A Confusion matrix for K-means using city-block distance is shown in Table 3. Based
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on misclassification criterion, there was 5 misclassification for city-block distance, that is,
approximately 12% of data points were wrongly placed in the clusters. There was 16% of
misclassification and corresponding 83% of correct classification of HC subject type within the
training data set. Whereas for AD patient type, the misclassification was approximately 8%
and the corresponding correct classification was 92% within the training data set.

Table 3: Confusion matrix for K-means clustering results for data matrix containing HC and
AD patient type

For K-means technique True diagnosis
(City-block distance) HC AD

Predicted diagnosis
AD 3 22
HC 15 2

Number of subjects 18 24

3.2 For data matrix with HC, AD and MCI subject type

Clustering analysis was performed on a data matrix containing eighteen HC subjects,
twenty-four AD patients and twenty-four MCI patients, a total of sixty-six subjects. Principle
component analysis on this normalized data matrix resulted in 65 PC’s. Figure 10 shows the
amount of variance of individual PC’s with respect to the total variance for all 65 PC’s.

Figure 10: Scree plot for all 65 PC’s obtained form the data matric of HC, AD and MCI subject
type.

Two highest variance PC’s generated from HC, AD and MCI data matrix are shown in
Figure 11. The range of the voxel values was made symmetrical setting the background of the
image to zero. The blue region highlights the high variance brain region with negative values and
red region highlights the high variance brain region but with positive values. Figure 11a is the
highest variance PC, comprising approximately 16% of the total variance, whereas Figure 11b
is the second high variance PC, comprising approximately 10% of the total variance.
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Figure 11: (a): shows highest variance, that, is PC-1 (eigenvector) for a set of HC subjects and
AD, MCI patients in all three planes. (b): is PC-2 from the same data matrix.

Silhouette evaluation criterion for linkage method (HCA) concluded two PC-score, as
optimal number of PC-score to be used for generating clusters. Figure 12 displays the silhouette
coefficient vs the number of PC’s.

Figure 12: Silhouette coefficient for three cluster (y-axis) for matrix of different PC-score,
ranging from 2 to 9 high variance PC-score (x-axis).

The dendrogram generated for ward linkage method using two PC-score, the optimal number
of PC-score to be used for two clusters, is shown in Figure 13a. On X-axis is the final clinical
patient diagnosis where 1 is for HC, 2 is for AD and 3 for MCI. The dendrogram is presented
in a way, to show the formation of three clusters, as three is the desired cluster number. Red,
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as well as a blue cluster, can be labelled as AD-Cluster and green as HC-Cluster based on
labelling criteria. Figure 13b. presents the translation of the dendrogram as clusters in principle
component space.

Figure 13: (a): Dendrogram generated using ward linkage method for HC, AD and MCI patient
group. On the X-axis is final diagnosis and Y-axis is the distance between clusters. (b): cluster
visualized in principle component space.

A Confusion matrix for HCA is shown in Table 4. HCA used 26% variance and resulted
in 31 misclassifications based on misclassification criterion. Considering both AD-Cluster, red
and blue cluster, there was a 100% correct classification for AD patients, combined. Within
the red AD-Cluster, there was an overall 55% misclassification, within which 23% were HC and
32% were MCI misclassified to be AD. Within the blue AD-Cluster, there was an overall 33%
misclassification, all of which were MCI misclassified to be AD. For HC-Cluster, green cluster,
the correct classification was 55% and 45% of misclassifications were MCI as HC within the
training data set. Within the HC-Cluster, no AD was misclassified as HC. Overall, MCI was
completely misclassified.

Table 4: Confusion matrix for HCA clustering results for data matrix containing HC, AD and
MCI patient type

For HCA technique
True diagnosis

HC AD MCI
Number of subjects
per cluster

AD
7 (23%) 14 (45%) 10 (32%) 31

(Red cluster)
Predicted HC

11 (55%) 0 9 (45%) 20
diagnosis (Green cluster)

AD
0 10 (66%) 5 (33%) 15

(Blue cluster)

Number of subjects 18 24 24 66

Since K-means using Euclidean did not display the consistent result, it was excluded and
only city-block was investigated for K-means for data matrix containing HC, AD and MCI
patient type. Silhouette evaluation co-efficient was generated for K-means using city-block
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which concluded that two high variance PC-score are optimal for three clusters. Figure 14
displays the silhouette coefficient vs the number of PC’s for city-block (Manhattan) distance.

Figure 14: Silhouette coefficient using the city-block distance for three clusters (y-axis) for
increasing set of PC’s (x-axis).

K-means clustering using two PC-score resulted in the clusters shown in Figure 15a. for
city-block method. Expected clusters was also plotted in Figure 15b alongside the final clustering
result for comparative analysis of the outcome.

Figure 15: Cluster outcome using the K-means technique with city-block distance. (a): is
the obtained clustering result using K -means and (b): is the expected clustering outcome for
K-means.

A Confusion matrix for K-means using city-block is shown in Table 5. K-means used 26%
variance and resulted in 28 misclassifications based on misclassification criterion. Considering
both AD-Cluster, blue and green cluster, there was 100% correct classification for AD patients,
combined. Within the blue AD-Cluster, there was an overall 46% misclassification, within
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which 15% were HC and 31% were MCI misclassified to be AD. Within the green AD-Cluster,
there was an overall 33% misclassification, all of which were MCI misclassified to be AD. For
HC-Cluster, red cluster, the correct classification was 56% and 44% of misclassifications were
MCI as HC within the training data set. Within the HC-Cluster, no AD was misclassified as
HC. Overall, MCI was completely misclassified.

Table 5: Confusion matrix for K-means clustering results for data matrix containing HC, AD
and MCI patient type

True diagnosis
For K-means technique
(City-block distance)

HC AD MCI
Number of subjects
per cluster

AD
4 (15%) 14 (54%) 8 (31%) 26

(Blue cluster)
Predicted HC

14 (56%) 0 11 (44%) 25
diagnosis (Red cluster)

AD
0 10 (66%) 5 (33%) 15

(Green cluster)

Number of subjects 18 24 24 66
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4 Discussion

In this study, data-driven clustering analysis was performed on patient data with
neurodegenerative disorders classified as Alzheimer’s disease and Mild cognitive impairment.
The objective was to explore within the cluster similarity and between the cluster differences
and the extent of it, eventually to develop a classification model. The principal component
analysis was performed on the data to reduce the dimension and bring it to an operative
dimension. Later, two methods of clustering were investigated, HCA and K-means for cluster
analysis.

Clustering analysis performed on a matrix containing HC subject and AD patient data
resulted in different clustering results for both techniques (Figure 6 and Figure 9). The
dendrogram of HCA technique reflected the presence of two broad clusters and, based on
labelling criterion, HC-cluster and AD-cluster were labelled in principle component space.
For K-means clustering technique, Euclidian and city-block distance were investigated, which
resulted in different clustering outcomes. From K-means clustering result, it was difficult to
label which cluster was HC-Cluster or AD-cluster. Thus, using the information of labelled
HC and AD cluster from HCA clustering result and also the corresponding cluster positions
in principle component space of these labelled clusters (Figure 6) clusters were labelled for
K-means technique in Figure 8 and Figure 9. For City-block based clustering, the centroid
is a median, while for Euclidean distance its centroid is the mean of the data points within
the cluster. Therefore, the possibility of the centroid to change with a slight change in the
cluster points happens more frequently for Euclidean distance-based clustering, which resulted
in different clusters and also in different misclassifications every time, seen in Figure 8. Thus,
the city-block distance was preferred as a parameter when performing k-means over Euclidian
distance. HCA was performed using ward as a method for minimum variance linkage, where
default distance is Euclidean distance. In HCA, data points simply merge to form a broader
cluster. Here, merging is progressive and the minimum distance between cluster is the criteria
for merging. Whereas, for K-means the centroid controls the cluster constitution, which is
determined by all the data points with minimum distance. Thus, the clustering using K-means
is a reflection of individual data points rather than small clusters as is in the case of HCA.
Hence, clustering using the K-means method was better than HCA. K-means clustering with
city-block resulted in the best clustering for HC and AD data matrix, considering diagnosis as
a reference.

The clustering analysis performed on data matrix containing HC, AD and MCI patient type
resulted in different results for both techniques (Figure 13 and Figure 15). For HC, AD and
MCI data matrix, both the clustering technique classified all AD patients as a single cluster
but failed in generating a separate cluster for MCI patient type. For HCA technique, 38% of
MCI were classified as HC and 62% as AD, whereas for the K-means method, 46% of MCI were
classified as HC and 54% as AD. This is in agreement with the literature of MCI dementia
type (Duong et al., 2017) since it is considered an intermediate condition between HC and AD.
Some interesting observation can be drawn from the expected cluster (Figure 15b), all MCI data
points are spread throughout HC-Cluster and AD-cluster. Some MCI data points are present
very deep in the HC-Cluster and remaining in AD-cluster right in the vicinity of other HC or
AD data points in the Principle component space. Thus, the overlapping of MCI over both
HC-Cluster and AD-cluster is not easily separated into a distinct cluster.

For further analysis, it will be interesting to look into different PC’s for a more
detailed insight on high variance brain regions and their association with the dementia type.
Furthermore, dendrogram for both the data matrix (Figure 6a and Figure 13a) reflected on
the presence of sub-clusters within the broad clusters. This might especially be interesting to
investigate using data matrix of HC, AD and MCI, with MCI being an intermediate, progressive
condition, as the expected cluster in Figure 15a shows the wide stretch of PC-score for this
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condition. Another interesting result was the presence of high variance regions but with positive
as well as negative values. It will be compelling to understand the relevance of these, and
how the presence of these high variance positive and negative values is associated with the
neurodegenerative condition and the brain region it impacts or its clinical symptoms. For
example, in Figure 4a, one region of high variance with positive value is the precuneus and one
with a negative value is the cerebellum. Another line of investigation would be to validate the
clustering results using a new set of data matrix or by bootstrapping method for validation, for
example. The longitudinal information of the misclassified patient, especially the HC’s might
also be an interesting line of investigation. Soft partitioning method like Fuzzy C-means can also
be explored, particularly, for HC, AD, MCI data matrix, as there is a very strong overlapping of
MCI over HC-Cluster and AD-Cluster. Fuzzy C-means delivers a membership function which
indicates a data point belonging to multiple clusters.

The original dataset also contained frontotemporal dementia and Lewy body dementia
patient data. However, since there were not may patients, they were not included in the
analysis. But this can also make into an interesting line of investigation, with enough number
of patient data for all other neurodegenerative condition.
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5 Conclusions

The objective of this study was to perform clustering analysis on a dementia cohort to
validate the potential of developing an automated tool for quantitative analysis of FDG-PET
images. This tool might assist at the clinical level, eventually improving the diagnosis, by
aiding in minimizing the late diagnosis and misdiagnosis. Different methods were used for
clustering, which resulted in different results. Overall the results with K-means displayed
a good separation between Healthy controls and Alzheimer’s disease. Moreover, the results
for Mild cognitive impairment classification resonated with its literature and showed potential
for further investigation. In general, it can be concluded that by quantitatively analyzing
FDG-PET images of dementia cohort, there is a possibility of the development of an automated
classification algorithm.
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A Ethics

The study was conducted in agreement with the Declaration of Helsinki and subsequent
revisions, at the memory clinic of the University Medical Centre Groningen (UMCG),
Groningen, The Netherlands. Subjects were considered competent to give informed consent
based on their mini mental state exam score. The present study will set the track for further
investigation in quantitative analysis of functional images of dementia cohort. The Long term
benefit would be an automated clinical tool for diagnosis and prognosis of neurodegenerative
conditions. This will help in improving sensitivity and specificity of diagnosis at clinical level,
thus will contribute in healthy ageing.
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B MATLAB Code: Read and transform data

1 c l c ;
2 c l e a r a l l ;
3 % read ing the mask image
4 mask V = spm vol ( ’C:\ Users \ jmdg9\OneDrive\Documents\spm\ images\mask\Mask . n i i ’ ) ;
5 img mask = spm read vo l s ( mask V ) ;
6 % s t o r i n g f i l ename as s t r i n g
7 s t r 1 = ’C:\ Users \ jmdg9\OneDrive\Documents\spm\ images\S ’ ;
8 s t r 2 = ’ FDG ATLAS SUVR smoothed . n i i ’ ;
9 patient number = 1 ;

10 %f i l e number g iven as input to i array
11

12 %HC,AD,MCI(+,−)
13 f o r i =[1 2 3 4 8 15 17 23 24 25 26 28 29 31 32 35 36 37 38 39 40 41 43 44 45 46 49 51 52 53 54 60 61 63 64 66 67 68 71 72 75 77 78 79 80 81 82 83 85 86 87 91 97 101 104 106 107 108 109 110 111 112 113 115 116 117 ]
14

15 %HC,AD,MCI(+,−) without three HC
16 %f o r i =[1 2 3 4 8 15 17 23 24 25 26 28 29 31 32 35 36 37 38 39 40 41 43 44 45 46 49 51 52 53 54 60 61 63 64 66 67 68 71 72 75 77 79 80 82 83 85 86 87 97 101 104 106 107 108 109 110 111 112 113 115 116 117 ]
17

18 %HC and MCI
19 %f o r i = [ 8 17 23 24 25 35 38 40 41 43 44 45 46 49 51 52 53 66 67 68 78 79 80 81 83 85 91 106 108 110 111 1 1 7 ] ;
20

21 %f o r AD and MCI
22 %f o r i = [ 1 2 3 4 8 15 17 23 24 25 26 29 32 36 37 39 41 61 63 67 68 72 75 77 79 80 82 83 87 101 107 108 109 111 112 113 115 1 1 7 ] ;
23

24 %AD,HC
25 %f o r i =[1 2 3 4 15 26 29 32 35 36 37 38 39 40 43 44 45 46 49 51 52 53 61 63 66 72 75 77 78 81 82 85 87 91 101 106 107 109 110 112 113 115 ]
26

27 %AD,HC without three hc p a t i e n t s
28 %f o r i =[1 2 3 4 15 26 29 32 35 36 37 38 39 40 43 44 45 46 49 51 52 53 61 63 66 72 75 77 82 85 87 101 106 107 109 110 112 113 115 ]
29

30 %AD,HC without three hc and two AD wrong p a t i e n t s
31 %f o r i =[1 2 3 4 15 26 35 36 37 38 39 40 43 44 45 46 49 51 52 53 61 63 66 72 75 77 82 85 87 101 106 107 109 110 112 113 115 ]
32

33 %f o r a l l types
34 %f o r i = [ 1 2 3 4 8 11 15 17 21 23 24 25 26 27 28 29 31 32 34 35 36 37 38 39 40 41 43 44 45 46 49 51 52 53 54 58 60 61 63 64 66 67 68 71 72 75 76 77 78 79 80 81 82 83 85 86 87 89 91 94 95 96 97 99 101 104 106 107 108 109 110 111 112 113 115 116 117 ]
35

36 %f o r a l l types WITHOUT 3 HC
37 %f o r i = [ 1 2 3 4 8 11 15 17 21 23 24 25 26 27 28 29 31 32 34 35 36 37 38 39 40 41 43 44 45 46 49 51 52 53 54 58 60 61 63 64 66 67 68 71 72 75 76 77 79 80 82 83 85 86 87 89 94 95 96 97 99 101 104 106 107 108 109 110 111 112 113 115 116 117 ]
38

39 %f o r MCI+ AND MCI−
40 %f o r i =[8 17 23 24 25 28 31 41 54 60 64 67 68 71 79 80 83 86 97 104 108 111 116 117 ]
41

42 %f o r HC and FTD
43 %f o r i = [11 21 27 35 38 40 43 44 45 46 49 51 52 53 66 78 81 85 89 91 95 106 110 ]
44

45 %f o r DLB and FTD
46 %f o r i = [11 21 27 34 58 76 89 94 95 96 99 ]
47

48 %f o r DLB and FTD and a l l HC
49 %f o r i = [11 21 27 34 35 38 40 43 44 45 46 49 51 52 53 58 66 76 78 81 85 89 91 94 95 96 99 106 110 ]
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50

51 %f o r DLB and FTD and HC
52 %f o r i = [11 21 27 34 35 38 40 43 44 58 76 89 94 95 96 99 ]
53

54 %f o r DLB and FTD and AD
55 %f o r i = [ 1 2 3 4 11 15 21 27 34 58 76 89 94 95 96 99 ]
56

57 %f o r DLB and FTD AD and HC
58 %f o r i = [ 1 2 3 4 11 15 21 27 34 35 38 40 43 44 58 76 89 94 95 96 ]
59

60 %f o r FTD AD and HC
61 %f o r i = [ 1 2 3 4 11 15 21 27 35 38 40 43 44 89 95 ]
62

63 %f o r DLB and FTD AD MCI and HC
64 %f o r i = [ 1 2 3 4 8 11 15 17 21 23 24 25 27 34 35 38 40 43 44 58 76 89 94 95 96 99 ]
65

66 %f o r DLB and FTD AD MCI(+,−) and HC
67 %f o r i = [ 1 2 3 4 8 11 15 17 21 23 24 25 27 28 31 34 35 38 40 43 44 54 58 60 64 76 89 94 95 96 99 ]
68

69 %f o r DLB and FTD AD MCI HC a l l
70 %f o r i = [ 1 2 3 4 11 15 21 26 27 29 32 34 35 36 37 38 39 40 43 44 45 46 49 51 52 53 58 61 63 66 72 75 76 77 78 81 82 85 87 89 91 94 95 96 99 101 106 107 109 110 112 113 115 ]
71

72

73

74

75 %Balanced HC,AD,MCI
76 %f o r i =[1 2 3 4 8 15 17 23 24 25 26 29 32 35 36 37 38 39 40 41 43 44 45 46 49 51 52 53 61 63 66 67 68 72 78 79 80 81 83 108 111 117 ]
77 %Balanced HC,MCI
78 %f o r i = [ 8 17 23 24 25 35 38 40 41 43 44 45 46 49 51 52 53 66 67 68 78 79 80 81 83 108 111 117 ]
79 %Balanced AD,MCI
80 %f o r i = [ 1 2 3 4 8 15 17 23 24 25 26 29 32 36 37 39 41 61 63 67 68 72 79 80 83 108 111 117 ]
81 %Balanced AD,HC
82 %f o r i =[1 2 3 4 15 26 29 32 35 36 37 38 39 40 43 44 45 46 49 51 52 53 61 63 66 72 75 77 78 81 82 85 87 91 106 110 ]
83

84 %INDIVIDUAL GROPUS
85 %HC
86 %f o r i =[35 38 40 43 44 45 46 49 51 52 53 66 78 81 85 91 106 110 ]
87

88 %MCI
89 %f o r i =[8 17 23 24 25 41 67 68 79 80 83 108 111 117 ]
90

91 % 04d s i n c e image has zero in i t s name
92 imag path = { s t r 1 num2str ( i , ’%04d ’ ) s t r 2 } ;
93 % so that f i l e naem can be passed as s t i n g
94 imag path = ce l l 2mat ( imag path ) ;
95 %spm f u n c t i o n s to read voxe l s
96 %read ing header f i r s t
97 V = spm vol ( imag path ) ;
98 img = spm read vo l s (V) ;
99 %img = img ( : ) ;

100 %F i l t e r i n g with the g iven mask ; element wise m u l t i p l i c a t i o n
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101 %binary mask
102 f i l t e r i m g = img .∗ img mask ;
103 %making the f i l t e r e d image a vec to r
104 a l l f i l t e r i m g ( : , patient number ) = f i l t e r i m g ( : ) ;
105 patient number = patient number + 1 ;
106 end
107 %saving the image data as . mat f o r f u r t h e r use
108 save ( ’ a l l f i l t e r i m g . mat ’ , ’ a l l f i l t e r i m g ’ ) ;
109

110 mean 1 = mean( a l l f i l t e r i m g ( : , 1 ) ) ;
111 mean 2 = mean( a l l f i l t e r i m g ( : , 2 ) ) ;
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C MATLAB Code: For HC and AD data matrix

1 c l c ;
2 c l e a r a l l ;
3 % read ing data from . mat saved f i l e
4 read data = m a t f i l e ( ’ a l l f i l t e r i m g . mat ’ ) ;
5 %putt ing the read . mat in to a matrix form
6 a l l f i l t e r i m g = read data . a l l f i l t e r i m g ;
7 %saving o r i g i n a l data
8 o r i g d a t a = a l l f i l t e r i m g ;
9 %input data as s u b j e c t X voxe l

10 a l l f i l t e r i m g = a l l f i l t e r i m g . ’ ;
11

12

13 %pat i en t d i a g n o s i s f o r HC and AD
14 pat d iag = [ 2 ; 2 ; 2 ; 2 ; 2 ; 2 ; 2 ; 2 ; 1 ; 2 ; 2 ; 1 ; 2 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 2 ; 2 ; 1 ; 2 ; 2 ; 2 ; 1 ; 1 ; 2 ; 1 ; 2 ; 1 ; 2 ; 1 ; 2 ; 2 ; 1 ; 2 ; 2 ; 2 ] ;
15

16 %pat i en t d i a g n o s i s f o r HC and AD without wrong HC
17 %pat d iag = [ 2 ; 2 ; 2 ; 2 ; 2 ; 2 ; 2 ; 2 ; 1 ; 2 ; 2 ; 1 ; 2 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 2 ; 2 ; 1 ; 2 ; 2 ; 2 ; 2 ; 1 ; 2 ; 2 ; 1 ; 2 ; 2 ; 1 ; 2 ; 2 ; 2 ] ;
18

19

20 %NORMALIZE DATA IN THREE DIFFERENT WAY.
21 %Normalize each s ub j e c t .
22 mydata norm1 = z s c o r e ( a l l f i l t e r i m g , [ ] , 1 ) ;
23 %Normalize each voxe l .
24 mydata norm2 = z s c o r e ( a l l f i l t e r i m g , [ ] , 2 ) ;
25 %Normalize each s ub j e c t and voxe l .
26 mydata norm3 = z s c o r e ( mydata norm1 , [ ] , 2 ) ;
27

28

29 %pca on image data .
30 [ c o e f f , score , l a t ent , tsquared , expla ined ,mu] = pca ( mydata norm3 ) ;
31

32

33 % var iance percentage us ing exp la ined
34 f i g u r e
35 bar ( exp la ined ( : , 1 ) ) ;
36 x l a b e l ( ’ P r i n c i p l e component ’ ) ;
37 y l a b e l ( ’ Variance ( in %) ’ ) ;
38 t i t l e ( ’ For HC and AD data matrix ’ )
39

40 % c l u s t e r a n a l y s i s
41 % score mat i s high var iance s co r e matrix
42 % with f i r s t column as pa t i en t number
43 [ Row sc , c o l s c ] = s i z e ( s co r e ) ;
44 score mat= [ 1 : Row sc ] . ’ ;
45 score mat ( : , 2 : c o l s c +1) = sco r e ( : , 1 : c o l s c ) ;
46

47

48

49 %. . . . . . . . . . . . . . . . . . . % % % HISTOGRAM%%%%%%%%%%%
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50 % f i g u r e
51 % s c a t t e r h i s t ( score mat ( : , 2 ) , score mat ( : , 3 ) , ’ Group ’ , pat d iag , ’ kerne l ’ , ’ on ’ , ’ marker ’ , ’ ∗ ’ ) ;
52 % hold on
53 % %drawing the o u l i n e around c l u s t e r
54 % %f o r c l u s t e r 1
55 % K1 = convhul l ( score mat ( pat d iag== 1 ,2) , score mat ( pat d iag== 1 ,3) ) ;
56 % %f o r c l u s t e r 2
57 % K2 = convhul l ( score mat ( pat d iag== 2 ,2) , score mat ( pat d iag== 2 ,3) ) ;
58 %
59 % %X,Y Coordinates o f h u l l po in t s f o r c l u s t e r 1
60 % x a x i s c l u s 1= score mat ( pat d iag== 1 ,2) ;
61 % y a x i s c l u s 1= score mat ( pat d iag== 1 ,3) ;
62 % plo t ( x a x i s c l u s 1 (K1) , y a x i s c l u s 1 (K1) , ’ b ’ )
63 % hold on
64 % %X,Y Coordinates o f h u l l po in t s f o r c l u s t e r 2
65 % x a x i s c l u s 2= score mat ( pat d iag== 2 ,2) ;
66 % y a x i s c l u s 2= score mat ( pat d iag== 2 ,3) ;
67 % plo t ( x a x i s c l u s 2 (K2) , y a x i s c l u s 2 (K2) , ’ r ’ )
68 % hold on
69 % x l a b e l ( ’ s c o r e − 1 ’ )
70 % y l a b e l ( ’ s c o r e − 2 ’ )
71 % legend ( ’HC’ , ’AD’ , ’ Location ’ , ’ best ’ )
72 % t i t l e ( ’HC and AD’ )
73

74

75

76

77

78 %%%%%%%%%%%%%%%%%%..........AGGLOMERATIVE METHOD........%%%%%%%%%%%%%%%%%%
79 %....................%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%....................
80

81 Z = l i n k a g e ( score mat ( : , 2 : 3 ) , ’ ward ’ , ’ euc l i d ean ’ ) ;
82 f i g u r e
83 [H,T, outperm ] = dendrogram (Z , 0 ) ;
84 %f o r p l o t t i n g pa t i en t d i a g n o s i s on X a x i s .
85 f o r i = 1 : s i z e ( pat diag , 1 )
86 outperm (2 , i )= pat d iag ( outperm (1 , i ) , 1 ) ;
87 end
88 Clus = c l u s t e r (Z , ’ maxclust ’ , 2 ) ;
89 c u t o f f = median ( [ Z( end , 3 ) ] ) ;
90 f i g u r e
91 h = dendrogram (Z , 0 , ’ co lo rThresho ld ’ , c u t o f f ) ;
92 x t i c k l a b e l s ( outperm ( 2 , : ) )
93 x l a b e l ( ’ Given pa t i en t d i a g n o s i s ’ )
94 % text (36 . 8 , 3080 , ’On X−a x i s : ’ , ’ FontSize ’ , 1 0 )
95 % text (37 , 3000 , ’ 1 :HC’ , ’ FontSize ’ , 1 0 )
96 % text (37 , 2920 , ’ 2 :AD’ , ’ FontSize ’ , 1 0 )
97 y l a b e l ( ’ Distance ’ )
98 %score1 vs Score2
99 %with c r o s s marked as wrong d i a g n o s i s .

100 %o r i g i n a l data
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101 hold o f f
102

103 f i g u r e
104 p lo t ( score mat ( Clus== 1 ,2) , score mat ( Clus== 1 ,3) , ’ c∗ ’ , ’ MarkerSize ’ , 7 )
105 hold on
106 p lo t ( score mat ( Clus== 2 ,2) , score mat ( Clus== 2 ,3) , ’ r ∗ ’ , ’ MarkerSize ’ , 7 )
107 hold on
108 p lo t ( score mat ( ( Clus == pat d iag )== 1 ,2) , . . .
109 score mat ( ( Clus == pat d iag )== 1 ,3) , ’ kx ’ , ’ MarkerSize ’ , 5 , ’ LineWidth ’ , 2 )
110 hold on
111 %drawing the o u l i n e around c l u s t e r
112 %f o r c l u s t e r 1
113 K1 = convhul l ( score mat ( Clus== 1 ,2) , score mat ( Clus== 1 ,3) ) ;
114 %f o r c l u s t e r 2
115 K2 = convhul l ( score mat ( Clus== 2 ,2) , score mat ( Clus== 2 ,3) ) ;
116 %X,Y Coordinates o f h u l l po in t s f o r c l u s t e r 1
117 x a x i s c l u s 1= score mat ( Clus== 1 ,2) ;
118 y a x i s c l u s 1= score mat ( Clus== 1 ,3) ;
119 p lo t ( x a x i s c l u s 1 (K1) , y a x i s c l u s 1 (K1) , ’ c ’ )
120 hold on
121 %X,Y Coordinates o f h u l l po in t s f o r c l u s t e r 2
122 x a x i s c l u s 2= score mat ( Clus== 2 ,2) ;
123 y a x i s c l u s 2= score mat ( Clus== 2 ,3) ;
124 p lo t ( x a x i s c l u s 2 (K2) , y a x i s c l u s 2 (K2) , ’ r ’ )
125 hold on
126 % f o r i = 1 : s i z e ( score mat , 1 )
127 % s t r = num2str ( i , ’%d ’ ) ;
128 % text ( score mat ( i , 2 ) , score mat ( i , 3 ) , s t r )
129 % end
130 x l a b e l ( ’PC1 ’ )
131 y l a b e l ( ’PC2 ’ )
132 l egend ( ’ Cluster−1 ’ , ’ Cluster−2 ’ , ’Wrong Diagnos i s ’ , ’ Locat ion ’ , ’ bes t ’ )
133 hold o f f
134

135

136

137

138

139 %%%%%%%%%%%%%%%%%%..........KMEANS METHOD........%%%%%%%%%%%%%%%%%%
140 %....................%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%....................
141

142

143 [ idx ,C] = kmeans ( score mat ( : , 2 : 3 ) ,2 , ’ Distance ’ , ’ s q euc l i d ean ’ . . .
144 , ’ r e p l i c a t e s ’ , 5 , ’ MaxIter ’ ,200) ;
145

146 %score1 vs Score2
147 %with c r o s s marked as wrong d i a g n o s i s .
148 %o r i g i n a l data
149 f i g u r e
150 p lo t ( score mat ( idx== 1 ,2) , score mat ( idx== 1 ,3) , ’ r ∗ ’ , ’ MarkerSize ’ , 7 )
151 hold on

26



152 p lo t ( score mat ( idx== 2 ,2) , score mat ( idx== 2 ,3) , ’b∗ ’ , ’ MarkerSize ’ , 7 )
153 hold on
154 p lo t (C( : , 1 ) ,C( : , 2 ) , ’ s ’ , ’ MarkerSize ’ , 3 , ’ LineWidth ’ , 2 )
155 hold on
156 %marking the wrong diagnosed pa t i en t
157 p lo t ( score mat ( ( idx == pat d iag )== 1 ,2) , . . .
158 score mat ( ( idx == pat d iag )== 1 ,3) , ’ kx ’ , ’ MarkerSize ’ , 5 , ’ LineWidth ’ , 3 )
159 hold on
160 %drawing the o u l i n e around c l u s t e r
161 %f o r c l u s t e r 1
162 K1 = convhul l ( score mat ( idx== 1 ,2) , score mat ( idx== 1 ,3) ) ;
163 %f o r c l u s t e r 2
164 K2 = convhul l ( score mat ( idx== 2 ,2) , score mat ( idx== 2 ,3) ) ;
165 %X,Y Coordinates o f h u l l po in t s f o r c l u s t e r 1
166 x a x i s c l u s 1= score mat ( idx== 1 ,2) ;
167 y a x i s c l u s 1= score mat ( idx== 1 ,3) ;
168 p lo t ( x a x i s c l u s 1 (K1) , y a x i s c l u s 1 (K1) , ’ r ’ )
169 hold on
170 %X,Y Coordinates o f h u l l po in t s f o r c l u s t e r 2
171 x a x i s c l u s 2= score mat ( idx== 2 ,2) ;
172 y a x i s c l u s 2= score mat ( idx== 2 ,3) ;
173 p lo t ( x a x i s c l u s 2 (K2) , y a x i s c l u s 2 (K2) , ’b ’ )
174 hold on
175 x l a b e l ( ’PC−1 ’ )
176 y l a b e l ( ’PC−2 ’ )
177 % t i t l e ( ’ For HC,AD’ )
178 l egend ( ’ Cluster−1 ’ , ’ Cluster−2 ’ , ’ Centroid ’ , ’ Locat ion ’ , ’ bes t ’ )
179 hold o f f
180 % expor tg raph i c s ( f i g , ’ k−means HC AD . pdf ’ , ’ Reso lut ion ’ , 5 0 0 )
181

182

183 % c a l c u l a t e optimal number o f PC to use
184 f o r i = 3 :10
185 e v a l i n k a g e = e v a l c l u s t e r s ( score mat ( : , 2 : i ) , ’ l i n k a g e ’ , ’ S i l h o u e t t e ’ , ’ k l i s t ’ , [ 1 : 2 ] ) ;
186 eval mat ( i −2 ,1) = i −1;
187 eval mat ( i −2 ,2) = e v a l i n k a g e . Cr i t e r i onVa lue s (2 ) ;
188 end
189 f i g u r e
190 p lo t ( eval mat ( : , 1 ) , eval mat ( : , 2 ) , ’−∗ ’ )
191 x l a b e l ( ’Number o f PC ’ )
192 y l a b e l ( ’ S i l h o u t t e c o e f f i c i e n t ’ )
193 t i t l e ( ’ For HCA’ )
194 hold o f f
195

196 f o r i = 3 :10
197 e v a l i n k a g e = e v a l c l u s t e r s ( score mat ( : , 2 : i ) , ’ kmeans ’ , ’ S i l h o u e t t e ’ , ’ k l i s t ’ , [ 1 : 2 ] , ’ d i s t ance ’ , ’ c i t y b l o c k ’ ) ;
198 eval mat ( i −2 ,1) = i −1;
199 eval mat ( i −2 ,2) = e v a l i n k a g e . Cr i t e r i onVa lue s (2 ) ;
200 end
201 f i g u r e
202 p lo t ( eval mat ( : , 1 ) , eval mat ( : , 2 ) , ’−∗ ’ )

27



203 x l a b e l ( ’Number o f PC ’ )
204 y l a b e l ( ’ S i l h o u t t e c o e f f i c i e n t ’ )
205 t i t l e ( ’ For K−means ( Cityblock ) ’ )
206 hold o f f
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D MATLAB Code: For HC, AD and MCI data matrix

1 c l c ;
2 c l e a r a l l ;
3 % read ing data from . mat saved f i l e
4 read data = m a t f i l e ( ’ a l l f i l t e r i m g . mat ’ ) ;
5 %putt ing the read . mat in to a matrix form
6 a l l f i l t e r i m g = read data . a l l f i l t e r i m g ;
7 %saving o r i g i n a l data
8 o r i g d a t a = a l l f i l t e r i m g ;
9 %input data as s u b j e c t X voxe l

10 a l l f i l t e r i m g = a l l f i l t e r i m g . ’ ;
11

12 %AD i s 2 , MCI IS 3 and HC i s 1
13 %pat i en t d i a g n o s i s f o r HC,AD and MCI(+,−)
14 pat d iag = [ 2 ; 2 ; 2 ; 2 ; 3 ; 2 ; 3 ; 3 ; 3 ; 3 ; 2 ; 3 ; 2 ; 3 ; 2 ; 1 ; 2 ; 2 ; 1 ; 2 ; 1 ; 3 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 3 ; 3 ; 2 ; 2 ; 3 ; 1 ; 3 ; 3 ; 3 ; 2 ; 2 ; 2 ; 1 ; 3 ; 3 ; 1 ; 2 ; 3 ; 1 ; 3 ; 2 ; 1 ; 3 ; 2 ; 3 ; 1 ; 2 ; 3 ; 2 ; 1 ; 3 ; 2 ; 2 ; 2 ; 3 ; 3 ] ;
15

16 %pat i en t d i a g n o s i s f o r HC,AD and MCI(+,−) without THREE WRONG HC
17 %pat d iag = [ 2 ; 2 ; 2 ; 2 ; 3 ; 2 ; 3 ; 3 ; 3 ; 3 ; 2 ; 3 ; 2 ; 3 ; 2 ; 1 ; 2 ; 2 ; 1 ; 2 ; 1 ; 3 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 3 ; 3 ; 2 ; 2 ; 3 ; 1 ; 3 ; 3 ; 3 ; 2 ; 2 ; 2 ; 3 ; 3 ; 2 ; 3 ; 1 ; 3 ; 2 ; 3 ; 2 ; 3 ; 1 ; 2 ; 3 ; 2 ; 1 ; 3 ; 2 ; 2 ; 2 ; 3 ; 3 ] ;
18

19 % FOR MCI + MCI−
20 %pat d iag = [ 1 ; 1 ; 1 ; 1 ; 1 ; 2 ; 2 ; 1 ; 2 ; 2 ; 2 ; 1 ; 1 ; 2 ; 1 ; 1 ; 1 ; 2 ; 2 ; 2 ; 1 ; 1 ; 2 ; 1 ] ;
21

22

23 %NORMALIZE DATA IN THREE DIFFERENT WAY.
24 %Normalize each s ub j e c t .
25 mydata norm1 = z s c o r e ( a l l f i l t e r i m g , [ ] , 1 ) ;
26 %Normalize each voxe l .
27 mydata norm2 = z s c o r e ( a l l f i l t e r i m g , [ ] , 2 ) ;
28 %Normalize each s ub j e c t and voxe l .
29 mydata norm3 = z s c o r e ( mydata norm1 , [ ] , 2 ) ;
30

31 %pca on image data .
32 [ c o e f f , score , l a t ent , tsquared , expla ined ,mu] = pca ( mydata norm3 ) ;
33

34 f i g u r e
35 bar ( exp la ined ( : , 1 ) ) ;
36 x l a b e l ( ’ P r i n c i p l e component ’ ) ;
37 y l a b e l ( ’ Variance ( in %) ’ ) ;
38 t i t l e ( ’ For HC, AD and MCI data matrix ’ )
39

40 % c l u s t e r a n a l y s i s
41 % score mat i s high var iance s co r e matrix
42 % with f i r s t column as pa t i en t number
43 [ Row sc , c o l s c ] = s i z e ( s co r e ) ;
44 score mat= [ 1 : Row sc ] . ’ ;
45 score mat ( : , 2 : c o l s c +1) = sco r e ( : , 1 : c o l s c ) ;
46

47

48

49 %%%%%%%%%%%%%%%%%%..........AGGLOMERATIVE METHOD........%%%%%%%%%%%%%%%%%%
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50 %....................%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%....................
51

52 Z = l i n k a g e ( score mat ( : , 2 : 3 ) , ’ ward ’ , ’ euc l i d ean ’ ) ;
53 f i g u r e
54 [H,T, outperm ] = dendrogram (Z , 0 ) ;
55 %f o r p l o t t i n g pa t i en t d i a g n o s i s on X a x i s .
56 f o r i = 1 : s i z e ( pat diag , 1 )
57 outperm (2 , i )= pat d iag ( outperm (1 , i ) , 1 ) ;
58 end
59 Clus = c l u s t e r (Z , ’ maxclust ’ , 3 ) ;
60 c u t o f f = median ( [ Z( end−1 ,3) Z( end−2 ,3) ] ) ;
61 %Z( end−3 ,3) ] ) ;
62 %Z( end−4 ,3) Z( end−5 ,3) ] ) ;
63 f i g u r e
64 h = dendrogram (Z , 0 , ’ co lo rThresho ld ’ , c u t o f f ) ;
65 x t i c k l a b e l s ( outperm ( 2 , : ) )
66 x l a b e l ( ’ Given pa t i en t d i a g n o s i s ’ )
67 y l a b e l ( ’ Distance ’ )
68 %score1 vs Score2
69 %with c r o s s marked as wrong d i a g n o s i s .
70 %o r i g i n a l data
71 f i g u r e
72 p lo t ( score mat ( Clus== 1 ,2) , score mat ( Clus== 1 ,3) , ’b∗ ’ , ’ MarkerSize ’ , 7 )
73 hold on
74 p lo t ( score mat ( Clus== 2 ,2) , score mat ( Clus== 2 ,3) , ’ g∗ ’ , ’ MarkerSize ’ , 7 )
75 hold on
76 p lo t ( score mat ( Clus== 3 ,2) , score mat ( Clus== 3 ,3) , ’ r ∗ ’ , ’ MarkerSize ’ , 7 )
77 hold on
78 %drawing the o u l i n e around c l u s t e r
79 %f o r c l u s t e r 1
80 K1 = convhul l ( score mat ( Clus== 1 ,2) , score mat ( Clus== 1 ,3) ) ;
81 %f o r c l u s t e r 2
82 K2 = convhul l ( score mat ( Clus== 2 ,2) , score mat ( Clus== 2 ,3) ) ;
83 %f o r c l u s t e r 3
84 K3 = convhul l ( score mat ( Clus== 3 ,2) , score mat ( Clus== 3 ,3) ) ;
85 %X,Y Coordinates o f h u l l po in t s f o r c l u s t e r 1
86 x a x i s c l u s 1= score mat ( Clus== 1 ,2) ;
87 y a x i s c l u s 1= score mat ( Clus== 1 ,3) ;
88 p lo t ( x a x i s c l u s 1 (K1) , y a x i s c l u s 1 (K1) , ’b ’ )
89 hold on
90 %X,Y Coordinates o f h u l l po in t s f o r c l u s t e r 2
91 x a x i s c l u s 2= score mat ( Clus== 2 ,2) ;
92 y a x i s c l u s 2= score mat ( Clus== 2 ,3) ;
93 p lo t ( x a x i s c l u s 2 (K2) , y a x i s c l u s 2 (K2) , ’ g ’ )
94 hold on
95 %X,Y Coordinates o f h u l l po in t s f o r c l u s t e r 3
96 x a x i s c l u s 3= score mat ( Clus== 3 ,2) ;
97 y a x i s c l u s 3= score mat ( Clus== 3 ,3) ;
98 p lo t ( x a x i s c l u s 3 (K3) , y a x i s c l u s 3 (K3) , ’ r ’ )
99 hold on

100 x l a b e l ( ’PC−1 ’ )
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101 y l a b e l ( ’PC−2 ’ )
102 l egend ( ’ Cluster−1 ’ , ’ Cluster−2 ’ , ’ Cluster−3 ’ , ’ Locat ion ’ , ’ bes t ’ )
103 hold o f f
104

105

106

107

108

109 %%%%%%%%%%%%%%%%%%..........KMEANS METHOD........%%%%%%%%%%%%%%%%%%
110 %....................%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%....................
111

112

113 % [ idx ,C] = kmeans ( score mat ( : , 2 : 3 ) , 3 , ’ Distance ’ , ’ c i tyb lock ’ . . .
114 % , ’ r e p l i c a t e s ’ , 5 , ’ MaxIter ’ , 2 0 0 ) ;
115 %
116 % % %score1 vs Score2
117 % % %with c r o s s marked as wrong d i a g n o s i s .
118 % % %o r i g i n a l data
119 % f i g u r e
120 % subplot ( 1 , 2 , 1 )
121 % plo t ( score mat ( pat d iag== 1 ,2) , score mat ( pat d iag== 1 ,3) , ’ r ∗ ’ , ’ MarkerSize ’ , 7 )
122 % hold on
123 % plo t ( score mat ( pat d iag== 2 ,2) , score mat ( pat d iag== 2 ,3) , ’ b ∗ ’ , ’ MarkerSize ’ , 7 )
124 % hold on
125 % plo t ( score mat ( pat d iag== 3 ,2) , score mat ( pat d iag== 3 ,3) , ’ g ∗ ’ , ’ MarkerSize ’ , 7 )
126 % hold on
127 % plo t (C( : , 1 ) ,C( : , 2 ) , ’ s ’ , ’ MarkerSize ’ , 3 , ’ LineWidth ’ , 2 )
128 % hold on
129 % %drawing the o u l i n e around c l u s t e r
130 % %f o r c l u s t e r 1
131 % K1 = convhul l ( score mat ( pat d iag== 1 ,2) , score mat ( pat d iag== 1 ,3) ) ;
132 % %f o r c l u s t e r 2
133 % K2 = convhul l ( score mat ( pat d iag== 2 ,2) , score mat ( pat d iag== 2 ,3) ) ;
134 % %f o r c l u s t e r 3
135 % K3 = convhul l ( score mat ( pat d iag== 3 ,2) , score mat ( pat d iag== 3 ,3) ) ;
136 % %X,Y Coordinates o f h u l l po in t s f o r c l u s t e r 1
137 % x a x i s c l u s 1= score mat ( pat d iag== 1 ,2) ;
138 % y a x i s c l u s 1= score mat ( pat d iag== 1 ,3) ;
139 % plo t ( x a x i s c l u s 1 (K1) , y a x i s c l u s 1 (K1) , ’ r ’ )
140 % hold on
141 % %X,Y Coordinates o f h u l l po in t s f o r c l u s t e r 2
142 % x a x i s c l u s 2= score mat ( pat d iag== 2 ,2) ;
143 % y a x i s c l u s 2= score mat ( pat d iag== 2 ,3) ;
144 % plo t ( x a x i s c l u s 2 (K2) , y a x i s c l u s 2 (K2) , ’ b ’ )
145 % %X,Y Coordinates o f h u l l po in t s f o r c l u s t e r 3
146 % x a x i s c l u s 3= score mat ( pat d iag== 3 ,2) ;
147 % y a x i s c l u s 3= score mat ( pat d iag== 3 ,3) ;
148 % plo t ( x a x i s c l u s 3 (K3) , y a x i s c l u s 3 (K3) , ’ g ’ )
149 % hold on
150 % x l a b e l ( ’PC−1 ’)
151 % y l a b e l ( ’PC−2 ’)
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152 % legend ( ’HC’ , ’AD’ , ’MCI’ , ’ Location ’ , ’ best ’ )
153 % t i t l e ( ’EXPECTED : For HC, AD and MCI. ’ )
154 %
155 % subplot ( 1 , 2 , 2 )
156 % plo t ( score mat ( idx== 1 ,2) , score mat ( idx== 1 ,3) , ’ r ∗ ’ , ’ MarkerSize ’ , 7 )
157 % hold on
158 % plo t ( score mat ( idx== 2 ,2) , score mat ( idx== 2 ,3) , ’ b ∗ ’ , ’ MarkerSize ’ , 7 )
159 % hold on
160 % plo t ( score mat ( idx== 3 ,2) , score mat ( idx== 3 ,3) , ’ g ∗ ’ , ’ MarkerSize ’ , 7 )
161 % hold on
162 % plo t (C( : , 1 ) ,C( : , 2 ) , ’ s ’ , ’ MarkerSize ’ , 3 , ’ LineWidth ’ , 2 )
163 % hold on
164 % %drawing the o u l i n e around c l u s t e r
165 % %f o r c l u s t e r 1
166 % K1 = convhul l ( score mat ( idx== 1 ,2) , score mat ( idx== 1 ,3) ) ;
167 % %f o r c l u s t e r 2
168 % K2 = convhul l ( score mat ( idx== 2 ,2) , score mat ( idx== 2 ,3) ) ;
169 % %f o r c l u s t e r 3
170 % K3 = convhul l ( score mat ( idx== 3 ,2) , score mat ( idx== 3 ,3) ) ;
171 % %X,Y Coordinates o f h u l l po in t s f o r c l u s t e r 1
172 % x a x i s c l u s 1= score mat ( idx== 1 ,2) ;
173 % y a x i s c l u s 1= score mat ( idx== 1 ,3) ;
174 % plo t ( x a x i s c l u s 1 (K1) , y a x i s c l u s 1 (K1) , ’ r ’ )
175 % hold on
176 % %X,Y Coordinates o f h u l l po in t s f o r c l u s t e r 2
177 % x a x i s c l u s 2= score mat ( idx== 2 ,2) ;
178 % y a x i s c l u s 2= score mat ( idx== 2 ,3) ;
179 % plo t ( x a x i s c l u s 2 (K2) , y a x i s c l u s 2 (K2) , ’ b ’ )
180 % %X,Y Coordinates o f h u l l po in t s f o r c l u s t e r 3
181 % x a x i s c l u s 3= score mat ( idx== 3 ,2) ;
182 % y a x i s c l u s 3= score mat ( idx== 3 ,3) ;
183 % plo t ( x a x i s c l u s 3 (K3) , y a x i s c l u s 3 (K3) , ’ g ’ )
184 % hold on
185 % x l a b e l ( ’PC−1 ’)
186 % y l a b e l ( ’PC−2 ’)
187 % t i t l e ( ’ For HC,AD and MCI’ )
188 % legend ( ’ Cluster −1 ’ , ’ Cluster −2 ’ , ’ Cluster −3 ’ , ’ Location ’ , ’ best ’ )
189 % hold o f f
190

191

192 % c a l c u l a t e optimal number o f PC to use
193 % f o r i = 3 :10
194 % e v a l i n k a g e = e v a l c l u s t e r s ( score mat ( : , 2 : i ) , ’ l inkage ’ , ’ S i l houe t t e ’ , ’ k l i s t ’ , [ 1 : 3 ] ) ;
195 % eval mat ( i −2 ,1) = i −1;
196 % eval mat ( i −2 ,2) = e v a l i n k a g e . Cr i t e r i onVa lue s (2 ) ;
197 % end
198 % f i g u r e
199 % plo t ( eval mat ( : , 1 ) , eval mat ( : , 2 ) , ’−∗ ’)
200 % x l a b e l ( ’ Number o f PC’ )
201 % y l a b e l ( ’ S i l h o u t t e c o e f f i c i e n t ’ )
202 % t i t l e ( ’ For HCA’ )
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203 % hold o f f
204 %
205 % f o r i = 3 :10
206 % e v a l i n k a g e = e v a l c l u s t e r s ( score mat ( : , 2 : i ) , ’ kmeans ’ , ’ S i l houe t t e ’ , ’ k l i s t ’ , [ 1 : 3 ] , ’ d i s tance ’ , ’ c i tyb lock ’ ) ;
207 % eval mat ( i −2 ,1) = i −1;
208 % eval mat ( i −2 ,2) = e v a l i n k a g e . Cr i t e r i onVa lue s (2 ) ;
209 % end
210 % f i g u r e
211 % plo t ( eval mat ( : , 1 ) , eval mat ( : , 2 ) , ’−∗ ’)
212 % x l a b e l ( ’ Number o f PC’ )
213 % y l a b e l ( ’ S i l h o u t t e c o e f f i c i e n t ’ )
214 % t i t l e ( ’ For K−means ( Cityblock ) ’ )
215 % hold o f f
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