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Chapter 1

Introduction

An elliptic curve over a field K is a projective curve over K that comes equipped with a group structure.
We can think of an elliptic curve over K as the set of solutions in P2 to an equation of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (1.1)

where a1, a2, a3, a4, a6 ∈ K. If we let C be an elliptic curve over the field Q, then Mordell’s theorem tells
us that, under the group law on C, the set C(Q) has the structure of a finitely generated abelian group.
This gives us that the group of rational points of C over Q is isomorphic to Zr × T for some non-negative
integer r, which we call the rank of C, and a finite group T , which we call the torsion subgroup. Although
Mordell’s theorem gives us that C(Q) is finitely generated, it may still be the case that we have infinitely
many rational points on C if r ≥ 1.

If we fix an equation for C of the form (1.1) with a1, a2, a3, a4, a6 ∈ Z, then the integral points with re-
spect to this choice of equation are the solutions (X,Y, 1) with X,Y ∈ Z. We might wonder which of the
rational points on C are integral points and whether there are infinitely many of them. It turns out that
Siegel’s theorem tells us that the set of integral points of an elliptic curve over Q is always finite. Neverthe-
less, we do not know these integral points and how many points there are.

In this project, we extend the results of Appendix A of [1]. The problem that is stated in Appendix A
of [1] is as follows:

Problem: Let C be an elliptic curve over Q of rank 1 and trivial torsion. Given a collection of odd
primes p1, . . . , pl of good reduction and finite subsets Si ⊂ C(Qpi), we want to show that there is no point
in C(Q) which belongs to Si for all i.

Combining this with a technique called “quadratic Chabauty”, which is discussed in the rest of [1], this
would result into an algorithm to compute integral points on elliptic curves. To approach Problem, we
combine information coming from the group structure of C(Q) with information coming from reducing
points modulo pi and information of the logarithm function logP on C(Qp), where P ∈ C(Q) denotes a
generator of C(Q) and logP (nP ) = n. To obtain comparable information from the different primes, the
authors of [1] consider prime sequences with certain properties. For instance:

1. two odd primes p1, p2 of good reduction such that p1|ord(redp2
(P )) and p2|ord(redp1

(P )),

2. a sequence of odd primes p1, . . . , pl of good reduction such that pi+1|ord(redpi
(P )) for i ∈ {1, . . . , l−1}

and p1|ord(redpl
(P )).

In this project, we found an example where the first strategy of Appendix A of [1] fails, so we looked at a
different prime pattern, namely the following case:

3. three odd primes p1, p2, p3 of good reduction such that p1|ord(redp2
(P )) and p2|ord(redp1

(P )) and
p1 · p2|ord(redp3

(P )).
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We are also going to prove that the assumption that the elliptic curve must be torsion free is necessary for
these methods to work.

The outline of this report is as follows. In Chapter 2 of the report, we will first introduce the projec-
tive plane, which is the plane where our elliptic curves are in, and will explain more generally what algebraic
curves are in it.

After this we will work towards Bezout’s theorem and the Cayley-Bacharach theorem, which are impor-
tant theorems for the proof of the group law of elliptic curves, which will be discussed in Chapter 3.

In Chapter 3 we show that every non-singular cubic curve over a field K with a K-rational point can
be transformed with a coordinate transformation into an elliptic curve, which is a non-singular curve that
satisfies the Weierstrass equation. After this, we will define addition on these elliptic curves. We also show
how the addition gives an abelian group law on the curves and we will give explicit formulas to compute the
coordinates of the addition of two points. At the end of this chapter we will also state Mordell’s theorem
and Siegel’s theorem.

Before we can start sieving p-adic points on elliptic curves, we first have to take a look at some basics
about elliptic curves over finite fields Fp and elliptic curves over the set of p-adic numbers. After this, we
introduce the reduction modulo p map and the logarithm map, which are important maps that we need to
sieve the potential integral points that we get after using quadratic Chabauty for several primes.

In the last chapter, we will discuss the three sieving methods (1,2,3 above) and provide examples for them.
In this chapter, we will also prove that the elliptic curve must be torsion free for these methods to work.

At the end of the report one can find a code in Sagemath that is used to find the integral points on el-
liptic curves of rank 1 and with trivial torsion for the first and third case.
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Chapter 2

Projective plane and projective curves

In this thesis, we are mostly working with elliptic curves. Before we can do that, we have to define the
projective plane and algebraic curves in it. This has to be done because an elliptic curve is an algebraic
curve in the projective plane. In this chapter we are going to define projective planes, projective curves and
talk about intersection points of projective curves. To do this, we will mostly follow [5, Section 1.1], [10,
Chapter 1], [11, Section I.2] and [12, Appendix A.1, A.2 and A.3].

2.1 Projective Plane

In this section, we will introduce two constructions of the projective plane, one algebraic and one geometric.
A projective plane is defined over a field K. We define a field as follows:

Definition 2.1.1. [3, Definition 0.66] Let K be a set with two binary operations +,×. K is a field if:

1. (K,+, 0) is an abelian group,

2. (K\{0},×, 1) is an abelian group,

3. For all a, b ∈ K, we get a× (b+ c) = a× b+ a× c.
The fields we are mostly working with are Q, Fp := Z/pZ and Qp, where p is prime. For any field K, we

let K∗ denote the group of nonzero elements of K under ×. We say that a field is algebraically closed if every
non-constant polynomial p(x) ∈ K[x] contains a root in K. Note that for every field K there exists a field
K̄, which is called the algebraic closure of K, which is the smallest algebraically closed field that contains
K.

Now that we have defined what a field is, we are almost able to give the algebraic definition of a projective
plane over a field. But before we can do that, we need an equivalence relation. We call two coordinates
(a, b, c) and (a′, b′, c′), where all entries are elements in K̄, with a, b, c not all zero and a′, b′, c′ not all zero,
equivalent to each other if there exists a non-zero t ∈ K̄∗ such that a = ta′, b = tb′, c = tc′. By [a, b, c] we
denote the equivalence class {(ta, tb, tc) : t ∈ K̄∗}. We can now use this equivalence relation to define the
projective plane.

Definition 2.1.2. The projective plane over K, denoted by P2(K̄), is the set of equivalence classes of
coordinate triples [a, b, c] with a, b, c ∈ K̄ not all zero. So we have that

P2(K̄) :=
{[a, b, c] : a, b, c ∈ K̄ are not all zero}

∼
.

We will call the elements a, b, c the homogeneous coordinates for the point [a, b, c] in P2(K̄). If it is clear what
field we are using, we might write P2 instead of P2(K̄). The set of K-rational points in P2(K̄) is defined to
be the set

P2(K) := {[a, b, c] ∈ P2 : ∃ (e, f, g) ∈ K3 with [a, b, c] = [e, f, g]}.
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On a similar way we can define

P1(K̄) :=
{[a, b] : a, b ∈ K̄, are not both zero}

∼
,

where [a, b] ∼ [a′, b′] if there is a t ∈ K̄∗ such that a = ta′ and b = tb′, which is useful for the second definition
of the projective plane.

The second way to look at the projective plane is called the geometric definition of the projective plane. We
can look at the projective plane P2(K̄) as A2(K̄) ∪ P1(K̄), where A2(K̄) denotes the Euclidean plane (also
called the affine plane) over K. To see this, we follow [5, Remark 1.1.5]. Note that

P2(K̄) =
{[a, b, c] : a, b, c ∈ K̄, c 6= 0}

∼
⋃ {[a, b, 0] : a, b ∈ K̄, a, b are not both zero}

∼
.

We will denote this as U ∪ V , where

U =
{[a, b, c] : a, b, c ∈ K̄, c 6= 0}

∼
and V =

{[a, b, 0] : a, b ∈ K̄, a, b are not both zero}
∼

.

From U , we can make a map φ : U → A2(K̄), where φ([a, b, c]) = (a
c ,

b
c ). We can also make a map

ψ : A2(K̄) → U where ψ((a, b)) = [a, b, 1]. Note that φ and ψ are well defined maps which are inverse
to each other. Hence we can identify U as A2(K̄). For V , we can easily see that the correspondence
V ↔ P1(K̄) : [a, b, 0] ↔ [a, b] is well defined and bijective. Now we will give a geometric meaning to the
algebraic definition described above. As stated above, we first identify U to be A2(K̄), whereas V is identified
with P1(K̄). The maps that give this relation are represented by Figure 2.1.

Figure 2.1: Maps identifying the two descriptions of P2 [12, Table A.1].

So we now have that the projective plane can be seen as the affine plane together with some extra points,
which we call points at infinity. These points are given in such a way that two parallel lines will intersect
in one of these points. But now we want to know how many of these extra points we need. Would it be
sufficient to add only one extra point P? To check this, we take two parallel lines L1 and L2 and let them
intersect in the extra point P . If we now take two other parallel lines L′1 and L′2 such that they are not
parallel to L1 and L2, then we let them intersect in P ′. Since L1 and L′1 are not parallel, we get that they
intersect in the affine plane. We will denote this intersection with Q. If we added only one point at infinity,
then we would have that P = P ′, which makes L1 and L′1 intersect in two different points, namely P = P ′

and Q, where Q 6= P . But two lines only have one intersection point, so it is not enough to have only one
point at infinity. Instead of one extra point, we need to add an extra point for every direction in the affine
plane. All the points at infinity themselves also give a line, which we will call the line at infinity. This line
will be denoted by L∞.
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2.2 Curves in the projective plane

Now that we have defined what the projective plane is, we can define curves on the plane. But first, let us
recall the definition of a curve in the affine plane.

Definition 2.2.1. In the affine plane A2 over a field K, we define an affine algebraic curve over K as the
set of solutions of a non-constant polynomial equation f(x, y) = 0 in two variables with coefficients in K, so
C0(K̄) := {(x, y) ∈ A2(K̄) : f(x, y) = 0}.

We will now define a curve in the projective plane, but before we can do that, we have to state that
if a polynomial with three variables with coefficients in K satisfies F (tX, tY, tZ) = tdF (X,Y, Z) for ev-
ery non-zero t, then we say that F is a homogeneous polynomial of degree d. Since we have that a point
[a, b, c] = [ta, tb, tc] for any nonzero t, we need that the polynomial representing a projective curve should be
homogeneous.

Definition 2.2.2. In the projective plane P2 over a field K, we define a projective algebraic curve over K
as the set of solutions of a non-constant homogeneous polynomial equation F (X,Y, Z) = 0 in three variables
with coefficients in K, so C(K̄) := {[a, b, c] ∈ P2(K̄) : F (a, b, c) = 0}. We say that C is a curve of degree d
if F is a polynomial of degree d. If it is clear that we are working in P2(K̄), we might just call the curve C
instead of C(K̄).

Note that affine algebraic curves can be mapped to projective algebraic curves. This can be done by
homogenization, which we define as follows.

Definition 2.2.3. Let f(x, y) =
∑

i,j ai,jx
iyj be a polynomial of degree d. Then the homogenization of f

is defined as F (X,Y, Z) =
∑

i,j ai,jX
iY jZd−i−j .

From this definition it is easy to see that F is homogeneous of degree d. Note that F (X,Y, 0) is not
identically zero, so we obtain that F (X,Y, Z) does not fully contain the line at infinity.

It is also possible to invert this process. This process is called dehomogenization, which we define as follows.

Definition 2.2.4. Let F (X,Y, Z) be a homogeneous polynomial of degree d. Then the dehomogenization
of F with respect to Z is defined as f(x, y) = F (x, y, 1). Here, we call C0 : f(x, y) = 0 the affine part of the
projective curve C, where C : F (X,Y, Z) = 0.

Note that it is also possible to dehomogenize with respect to the variables X and Y . Then the deho-
mogenizations are given by f(y, z) = F (1, y, z) and f(x, z) = F (x, 1, z). This is sometimes useful to do if
we are interested in a specific point at infinity on the projective curve C. By dehomogenizing with respect
to different variables, we split a projective curve C into distinct overlapping affine parts. If we combine the
affine parts, we get the entire projective curve.

Since the points [a, b, 0] ∈ C are not a part of the affine part of the curve, we now would like to know
how we could interpret these point in terms of the affine part of the curve. In the projective plane, we had
that these points [a, b, 0] are sent to the points at infinity [a, b] ∈ P1. Our claim is that these points are the
tangent directions of the affine curve if we move towards infinity.

In the study of number theory, we are interested in finding solutions of polynomial equations where the
coordinates are in Q, or even Z. To do this, it is useful to take a look at curves where the coefficients and
solutions of our curve have specific properties.

We call a curve a rational curve if it is a curve over Q. Note that for any rational curve, we are able
to clear the denominators of all coefficients since the solutions of F (X,Y, Z) = 0 and cF (X,Y, Z) = 0 are

6



the same for some non-zero c. This gives us that any rational curve can be written as the zero set of a
polynomial with integer coordinates.

Definition 2.2.5. Let C : F (X,Y, Z) = 0 be a projective curve over a field K. Then we define the set of
K-rational points on C, denoted by C(K), as

C(K) = {[a, b, c] ∈ P2(K) : F (a, b, c) = 0}.

If we take a look at the affine part of a projective curve, then we let C0(K) denote the set of K-rational
points on C0 : f(x, y) = 0, which is given by

C0(K) = {(x, y) ∈ A2(K̄) : f(x, y) = 0 and x, y ∈ K}.

Note that we have that C(K) consists of C0(K) together with the K-rational points at infinity.

If we let C0 be an affine curve over Q, then we can define the set of integer points of C, which we de-
note by C0(Z), as

C0(Z) = {(x, y) ∈ A2 : f(x, y) = 0 and x, y ∈ Z}.

These points are also called integral points.

2.3 Intersections of Projective Curves

Recall that the the projective plane was constructed in such a way that any two distinct lines would intersect
in exactly one point. Now we would like to know how curves of higher degree intersect. Bezout’s theorem
will tell us the answer to this, but we first have to define a few concepts. The first concept that we will
introduce is the one for singular points.

Definition 2.3.1. Let C : F (X,Y, Z) = 0 be a projective curve over a field K and let P = [a, b, c] be a
point on C. We call P a singular point of C if ∂F

∂X (P ) = ∂F
∂Y (P ) = ∂F

∂Z (P ) = 0. Otherwise P is called a
non-singular point of C. If all points of C are non-singular, we call C a non-singular curve.

The second concept that has to be introduced is the one of irreducible polynomials.

Definition 2.3.2. Let C : F (X,Y, Z) = 0 be a projective curve over a field K. Then we are able to factor
F into a product of irreducible polynomials, so

F (X,Y, Z) = p1(X,Y, Z) · p2(X,Y, Z) · · · pn(X,Y, Z).

Then we call p1(X,Y, Z) = 0, . . . , pn(X,Y, Z) = 0 the irreducible components of the curve C. If F is an
irreducible polynomial itself, we say that the curve C is irreducible. We say that two curves C1 and C2 have
no common components if they have no common irreducible component.

Now that we have the needed definitions, we can work towards Bezout’s theorem. But before we will
give Bezout’s theorem, we will first take a look at what one might expect to happen.

First suppose that we have two projective curves C1 : F1(X,Y, Z) = 0 and C2 : F2(X,Y, Z) = 0 of de-
gree d1 and d2 respectively with no common components. Now let P = (X0, Y0, Z0) be an intersection
point of C1 and C2. Then we can compute the multiplicity of the intersection by some association with the
affine curve. Since P ∈ P2, we have that at least one of X0, Y0, Z0 is non-zero. If we assume that Z0 6= 0,
then the multiplicity of the intersection of P in P2 is the same as the one of (X0

Z0
, Y0

Z0
) on the affine curves

(C1)0 : f1(x, y) = F1(x, y, 1) = 0 and (C2)0 : f2(x, y) = F2(x, y, 1) = 0, where x = X
Z and y = Y

Z . Note that
the curves (C1)0 and (C2)0 also have no common components. In the case where Z0 = 0 we do the same as
before, but then with X0 6= 0 or Y0 6= 0, but without loss of generality, we will only look at the case where
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Z0 6= 0.
In the affine part, we now have that (C1)0 ∩ (C2)0 are the points (x, y) such that f1(x, y) = f2(x, y) = 0.
If we first look at f1 as a polynomial of y with coefficients as polynomials in x, we should get that it has
d1 roots y1, . . . yd1

in K̄. By substituting the solutions in f2, one gets d1 equations for x. Each of these
solutions should have d2 solutions, because each equation is a polynomial in x of degree d2. This gives us in
total d1d2 pairs (x, y) such that f1(x, y) = f2(x, y) = 0. This is the case if we allow coordinates in K̄ and
count the intersection multiplicity of solutions correctly.

We can almost state Bezout’s theorem, but before we do that we have to assign for every point P ∈ P2

and curves C1 and C2 with no common component an intersection index I(C1 ∩C2, P ). A formal definition
of I(C1 ∩C2, P ) is given on page 295 of [12], but we will only use three properties to sketch an idea of what
it is.

1. I(C1 ∩ C2, P ) = 0 if P /∈ C1 ∩ C2,

2. I(C1 ∩C2, P ) = 1 if P ∈ C1 ∩C2, P is a non-singular point of C1 and C2, and C1 and C2 do not have
the same tangent directions at P .

3. I(C1 ∩ C2, P ) ≥ 2 if P ∈ C1 ∩ C2 and P is either a singular point of C1 or C2, or C1 and C2 have the
same tangent direction at P .

We can state Bezout’s theorem by using the intersection index.

Theorem 2.3.1. (Bezout’s Theorem) [10, Theorem 1.9]. Let C1 and C2 be two projective curves over a
field K of degree d1 and d2 respectively, with no common components. Then∑

P∈C1(K)∩C2(K)

I(C1 ∩ C2, P ) ≤ d1 · d2.

If our field K is algebraically closed, then we will always get equality.

This theorem tells us for example that a cubic curve over K, which is a curve with degree three, and a
line over K will have three intersection points, provided that the line is not a component of the cubic curve.
This will be useful for the proof of the group law on elliptic curves.

Another important theorem for the proof of the group law of elliptic curves is the Cayley-Bacharach Theo-
rem, which is stated as follows:

Theorem 2.3.2. (Cayley-Bacharach Theorem) [12, Theorem A.2] Assume that C1 and C2 are two projective
curves over K of degree d1 and d2 respectively with no common components. Assume that the curves intersect
in d1d2 distinct points. Now let C3 be another projective curve over K of degree d1 + d2 − 3 which goes
through d1d2− 1 points of the intersection of C1 and C2. Then it follows that C3 also passes through the last
intersection point of C1 and C2.

Note that some points might appear with higher multiplicity, so not all intersection points have to be
different. If we apply the Cayley-Bacharach theorem to two cubic curves C1 and C2 with 9 intersection points
P1, . . . P9, we will get that if a third cubic curve C3 goes through 8 of the intersection points P1, . . . P8, then
it will also go through P9.

8



Chapter 3

Group law on elliptic curves

In this chapter, we are going to define an elliptic curve is, which is a curve with an explicitly defined group
law, which we will introduce. We will also give explicit formulas to calculate the addition of two points of
the elliptic curve.

3.1 Elliptic curves

In this section, we are going to define elliptic curves. It is also possible to put elliptic curves in a specific
form, which we call the Weierstrass normal form, we will show this later in this section.

Definition 3.1.1. Let K be a field. Then we define an elliptic curve over K, denoted by C(K̄), to be a
non-singular projective curve over K with an equation of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (3.1)

where a1, a2, a3, a4, a6 ∈ K. We call equation (3.1) a Weierstrass equation.

It is also possible to put equation (3.1) in its affine form. Then we get y2+a1xy+a3y = x3+a2x
2+a4x+a6,

which only has one point at infinity. This point can be found by taking the intersections of the homogeneous
equation with the line at infinity Z = 0. If we now substitute Z = 0 into the homogeneous equation, we are
left with X3 = 0, which has a triple root at X = 0. From this we get that there is only one point at infinity,
which is represented by [0, 1, 0]. Note that, for all a1, a2, a3, a4, a6 ∈ K, we have that [0, 1, 0] is always a
solution of equation (3.1).

It is important to know that any non-singular cubic curve with a K-rational point can be transformed
into an elliptic curve. This can be done by a coordinate transformation. But before we can show this, we
have to give a formula for the tangent line of a projective curve.

Definition 3.1.2. Let C : F (X,Y, Z) = 0 be a non-singular curve with point P = [a, b, c]. Then the tangent
line of F at P is given by

∂F

∂X
(P ) ·X +

∂F

∂Y
(P ) · Y +

∂F

∂Z
(P ) · Z = 0.

We will now show that any cubic curve can be transformed into an elliptic curve. To do this, we follow [6]
together with [12, Section 1.3]. Let us begin with an affine cubic curve given by f(u, v) = 0 with a K-rational
point P = (a

c ,
b
c ). The first step that we make is to put the curve in homogeneous form C : F (U, V,W ) = 0.

The next step is to find the tangent line of C at P . We will apply a coordinate transformation so that the
tangent line to C at P is given by Z = 0 in our new coordinate system.

By Bezout’s Theorem (Theorem 2.3.1), we get that the tangent line should also intersect the curve in
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another point, which we will call Q. Now we have to find the tangent line of C at Q and make this X = 0 in
our new coordinate system. This gives us that Q = [0, 1, 0] in the new coordinate system. All we have to do
now is take an arbitrary line through P that is not the tangent line, and choose it to be the axis Y = 0. This
gives us that P = [1, 0, 0] in our new coordinate system. From this coordinate transformation we get a curve
of the form C ′ : F ′(X,Y, Z) = F ′(m1U +m2V +m3W,m4U +m5V +m6W,m7U +m8V +m9W ) = 0, where
mi are chosen in such a way that all the above holds. Note that C ′ contains P = [1, 0, 0] and Q = [0, 1, 0],
and that the coordinate transformation gives a one-to-one correspondence between C(K) and C ′(K) if all mi

are K-rational. Hence the problem of finding K-rational points on C is equivalent to finding the K-rational
points in C ′.

C ′ is still a cubic curve, so we can write it as

C ′ : F ′(X,Y, Z) = aX3 + bX2Y + cXY 2 + dY 3 + eX2Z + fXY Z + gY 2Z + hxZ2 + iY Z2 + jZ3 = 0,

where it follows that a, b and d are zero, which we will show now. Since [1, 0, 0] and [0, 1, 0] are on the curve, we
get that F ′(1, 0, 0) = a = 0 and F ′(0, 1, 0) = d = 0. If we take the intersection of C ′ with Z = 0, we get that
it intersects twice in P and once in Q, which are the roots of the equation F ′(X,Y, 0) = XY (bX + cY ) = 0
(we already know that a and d are zero). Since F ′(X,Y, 0) intersects the curve twice in P and once in Q, it
follows that Q satisfies X = 0 and that P satisfies Y = 0 and bX+ cY = 0. If we substitute the first relation
satisfied by P into the second one, we get that b = 0. This gives us that

C ′ : F ′(X,Y, Z) = cXY 2 + eX2Z + fXY Z + gY 2Z + hxZ2 + iY Z2 + jZ3 = 0,

The next step is to dehomogenize C ′ with respect to Z. So by taking x = X
Z and y = Y

Z and dividing both
sides with c, we get that the equation of C ′ becomes of the following form

f(x, y) = xy2 + a′x2 + b′xy + c′y2 + d′x+ e′y + f ′ = 0.

This can be rewritten as follows.

f(x, y) = (x+ c′)y2 + a′x2 + b′xy + d′x+ e′y + f ′ = 0.

If we substitute x = (x′ − c′) and shuffle a bit, we get a equation of the form

x′y2 + (a′′x′ + b′′)y = c′′x′2 + d′′x′ + e′′.

By multiplying the whole equation by x′ and then substituting y = y′

x′ , we get

y′2 + (a′′x′ + b′′)y′ = c′′x′3 + d′′x′2 + e′′x′.

If we now substitute y′ = (c′′)2y′′ and x′ = c′′x′′, divide by (c′′)4 and then homogenize the resulting equation,
we obtain that our curve is indeed of the form C ′ : Y 2Z+a1XY Z+a3Y Z

2 = X3 +a2X
2Z+a4XZ

2 +a6Z
3.

If the characteristic of K is different from 2 and 3, then it is also possible to write our Weierstrass equation
in a simpler affine form, which we call the Weierstrass normal form, given by y2 = x3 + Ax + B. This
equation is obtained by first dehomogenizing with respect to Z, which gives us

y2 + (a1x+ a3)y = x3 + a2x
2 + a4x+ a6.

If we complete the square on the left hand side, we obtain that(
y +

1

2
(a1x+ a3)

)2

= x3 + a2x
2 + a4x+ a6 +

1

4
(a1x+ a3)2.

By substituting y = y′ − 1
2 (a1x+ a3), one gets

y′2 = x3 + (a2 +
1

4
a21)x2 + (a4 +

1

2
a1a3)x+ a6 +

1

4
a23.
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To get rid of the x2 term, one can substitute x = x′ − 4a2+a2
1

12 to get

y2 = x3 +Ax+B.

An example might make things clearer.

Example 3.1.1. Let us start with the cubic curve over Q given by

y2 + xy + y = x3 + x2 − 21x− 45.

If we complete the square on the left hand side, we get that(
y +

1

2
(x+ 1)

)2

= x3 + x2 − 21x− 45 +
1

4
(x+ 1)2 = x3 +

5

4
x2 − 41

2
x− 179

4
.

If we now substitute y = y′ − 1
2 (x+ 1) and x = x′ − 5

12 , one finds

y′2 = (x′ − 5

12
)3 +

5

4
(x′ − 5

12
)2 − 41

2
(x′ − 5

12
)− 179

4

= x′3 + (−5

4
+

5

4
)x2 + (

75

144
− 25

24
− 41

2
)x′ − 125

1728
+

125

576
+

205

24
− 179

4

= x′3 − 1009

48
x′ − 31159

864
,

which is in the form y2 = x3 +Ax+B. It is also possible to obtain an equation with integral A and B. This

is done by substituting y = y′

36 and x = x′

216 and then multiplying the whole equation by 66. By doing this,
one obtains

y2 = x3 − 27243x− 1682586.

In general the rational points on one curve have a one-to-one correspondence with the rational points of
another curve that is obtained by a coordinate transformation defined over Q, so we get that the problem
of rational points on a general cubic curve having a rational point is reduced to studying rational points on
cubic curves in Weierstrass normal form.

3.2 Group Law on elliptic curves

In this section, we are going to define a group law for elliptic curves geometrically. We will do this by
following the composition law ∗ from [11, Section III.2]. Note that ∗ is denoted as ⊕ in [11].

First, let C be an elliptic curve over K given by

C : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

where a1, a2, a3, a4, a6 ∈ K. The affine part of this curve is given by

C0 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Note that C0 contains every point of C, except the point at infinity [0, 1, 0]. We are going to define a group
law with identity element O = [0, 1, 0], since it is on every elliptic curve C. Note that this point is a K-
rational point, for every field K.

Now that we have an identity element, we can define addition of the two points P1 := (x1, y1) and
P2 := (x2, y2) on elliptic curves, where P3 = P1 + P2 = (x3, y3). We will do this for all distinct cases,
which are stated as follows:
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1. P1 and P2 are not the point at infinity, P1 6= P2 and x1 6= x2,

2. P1 and P2 are not the point at infinity, P1 = P2,

3. P1 and P2 are not the point at infinity, x1 = x2 and y1 6= y2,

4. P1 and P2 are both the point at infinity,

5. exactly one of P1 and P2 is the point at infinity.

Case 1: If we want to find P3 := P1 + P2 for two points P1 and P2 on the elliptic curve where P1 and P2

are not the point at infinity, P1 6= P2 and x1 6= x2, we will first take the line through P1 and P2. From
Bezout’s theorem (Theorem 2.3.1) it follows that this line has a third intersection point with the curve in
the projective plane, if we count multiplicities. Since P1 and P2 are affine points and since x1 6= x2, it
follows that the third intersection point is also affine. We will call this point P1 ∗P2. Note that if P1 and P2

are defined over K, it follows that P1 ∗ P2 is also defined over K. If we now take the line through P1 ∗ P2

and O, which is the vertical line through P1 ∗ P2, it follows again by Bezout’s theorem (Theorem 2.3.1)
that this line has a third intersection point with the curve in the projective plane, counting multiplicities.
Again, since P1 and P2 are affine points and since x1 6= x2, it follows that the third intersection point is
also affine. This point will be denoted by P3 = P1 + P2 := (P1 ∗ P2) ∗ O. Note that if P1 and P2 are
defined over K, then it follows that P3 is also defined over K. Since the line through P1 and P2 is the same
as the line through P2 and P1, it follows that P1+P2 = P2+P1, which will make the group law commutative.

Case 2: If we want to find P3 where P1 = P2 in the affine plane, we will first take the tangent line of
the curve at P1. From Bezout’s theorem (Theorem 2.3.1), it follows that this line intersects at another point,
if we count multiplicities. We denote this point by P1 ∗P1. Then we again take the line through P1 ∗P1 and
O and take the third intersection to be P1 + P1 = 2P1. Note that if the tangent line of C at P1 is vertical,
then we get that P1 + P1 = O.

Case 3: It is also a possibility for two affine points P1 and P2 that the x-coordinates are the same, but that
the y-coordinates are different. In this case we have that P1 ∗P2 = O. Now we have to take the line through
O and O, which is the line at infinity. This line again intersects in the point O, since it is the only point at
infinity on the curve. Then we get that P1 + P2 = O ∗ O = O.

Case 4: In the rare case that P1 = P2 = O, it follows that P1 + P2 = O, by the same reasoning as in
case 3.

Note that the cases 2, 3 and 4 show that every point P1 of the curve has an inverse point on the curve
(−P1), such that P1 + (−P1) = O, where the inverse of P1 6= O is the point with the same x-coordinate.

Case 5: Now we will take a look at the case where exactly one of P1 and P2 is the point at infinity.
Assume, without loss of generality, that P1 = O. Then the line through O and P2 is the vertical line through
P2, which intersects in O ∗ P2. If we now again take the vertical line through O ∗ P2 and O, we find that
O + P2 = (O ∗ P2) ∗ O = P2. Since the group law is commutative it follows that O + P2 = P2 +O = P2, so
O is indeed the identity element.

To prove that the addition really is an abelian group law, we have to prove that + has closure and that it
is associative. By the way how we defined the addition it directly follows that adding point of an elliptic
curve returns to another point on the curve, which gives us that + has closure. So the only thing left to
prove that + really defines an abelian group law is to prove that + is associative. For + to be associa-
tive, we need that (P1 + P2) + P3 = P1 + (P2 + P3). Note that (P1 + P2) + P3 = ((P1 + P2) ∗ P3) ∗ O
and P1 + (P2 + P3) = (P1 ∗ (P2 + P3)) ∗ O, so to prove that + is associative, it is sufficient to prove that
(P1 + P2) ∗ P3 = P1 ∗ (P2 + P3). To get (P1 + P2) ∗ P3, we first need P1 + P2, which is the third intersection
of the line through P1 ∗ P2 and O. By taking the third intersection of the line through (P1 + P2) and P3,
we find (P1 + P2) ∗ P3. In a similar way, we can find P1 ∗ (P2 + P3). Figure 3.1 gives a visualization of the
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lines that are needed to find (P1 + P2) ∗ P3 and P1 ∗ (P2 + P3) for the curve y2 = x3 − 8x + 4 over R. We
can now see that the points

O, P1, P2, P3, P1 ∗ P2, P1 + P2, P2 ∗ P3, P2 + P3 (3.2)

are all on a dashed line and a solid line (O is on a dashed line and a solid line because we have a dashed
vertical line and a solid vertical line). To see if (P1 +P2) ∗P3 = P1 ∗ (P2 +P3), we have to check whether the
line through P1 +P2 and P3 intersect the curve at the same point as the line through P1 and P2 +P3. Note
that each line is given by a linear equation. If we now define C1 to be the curve obtained by multiplying
the three linear equations of the solid lines and C2 to be the curve obtained by multiplying the three linear
equations of the dashed lines, we get that C1 and C2 are two cubic curves with no common component and
nine intersection points, namely the eight of (3.2) and the intersection of the line through P1 + P2 and P3

and the line through P1 and P2 + P3. Since C goes through the eight points listed in (3.2), it follows from
Cayley-Bacharach theorem (Theorem 2.3.2) that C must also go through the ninth intersection. From this
it follows that (P1 +P2) ∗P3 = P1 ∗ (P2 +P3), which proves that + is indeed associative, so + really defines
an abelian group law.

Figure 3.1: Visualization of Associativity law of the elliptic curve y2 = x3 − 8x+ 4 over R.

3.3 Explicit formulas

Now that we have defined a group law on elliptic curves, one might ask whether or not there are explicit
formulas to compute −P1 and P3 = P1 + P2 for the elliptic equation. The answer is yes, but there are
a few different cases we have to keep in mind [11, Group Law Algorithm 2.3]. A few of these cases were
already discussed when we defined the addition law, namely the cases where P2 = −P1 and the one where
at least one of P1 and P2 was the point at infinity. In the following part, we will not be looking at those cases.

First we want to find for any point P1 = (x1, y1) ∈ C − O the point −P1 = (x−1, y−1) ∈ C. We al-
ready know that P1 and −P1 have the same x-coordinate, so x−1 = x1. If we substitute this coordinate in
C0, one gets

y2 + a1x1y + a3y = x31 + a2x
2
1 + a4x1 + a6.

13



Bringing everything to one side gives

y2 + (a1x1 + a3)y − x31 − a2x21 − a4x1 − a6 = 0.

This equation has two roots, namely y1 and y−1, so

y2 + (a1x1 + a3)y − x31 − a2x21 − a4x1 − a6 = (y − y1)(y − y−1).

If we look at the coefficient in front of the y term, we get that

a1x1 + a3 = −y1 − y−1.

From this it follows that
y−1 = −y1 − a1x1 − a3.

This gives us that −P1 = (x1,−y1 − a1x1 − a3).

We are now going to find the explicit formulas for P3 = P1 +P2, where Pi = (xi, yi) ∈ C0, for i = 1, 2, 3 and
Pi ∗ Pj = (xi,j , yi,j) ∈ C0 for i, j = 1, 2. To do this, we have to distinguish between two cases, one for which
P1 6= P2 and one for which P1 = P2, where in both cases we have that P1 6= −P2 and neither P1 nor P2 is
the point at infinity.
We will first take a look at the case P1 6= P2. Then the line through P1 and P2 is given by the equation

y = λx+ µ, where λ =
y2 − y1
x2 − x1

and µ = y1 − λx1 = y2 − λx2.

If we now substitute y = λx+ µ into the equation, we get

(λx+ µ)2 + a1x(λx+ µ) + a3(λx+ µ) = x3 + a2x
2 + a4x+ a6.

If we bring everything to one side, we can find that

x3 + (a2 − λ2 − a1λ)x2 + (a4 − 2λµ− a1µ− a3λ)x+ a6 − µ2 − a3µ = 0.

This equation has three roots, namely x1, x2 and x1,2, so

x3 + (a2 − λ2 − a1λ)x2 + (a4 − 2λµ− a1µ− a3λ)x+ a6 − µ2 − a3µ = (x− x1)(x− x2)(x− x1,2).

If we now look at the coefficient in front of the x2 term, we see that

a2 − λ2 − a1λ = −x1 − x2 − x1,2.

From this it follows that

x1,2 = λ2 + a1λ− a2 − x1 − x2 and y1,2 = λx1,2 + µ.

Since P3 is the inverse of P1,2 it follows that x3 = x1,2 = λ2+a1λ−a2−x1−x2 and y3 = −y1,2−a1x1,2−a3 =
−λx3 − µ− a1x3 − a3.

Before we discuss the case where P1 = P2, we are going to make an observation. Recall that C0 is given by
the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

If we take the derivative on both sides with respect to x, we get that

2y
dy

dx
+ a1y + a1x

dy

dx
+ a3

dy

dx
= 3x2 + 2a2x+ a4.

By bringing the dy
dx terms to the left hand side and the other terms to the right hand side, we get that

(2y + a1x+ a3)
dy

dx
= 3x2 + 2a2x+ a4 − a1y.
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From this we can obtain that
dy

dx
=

3x2 + 2a2x+ a4 − a1y
2y + a1x+ a3

.

Now we are ready to find P3 = P1 +P2 for the case where P1 = P2. In this case, we will call P3 = 2P1. The
“line through” P1 and P2, is the tangent line to the cubic at P1, which is given by the equation y = λx+ µ,
where

λ =
dy

dx

∣∣∣∣
P1

=
3x21 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
.

The remaining formulas are the same as the case where P1 6= P2, so µ = y1 − λx1, x3 = λ2 + a1λ− a2 − 2x1
and y3 = −λx3 − µ− a1x3 − a3.

3.4 Mordell’s Theorem and Siegel’s Theorem.

As stated before, we are interested in finding the integral points of elliptic curves over Q. But we will first
take a look at rational points on elliptic curves over Q, since we get useful information from it. The first
useful information is coming from Mordell’s theorem, which is stated as follow:

Theorem 3.4.1. (Mordell’s Theorem)[12, Page 16] Let C be an elliptic curve over Q with a rational point.
Then C(Q) is finitely generated.

This gives us that if we have a specific finite set of rational solutions for an elliptic curve C, we can obtain
every rational point on C by adding points of this finite set.
Mordell’s theorem also gives us that the group of rational points of an elliptic curve over Q is isomorphic to
Zr × T , for some non-negative integer r, which is called the rank, and a finite group T , which is the group
of elements of finite order and is called the torsion subgroup.

Although Mordell’s theorem gives us that the group of rational points is finitely generated, it may still
be the case that the elliptic curve C has infinitely many rational points. We might ask ourselves which of
those points are integer points and whether there are infinitely many of them or not. One might think that
there are infinitely many integer points on C, but the next theorem shows us that this is not the case.

Theorem 3.4.2. (Siegel’s Theorem)[12, Theorem 5.1] Let C : f(x, y) = 0 be an affine elliptic curve over Q
with integer coefficients. Then C has only a finite set of points with integer coordinates.

Note that this set is not a group, because the point at infinity is never an integral point. Although Siegel’s
theorem gives us that there are finitely many integral points, it sadly does not give us the integral points. In
this project, we will be interested in situations where r = 1 and T = O, so that there is only a single generator.
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Chapter 4

Elliptic curves over Fp and Qp

4.1 Rational points over Finite Fields

We will now take a look at some basics about elliptic curves over finite fields Fq, where q = pn for a prime
p and a positive integer n. In this project, we are only considering the case where n = 1. On these finite
fields, we define for elliptic curves an addition law on it in the same way as we did in the previous chapter,
where we see y

x as yx−1. This addition law will again define an abelian group.

Now we let C be an elliptic curve over Fp given by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with a1, a2, a3, a4, a6 ∈ Fp.
We want to estimate the number of Fp-rational points on the elliptic curve over Fp. But before we do that,
we will take a look at an example.

Example 4.1.1. Let C be the elliptic curve given by

C : f(x, y) = y2 − (x3 − 8x+ 4) = 0.

If we take this curve over the field F5, we obtain the following equation:

C : y2 − (x3 + 2x+ 4) = 0.

If we want to find the set of F5-rational points of the curve, we get that x and y must be in F5, so we only
have 5 possibilities for x and 5 for y. First we will substitute all possibilities for x in the equation x3 +2x+4.
Now we will check whether the result gives a square in F5. If we do this, and include the point at infinity
O, we obtain the following 7 points:

C(F5) = {(0,±2), (2,±1), (4,±1),O}.

From this we get that C(F5) is a cyclic group of order 7.
Now we will show how the addition formulas work. Let P = (0, 2) = (x1, y1) ∈ C(F5). If we want to see
what element in C(F5) is equal to 2P = P + P = (x3, y3), we follow the instructions from the previous
chapter. By doing this, we find that λ = 2

4 = 2 · 4−1 = 2 · 4 = 8 ≡ 3 mod 5 and µ = y1 − λx1 = 2− 0 = 2.
Using this, we get that x3 = λ2 − 2x1 = 9 ≡ 4 mod 5 and y3 = −λx3 − µ = −12 − 2 = −14 ≡ 1 mod 5,
hence 2P = (4, 1). By applying the rules from the previous chapter again and again, we find that

3P = (2, 1), 4P = (2,−1), 5P = (4,−1), 6P = (0,−2) and 7P = O.

In the example it is clear that C(F5) only has finitely many points for our curve C. In fact, for all
elliptic curves C and all primes p we have that C(Fp) is a finite group. This is the case because x and y
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only have a finite number of possibilities. Because C(Fp) is a finite group, it can always be finitely generated.

One might ask how many points C(Fp) has, and if there is a formula to determine the number of points in
it. Sadly, such a formula does not exist, but the Hasse-Weil theorem gives a good approximation for this
number. This theorem is stated as follows.

Theorem 4.1.2. (Hasse-Weil Theorem)[12, Theorem 4.1] Let C be an elliptic curve defined over Fp. Then

p+ 1− 2
√
p ≤ #C(Fp) ≤ p+ 1 + 2

√
p.

4.2 p-adic numbers

In this section we will introduce the p-adic numbers Qp for primes p. To do this, we will mostly take a look
at [4, Section 2].

Before we can introduce the p-adic numbers, we first have to introduce a certain valuation. Recall that
a valuation on a field K is a map | | : K → R which satisfies the following three properties [4, Definition
2.1]:

1. |x| ≥ 0 for all x ∈ K, with |x| = 0⇔ x = 0.

2. |xy| = |x| · |y| for all x, y ∈ K.

3. |x+ y| ≤ |x|+ |y| for all x, y ∈ K.

We will now define the specific valuation which is needed for the definition of the p-adic numbers.

Definition 4.2.1. Let p be a prime and take x ∈ Q. Note that we can write x as x = pr a
b , such that

p 6 |a, p 6 |b. Then the p-adic valuation of x is denoted by |x|p and is given by: |x|p = |pr a
b |p = p−r if x is

non-zero and |0|p is defined to be 0. We define the p-adic distance between two elements x and y of Q to be
dp(x, y) = |x− y|p, where dp is a metric.

To check whether this is indeed a valuation, we must check the three properties. The first property is
easily seen, because p−r > 0 for all primes p and all integers r, and since p−r 6= 0 we get that |x|p = 0 if
and only if x = 0. To check if the second property holds, we take x = pr a

b , y = ps c
d for prime p and integers

a, b, c, d such that p does not divide any of them. Then

|xy|p = |pr+s ac

bd
|p = p−(r+s) = p−r · p−s = |x|p · |y|p.

For the third property, we will say without loss of generality that r ≤ s. Then it follows that

|x+ y|p = |p
rad+ psbc

bd
|p = |pr p

tf

bd
|p = p−(r+t) ≤ p−r ≤ p−r + p−s = |x|p + |y|p,

for some t ≥ 0 and f ∈ Z.

For example, we have for x = 233−85−1 that |x|2 = 2−3, |x|3 = 38, |x|5 = 5 and |x|p = 1 for primes
p ≥ 7.

Now that we defined the p-adic valuation, we can define the set of p-adic numbers.

Definition 4.2.2. The set of p-adic numbers, denoted by Qp, is the completion of Q for the metric dp(x, y),
and is the smallest field containing Q which is complete with respect to | |p.
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We say that any two elements a, b ∈ Qp are congruent modulo pn, denoted by a ≡ b(modpn), if and only
if |a− b|p ≤ p−n.

Note that any element x ∈ Qp can be written as follows:

x =

∞∑
n=N

anp
n, where N ∈ Z, aN 6= 0 and each an ∈ {0, . . . , p− 1}.

From this we get that |x|p = p−N . Note that if N ≥ 0, then it follows that |x|p ≤ 1. The set Zp := {x ∈
Qp : |x|p ≤ 1} is a subring of Qp, called the ring of p-adic integers. [2, Page 6]

4.3 Reduction Modulo p

In this section we are going to introduce the reduction modulo p map. We will mostly be looking at [4,
Section 3], [11, Section VII.1 and VII.2] and [12, Appendix A.5] to do this.

Before we introduce the reduction modulo p map, we first have to introduce normalized coordinate triples.

Definition 4.3.1. A homogeneous coordinate triple [a, b, c] ∈ P2(Qp) is said to be normalized if the largest
p-adic valuation of a, b, c is 1. This gives us that a, b and c are in Zp and at least one of the coordinates can
be written as

∑∞
n=0 anp

n where a0 6= 0 and an ∈ {0, . . . , p− 1} for all n.

It is possible for any point P = [a, b, c] in P2(Qp) to be represented by a normalized coordinate triple.
This can be done by dividing a, b and c with the value with the greatest p-adic valuation. Note that P does
not change if we do this.

We will now introduce the reduction mod p map, for any fixed prime p. To do this, we first let ã ∈ Fp = Z/pZ
denote the residue modulo p for any p-adic integer a ∈ Zp. Note for any normalized coordinate triple [a, b, c]
that a, b and c are not all divisible by p. So, for each normalized coordinate triple [a, b, c] for a point
P ∈ P2(Qp), we let [ã, b̃, c̃] define a point P̃ ∈ P2(Fp). This point P̃ is not determined by the choice
of coordinates of P , because the different choices of homogeneous coordinate triples of P are related by
multiplication with elements with p-adic valuation 1. This gives us a well-defined map

P2(Qp)→ P2(Fp),

where P 7→ P̃ . This map is called the reduction mod p map, which we will denote by redp [4, Definition 3.1].

Definition 4.3.2. Let C : F (X,Y, Z) = Y 2Z+a1XY Z+a3Y Z
2−(X3+a2X

2Z+a4XZ
2+a6Z

3) = 0 denote
a projective elliptic curve over Qp. So a1, a2, a3, a4, a6 ∈ Qp. We call F normalized if a1, a2, a3, a4, a6 ∈ Zp.

Note that, since the coefficients of Y 2Z and X3 are equal to ±1, we get that the largest p-adic valuation
of the coefficients of a normalized F is one if a1, a2, a3, a4, a6 ∈ Zp.

It is also possible to normalize any polynomial equation for an elliptic curve over Qp [11, Proposition 1.3.a].
This can be done by the substitution (X,Y, Z) 7→ (u−2X,u−3Y,Z) for some specific non-zero u ∈ Qp. This
will lead to the following equation:

F (X,Y, Z) = u−6Y 2Z + u−5a1XY Z + a3u
−3Y Z2 − (u−6X3 + u−4a2X

2Z + u−2a4XZ
2 + a6Z

3) = 0.

By multiplying both sides with u6, we get the next equation:

F (X,Y, Z) = Y 2Z + ua1XY Z + a3u
3Y Z2 − (X3 + u2a2X

2Z + u4a4XZ
2 + u6a6Z

3) = 0.
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So if we pick u in such a way that uiai ∈ Zp, then we have a normalized polynomial F .

Now let F be a normalized polynomial and let F̃ denote the polynomial that is obtained by reducing the co-
efficients of F modulo p. Then F̃ is non-zero and defines a curve C̃ over Fp. Since x→ x̃ is a homomorphism,

we get for any normalized coordinate triples [a, b, c] with F (a, b, c) = 0, that F̃ (ã, b̃, c̃) = 0. Hence if P is
a Qp-rational point on C, then P̃ is a point on C̃. This gives that the reduction mod p maps C(Qp) to C̃(Fp).

The reduction mod p map respects the group law on elliptic curves. To find this, one first has to look
at the reduction of the intersection of two curves and the intersection of the reduction of two curves.
If we have two curves C1 and C2, then it follows that

˜(C1(Qp) ∩ C2(Qp)) ⊂ C̃1(Fp) ∩ C̃2(Fp).

One might say that we can apply Bezout’s theorem (Theorem 2.3.1) to find that ˜(C1 ∩ C2) = C̃1 ∩ C̃2 since
the reduced curves have the same degree as the original curves. But this is not the case, since we do not
have that the ground field is algebraically closed. Nonetheless everything works out if the intersection points
over Qp are Qp- rational. To prove that the reduction map respects the group law, we only need to discuss
the case where one of the curves is an elliptic curve and the other a line.

Theorem 4.3.1. [12, Proposition A.5] Let C be a projective elliptic curve over Qp and L be a projective
line over Qp, where L is not a component of C. Suppose that all intersection points over Qp are Qp-rational.

Let C ∩ L = {P1, P2, P3}, where Pi is repeated in the list as many times as its multiplicity. If L̃ is not a
component of C̃, then C̃ ∩ L̃ = {P̃1, P̃2, P̃3} with the correct multiplicity.

Theorem 4.3.1 can be applied to show that the reduction mod p map respects the group law on elliptic
curves, which will be proven in the next theorem.

Theorem 4.3.2. [12, Corollary A.7] Let C be a projective elliptic curve over Qp and let O = [0, 1, 0] be the

origin for the group law on C. Suppose that C̃ is non-singular and take Õ = O as the origin for the group
law on C̃. Then the reduction mod p map P 7→ P̃ is a group homomorphism for C(Qp)→ C̃(Fp).

Proof. Let P,Q ∈ C(Qp) and let R = P + Q. Then there are projective lines L1 and L2 over Qp and a
Qp-rational point S = P ∗Q ∈ C(Qp) such that

C ∩ L1 = {P,Q, S} and C ∩ L2 = {S,O, R}.

If we now apply Theorem 4.3.1, then we get that

C̃ ∩ L̃1 = {P̃ , Q̃, S̃} and C̃ ∩ L̃2 = {S̃, Õ, R̃}.

From this one can conclude that P̃ + Q̃ = R̃, so the reduction mod p map P 7→ P̃ is a group homomorphism
C(Qp)→ C̃(Fp).

As for later purpose we want to know which affine points P of a projective elliptic curve over Qp reduce
to the point at infinity. The next theorem will tell us this.

Theorem 4.3.3. [13, Proposition 3.1.4] Let C : F (X,Y, Z) = 0 be a projective elliptic curve over Qp where

F is normalized. Let P = (a, b, 1) ∈ C with a, b ∈ Qp. Then P̃ = Õ if and only if a and b are not both in
Zp.

A proof of this theorem can be found on page 23 of [13]. We will denote the set with all points of the
curve that reduce to the point at infinity by C1(Qp). This set is a subgroup, because it is the kernel of the
reduction map, which is an homomorphism. Note that for a point P = (a, b, 1) ∈ C1(Qp) we also have that
|a|p < |b|p.
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4.4 Logarithm map

In this section we are going to introduce the logarithm map, which maps C(Qp) to Qp. To do this, we first
define a homomorphism g : C1(Qp) → Qp as follows. If Q = (x, y) is an affine point in C1(Qp) we define
g(Q) to be the formal logarithm from page 127 of [11] evaluated at −x

y , which is given by

g(Q) = −x
y

+
c1
2

(−x
y

)2 +
c2
3

(−x
y

)3 + . . . ∈ Qp, (4.1)

for some ci ∈ Zp; we also set g(O) = 0. Note, since we are working in C1(Qp), we get that Q = (x, y) can be
represented by (pr a

b , p
s c
d , 1), where x = pr a

b , y = ps c
d , p does not divide the coefficients a, b, c and d, s < r

and s < 0. From this we get that | − x
y |p = | − p(r−s) adbc |p = p−(r−s) < 1, which tells us that (−x

y )n → 0 in

Qp as n → ∞. Then [4, Theorem 2.12] tells us that
∑∞

n=1(−x
y )n is convergent in Qp. Since each ci ∈ Zp,

we get that g(Q) converges at −x
y if cn−1

n (−x
y )n tends to 0 p-adically as n tends to infinity. To show this,

we first have to note that

|cn−1
n

(−x
y

)n|p ≤
p−n

|n|p
. (4.2)

If we write n as pordp(n) ·m, where p 6 |m, then we get that the right hand side of (4.2) can be written as
p−n+ordp(n). Since n goes faster to infinity than ordp(n), it follows that the right hand side of (4.2) goes
to zero, which also gives us that cn−1

n (−x
y )n goes to zero p-adically, hence g(Q) coverges at −x

y . Note that,

since ci ∈ Zp, | − (x
y )|p < 1 and n > ordp(n), we get that it follows that g(Q) ∈ pZp.

The fact that g is a homomorphism follows from page 132 of [11, Theorem 6.4(a)].

It is also possible to extend g to C(Qp) → Qp. This is done as follows. If Q /∈ C1(Qp), then we let n
be a non-zero integer such that nQ ∈ C1(Qp). Then we define g(Q) := g(nQ)/n. Note that such an n always
exists, because if we pick n = #C(Fp), then red(nQ) = n · red(Q) = O.

The new map g is also a homomorphism, which we will show now. Let Q1, Q2 ∈ C(Qp) and let n,m
be non-zero integers such that nQ1,mQ2 ∈ C1(Qp). Then it also follows that nmQ1, nmQ2 ∈ C1(Qp). From
this we get that

g(Q1) + g(Q2) =
g(nQ1)

n
+
g(mQ2)

m

=
m · g(nQ1) + n · g(mQ2)

nm

=
g(mnQ1) + g(nmQ2)

nm

=
g(nm(Q1 +Q2))

nm
= g(Q1 +Q2).

Now that we have defined the homomorphism g, we can define a logarithm map from C(Qp) to Qp. This
logarithm map is defined as follows

logP,p(z) = logP (z) =
g(z)

g(P )
.

Note that since g is a homomorphism it follows that if z = aP for some a ∈ Z, then logP,p(z) = g(aP )
g(P ) =

ag(P )
g(P ) = a.

So all we need to know now is how to compute g on C1(Qp). In fact, we need a bit less: we need g(z)
g(P )

mod p. Note that for any Q ∈ C(Qp) there exists a non-zero n ∈ Z such that nQ ∈ C1(Qp). Recall that,
for any nQ ∈ C1(Qp) it follows that g(nQ) ∈ pZp, so we get that g(Q) ∈ pZp, provided that p does not
divide n. From this it follows in general that g(z) and g(P ) will be 0 mod p, so we need to know at least
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g(z) and g(P ) modulo p2 to hope to know g(z)
g(P ) . But by the way that we defined the map g it is clear that

if Q ∈ C1(Qp) for an odd p, then g(Q) = −x(Q)
y(Q) mod p2. Now let n ∈ Z such that nz, nP ∈ C1(Qp). If we

have that |x(nP )
y(nP ) |p = p−1, then

logP,p(z) ≡
x(nz)
y(nz)

x(nP )
y(nP )

mod p.

Note that if g(z)
g(P ) /∈ Zp, then there does not exist an a ∈ Z such that z = aP .
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Chapter 5

Sieving p-adic points on elliptic curves

In this chapter we discuss some possible extension of and some limitations of Appendix A of [1]. To do this
it is useful to first explain what is happening in the Appendix.

5.1 Sieving with pseudo-amicable primes

Let C denote an elliptic curve of rank 1 over Q and suppose that we have a subset A of C0(Z). Then the
goal is to prove that A = C0(Z). To do this, [1] first assumes that C(Q) is torsion-free. Then, by Mordell’s
theorem (Theorem 3.4.1) it follows that C(Q) ∼= Z, which gives us that C(Q) can be generated by a single
point of the curve. Let us fix a choice of generator P . Then it follows that if R ∈ C(Q), then there is an
n ∈ Z such that R = nP . If R = (x, y) is an integral point, then x, y ∈ Zp for any prime p, so by Theorem
4.3.3 we get that the reduction modulo p of R is not the point at infinity of C(Fp). Since C(Q) is a subgroup
of C(Qp) and the reduction map red : C(Qp)→ C(Fp) is a homomorphism, we have

red(R) = red(nP ) = n · red(P ).

We will now try to prove that A = C0(Z) by using quadratic Chabauty for several primes. Quadratic
Chabauty is a method that produces, for all primes p of good reduction, finitely many finite subsets of
C(Qp), denoted by R1,p . . . , Rk,p with the property that if z is an integral point, then there exists an n
where 1 ≤ n ≤ k such that for every prime p, z ∈ Rn,p. Here k ∈ Z is dependent on C, but independent of p,
and we also have that n is independent of p. We try to prove that for any n, there is no point in C0(Z)−A
such that it is in all Rn,p for all primes p.

We will use quadratic Chabauty on primes with certain conditions. A prime p is called a prime of good
reduction for C if the reduction of C modulo p gives a non-singular curve over Fp. We call a pair of distinct
primes (p1, p2) amicable if

p2 = #C(Fp1
) and p1 = #C(Fp2

),

and two distinct primes (p1, p2) are called pseudo-amicable if

p2 | #C(Fp1
) and p1 | #C(Fp2

).

Method 1: Suppose that p1 and p2 are odd primes of good reduction for C such that p1|ord(redp2(P )) and
p2|ord(redp1

(P )). Then it follows that (p1, p2) is pseudo-amicable. Now quadratic Chabauty is applied to
C for p1 and p2.

Step 1.1: Suppose that z ∈ Rn,p1
for some n. Since we are trying to reach a contradiction, we assume that

z is also an element of C0(Z). Then z is also in C(Q), so z = aP for some a ∈ Z. We do not know a, but
we can compute A := a mod p2 from the reduction map C(Qp1) → C(Fp1) and B := a mod p1 from the
logarithm map. It might be a little bit hard to see how we get A, so we will include some details about it.
We get this A by first reducing modulo p1. This will give a · redp1

(P ) = redp1
(aP ) = redp1

(z), where a is
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known modulo ord(redp1(P )). Since p2|ord(redp1(P )), we can also compute A := a mod p2. Note that if P
does not reduce to a generator of C(Fp1), then it might be possible that such an A does not exist.

Step 1.2: Since we assumed that z ∈ C0(Z), it follows that z ∈ Rn,p2
. So there must be a z2 ∈ Rn,p2

such
that logP,p2

(z2) = Amod p2 and redp2
(z2) = (l·p1+B)·redp2

(P ) for some l ∈ {0, . . . , (ord(redp2
(P ))/p1)−1}.

If such a z2 does not exist, then we know that z is not a point of C0(Z).

Example 5.1.1. Let C be the elliptic curve given by

y2 = x3 − 8x+ 4.

According to [8] the rank of C is 1 and the torsion is trivial over Q. We also have that P = (0, 2) is a
generator of C(Q).

If we compute aP for a ∈ {−10,−9 . . . , 9, 10}, we find a set of integral pointsA = {(0,±2), (−3,±1), (4,±6)}.
We will now show that A = C0(Z) by using Method 1 for the pseudo-amicable pair (p1, p2) = (7, 5), where
p1 = ord(redp2(P )) and 2 · p2 = ord(redp1(P )).

If we apply quadratic Chabauty for p1, we find a set of 10 points in C(Q7) divided over two subsets,
which could be integral points that are not in A. We call these points z1(i), where 1 ≤ i ≤ 10, where z1(1)
is given by

(2 · 7 +O(72), 5 + 3 · 7 +O(72)).

Each of these points belongs to one of the two subsets, which have an index n(i). For z1(1), we have that
n(1) = 1.

We will now compute A and B from Step 1.1 for z1(1). To compute A, we use the reduction mod p1
map, which gives us that red7(z1(1)) = (0, 5). We find that (0, 5) is equal to 4P in C(F7). From this it
follows that A = 4, i.e. a is congruent to 4 mod 5.
We will now compute B by using the logarithm map. To do this we first have to note that 5P =(
4 · 7−2 +O(7−1), 7−3 +O(7−2)

)
∈ C1(Q7), and that 5z1(1) = (2 · 7−2 + O(7−1), 7−3 + O(7−2)) ∈ C1(Q7),

so we get that logP,7(z1(1)) = 4 +O(7) ≡ 4 mod 7. From this it follows that B = 4, i.e. a is congruent to 4
mod 7. Hence we obtain for z1(1) that (a mod 5, a mod 7, n(1)) is given by (4, 4, 1).

If we apply Step 1.1 for all 10 points z1(i), we find the following possibilities for (a mod 5, a mod 7, n(i)):

(4, 4, 1), (1, 3, 1).

If we apply quadratic Chabauty for p2, we find a set of 6 points in C(Q5) divided over two subsets, which
could be integral points that are not in A. We call these points z2(i), where 1 ≤ i ≤ 6, where z2(3) is given
by

(2 + 4 · 5 +O(52), 4 + 4 · 5 +O(52)).

Each of these points also has an index n(i). In particular, n(3) = 1.

We will now compute A and B from Step 1.2 for z2(3), and check whether they have the same prop-
erties as the result of Step 1.1. To compute B, we use the reduction modulo p2 map, which gives us that
red5(z2(3)) = (2, 4). We find that (2, 4) is equal to 4P in C(F5). From this it follows that B = 4, i.e. a is
congruent to 4 mod 7.

Since we now have that a is congruent to 4 mod 7, we get that z2(3) is a potential integral point that is not
in A if we get that A = 4 from the logarithm map. To check whether this is true we first have to note that
7P = (4·5−2+O(5−1), 2·5−3+O(5−2)) ∈ C1(Q5), and that 7z2(3) = (5−2+O(5−1), 4·5−3+O(5−2)) ∈ C1(Q5),
so we get that logP,5(z2(3)) = 2 + O(5) ≡ 2 mod 5. This gives us that A = 2 6= 4, so we get that z2(3) is
not an integral point of C. In fact, if we apply Step 1.2 for all 6 points z2(i), we find that there is no point
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such that it has the same possibilities for (a mod 5, a mod 7, n(i)) as the ones after Step 1.1, so none of the
points z1(i) are integral points. Hence we have shown that (0,±2), (−3,±1), (4,±6) are the only integral
points on C. A code for this can be found in Appendix A.1. However all the computations could be done
by hand using the formulas in the previous chapters.

More generally, we call a sequence of primes p = (p1, p2, . . . , pl) an aliquot cycle of length l for C
if pi+1 = #C(Fpi

), where i is taken modulo l. A sequence of primes is called a pseudo-aliquot cycle if
pi+1 | #C(Fpi).

Method 2: Suppose that we have a sequence of primes p = (p1, . . . pl), such that pi+1|ord(redpi
(P )). Then

it follows that p is pseudo-aliquot. We will now again apply quadratic Chabauty to C for the primes p1 . . . pl.

Step 2.1: Suppose that z ∈ Rn,p1
for some n. Also assume that z ∈ C0(Z). Then z is also in C(Q),

which gives that z = aP for some a ∈ Z. Here a is not known, but we can compute A1 := a mod p1 from
the logarithm and A2 := a mod p2 from the reduction map C(Qp1)→ C(Fp1).

Step 2.2: Since we assumed that z ∈ C0(Z), it also follows that z ∈ Rn,p2
. So there must be a z2 ∈ Rn,p2

such that logP,p2
(z2) = A2 mod p2. If this is the case, then we can also find an A3 such that A3 := a mod

p3 from the reduction map C(Qp2) → C(Fp2). Then, since z ∈ C0(Z) it also follows that z ∈ Rn,p3 , where
we can repeat step 2.2 until l − 1.

Step 2.l: Since we assumed that z ∈ C0(Z), it also follows that z ∈ Rn,pl
. So there must be a zl ∈ Rn,pl

such
that logP,pl

(zl) = Al mod pl and redpl
(zl) = (k ·p1+A1)·redpl

(P ), for some k ∈ {0, . . . , (ord(redpl
(P ))/p1)−

1}. We will call the collection of the points zi a lift of p. If no such lift exists, then we have that z is not in
C0(Z). If this holds for all elements in the union over n of Rn,p1 , then we get that A = C0(Z).

5.2 Extra condition

It might be possible that not all points in C(Qp1) are eliminated after using Method 1, i.e. there exists a
z ∈ C(Qp1

) which is not eliminated. If this is the case, we check if there is an odd prime p3 of good reduction
such that p1 · p2 | ord(redp3

(P )), which might be useful to eliminate the remaining points in Method 3.

Method 3: Suppose that p1, p2 and p3 are odd primes of good reduction for C such that p1|ord(redp2
(P )),

p2|ord(redp1(P )) and p1 · p2 | ord(redp3(P )) and suppose that Method 1 does not eliminate all potential
integral points in C(Qp1) that are not in A. Then we first apply quadratic Chabauty to C for the prime p3.

Step 3.1: Since we assumed that there is a point z such that z ∈ C0(Z) − A, it follows that z ∈ Rn,p3
,

where n is the same as the one of the point that survived Method 1, and that z ∈ C(Q). So there must
be a z3 ∈ Rn,p3

such that z3 = aP for some a ∈ Z. This a is unknown, but we are able to compute M := a
mod p1 · p2 from the reduction map C(Qp3)→ C(Fp3). From this we are also able to compute A′ := a mod
p2 and B′ := a mod p1. Recall that we already have that A = a mod p2 and B = a mod p1 from Method
1. So for z to be an integral point, we need that A′ = A and B′ = B. If there does not exist a z3 ∈ Rn,p3

which satisfies this, we can conclude that z is not an integral point of C0(Z).

Example 5.2.1. Let C be the elliptic curve given by

y2 + xy + y = x3 + x2 − 21x− 45.

According to [9] the rank of C is 1 and the torsion is trivial over Q. We also have that P = (−3, 2) is a
generator of C(Q).

If we compute aP for a ∈ {−10,−9, . . . , 9, 10}, we find a set of integral pointsA = {(−3, 2), (−3, 0), (5, 0), (5,−6)}.
We now want to show that A = C0(Z) by using Method 3 for the three primes p1 = 5, p2 = 7 and p3 = 31,
where 2 · p1 = ord(redp2

(P )), p2 = ord(redp1
(P )) and p1 · p2 = ord(redp3

(P )). But before we do this, we
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first show that Method 1 fails for the primes p1 and p2.

If we use quadratic Chabauty for p1, we find a set of 8 points in C(Q5) which could be integral points
that are not in A. We call these points z1(i), where 1 ≤ i ≤ 8, where z1(1) is given by

(2 · 5 +O(52), 4 · 5 +O(52)).

In Example 5.1.1, we saw that the potential integral points were divided over two subsets and that each of
these points had an index n(i). In this example, we have that all potential integral points are in one subset,
so for each point we have that n(i) = 1.

We will now compute A and B from Step 1.1 for z1(1). To compute A, we use the reduction mod p1
map, which gives us that red5(z1(1)) = (0, 0). We find that (0, 0) is equal to 2P in C(F5). From this it
follows that A = 2, i.e. a is congruent to 2 mod 7.
We will now compute B by using the logarithm map. To do this, we first have to note that 7P =
(4 · 5−2 +O(5−1), 3 · 5−3 +O(5−2)) ∈ C1(Q5), and that 7z1(1) = (5−2 +O(5−1), 4 · 5−3 +O(5−2)) ∈ C1(Q5),
so we get that logP,5(z1(1)) = 3 +O(5) ≡ 3 mod 5. From this it follows that B = 3, i.e. a is congruent to 3
mod 5. Hence we obtain for z1(1) that (a mod 5, a mod 7, n(i)) = (3, 2, 1).

If we apply Step 1.1 for all 8 points z1(i), we find the following possibilities for (a mod 5, a mod 7, n(i)):

(3, 2, 1), (2, 5, 1), (0, 6, 1), (0, 1, 1), (3, 4, 1), (0, 4, 1), (2, 3, 1), (0, 3, 1). (5.1)

If we apply quadratic Chabauty for p2, we find a set of 14 points in C(Q7) which could be integral points
that are not in A. We call these points z2(i), where 1 ≤ i ≤ 14, where z2(1) is given by

(6 + 5 · 7 +O(72), 2 + 7 +O(72)).

We will now compute A and B from Step 1.2 for z2(1), and check whether they have the same proper-
ties as the result of Step 1.1. To compute B, we use the reduction modulo p2 map, which gives us that
red7(z2(1)) = (6, 2). We find that (6, 2) is equal to 3P in C(F7). From this we get that B = 3, i.e. a is
congruent to 3 mod 5.

Since we now have that a is congruent to 3 mod 5, we get that z2(1) is a potential integral point that is not in
A if we get that A = 2 or A = 4 from the logarithm map. To check whether this is true we first have to note
that 10P = (2 · 7−2 +O(7−1), 7−3 +O(7−2)) ∈ C1(Q7), and that 10z2(1) = (4 · 7−2 +O(7−1), 7−3 +O(7−2)),
so we get that logP,7(z2(1)) = 2 + O(7) ≡ 2 mod 7. This gives us that A = 2, so we get that z2(1) is a
potential integral point that is not in A.

If we apply Step 1.2 for all 14 points z2(i), we find that the following possibilities for (a mod 5, a mod 7, n(i))
from (5.1) survive Step 1.2:

(3, 2, 1), (2, 5, 1), (0, 4, 1), (0, 3, 1). (5.2)

This tells us indeed that Method 1 does not eliminate all possible integral points in R1,5, so we will now
use Method 3 to eliminate the remaining points in R1,5. To do this, we first use quadratic Chabauty for
p3, which gives us a set of 20 points in C(Q31) which could be integral points that are not in A. We call
these points z3(i), where 1 ≤ i ≤ 20, where z3(1) is given by

(28 + 8 · 31 +O(312), 2 + 22 · 31 +O(312)).

We will now compute A′ and B′ from Step 3.1 for z3(1), but before we can do that, we have to compute M
for z3(1). To compute M , we use the reduction modulo p3 map, which gives us that red31(z3(1)) = (28, 2),
which is equal to P in C(F31). This gives us that M = 1, i.e. a is congruent to 1 mod 35. From this it also
follows that a is congruent to 1 mod 5 and 1 mod 7, i.e. A′ = B′ = 1. But since (1, 1, 1) is not in (5.2), it
follows that z3(1) is not an integral point on C. In fact, if we apply Step 3.1 for all 20 points z3(i), we find
that there is no point such that it has the same possibilities for (a mod 5, a mod 7, n(i)) as in (5.2), so none
of the points z1(i) are integral points. Hence we have shown that indeed (−3, 2), (−3, 0), (5, 0), (5,−6) are
the only integral points on C. A code for this can be found in Appendix A.2. However all the computations
could again be done by hand using the formulas in the previous chapters.
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5.3 Torsion free

In the beginning of this chapter we assumed that C(Q) was torsion-free. So one might ask themselves if it
is possible to apply this method to a curve which is not torsion-free. The following proposition shows that
this is not the case.

Proposition 5.3.1. Let C : y2 + a1xy + a3y = x3 + a2x
2 + a4x

2 + a6 be an elliptic curve of rank 1 over Q.
Let p1, . . . pl be a pseudo-aliquot cycle of arbitrary length l, where pi are odd primes of good reduction, for
all i ∈ {1 . . . , l}. Then the C(Q) is torsion-free.

We are going to prove this proposition by contradiction. To do this, we will need two important theo-
rems. The first theorem tells us how large the torsion subgroup might be, whereas the second theorem gives
a relationship between #T (Q) and #C̃(Fp). The theorems are stated as follows.

Theorem 5.3.2. (Mazur’s Theorem) [11, Theorem VIII.7.5] Let C be an elliptic curve over Q. Then the
torsion subgroup T of C(Q) is isomorphic to one of the following groups:

Z/nZ with 1 ≤ n ≤ 10 or n = 12,

Z/2Z× Z/2nZ with 1 ≤ n ≤ 4.

Theorem 5.3.3. [7, Theorem5.1.2] Let C be an elliptic curve over the rational numbers Q and let T (Q)
denote the group of rational torsion points on C. Then the reduction homomorphism redp|T (Q) : T (Q) →
C̃(Fp) is injective for any odd prime p of good reduction.

From Theorem 5.3.3 it follows that #T (Q) = #im(redp(T (Q))). From the fact that redp is a homomor-

phism it follows from the first isomorphism theorem that im(redp(T (Q))) is a subgroup of C̃(Fp). From this

it follows that #im(redp(T (Q)))|#C̃(Fp). Combining this with the fact that #T (Q) = #im(redp(T (Q))),

we get that #T (Q)|#C̃(Fp), which is an important property to prove Proposition 5.3.1.

Proof of Proposition 5.3.1. Let C : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 be an elliptic curve with

a1, a2, a3, a4, a6 ∈ Z. We want to reach a contradiction, so we first assume that the torsion subgroup T is
non-trivial. Then #T = t 6= 1. From Theorem 5.3.3, we now get that t | #C(Fpi

) for i ∈ {1, . . . , l}. Now
assume that the primes p1, . . . pl form a pseudo-aliquot cycle, so p1, . . . pl are primes of good reduction such
that pi+1 | #C(Fpi

) and p1 | #C(Fpl
). Without loss of generality, we can assume that p2 = max{p1, . . . , pl}.

Then, because all our primes are primes not equal to 2, we get that p2 ≥ pi+2 for all i ∈ {1, 3, 4, 5, . . . , l−1, l}.

We can now distinguish between two cases, namely the case where p2 - t and the one where p2 | t.

Case 1 p2 - t:

Since t | #C(Fp1) and p2 | #C(Fp1), we get that

#C(Fp1) = t · p2 ·m ≥ t(p1 + 2), (5.3)

for some m ∈ Z>0. By the Hasse-Weil theorem (Theorem 4.1.2) we also have the inequality

#C(Fp1
) ≤ p1 + 1 + 2

√
p1. (5.4)

If we combine equation (5.3) and (5.4), we get that

t(p1 + 2) ≤ #C(Fp1) ≤ p1 + 1 + 2
√
p1.

If we leave only the square root on the right hand side, we get

(t− 1)p1 + 2t− 1 ≤ 2
√
p1.
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Since both sides are greater than zero, we are allowed to square both sides. By doing this, and bringing the
right hand side to the left, we get

(t− 1)2p21 + (2(t− 1)(2t− 1)− 4)p1 + (2t− 1)2 ≤ 0. (5.5)

The discriminant D of this equation, is D = −32t2 + 48t, which is equal to 0 for t = 0 and for t = 3
2 , larger

than zero for 0 < t < 3
2 and smaller than zero otherwise. Since we assumed that t 6= 1 and that t ∈ Z>0, we

get that the discriminant is negative. This gives us that there is no intersection point for p1 with the x-axis,
so the left hand side is always positive or always negative as a function of p1 for a fixed value of t. We can
prove which one it is by substituting a value for p1. If we take for example p1 = 3, then the left hand side
of (5.5) becomes

25t2 − 40t+ 4,

which is positive for all t ∈ Z where t 6= 1. This gives us that the left hand side of (5.5) is positive, which is
a contradiction. This gives us that the case where p2 - t is not possible.

Case2 p2 | t:

Since p2 = max{p1, . . . , pl} and p2 | t, it follows from Theorem (5.3.2) we get that t is either 5, 7 or 10
with p2 equal to 5 or 7. So if we have a pseudo-aliquot cycle with more than three primes, we get that
p2 > 7, which makes it impossible for p2 to divide t. Now take a look at the case where p2 = 7. If we have
three primes, we get that p3|#C(Fp2), and in the case where we have two primes, we get that p1|#C(Fp2).
In either case, we denote by pi the prime that divides #C(Fp2). Since pi is a prime smaller than p2, we get
that pi - t, otherwise we would contradict Theorem (5.3.2). Now recall that t | #C(Fp2

) and pi | #C(Fp2
).

Thus, #C(Fp2
) = pi · t ·m = pi · p2 · n ≥ pi · p2 for some m,n ∈ Z>0. By the Hasse-Weil theorem (Theorem

4.1.2), we have #C(Fp2
) ≤ p2 + 1 + 2

√
p2. If we combine both equations, we get that

pi · p2 ≤ p2 + 1 + 2
√
p2.

Dividing both sides of the equation by p2 gives

pi ≤
p2 + 1 + 2

√
p2

p2
.

Since pi ≥ 3, we get the following:

3 ≤
p2 + 1 + 2

√
p2

p2
=

7 + 1 + 2
√

7

7
≈ 1.8987.

This inequality is incorrect, so p2 6= 7.

The only case left is the one where p2 = 5. In this case, the length of the cycle must be 2 and we must have
p1 = 3. Using the same reasoning as before, we get that

p1 ≤
p2 + 1 + 2

√
p2

p2
.

By substituting p1 and p2, we get

3 ≤ 5 + 1 + 2
√

5

5
≈ 2.0944,

which is incorrect, so p2 6= 5. This gives us that p2 | t is not possible.
So now we have found that both cases p2 - t and p2 | t are not possible, which gives us that the torsion
subgroup T must be trivial for this method to work.
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Appendix A

Appendix

A.1 Code for Method 1

In this section of the appendix, a code for Method 1 is given for the elliptic curve that is defined by
y2 = x3 − 8 · x + 4 for primes p1 = 7 and p2 = 5. This code also works for other curves and other primes,
provided that p1|ord(redp2

(P )) and that p2|ord(redp1
(P )), where P is a generator for the elliptic curve over

Q. The code is stated as follows:

1 load("./ quadratic_chabauty_elliptic.sage") #this is a slightly modified version of https ://

github.com/bianchifrancesca/quadratic_chabauty/blob/master/quadratic_chabauty_elliptic.

sage in such a way that all inverses of each potential integral point in C(Q_p) are also

given.

2 E = EllipticCurve ([-8,4])

3 p1 = 7

4 n = 20 #this is the precision of the computation (we can compute with p-adic numbers only

modulo a certain power of p)

5 p2 = 5

6 P = E.gens()[0]

7 E

8 print "the generator is ", P

9 print "the rank of the curve is", E.rank()

10 G = E.torsion_subgroup (); G

11 Ep1 = E.change_ring(GF(p1)) #the reduction of E modulo p1

12 Ep2 = E.change_ring(GF(p2))

13 ord_P_p1 = Ep1(P).order()

14 ord_P_p2 = Ep2(P).order()

15 print "order of reduction of p1 is ", ord_P_p1

16 print "order of reduction of p2 is ", ord_P_p2

17 E.Np(p1)

18 E.Np(p2)

19 ap1 ,bp1 ,cp1 = quadratic_chabauty_rank_1(E,p1,n)

20 ap2 ,bp2 ,cp2 = quadratic_chabauty_rank_1(E,p2,n) #first define ap1 ,bp1 ,cp1 ,ap2 ,bp2 and cp2 ,

where api is the set of known integral points , bpi is the number of points in C(Q_pi)

that we want to show do not correspond to integral points and cpi is the set of

potential integral points of C(Q_pi)

21

22 def nonelistmaker(n): #a list with only Nones

23 listofnones = [None] * n

24 return listofnones

25 z=nonelistmaker(bp1)

26 gz=nonelistmaker(bp1)

27 log_P_z=nonelistmaker(bp1)

28 a_mod_ord_P_p1 = nonelistmaker(bp1)

29

30 # Now we are going compute Log_P(z) for a point z in E(Q_p1) (to find a mod p1)

31

32 gz=nonelistmaker(bp1)

33 gP1 =((E.Np(p1)*P)[0]) /((E.Np(p1)*P)[1])

34 m1= E.Np(p1)
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35 for i in range(bp1):

36 z[i]=cp1[i][0]

37 gz[i]=((m1*(z[i]))[0]) /((m1*(z[i]))[1])

38 log_P_z[i] = gz[i]/gP1

39 log_P_z[i]=ZZ(log_P_z[i]%p1)

40 print "If z[i]=aP , then a is congruent to %s mod %s" %(log_P_z ,p1)

41

42 # Now we will show how to compute a such that a*red(P) = red(z), where red is reduction

modulo p1. Here a will be known modulo the order of red(P)

43

44 for i in range(bp1):

45 for n in range(ord_P_p1):

46 if n*Ep1(P) == Ep1(z[i]):

47 a_mod_ord_P_p1[i]=n

48 print "For each i, a is congruent to %s modulo %s, where None means not possible" %(

a_mod_ord_P_p1 , ord_P_p1)

49

50 #Last step

51 ans = nonelistmaker(bp1)

52 gy = None

53 gP2 =((E.Np(p2)*P)[0]) /((E.Np(p2)*P)[1])

54 m2=E.Np(p2)

55 for y in cp2:

56 for i in range(bp1):

57 if a_mod_ord_P_p1[i] != None:

58 if y[1] == cp1[i][1]:

59 gy = ((m2*(y[0]))[0]) /((m2*(y[0]))[1])

60 log_P_y = gy/gP2

61 for k in range(ord_P_p2/p1):

62 if ZZ(log_P_y %p2) == a_mod_ord_P_p1[i]%p2: #need a mod p2 to be ZZ(

Log_P_y %p2) for the point to correspond to z2

63 if (k*p1+log_P_z[i])*Ep2(P) == Ep2(y[0]): #need a mod p1 to be

Log_P_z[i] for the point to correspond to z2

64 ans[i] = y

65 if ans == nonelistmaker(bp1):

66 print "No point in cp1 can correspond to an integral point"

67 else:

68 print "There is a point in E(Q_p2) which could correspond to a point in E(Q_p1), namely"

, y

The outcome of the code is given as follows:

1 Elliptic Curve defined by y^2 = x^3 - 8*x + 4 over Rational Field

2 the generator is (0 : 2 : 1)

3 the rank of the curve is 1

4 Torsion Subgroup isomorphic to Trivial group associated to the Elliptic Curve defined by y^2

= x^3 - 8*x + 4 over Rational Field

5 order of reduction of p1 is 5

6 order of reduction of p2 is 7

7 10

8 7

9 W_for_sieving: [((2, 0) ,), ((2, -4/3) ,)]

10 W_for_sieving: [((2, 0) ,), ((2, -4/3) ,)]

11 If z[i]=aP , then a is congruent to [4, 3, 6, 2, 1, 5, 2, 5, 5, 2] mod 7

12 For each i, a is congruent to [4, 1, None , None , None , None , None , None , None , None] modulo

5, where None means not possible

13 No point in cp1 can correspond to an integral point

In the outcome, ‘W for sieving’ gives information about the numbers of subsets that quadratic Chabauty
gives.
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A.2 Code for Method 3

In this section of the appendix, a code for Method 3 is given for the elliptic curve that is defined by
y2 + x · y + y = x3 + x2 − 21 · x− 45 for primes p1 = 5, p2 = 7 and p3 = 31. This code also works for other
curves and other primes, provided that p1|ord(redp2

(P )), that p2|ord(redp1
(P )) and that p1·p2|ord(redp3

(P ))
where P is a generator for the elliptic curve over Q. The code is stated as follows:

1 E = EllipticCurve ([1,1,1,-21,-45])

2 p1 = 5

3 p2 = 7

4 p3 = 31

5 load("./ quadratic_chabauty_elliptic.sage") #this is a slightly modified version of https ://

github.com/bianchifrancesca/quadratic_chabauty/blob/master/quadratic_chabauty_elliptic.

sage in such a way that all inverses of each potential integral point in C(Q_p) are also

given.

6 Ep1 = E.change_ring(GF(p1)) #the reduction of E modulo p1

7 Ep2 = E.change_ring(GF(p2))

8 Ep3 = E.change_ring(GF(p3))

9 P = E.gens()[0]

10 ord_P_p1 = Ep1(P).order()

11 ord_P_p2 = Ep2(P).order()

12 ord_P_p3 = Ep3(P).order()

13 E

14 print "The generator of E(Q) is", P

15 print "the rank of the curve is", E.rank()

16 G = E.torsion_subgroup (); G

17 print "order of reduction of p1 is ", ord_P_p1

18 print "order of reduction of p2 is ", ord_P_p2

19 print "order of reduction of p3 is ", ord_P_p3

20

21 E.Np(p1)

22 E.Np(p2)

23 E.Np(p3)

24 n = 30 #this is the precision of the computation (we can compute with p-adic numbers only

modulo a certain power of p)

25 ap1 ,bp1 ,cp1 = quadratic_chabauty_rank_1(E,p1,n)

26 ap2 ,bp2 ,cp2 = quadratic_chabauty_rank_1(E,p2,n)

27 ap3 ,bp3 ,cp3 = quadratic_chabauty_rank_1(E,p3,n) #first define api ,bpi and cpi where api is

the set of known integral points , bpi is the number of points in C(Q_pi) that we want to

show do not correspond to integral points and cpi is the set of potential integral

points of C(Q_pi)

28

29 def nonelistmaker(n): #a list with only Nones

30 listofnones = [None] * n

31 return listofnones

32 z=nonelistmaker(bp1)

33 gz=nonelistmaker(bp1)

34 log_P_z=nonelistmaker(bp1)

35 a_mod_ord_P_p1 = nonelistmaker(bp1)

36

37 # Now we are going compute Log_P(z) for a point z in E(Q_p1) (to find a mod p1 )

38

39 gz=nonelistmaker(bp1)

40 gP1 =((E.Np(p1)*P)[0]) /((E.Np(p1)*P)[1])

41 m1= E.Np(p1)

42 for i in range(bp1):

43 z[i]=cp1[i][0]

44 gz[i]=((m1*(z[i]))[0]) /((m1*(z[i]))[1])

45 log_P_z[i] = gz[i]/gP1

46 log_P_z[i]=ZZ(log_P_z[i]%p1)

47 print "If z[i]=aP , then a is congruent to %s mod %s" %(log_P_z ,p1)

48

49 # Now we will show how to compute a such that a*red(P) = red(z), where red is reduction

modulo p1. Here a will be known modulo the order of red(P)

50

51 for i in range(bp1):

52 for n in range(ord_P_p1):
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53 if n*Ep1(P) == Ep1(z[i]):

54 a_mod_ord_P_p1[i]=n

55 print "For each i, a is congruent to %s modulo %s, where None means not possible" %(

a_mod_ord_P_p1 , ord_P_p1)

56

57 #Last step

58 ans1 = nonelistmaker(bp1)

59 gy = None

60 gP2 =((E.Np(p2)*P)[0]) /((E.Np(p2)*P)[1])

61 m2=E.Np(p2)

62 for y in cp2:

63 for i in range(bp1):

64 if a_mod_ord_P_p1[i] != None:

65 if y[1] == cp1[i][1]:

66 gy = ((m2*(y[0]))[0]) /((m2*(y[0]))[1])

67 log_P_y = gy/gP2

68 for k in range(ord_P_p2/p1):

69 if ZZ(log_P_y %p2) == a_mod_ord_P_p1[i]%p2: #need a mod p2 to be ZZ(

Log_P_y %p2) for the point to correspond to z2

70 if (k*p1+log_P_z[i])*Ep2(P) == Ep2(y[0]): #need a mod p1 to be

Log_P_z[i] for the point to correspond to z2

71 ans1[i] = y

72 if ans1 == nonelistmaker(bp1):

73 print "No point in cp1 can correspond to an integral point"

74 else:

75 print "There is a point in E(Q_p2) which could correspond to a point in E(Q_p1), namely"

, ans1

76

77 #Continue if there is a point

78

79 a_mod_ord_P_p3=nonelistmaker(bp3)

80 a_mod_ord_P_p3_to_p1=nonelistmaker(bp3)

81 a_mod_ord_P_p3_to_p2=nonelistmaker(bp3)

82 ans_p3=nonelistmaker(bp3)

83 #for x in cp3:

84 for i in range (bp3):

85 for n in range (ord_P_p3):

86 if n*Ep3(P) == Ep3(cp3[i][0]):

87 a_mod_ord_P_p3[i] = n #compute a such that a*red(P) = red(z), where red is

reduction modulo 13. Here a will be known modulo the order of red(P)

88 a_mod_ord_P_p3_to_p1[i] = a_mod_ord_P_p3[i] % p1 # a mod p1 from a mod ord p3

89 a_mod_ord_P_p3_to_p2[i] = a_mod_ord_P_p3[i] % p2 # a mod p2 from a mod ord p3

90 for j in range (bp1):

91 if cp3[i][1]== cp1[j][1]:

92 if ans1[j] != None:

93 if a_mod_ord_P_p3_to_p1[i] == log_P_z[j]: # to check if both methods get

same a mod p1

94 if a_mod_ord_P_p3_to_p2[i] == a_mod_ord_P_p1[j]%p2: # to check if both

methods give a mod p2

95 ans_p3[i] = cp3[i]

96 if ans_p3 == nonelistmaker(bp3):

97 print "No point in cp1 can correspond to an integral point"

98 else:

99 print "There is a point in E(Q_p3) which could correspond to a point in E(Q_p1) and E(

Q_p2), namely", ans_p3

The outcome of the code is given as follows:

1 Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 21*x - 45 over Rational Field

2 The generator of E(Q) is (-3 : 2 : 1)

3 the rank of the curve is 1

4 Torsion Subgroup isomorphic to Trivial group associated to the Elliptic Curve defined by y^2

+ x*y + y = x^3 + x^2 - 21*x - 45 over Rational Field

5 order of reduction of p1 is 7

6 order of reduction of p2 is 10

7 order of reduction of p3 is 35

8 7

9 10

10 35
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11 W_for_sieving: [((2, -2/3) ,)]

12 W_for_sieving: [((2, -2/3) ,)]

13 W_for_sieving: [((2, -2/3) ,)]

14 If z[i]=aP , then a is congruent to [3, 2, 0, 0, 3, 0, 2, 0] mod 5

15 For each i, a is congruent to [2, 5, 6, 1, 4, 4, 3, 3] modulo 7, where None means not

possible

16 There is a point in E(Q_p2) which could correspond to a point in E(Q_p1), namely [((6 + 5*7

+ 6*7^3 + 2*7^5 + 7^6 + 6*7^7 + 2*7^8 + 6*7^9 + 6*7^10 + 5*7^12 + 2*7^13 + 6*7^14 +

5*7^15 + 7^16 + 4*7^17 + 2*7^18 + O(7^19) : 2 + 7 + 5*7^2 + 5*7^3 + 6*7^4 + 2*7^5 + 7^6

+ 6*7^7 + 4*7^8 + 3*7^9 + 2*7^10 + 2*7^11 + 3*7^12 + 2*7^13 + 3*7^14 + 2*7^15 + 3*7^16 +

7^17 + 2*7^18 + O(7^19) : 1 + O(7^30)), ((2, -2/3) ,)), ((6 + 5*7 + 6*7^3 + 2*7^5 + 7^6

+ 6*7^7 + 2*7^8 + 6*7^9 + 6*7^10 + 5*7^12 + 2*7^13 + 6*7^14 + 5*7^15 + 7^16 + 4*7^17 +

2*7^18 + O(7^19) : 5 + 6*7 + 2*7^3 + 6*7^4 + 7^5 + 4*7^6 + 7^7 + 6*7^8 + 3*7^9 + 4*7^10

+ 3*7^11 + 5*7^12 + 7^13 + 4*7^14 + 5*7^15 + 7^16 + 7^17 + 2*7^18 + O(7^19) : 1 + O

(7^30)), ((2, -2/3) ,)), None , None , None , ((1 + 5*7 + 7^2 + 7^3 + 7^5 + 3*7^6 + 4*7^7 +

7^8 + 6*7^9 + 7^10 + 4*7^11 + 4*7^12 + 4*7^13 + 6*7^14 + 3*7^17 + 5*7^18 + 3*7^19 + O

(7^20) : 6 + 5*7 + 4*7^2 + 2*7^3 + 5*7^4 + 2*7^5 + 7^6 + 2*7^7 + 3*7^8 + 2*7^9 + 5*7^10

+ 5*7^11 + 6*7^12 + 7^13 + 4*7^14 + 2*7^15 + 7^16 + 3*7^17 + 7^18 + O(7^19) : 1 + O

(7^30)), ((2, -2/3) ,)), None , ((1 + 5*7 + 7^2 + 7^3 + 7^5 + 3*7^6 + 4*7^7 + 7^8 + 6*7^9

+ 7^10 + 4*7^11 + 4*7^12 + 4*7^13 + 6*7^14 + 3*7^17 + 5*7^18 + 3*7^19 + O(7^20) : 6 +

2*7 + 3*7^3 + 7^4 + 3*7^5 + 2*7^6 + 2*7^8 + 5*7^9 + 6*7^10 + 3*7^11 + 2*7^12 + 3*7^14 +

3*7^15 + 5*7^16 + O(7^19) : 1 + O(7^30)), ((2, -2/3) ,))]

17 No point in cp1 can correspond to an integral point
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