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Abstract: Morphological segmentation is vital in many areas of natural language processing,
including machine translation. However, very little research in this field has been performed on
low-resource polysynthetic languages. Rather, most research in has focused on languages with
existing resources and moderate morphological inflections. Greenlandic is such a polysynthetic
language, and due to its relatively few native speakers, few resources have been developed.
For this paper, the author manually crafted the largest publicly accessible annotated dataset
of Greenlandic morphological segmentations. With this dataset, intrinsic experiments are con-
ducted where seven different methods for morphological segmentations including one rule-based
system and six (supervised) machine learning systems are compared through calculating preci-
sion, recall, F1-score and accuracy using tenfold cross-validation. The fully-supervised (F1-score
= 0.633, accuracy = 0.542) and semi-supervised (F1-score = 0.631, accuracy = 0.553) Condi-
tional Random Fields perform best. Extrinsically, a baseline with no segmentation and the six
most promising models from the intrinsic evaluation are implemented in a neural machine trans-
lation model and their BLEU scores are compared. The results for the extrinsic evaluation were
however not reliable because the neural machine translation models performed below par.

1 Introduction

A morpheme is the smallest unit of language that
can convey meaning, and morphological segmen-
tation is the language technological task of auto-
matically identifying morphemes. This process is
extremely vital in, amongst others, the domain of
machine translation because all these separate units
of meaning need to be translated in order to achieve
an accurate translation. In analytic languages, such
as English, word order and helper words are used to
signify the relationships between words. Such lan-
guages can generally be accurately translated word
to word, since their usage of inflections is mini-
mal. On the opposite side of the spectrum however,
we have polysynthetic languages like Greenlandic.
These languages can be characterised by the fact
that words are built up out of multiple concate-
nated morphemes, which enables a single word in
a polysynthetic language to express what would be
an entire sentence in English. Example (1) illus-

trates this for Greenlandic, where the entire word
is split up into its morphemes as follows.

(1) ullaakkorsioreerusussanngilanga
ullaakkor-sio-ree-rusu-ssaa-nngi-la-nga
breakfast-eat-finish-want-FUT-NEG-IND-
1Sg
I would not want to finish eating breakfast

What increases the challenge of segmenting
polysynthetic languages even more is that many
of these languages are among the world’s most
endangered languages (Klavans, 2018). Examples
of two highly polysynthetic and low-resource lan-
guages are Greenlandic and Inuktitut. These lan-
guages are the two most widely spoken Inuit lan-
guages as part of the Eskimo-Aleut family with 57k
(Ethnologue, 2015) and 39k (O’Donnell & Ander-
son, 2017) speakers respectively. To sketch a con-
trast: whereas English takes up 59.6% of the web,
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Greenlandic takes up less than 3× 10−4%.1

Originally, the research described in this pa-
per was motivated by the news translation task
from the Workshop on Machine Translation 2020.2

Specifically, the research into Greenlandic started
as a possible aid for the submissions of the neural
machine translation (NMT) systems that were cre-
ated by the University of Groningen in the English
↔ Inuktitut (EN ↔ IU) language pair. Last year,
Toral et al. (2019) found that NMT was greatly
improved for low-resource languages when synthet-
ically generated backtranslated data from a similar
language was also used to train the NMT system.
This year, Greenlandic was therefore examined to
investigate if the same improvement in NMT oc-
curred for Inuktitut when Greenlandic was added.

The need for a large amount of data for many
machine learning systems combined with the fact
that few resources have been developed for Green-
landic makes data collection a significant challenge.
The lack of large text corpora makes morphological
segmentation even more vital because it can reduce
data sparsity and the size of the vocabulary. This is
because words that are built up out of many mor-
phemes generally occur very infrequently due to
the specific meaning they convey; splitting them up
into morphemes provides smaller segments that do
occur more frequently. The reduction of the vocab-
ulary size then occurs because words do not have
to be added with their many inflectional forms, but
rather only the root is added together with all the
morphemes in the language. Combinations between
roots and morphemes can then be made, making
for a much more compact dictionary. An additional
benefit is also that unknown roots can be identified
by removing the known morphemes that are at-
tached to them, which in turn can help expand the
Greenlandic lexicon.

The experiments are based on the hypothesis
that some of the segmentations methods that have
been used for higher-resource non-polysynthetic
languages in previous research can also be applied
to low-resource polysynthetic languages. Especially
methods that have been used for agglutinative syn-
thetic languages (e.g. Finnish and Turkish) are of
interest. This is why we will compare several differ-
ent morphological segmenters, ranging from rule-

1https://w3techs.com/technologies/overview/content la
nguage/

2http://www.statmt.org/wmt20/translation-task.html

based to various levels of supervised machine learn-
ing. Which segmentation system works best with
Greenlandic is determined by examining their out-
puts intrinsically as well as extrinsically. Intrinsi-
cally, their outputs will be examined by compar-
ing the model’s F1-scores and their token-accuracy.
Extrinsically, we will also investigate which system
best aids NMT for Greenlandic → English (KL →
EN).

2 Theoretical Framework

There are many different methods to develop a
morphological segmenter. The traditional way was
to create them manually using a dictionary and
a rule-based database. This unfortunately is an
especially time-consuming project to create, and
it is also very hard to keep up to date as lan-
guages are ever evolving. Although inflections often
do not change, their databases cannot always gen-
erate analyses for unknown words. Because these
rule-based segmenters are not very robust, are
generally quite slow and are often not readily-
available for lower-resource languages, there arose
the need for automated morphological segmenta-
tion systems. More recent approaches therefore use
machine learning, where the degree in supervi-
sion ranges from completely unsupervised (Creutz
& Lagus, 2005a; Sennrich et al., 2015), to semi-
supervised (Ataman et al., 2017; Grönroos et al.,
2014; Lafferty et al., 2001; Virpioja et al., 2013)
and completely supervised (Vaswani et al., 2017).

Most research into computational morphological
segmentation has focused on higher-resource lan-
guages with only a moderate number of inflections
in mind, whereas the actual challenge in segmenta-
tion lies with the highly inflectional languages. For
Greenlandic, no research into data-driven morpho-
logical segmentation known by the author has been
conducted, but other state of the art papers into
the segmentation of the low-resource polysynthetic
languages Mexicanero, Nahuatl, Yorem Nokki and
Wixarika report F1-scores ranging from 0.75 to 0.88
(Eskander et al., 2019; Kann et al., 2018).

The difficulty in segmentation is not only due to
polysynthetic languages often being sparse in data,
but also because building consistent corpora of an-
notated data is extremely challenging due to their
morphological complexity (Klavans, 2018).
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Furthermore, a challenge specific to NMT is that
a lot of information is often lost between translation
from an information-rich to an information-poor
language and vice versa not enough information is
present to go the other way around (Mager et al.,
2018). Again, morphological segmentation could be
an important step into properly translating from an
information-rich to an information-poor language.
Using segmentation, individual parts of meaning
from words in information-rich languages can be fil-
tered out more accurately and therefore also trans-
lated better.

Additionally, three more challenges arise specifi-
cally for Greenlandic because of its predominantly
fusional character and inflectional system (Mahieu
& Tersis, 2009). First of all, a fusional character
means that a single morpheme can express multi-
ple meanings;3 Greenlandic for example does not
distinguish inflectionally between the present and
past tense and has no distinction between male and
female third person. See Example (2).

(2) sinippoq
sinip-poq
sleep-IND.PRS/PST.M/F.3Sg
?he sleeps ?she slept

Secondly, a characteristic of languages with a
fusional inflection system is that morphemes can
merge together,4 making it more difficult to extract
them. This is illustrated in Example (3), where
the morpheme -qa(r)- show the original suffix, and
the version below without the letters in parenthe-
sis shows the actual segmentation. Due to morpho-
phonemic constraints, a -rq- sequence is forbidden
in Greenlandic, so the former letter has been re-
moved. -qa- here is the surface form of its mor-
pheme -qar-, and the surface forms of morphemes
will hereafter be referred to as morphs.

(3) meeraqanngilatit
meera-qa(r)-nngi-la-tit
meera-qa-nngi-la-tit
child-have-NEG-IND-INT.2Sg
don’t you have any children

Lastly, in Greenlandic it also often occurs that the
last letter of the morpheme is altered because of the
first letter in the subsequent morpheme, see Exam-

3https://glossary.sil.org/term/fusional-language
4https://dictionary.apa.org/fusional-language

ple (4). The last part of the word -fimmi is actu-
ally a combination of the morphemes -fik- and -mi.
Again, due to the morphophonemic constraints, -
km- is an illegal sequence. In this case, the k has
been turned into an m. Why the m is added to -mi
instead of -fi- will be discussed in the next section
with annotation choices.

(4) illoqarfimmi
illu-qar-fik-mi
illo-qar-fi-mmi
house-have-place.where-LOC
in town

To conclude these challenges, it is already a dif-
ficult task on its own to extract the proper mor-
phemes in terms of underspecificity and fuzzy mor-
pheme boundaries. Even when the morphemes have
then been extracted properly, it still remains diffi-
cult to translate due to problems in building con-
sistent bilingual corpora and problems with trans-
lating from an information-rich to an information-
poor language and the other way around.

3 Datasets and Evaluation

3.1 Raw monolingual data

As discussed, Greenlandic is a low-resource lan-
guage. Unfortunately, no large corpus is available
for this language, making data collection a chal-
lenge on its own. For the purpose of the experiments
on Greenlandic segmentation, a dataset was created
using two Danish-Greelandic dictionaries together
with a wikidump and websites crawled using Bi-
textor5 (see Appendix A for the specific sources).
The data from Bitextor provided aligned parallel
data which will be helpful for translation, but for
the morphological segmentation systems only the
monolingual Greenlandic data was used. The same
goes for the dictionaries, where only the Green-
landic half was added to the dataset. See Table 3.1
for the amount of data per set.

All data was then filtered using a tailor-made
Python script, which makes all words lowercase,
filters out non-Latin script and then continues to
remove noise. This noisy data is lots of linking data
from sites (e.g. words like ’http’, ’www’) as well as
English and Danish text. These foreign languages

5https://github.com/bitextor/bitextor
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Datasets Words
Wikidump 1044298
-unique 10091
Dictionary 7106
-unique 5443
Bitextor 1821170
-unique 111809

Total 2872574
-unique 121639

Table 3.1: The total and unique number of words
gathered per dataset.

were removed by creating a list of the most com-
monly occurring words in the category and deleting
the entire line containing any such word. Although
Greenlandic has lots of loanwords from Danish,
we opted to exclude these words in order to cre-
ate a more uniform dataset. The author hypothe-
sizes that this allows the morphological segmenters
based on machine learning to detect patterns (e.g.
morphemes) more easily by avoiding confusion with
words from an analytic language with largely dif-
ferent patterns.

Afterwards, lines containing only a single word
were also removed in all datasets apart from the
dictionary. This is because individual words are
hard to filter, as it is hard to categorize them. Not
taking them out would therefore likely lead to a lot
of noise. Additionally, words shorter than three let-
ters or longer than 30 were also removed from the
data.

Lastly, simple phonotactic constraints were ap-
plied to further erase illegal words. Phonotactics
concern the allowed combinations of phonemes in
a language, and for Greenlandic these constraints
include removing words that do not start with [’a’,

’o’, ’u’, ’i’, ’e’, ’p’, ’t’, ’k’, ’q’, ’s’, ’m’, ’n’] or end with
this same set minus ’s’ and ’m’ (Fortescue, 1984),
as well as removing any word in which the same let-
ter is repeated three or more times. This filter also
helps with excluding more Danish loanwords that
might have been missed by the language filter. The
number of words remaining after the addition of all
the filters on top of each other can be seen in Table
3.2. The remaining data is then saved as a list of
unique words preceded by an integer which illus-
trates how often the word occurred in the dataset,
so for example paasilertoruminaatsoq occurred 31
times and akileraarutit was found 64 times in the
data, formatted as can be seen in Example (5).

(5) 31 paasilertoruminaatsoq

64 akileraarutit

3.2 Annotated monolingual data

Apart from the raw monolingual data, some mor-
phological segmenters require additional annotated
data. Some segmenters do not even use the raw data
at all and only use the annotated data. For Green-
landic, no such publicly accessible dataset known
by the author existed until the publication this
dataset. The annotated data contains 640 words
and was in large part gathered by hand using two
courses on learning Greenlandic with an empha-
sis on individual morpheme meaning in words. The
data was in part revised by a native Greenlandic
speaker. The words were formatted as portrayed in
Example (6), where the full word is followed by its
morphological parts.6

(6) ungasinngisaani ungasi nngi saa ni

illoqarputit illo qar pu tit

6https://biturl.top/n2qema

Filters Wikidump Words Bitextor Words Example
- tokens 1094965 1879626 “”
- links and internet jargon 892326 1837850 www nuuk gl
- Danish 844292 1444065 p̊a grønlandsk
- English 810031 1395241 This is reserved
- loose words and titles 807078 1225479 br
- words with a unusual length 753284 1191322 se
- words with forbidden phonotactics 687014 995440 regeringen

Table 3.2: The number of words remaining from the wikidump each time a new filter is applied
on top of the older ones.
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illut illu t

tassa tassa

As briefly touched upon in Section 2, many
morphemes cannot be split perfectly between two
phonemes because of Greenlandic’s fusional char-
acter. Reiterating Example (4) below, it is visible
that the morphs -fik- and -mi together turn into
-fimmi because -km- is an forbidden sequence in
Greenlandic. Recalling the statement in Section 2
that building a consistent corpus for polysynthetic
languages is a challenge, the author opted to make
the design choice that for all such cases the changed
letter should be added to the latter morph. For the
example, -fimmi is split up into -fi-mmi instead of
-fim-mi. Although the latter might be more cor-
rect linguistically, we hypothesize that the former
leads to a better model for NMT. The reasoning
behind this is that this leads to a smaller lexicon of
morphs because instead of having to include -fik-,
-fim-, and many more with all the possible end-
ings, this allows you to only add -ffik-, -fik-, -fi,
-mi and -mmi. A smaller lexicon is preferable be-
cause this results in less infrequent morphs leading
to better translations of not commonly occurring
words. Additionally, the computational complexity
is reduced.

(4) illoqarfimmi
illu-qar-fik-mi
illo-qar-fi-mmi
house-have-place.where-LOC
in town

3.3 Evaluation

For evaluation, two methods will be used. First of
all, the segmenters will be evaluated intrinsically
based on their ability to segment individual words.
For this, precision, recall, the F1-score and token-
accuracy are calculated. For segmentation systems
that need annotated data, tenfold cross-validation
will be used to ensure that the models are trained
with as much data as possible as well as that the
testing data, that originates from the same set,
stays valid. For systems that will not be using the
annotated data, the entire annotated dataset can
simply be used as gold-standard testing data. In
the end, all models will then have been tested on
the same testing set.

The second manner of evaluation will be extrin-
sic. This will be comparing the effect of the dif-
ferent segmentation systems on the overall BLEU
score for a KL → EN NMT system. This method
will examine to what extent segmentation actually
aids or harms translation, which provides us with a
good sense of what segmentation method helps in
the big picture.

4 Intrinsic Experiments

The experiments section will compare seven differ-
ent systems for segmenting Greenlandic morphol-
ogy. Firstly, GroenOrd,7 a rule-based segmenta-
tion system will be shown. Next, Byte Pair Encod-
ing (Gage, 1994) and Morfessor Categories-MAP
(Creutz & Lagus, 2005a) are discussed as unsuper-
vised segmenters. After, four semi-supervised seg-
menters will be expanded on, namely Morfessor
2.0, Morfessor FlatCat, Linguistically-Motivated
Vocabulary Reduction and Conditional Random
Fields (Ataman et al., 2017; Grönroos et al., 2014;
Lafferty et al., 2001; Virpioja et al., 2013). Lastly,
this section will consider the completely supervised
Transformer models (Vaswani et al., 2017).

4.1 Rule-based segmenters

Rule-based systems are handcrafted and generally
provide quite accurate segmentations. Often how-
ever, they are too slow to be used as a morpho-
logical segmentation system in a real-time NMT
environment and they do not allow for the process-
ing of large chunks of texts needed for training a
NMT system. Additionally, rule-based segmenta-
tion systems often only segment the words that are
in their dictionary, leading to unknown words not
being parsed at all. Also, rule-based systems are
generally based on one language only, whereas this
research aims to investigate morphological segmen-
tation systems that would also work for other low-
resource polysynthetic languages. Still, because of
the fact that they are built upon a lot of knowledge
about a language, having a rule-based segmenter
for comparison can give a lot of insight how more
automated systems perform in comparison to these
handcrafted systems.

7https://www.groenord.dk
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4.1.1 GroenOrd

GroenOrd8 is an “electronic version of five Green-
landic dictionaries (1871-1997+)” created by Hen-
rik Vagn Aagesen. Using these dictionaries, this
rule-based segmenter is able to extract “the mean-
ingful parts (i.e. morphemes) of a given Greenlandic
and/or Danish word.”

Evaluation for GroenOrd is only done intrin-
sically by segmenting all words in the golden-
standard annotated dataset. The largest encoun-
tered problem in the results is, as was expected,
robustness. This can be seen in Example (7) and
(8), where the two words in Example (7) have a
very similar buildup in which you can recognize the
morphs -kkor- and -sior-, but they are segmented in
a completely different fashion because the morphs
are not recognized in the first word. The same ap-
plies for the two words in Example (8), where the
root arna- is not recognized in the first word but it
is in the second.

(7) ullaakkorsior poq

unnu kkor sio rusup put

(8) arnaviaq

arna tut

Another reason why the F1-score and the accuracy
(see Table 4.7) of GroenOrd is lower than one might
reasonably expect is because of the design choices
in the golden-standard data. Many of the design
choices of GroenOrd are the same as in the anno-
tated data, as in Example (9), where in the seg-
mentation of kaffisorusuppunga GroenOrd also il-
lustrates that it prefers the beginning of a morph
over the end; it is the case that the r in -sorusup-
belongs to both the morph -sor- and -rusup- and
GroenOrd allocates this r to the latter morph.

Other choices made with NMT in mind however,
do not correspond. This can be seen in Example
(10), where the -mm- in the annotated data is also
attached to the latter morph, but in GroenOrd’s
segmentations it is split into two separate morphs.
It should be noted however that in both of these ex-
amples, the rule-based segmenter also failed to rec-
ognize other morphs properly that were not based
on design choices because the roots or morphs were
not recognized in the dictionary.

8https://www.groenord.dk/

(9) GroenOrd: kaffiso rusup pu nga

Annotated: kaffi so rusup pu nga

(10) GroenOrd: illoqarfim m i

Annotated: illo qar fi mmi

So, although the rule-based system is filled with
a lot of highly relevant data, the data is not reli-
ably accessible in the way needed for morphological
segmentation. On top of that, the system in place
for Greenlandic is not capable of handling texts of
more than one word, making it very impractical
to use for training morphological segmentation and
NMT systems. This, together with previously men-
tioned arguments such as language compatibility,
calls for a more data-driven approach into morpho-
logical segmentation.

4.2 Unsupervised segmenters

Generally speaking, the idea behind the data-
driven segmenters is to find a balance between the
size of the lexicon and the cost of the model. It is
good for the model to have a small lexicon to reduce
infrequent sub-words, as discussed in Section 3.2.
The precision of the model however should also be
as good as can be, meaning that the smallest possi-
ble lexicon of only the individual letters of the lan-
guage’s alphabet obviously does not perform well.
A balance between these two therefore needs to be
found in order to create an optimal segmentation
model.

Unsupervised morphological segmenters are es-
pecially attractive to low-resource languages as
they do not require any annotated data at all, and
annotated data can be difficult to find for these lan-
guages. Unsupervised segmenters can be frequency-
based, such as Byte Pair Encoding, but they
can also rely on probabilities with more linguis-
tic features in mind, such as Morfessor Categories-
MAP. The intrinsic evaluation for these systems
is performed by segmenting all words in the gold-
standard dataset and comparing them to their
golden-standard goal segmentations.

4.2.1 Byte Pair Encoding

BPE (Gage, 1994) is a simple data compression al-
gorithm which identifies bytes that commonly oc-
cur together and replaces them with a new and
unique byte. This technique was first applied to
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Merges Precision Recall F1-score Accuracy
4000 0.151 0.208 0.175 0.042
10000 0.172 0.198 0.184 0.064
20000 0.191 0.205 0.198 0.081
30000 0.181 0.182 0.181 0.084
40000 0.173 0.169 0.171 0.085
50000 0.177 0.167 0.172 0.087
60000 0.173 0.163 0.168 0.085

Table 4.1: The effect of the number of merges in the BPE algorithm on precision, recall, f1-score
and accuracy.

natural language processing by Sennrich et al.
(2015) to split up words into frequently occurring
characters, which inherently are often similar to
morphs. At the start of the process, a word oc-
curs as a sequence of its characters and a token to
mark the end of the word. Then, characters that of-
ten occur together are merged together into a new
unique symbol. The way in which BPE segments
words is therefore also largely dependent on how
many merges the program is allowed to make, and
different number of merges work better for different
languages and applications.

Because of its simplicity and robustness, BPE is
currently the most widely used segmentation tech-
nique in natural language processing. This is what
makes it an excellent baseline to compare other
more linguistically refined machine learning seg-
mentation systems with. Important to note is that
BPE was not designed to extract morphs in par-
ticular, but rather to identify commonly occurring
characters. It can therefore be expected that BPE
will perform relatively poorly on the intrinsic eval-
uation.

Using Sennrich’s original program,9 a model was
trained on the full monolingual dataset using differ-
ent numbers of merges, see Table 4.1. No dropout
was used, meaning that the programs splits all the
words consistently. With dropout, there exists the
chance at every merge step that this merge is ran-
domly cancelled out. Depending on how you value
F1-score and accuracy, there are two different best
models; the one with 20k merges has the best F1-
score (0.198) and the model with 50k merges has
the best accuracy (0.087).

The two amounts of merges fit more or less in
the order of degree with 30k–40k, which was most

9https://github.com/rsennrich/subword-nmt

often used for BPE during WMT17 and WMT18.
The difference between the two is characterised by
the fact that the model with 50k merges has consis-
tently fewer splits in the words than the model with
20k does, as can be see in Example (11). For extrin-
sic testing, the model with the highest F1-score, so
with 20k merges, will be created. Both because the
F1-score is a more robust measurement than the
accuracy and because the system with 20k merges
has less unique tokens, making it more suitable for
NMT.

(11) 20.000: mi ki voq

50.000: miki voq

The extrinsic testing, however, will make use of a
transformer model type, and, based on the recom-
mendations from Ding et al. (2019) for this type of
NMT, the range of merges should be around 0-4k.
Therefore, a NMT model with only 4k merges was
also trained for extrinsic evaluation.

4.2.2 Morfessor Categories-MAP

This first program from the Morfessor family we
will discuss is completely unsupervised. As the
name suggests, Morfessor Categories-MAP (Creutz
& Lagus, 2005a) is based on a probabilistic Maxi-
mum A Posteriori (MAP) estimation. It is an ex-
tension of the (now outdated) Morfessor Baseline
model, which was originally developed by Creutz
and Lagus (2005b). In Morfessor Categories-MAP,
morphological categories are attached to morphs
based on a first-order hidden Markov model
(HMM). Morfessor Baseline assumed independence
between morphs, meaning that learn + s had the
same probability to be segmented as s + learn, and
the advantage of the use of a HMM is that context
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Perplexity Threshold Precision Recall F1-score Accuracy
1 0.397 0.353 0.374 0.204
10 0.330 0.454 0.382 0.178
50 0.428 0.409 0.418 0.233
100 0.380 0.359 0.369 0.213
200 0.367 0.323 0.334 0.187
400 0.359 0.286 0.318 0.176

Table 4.2: The effect of the perplexity threshold in the Morfessor Categories-MAP algorithm on
precision, recall, f1-score and accuracy.

is now taken into account when calculating prob-
abilities. Furthermore, Morfessor Categories-MAP
uses a hierarchical lexicon, which reuses already ex-
isting segments when finding new ones. This means
that the segmentation of a word is not encoded by
its letters, but rather by the references to its indi-
vidual segments.

An important parameter for this system is the
perplexity threshold. This perplexity is based on
the morphological complexity of a language and
the size of the training set, where more training
data and larger morphological complexity leads to
a higher perplexity threshold. The difference the
threshold makes while segmenting is best illus-
trated with its extremities: the threshold of one
and the threshold of 400. As can be seen in Ex-
ample (12) and (13), a higher perplexity threshold
expects morphs to occur relatively less frequently as
it assumes higher morphological complexity. This is
shown by having larger morphs when the threshold
is set to 400 compared to one. Although the result-
ing difference might look similar to the difference
in amount of merges in BPE, Example (13) shows
that the divisions are not as clean. Whereas BPE
without dropout consistently merges more morphs
together, the perplexity threshold also influences
the placement of the morph boundaries.

(12) 1: unnu kkor si or poq

400: unnukkor siorpoq

(13) 1: akunn attu uk uju llunga

400: akunnat tuukuju llunga

Through empirical testing (see Table 4.2), the
threshold for Morfessor Categories-MAP was set at
50 to achieve the best linguistic correctness in in-
trinsic testing with a resulting F1-score of 0.414

and an accuracy of 0.233.

4.3 Semi-supervised segmenters

Semi-supervised, or minimally-supervised, seg-
menters have a head start over unsupervised seg-
menters when identifying morphs. By considering
data from a gold-standard, the semi-supervised
models can consider, amongst other things, how
many characters an average morph should have,
how many morphs there should approximately be
in the words, and of course what some morphs al-
ready are.

In this section, four different methods that use
both the raw and the annotated data will be com-
pared. Because the created golden-standard dataset
with segmented words is relatively small, ten-fold
cross validation will be used to evaluate these sys-
tems intrinsically in order to assure all data is used
while the research stays valid.

4.3.1 Morfessor 2.0

Morfessor 2.0 (Virpioja et al., 2013) is also a
newer implementation of Morfessor Baseline and,
amongst other improvements, Morfessor 2.0 intro-
duces semi-supervised training. The algorithm uses
the maximum a posteriori estimation as a cost func-
tion, which is used as base to again train a model re-
sembling a hidden Markov model. The cost is based
on the likelihood and priors, which are gathered re-
spectively from model assumptions and based on
applying the minimum description length principle
(Rissanen, 1978) to the data.

Table 4.3 shows the result of the testing with
a different number of morph types specified each
time. When tuning the desired number of morph
types, the α parameter is indirectly tuned as α =
m1
m2 , where m1 is the initial vocabulary size of the
corpus and m2 is the desired vocabulary size. With-
out any specification, Morfessor 2.0 will set the de-
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# Morph Types Precision Recall F1-score Accuracy
N/S 0.597 (SD: 0.074) 0.566 (SD: 0.073) 0.581 (SD: 0.071) 0.449 (SD: 0.072)
2000 0.571 (SD: 0.054) 0.570 (SD: 0.051) 0.570 (SD: 0.049) 0.409 (SD: 0.039)
3000 0.584 (SD: 0.050) 0.573 (SD: 0.051) 0.578 (SD: 0.045) 0.424 (SD: 0.046)
4000 0.594 (SD: 0.058) 0.575 (SD: 0.056) 0.584 (SD: 0.054) 0.445 (SD: 0.049)
5000 0.589 (SD: 0.059) 0.559 (SD: 0.052) 0.574 (SD: 0.054) 0.425 (SD: 0.056)

Table 4.3: The effect of the number of morph types in the Morfessor 2.0 algorithm on precision,
recall, f1-score and accuracy.

Perplexity Precision Recall F1-score Accuracy
1 0.594 (SD: 0.075) 0.534 (SD: 0.075) 0.562 (SD: 0.074) 0.408 (SD: 0.083)
10 0.582 (SD: 0.054) 0.554 (SD: 0.059) 0.568 (SD: 0.057) 0.423 (SD: 0.063)
50 0.595 (SD: 0.049) 0.559 (SD: 0.055) 0.576 (SD: 0.052) 0.423 (SD: 0.068)
100 0.602 (SD: 0.056) 0.547 (SD: 0.058) 0.573 (SD: 0.057) 0.414 (SD: 0.068)

Table 4.4: The effect of the perplexity threshold in the Morfessor FlatCat algorithm on precision,
recall, f1-score and accuracy.

sired number of morph types with the data in this
experiment at 12419. For translation however, this
is likely too large of an amount, so experiments are
performed with alternative number of morph types.
We can see that similar results to the model with-
out specification in terms of F1-score and accuracy
is achieved by the model with 4000 morph types
with a F1-score of 0.584 and an accuracy 0.445.

Unfortunately, the model with 4000 morph types
was created after extrinsic testing was already per-
formed, so the model without any specification was
used for this instead of the one with 4000 morph
types.

4.3.2 Morfessor FlatCat

FlatCat (Grönroos et al., 2014) can be used as an
extension of Morfessor, and the FlatCat models in
this research are extensions of a semi-supervised
Morfessor model. FlatCat again uses a hidden
Markov model but it now also attaches categories
to its segments. It uses a flat lexicon, meaning that
the segments are encoded as their strings and that
each letter is encoded by a certain amount of bits.
This means that the longer the segment, the more
bits needed to encode it and therefore the more ex-
pensive. This then also gives away the underlying
mechanism of the program, namely a balancing of
the cost whether a smaller segment is worth hav-
ing its own segmentation, which is the case when it
occurs often in the data.

Like with Morfessor Categories-MAP, FlatCat
can be tuned by modifying the perplexity thresh-
old. Likewise, the perplexity threshold of 50 is the
best for both the F1-score (0.576) and accuracy
(0.423), see Table 4.4. This model is therefore
picked for extrinsic evaluation as well.

4.3.3 Linguistically-Motivated Vocabulary
Reduction

Linguistically-Motivated Vocabulary Reduction
(LMVR) (Ataman et al., 2017) can reduce the vo-
cabulary size to a desired amount while keeping in
mind the linguistic properties of the segmentation.
It is desirable to have as few infrequent morphs
as possible, and by considering the categories that
all segments have been placed in, LMVR prevents
words from being split up at random positions when
a frequently occurring string is encountered. The
big difference between LMVR and other vocabulary
reduction techniques is therefore that the linguis-
tic properties are kept consistently, meaning that
a morph which has been tagged as a ‘STEM’ will
not be changed in such a way that it is no longer a
‘STEM’.

LMVR itself uses unsupervised learning, but it
should be used on top of a program that provides
categories to the segments. As in its original pa-
per, the LMVR models in these experiments will
be built upon semi-supervised FlatCat models.

The results of the experiments are shown in Ta-

9



Perplexity Precision Recall F1-score Accuracy
1 0.602 (SD: 0.062) 0.541 (SD: 0.072) 0.570 (SD: 0.068) 0.411 (SD: 0.085)
10 0.567 (SD: 0.059) 0.538 (SD: 0.059) 0.552 (SD: 0.058) 0.416 (SD: 0.057)
50 0.578 (SD: 0.053) 0.548 (SD: 0.059) 0.563 (SD: 0.055) 0.411 (SD: 0.072)
100 0.586 (SD: 0.055) 0.534 (SD: 0.053) 0.559 (SD: 0.053) 0.398 (SD: 0.063)

Table 4.5: The effect of the perplexity threshold in the Linguistically Motivated Vocabulary Re-
duction algorithm on precision, recall, f1-score and accuracy.

Supervision Precision Recall F1-score Accuracy
fully-supervised 0.638 (SD: 0.050) 0.629 (SD: 0.044) 0.633 (SD: 0.047) 0.542 (SD: 0.056)
semi-supervised 0.640 (SD: 0.061) 0.623 (SD: 0.056) 0.631 (SD: 0.058) 0.553 (SD: 0.059)

Table 4.6: The performance of CRFs on precision, recall, f1-score and accuracy.

ble 4.5. The top scores are divided over perplexity
thresholds of 1, 10 and 50, where the threshold of 1
has the highest precision and F1-score with 0.602

and 0.570 respectively. A perplexity of 10 has the
highest accuracy with a score of 0.416, and the
50-threshold has the highest recall with 0.548.

After consideration of these different models, this
research chose to use the model with a perplexity
threshold of 50 for extrinsic testing. Mainly be-
cause the difference between the three best per-
forming models was very minimal, and for Mor-
fessor Categories-MAP and Morfessor FlatCat the
perplexity threshold of 50 was also the best option.
This choice would likely lead to the most consis-
tency between the models and therefore allow for
a better comparison between technique-specific dif-
ferences.

4.3.4 Conditional Random Fields

Conditional Random Fields (CRFs) are discrimina-
tive models for segmenting and labeling sequential
data originally developed by Lafferty et al. (2001).
The Morfessor family is often based upon genera-
tive HMMs, and the large difference compared to
CRFs is that HMMs assume independence and use
directed graphs, whereas CRFs define conditional
probability using observed sequences and the use of
undirected graphs.

For natural language processing, linear-chain
CRFs are often used. The difference between these
and general CRFs is that for linear-chains de-
pendencies are only imposed on the previous el-
ement instead of on all. Using the implementa-
tion on linear-chain CRFs from Ruokolainen et al.

(2013), both fully and a semi-supervised models
were trained. The fully-supervised models are solely
based on CRFs, whereas the semi-supervised meth-
ods are based on the classic letter successor variety
(LSV) scores, originally presented by Harris (1955).
Using the idea that the variability of the sequence
of letters should be low within morphs and high
at the boundaries, LSV can extract likely morph
boundaries from the unannotated data.

Both a semi-supervised and a fully-supervised
CRF model are trained. Looking at the segmen-
tations, it is hard to specify the exact difference
between the types of supervision. At points, the
semi-supervised model has more segments, at other
points the fully-supervised model has more seg-
ments. The place of segmentation also differs, see
(14). Here, Harris’ LSV classified the sequence -
pp- to more likely belong to two different morphs
rather than the same. Worth mentioning is that
the way that the semi-supervised segmenter split
up the word can also be correct, as allappat ’s stem
is allat- and the p is attached to the second morph
because of the design choices explained in Section
3.2. In other semi-supervised segmentations, such
as sini-ssa-pput the -pp- sequence is kept together,
but this is likely because the -pput morph often
occurs in the annotated dataset.

(14) Semi: *allap pat

Fully: alla ppat

In Table 4.6 the results of both models are illus-
trated. Again, the results are not unanimous, as the
fully-supervised outperforms the semi-supervised
on recall (0.629) and F1-score (0.633) but it is the
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Method Specification Precision Recall F1-score Accuracy
CRF semi-supervised 0.640 0.623 0.631 0.553

Morfessor 2.0 - 0.597 0.566 0.581 0.449
FlatCat p=50 0.595 0.559 0.576 0.423
LMVR p=50 0.578 0.548 0.563 0.411

GroenOrd - 0.400 0.439 0.419 0.282
Morfessor-CatMAP p=50 0.428 0.409 0.418 0.233

BPE-simple 20k merges 0.191 0.205 0.198 0.081
BPE-simple 4k merges 0.151 0.208 0.175 0.042

None - 0.069 0.069 0.069 0.069

Table 4.7: The performance of all methods on precision, recall, f1-score and accuracy.

other way around for precision (0.640) and accu-
racy (0.553). The results between the models vary
minimally on all aspects.

For extrinsic testing, the semi-supervised model
is chosen because its ability to generalize on new
data should in theory be bigger. By considering
the many unannotated words, the author hypoth-
esizes that the semi-supervised model has a better
overview of the language and is therefore better at
parsing unseen words.

4.4 Completely-supervised seg-
menters

Completely-supervised segmenters only use anno-
tated data. As it can be difficult to merge patterns
from both annotated and unannotated data, some
models better fit in the completely-supervised for-
mat. Using this method, noise from the often way
larger unannotated dataset is left out, but there
is a higher chance that the model will be overfit
to the annotated data. Problematic for completely-
supervised segmenters is however that a larger
chunk of annotated data is needed, which is often
scarce for low-resource polysynthetic languages.

4.4.1 Transformer

Using the implementation from Junczys-Dowmunt
et al. (2018) based on the paper by Vaswani et al.
(2017), all and only the annotated data was used to
train a Transformer model. This technique is solely
based on attention mechanisms instead of (also) us-
ing recurrence and convolutions. With the anno-
tated data, it is able to figure out global dependen-
cies in the input and transform these to the output.

Therefore, this model type can be used for a wide
range of natural language processing tasks such as
NMT but also morphological segmentation.

The Transformer model showed great promise for
the closely related language Inuktitut (Roest, un-
published MsC thesis, 2020), but unfortunately it
appears that there is not enough annotated data for
Greenlandic. Instead of segmenting the words for
testing, it too often occurred that completely new
spurious strings were generated. This caused some
words to be segmented in a way that made them no
longer recognizable, which is a known problem with
character-based methods (Lee et al., 2016). The re-
sults of the Transformer models are therefore omit-
ted from this report. When the annotated database
is extended however, the Transformer models might
be promising to revisit.

5 Extrinsic Experiments

All systems in Table 4.7 except for Morfessor
Categories-MAP and GroenOrd will be used to cre-
ate a KL→EN NMT system. GroenOrd could not
process the large amount of data and Morfessor
Categories-MAP was not included in the extrin-
sic evaluation as it would most likely not have an
advantage over the other models in the Morfessor-
family that were included.

The NMT systems are created with Marian 1.7.6
(Junczys-Dowmunt et al., 2018) using the Trans-
former model type (Vaswani et al., 2017). The mod-
els have an embedding dimension of 512 and use
encoder and decoder layers of six.

All NMT models are trained with exactly the
same specifications and the exact same dataset for
training, testing and validation, where only the
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Segmentation Model BLEU
None 2.05

BPE-4k 1.60
FlatCat 1.53
BPE-20k 1.44
LMVR 1.11
CRF 1.01

Morfessor 0.95

Table 5.1: The performance of all methods in
the extrinsic evaluation on BLEU score.

Greenlandic data is segmented differently by the
various segmenters. Because the semi-supervised
segmenters were first trained using tenfold cross-
validation, a new model is trained with all available
data using the exact conditions that were best for
tenfold cross-validation.

For training, 70k sentences that were crawled and
aligned using Bitextor were used and 2k sentences
from manually crawled Greenlandic magazines.10

The Bitextor data was very noisy, so the maga-
zine data was over-sampled ten times to increase
its weight. For testing and validation, respectively
500 and 200 separate lines from the magazines were
used.

The results of the testing can be found in Ta-
ble 5.1. As can be seen, the BLEU scores are dis-
appointing, with the system without morphologi-
cal segmentation having the highest score of 2.05
BLEU. The most likely reason behind this is that
the translating of names and numbers worked best
without any segmentation, whereas they got mixed
up in the segmentation programs. Although it was
not the aim of this research to provide a workable
NMT system for KL→EN, the results of the extrin-
sic evaluation seem too poor to draw any signifi-
cant conclusions from. Interesting to note however,
is that the two intrinsically best performing pro-
grams perform poorly. I first suspected this could
be caused by them having a too large vocabulary to
fit the linguistic structures, but this does not seem
to be the full problem. Considering the magazine
data used for training, Morfessor 2.0 and CRF have
5448 and 6573 unique tokens respectively, whereas
the better performing FlatCat has 7429 unique to-
kens.

There are many possible explanations for the

10Atuagagdliutit, year 1999, issues 1,2,3,5,6&7

poor BLEU scores. The most obvious is the fact
that the dataset is not very large, and that the
largest part of the data comes from Bitextor and
has a lot of noisy lines and poor translations. On
top of that, the magazine data dates back to 1999
whereas the Bitextor data is more recent, possibly
leading to a slightly different writing style as well.
The third factor is that the data extracted from
the magazines was Greenlandic and Danish instead
of Greenlandic and English. The Danish text was
therefore translated into English, which caused the
highest-quality dataset to still have synthetic data.

Another issue is that not all data was segmented
evenly. The words that were in all capital letters
were not segmented well by the models in the Mor-
fessor family and by the CRF. These models, apart
from Morfessor 2.0, did not segment these words
at all. Morfessor 2.0 performed opposite, as it seg-
mented each letter individually. This is due to the
fact that the filtering for the training data in the
models was much more strict than for segmenting
the data to be translated.

It should also be noted that it is common prac-
tice in morphological segmentation for NMT to
combine several morphological segmentation tech-
niques. This allows for the exploitation of the bene-
fits of various techniques while masking their weak-
nesses with other techniques. A prime example of
this could be to first let a rule-based segmenter seg-
ment the words and applying BPE afterwards to
segment the words that could not be segmented
by the rule-based segmenter due to the fact that
the stem was for example not available in the dic-
tionary. To compare the individual morphological
segmentation techniques however this could not be
done, further explaining the low BLEU scores.

Lastly, it might have been a possibility to use the
previously mentioned idea of Toral et al. (2019) to
also use the data from the very closely related lan-
guage Inuktitut to increase its pool of bilingually
aligned sentences. This was not implemented how-
ever because this would also provide for noisy re-
sults when considering specific Greenlandic pars-
ing.

6 Conclusions

To conclude, low-resource polysynthetic languages
pose many challenges for morphological segmen-
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tation and NMT. Little research has been done
into most of these languages, and the research that
is done is limited by the absence of (annotated)
databases. The author has manually crafted an
annotated dataset for Greenlandic containing 640
unique segmented words. A database of words with-
out annotation was created from a wikidump, a
dictionary and Greenlandic websites and contains
2.9M words of which 122k are unique.

The intrinsic experiments (see Table 4.7) showed
that Conditional Random Field greatly outper-
formed the semi-supervised segmenters in the
Morfessor-family, which in turn outperformed the
systems without any supervision. This is in line
with expectations however because the unsuper-
vised techniques have a disadvantage in compari-
son to the supervised programs because they can-
not know possible design choices. Regardless, when
aiming for linguistic correctness in morphological
segmentation, having annotated data is very help-
ful.

For NMT, linguistically accurate morphological
segmentations does not necessarily lead to more ac-
curate translations. Byte Pair Encoding is a prime
example of this, which was not specifically de-
signed to extract morphs but does often increase
the BLEU scores in translation (Sennrich et al.,
2015). From all segmentation systems apart from
no segmentation, BPE also worked best in the ex-
trinsic evaluation (see Table 5.1), but due to sub-
optimal circumstances, it is highly questionable
how trustworthy these results are.

Further development of mostly the annotated
databases would be the next step in creating bet-
ter morphological segmentation systems for low-
resource languages. As seen in the intrinsic results,
even a small annotated database already greatly
improves the performance. For NMT systems, a re-
liable bilingual corpus is desired for Greenlandic
and other low-resource polysynthetic languages be-
fore further investigation into the effects of segmen-
tation on NMT can be performed.
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A Appendix: Data Sources

A.1 Raw monolingual data

A.1.1 Greenlandic-Danish Dictionaries

https://oqaasileriffik.gl/approved-words/

http://www.ilinniusiorfik.gl/oqaatsit/daka

A.1.2 Wikipedia dump

https://dumps.wikimedia.your.org/klwiki/20200301/

A.1.3 Crawled websites

www.nis.gl

www.sermitsiaq.ag

www.sermersooq.gl

www.peqqik.gl

www.naalakkersuisut.gl

www.knr.gl

www.qeqqata.gl

www.kak.gl

www.kujalleq.gl

www.banken.gl

www.banknordik.gl

www.qaasuitsup.gl

A.2 Annotated monolingual data

A.2.1 Greenlandic learning sites

https://learngreenlandic.tumblr.com/lessons

https://tulunnguaq.tumblr.com/
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