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Abstract: Ionic polymer-metal composites are electro-active polymers that, when stimulated by
an electric field, convert electrical energy into mechanical energy. The focus of this research is an
ionic polymer-metal composite soft actuator that has been realised by Nafion-117 metallised on
both sides with platinum. Three models are developed for this study and their predictive ability
is compared. The methods used to realise these models are the Multi-layer Perceptron, the curve
fitting and a Long-Short Term Memory neural network. The models aim to predict the force
with respect to time at different voltages (low to high applied electric fields) and displacements
(how much the actuator bends). Their ability to generalise to unseen samples is also evaluated.
The Multi-Layer Perceptron produces the best overall results with a root mean squared error of
0.241 mN on data from the unseen sample and computational time for prediction of 1.3 us.

1 Introduction

Electro-active polymers are a class of soft actua-
tor that, when stimulated by an electric field, con-
vert electrical energy into mechanical energy. More
specifically, when an electric field is applied to the
polymer, it exhibits a change in shape by contrac-
tion, expansion or bending (Chen et al., 2012; Ye
et al., 2017).

Ionic polymer metal composites (IPMCs) are
a subclass of electro-active polymers. The con-
version from electrical energy to mechanical en-
ergy is based on mass transfer, i.e. the migra-
tion of cations carrying solvent molecules in the
polymer which is caused by an applied electric
field and facilitated by the conductive property
of the IPMC. This means that the actuator has
to be (sufficiently) hydrated in order to change
its shape and thus produce a force. The actua-
tor produces a force that is very small in magni-
tude but could be compounded with for greater ef-
fect and muscle-like performance (Mirfakhrai et al.,
2007). This has many possible biomedical and in-
dustrial applications described by Shahinpoor and
Kim, 2005. Some of these industrial applications in-
clude mechanical grippers, robotic swimming struc-
tures and diaphragm pumps. And some biomedical

applications include artificial cardiac-assist muscles
with more artificial muscles realised in the form of
sphincter and ocular muscles. Some characteristics
of IPMCs that enable such applications include low
actuation voltages, slow actuation, inherent vibra-
tion damping and the ability to work in wet condi-
tions.

IPMCs exhibit highly non-linear behaviours
(Truong and Ahn, 2011). There have been many
successful attempts to model the tip displacement
of the an actuator with respect to applied voltage.
Some of these models are realised in the form of
a white-box model. White-box models are models
realised by establishing a meaningful mathematical
relationship among the system’s variables based on
some physical principles (Liu et al., 2017; Enikov
et al., 2006; Punning et al., 2009). Other mod-
els have been realised by black-box methods for
which the exact system dynamics do not have to
be known. These dynamics can be learnt by these
black-box models given experimental data. This is
a particularly useful characteristic to model IPMCs
as their underlying dynamics are currently not well
known. What is known for certain is that there are
mechanical, electrical and chemical properties that
dictate an IPMC’s system dynamics. Examples of
black-box techniques are the general multilayer per-



ceptron neural network (GMLPNN) developed by
Truong and Ahn, 2014 and an adaptive neuro fuzzy
inference system (ANFIS) and a nonlinear auto-
regressive with exogenous input (NARX) developed
by Annabestani and Naghavi, 2014. There are cur-
rently no models that can accurately predict the
force produced by an IPMC actuator.

The IPMC actuator that is the focus of this study
is Nafion-117 (sodium-ion) with a perfluorinated
membrane and platinum electrodes. This study
aims to build predictive models capable of predict-
ing the actuation forces of a Nafion-117 IPMC soft
actuator. These models are meant to generalise to
new samples. Having models that can predict the
actuation forces of an IPMC actuator enables the
development of controllers and therefore realise the
possible applications of IPMCs (Bhat, 2004).

Three black-box models are proposed in this
study. The first model contributed by this study
is realised as a feed-forward Multi-Layer Percep-
tron (MLP), the second is a curve fitted model.
The third and final model, a novel approach, pro-
posed by this study is a Long-Short Term Memory
(LSTM) neural network. In addition, a framework
to compare the models’ performance against each
other is proposed.

This paper addresses the following research ques-
tion: "Can predictive models generalise the actua-
tion forces of a Nafion-117 IPMC soft actuator?”.
The findings in this research will contribute to at-
tempts to model actuation forces of IPMC soft ac-
tuators.

The remainder of this paper is organised as fol-
lows. Section 2 outlines a fabrication process, de-
scribes the experiment from which data from a
Nafion-117 actuator is collected and details how
data is split for training, testing and validating
models. Section 3 details the preprocessing steps
for collected data, theoretical background for the
models used in this study and how the models
will be evaluated. Section 4 displays model’s per-
formance and comparative data. In section 5 the
results are discussed and linked to related studies.
Limitations of this study and suggestions for fur-
ther research are included in this section. Finally,
section 6 summarises the results and outlines the
conclusions that can be drawn from this study.

2 Material

This section describes the sample fabrication, con-
trol variables, experiment setup and the data col-
lection for this study. This is a continuation of work
done by Langius, 2019.

The first step in this study is the fabrication of
a composite sandwich construction of the Nafion
polymer metallised on both sides with platinum
to form electrodes. This sandwich construction is
then cut into strips of predetermined dimensions.
Throughout this paper, such a strip will be referred
to as a sample.

The next step is to perform some experiments on
the samples. Experimental data is collected from
these samples.

This is then followed by preprocessing in order
to correct some systematic errors in data collection
and prepare for the modeling of this data. Details
in section 3.1.

2.1 Sample fabrication

IPMC actuators are realised by the application of a
set of chemical processes. The composite sandwich
construction used to create samples in this study
is fabricated using standards and methodology as
shown by De Luca et al., 2013. There are four steps
involved, all of which are outlined below:

1. Surface Treatment: the Nafion is roughened
with sandpaper. This roughening increases the
surface area of the polymer in contact with
the platinum electrodes. The Nafion is then
washed by immersing it in a boiling acid so-
lution. The washing is meant to ensure the
Nafion polymer is completely saturated with
protons. The Nafion sheet can be seen in fig-
ure 2.1.

2. Ion Ezchange: the Nafion polymer is then sub-
merged in a salt solution containing platinum
ions. The platinum cations are absorbed into
the polymer.

3. Primary Plating: the absorbed platinum
cations are then reduced to the metallic state
of platinum. These are called nanoparticles
and they form the primary electrode. This pro-
cess can be seen in figure 2.2.



Figure 2.1: Step 1: a roughened, washed Nafion
sheet

58

Figure 2.2: Metal ion reduction to form the pri-
mary plating

4. Secondary Plating: the primary plating is then
further developed by additional coating of
platinum to form the secondary plating. This
step reduces the electrode’s resistance, increas-
ing the mass transfer capability.

The samples are then created when the sandwich
construction is cut into strips that form samples
with dimensions of 65 mm in length and 5 mm in
width and a surface area of 455 mm? (figure 2.3).
Two identically fabricated samples were selected for
this study.

Figure 2.3: Fully formed samples with platinum
electrodes

2.2 Control variables

An experiment was designed to observe the be-
haviour of the samples. Given a step voltage and
an initial displacement, the force produced by the
sample is measured with respect to time. The vari-
ables controlled for this experiment are:

e DC step voltage supplied to the sample, V

e the displacement of the sample above a load
cell, d

IPMCs work in low voltages, therefore the volt-
ages (required for actuation) supplied to a sample
were limited to 2V, 3V and 4V, in line with previ-
ous research (Shahinpoor and Kim, 2001).

IPMCs can bend when an electric field is ap-
plied across them. The displacement demonstrates
its bending capability and thus, actuation. The dis-
placement was limited to the range of Omm to
20mm, varied in 2mm increments because the ex-
periment setup can reliably measure data within
this displacement range.

2.3 Experiment setup

A number of apparatuses are required for the exper-
iment setup. The experiment is timed and therefore
necessitates a timing mechanism. A clamp must
hold the sample in place for the duration of the ex-
periment. The clamp is attached to a linear actua-
tor to control the displacement from a load cell. The



load cell is used to measure the force produced by
a sample. A voltage amplifier controls the voltage
across a sample. A similar setup is demonstrated by
Carloni et al., 2018 in which the force-displacement
characterisation is replaced by a force-time charac-
terisation for this study.

An Instron ElectroPuls E1000 test instrument
encapsulates nearly all the necessary requirements
for an experiment of this nature. An additional 3D
printed custom mount was installed on the linear
actuator of the test instrument. The clamp was at-
tached to the custom mount in order to hold the
sample horizontally over the load cell.

The load cell is an Instron static load cell 2530-
5N. This is a precision force transducer suitable for
materials testing. The load cell has a capacity of
5N and a sensitivity of 1.6mV/V to 2.4mV/V at
static rating. This is a suitable load cell for this ex-
periment because of the small (and slow) actuation
forces produced by a sample.

This study uses a TREK MODEL 10/10B-HS
high-voltage amplifier to apply an electric field
across a sample. It has many typical applications
including testing of electro-active polymers. Cop-
per tape is used as electrodes from the voltage am-
plifier to the sample.

The Instron control system enables the automa-
tion of data collection and control of variables when
the experiment is in progress. This automation al-
lows for a standard experiment setup and data
collection procedure. With these features, the dis-
placement of the sample from the load cell is moni-
tored and logged with a specified frequency during
the experiment. Additionally, measurements of the
force produced by the sample on the load cell are
also logged. In this study, all data is logged at a
frequency of 10Hz.

The resulting setup can be seen in figure 2.4.
Most of the tasks in the experiment setup are au-
tomated. With the exceptions of the hydration and
attachment of the sample to the clamp and voltage
amplifier electrodes.

The steps for setting up the experiment are as
follows:

1. Hydrate the sample for one minute. Then dry
the surface of the sample with paper

2. Attach the sample to the voltage amplifier and
clamp

Figure 2.4: The full experiment setup

3. Calibrate the load cell

4. Set the displacement of the sample from the
load cell

The experiment can then be run by starting the
voltage amplifier and the Instron test instrument
at the same time.

2.4 Data collection

Training data is required to build black-box predic-
tive models. A validation dataset can be used for
the internal validation of the model i.e to show how
well the model performs (if there is any learning
done) over the course of training. A test dataset,
one unknown to the model during the training pro-
cess, is also required to test if the model gener-
alises to unseen data. This dataset is important be-
cause the relationships between variables learnt by
black-box models may be specific only to the train-
ing data rather than the phenomena the model is
meant to recognise.

Paying attention to this, data collected from one
of the samples is used to train and validate mod-
els. This is referred to as the training sample. Two
rounds of data collection were completed on the
training sample to form the training dataset. An



additional round was completed on the same sam-
ple validation dataset. Data from the other sample
is used to test the models. This is referred to the
test sample from which the test dataset is obtained
after a single round of data collection.

Since there are three voltage conditions and
eleven displacement conditions, each sample there-
fore undergoes 33 runs under the conditions of ev-
ery voltage-displacement pair for a complete round
of data collection. Runs are limited to 100s in du-
ration, which is considered to be sufficient time to
observe the sample response of an initial rise until a
peak actuation force before the sample becomes de-
hydrated due to electrolysis and loses its ability to
bend and thus can no longer produce a force. The
stage when the sample is dehydrated is referred to
as the dehydration phase in this paper and is recog-
nisable as a decay in the actuation force over time.

3 Methods

In this section, the methods used to prepare col-
lected data and to build the models implemented
for this study are described. This section also in-
cludes a framework to evaluate and interpret the
results produced by the models both internally (i.e
the predictive ability of the model itself) and com-
pared to other models’ predictive ability.

3.1 Data preprocessing

Data is preprocessed before it can be presented to a
machine learning method for the purposes of build-
ing a model. The preprocessing pipeline is defined
as follows:

1. Remove the calibration offset in data from the
load cell

2. Extract data from the first 80 seconds of the
run

3. Replace missing force measurements with ON

4. Apply a rolling median over force data col-
lected

Figure 3.1 is an example of preprocessed data over-
laid on the collected data.
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Figure 3.1: Preprocessed data from the training
sample overlaid on collected data

Step 1 makes forces positive and ensures that
each run begins from ON regardless of the mea-
surement errors in the load cell. This is done by
multiplying force readings by -1 to make readings
positive. The minimum force found within the first
5 seconds of the run can then be used as the offset
that is subtracted from all force measurements in
the run.

Step 2 in the pipeline is motivated by two factors.
The first being that the sample response is static
by this stage (80s) in the run. The remaining 20
seconds contain no new information for models to
learn. The second factor is an error in force mea-
surement inherent to the process. This results in
negative or "pulling” force readings. The load cell
is calibrated to ON with the weight of the hydrated
sample. The negative force readings are a result of
the sample losing mass over the course of the run
due to dehydration. This error cannot be removed
systematically so step 2 aims to minimise the effect
of these inaccurate measurements.

Step 3 deals with missing values in the force read-
ings. Sometimes the test instrument does not log
the first 0.1 or 0.2 seconds of the run. Since the ex-
periment begins with a force of ON, IPMC actuation
is slow and the range of forces produced is minus-
cule (between ON and 0.0015N), it is reasonable to
assume that force readings in those timesteps are
or very close to ON.

Step 4 smooths force readings. Some of the read-
ings can be especially noisy, as shown in figure 3.1,
particularly in the dehydration phase. A way to
deal with this is to capture the trend of the data
between timseteps. In this study, a rolling median



sampling window is run over the data. The sam-
pling window increases in size with respect to time
(equation 3.1) because over the course of the ex-
periment, readings become increasingly noisy. The
increasing sampling window size attempts to main-
tain the trend in noisy data. The same scheme is
used by Langius, 2019.

. 10t t5
size = | —
4

Where t is time in seconds (logged at 10Hz). | f(¢)]
is a floor function on f(t).

Data is further preprocessed for neural networks
by scaling data. Scaling data maintains the shape
of the distribution of data but limits the data to a
given range (typically from 0 to 1) which speeds up
computation.

With a training window of 80 seconds and data
collected at 10Hz, there are 800 data points for any
single run. This results in 800 x 33 = 26400 data
points for a round of data collection on a sample.

(3.1)

3.2 Multi-layer perceptron

The feed-forward Multi-Layer Perceptron (MLP) is
simple and powerful with regards to function ap-
proximation (Hornik, 1991; Cybenko, 1992). This
makes it a natural choice to model the nonlinear
sample response for a Nafion-117 actuator.

In this study, the architecture as in figure 3.2
was implemented, an extension of the work done
by Langius, 2019. Where:

e d is displacement of the sample from the load
cell

e V is DC voltage across the sample
e t is the current time
e F(t) is the scaled predicted smooth force

e All hidden neurons and the output neuron
have a sigmoid activation

e Hidden neurons all have a 20% dropout chance

The input layer represents a vector of predic-
tors at a single time slice. MLP optimisation is re-
alised by finding the set of weights that minimise a
loss function. The loss function used in the study
is the mean squared Error (MSE) which is typical

Input 250 10 250
Iﬂyer neurons neurons neurons

Qutput
layer

Figure 3.2: MLP architecture used for this study

for least-squares optimisation problems. The opti-
miser chosen for this study is the Adam optimiser
which makes use of adaptive momentum to find
a local minimum in the gradient (loss) function.
It also has known benefits in terms of computa-
tional time, memory usage and faster convergence
(Zhang, 2018).

All data, i.e. input and output, are scaled to the
range of [0,1] which is typical practice in neural
networks. The min-max scaler is used in this study
which scales data to the range [0,1] without chang-
ing the shape of the distribution of any of the vari-
ables. This helps with conversion, making all data
fall in the same range. The scaled data thus mo-
tivates the use of the sigmoid activation function
for neurons. The resulting prediction for a given
timestep under different conditions is a sum of sig-
moids that is bound within the range [0,1] by the
output layer. The root mean square error (RMSE)
between the target and prediction can then be con-
sidered as a measure of average percentage error in
the MLP predictions.

The MLP is trained for 20 epochs during which
hidden neurons each have a dropout chance of 20%.
This means there is a 20% chance that, each train-
ing iteration, a hidden neuron does not contribute
to the prediction of the training example and thus,
subsequently to the error propagation through the
MLP to update neuron weights. This is a simple
method to minimise overfitting as described by Sri-
vastava et al., 2014.

3.3 Curve fitting

Curve fitting for this study assumes that the ac-
tuation forces for all samples follow a particular
behaviour. This assumption relates force to time,



generally as in equation 3.2.

F(t)=g(Z,t) + € (3.2)
Where F(t) is the force observed at time t, € is
an error term (assumed to be drawn from a normal
distribution) and model parameters are represented
as vector .

The function g is a predefined function whose
parameters, Z need to be fit. Nafion-117 actuation
follows a typical process in which actuator produces
a force (the sample response) until a peak force is
attained. Dehydration then sets in and the actuator
loses the ability to exert a force. This process may
be modeled by function g, which is assumed to be a
lognormal probability density function (PDF) in t
for a given voltage-displacement pair. For simplic-
ity, optimal parameters are found and saved for in-
dividual voltage-displacement pairs on the training
data. That is, voltage and displacement are treated
as ordinal variables. A multivariate function that
treats voltage and displacement as numerical vari-
ables is beyond the scope of this study.

The function g in equation 3.2 is thus defined as
in equation 3.3.

g(Z,t) = lognorm(t,a) + b (3.3)

Where parameter a is a distribution scaling param-
eter, b is a translation parameter and lognorm(t,a)
is the standardised PDF, defined as in equation 3.4.

2 n2(t
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Where s is the shape parameter for the lognormal
PDF. This model therefore fits three parameters:

lognorm(t,a) =

1. distribution scaling parameter, a
2. translating coefficient, b

3. lognormal PDF shape parameter, s

Parameter a scales the range of the lognormal PDF
to the range of the force produced by a sample.
The translating coefficient, b attempts to account
for some of the experimental errors that could not
be removed in the preprocessing stage. The shape
parameter s determines the shape of the lognormal
PDF.

The Levenberg-Marquardt Algorithm (LMA),
first described by Levenberg, 1944 and refined by
Marquardt, 1963 is the method used to fit the pa-
rameters by minimising the error between predic-
tion and target using damped least-squares opti-
misation. The LMA’s optimisation process is iter-
ative during which parameters T are adjusted at
each step until the LMA finds a local minimum in
the gradient function. Iterations are limited to a
maximum of 1000.

The LMA interpolates between the gradient de-
scent algorithm (GDA) and the Gauss-Newton al-
gorithm (GNA). It is faster in convergence than the
GDA and more robust than the GNA (Zhao et al.,
2014) because the LMA is more tolerant to bad
initialisation of model parameters. In this study,
model parameters are initialised to 1.

3.4 Long-short term memory

Recurrent neural networks (RNN) are an extension
of the feed-forward MLP. The extension is that
RNNs may have connections that can span adja-
cent time-steps (Lipton et al., 2015). This means
that previously seen information can be incorpo-
rated into new information. They therefore exhibit
the ability to model dependencies in data and hence
are well suited to represent differential equations
(Kruse et al., 2013; Sherstinsky, 2020).

Differential equations are often used to describe
physical processes. The actuation of a sample over
a time may be represented by some system of dif-
ferential equations. This may prove to be a use-
ful property to model the dynamic system that
causes IPMC actuation. Dynamic systems have
been proven to be approximated by recurrent
neural networks (Funahashi and Nakamura, 1993;
Samarasinghe, 2007).

Long-Short Term Memory (LSTM) networks are
a class of recurrent neural network. The LSTM is
favoured in this study over the traditional recur-
rent neural network because of a typical problem
faced by traditional RNNs. This is the vanishing
(or exploding) gradient problem when modelling
long-term dependencies first formulated by Bengio
et al., 1994. This problem arises when the error gets
infinitesimally small, approaching 0 (or infinitely
large) and can therefore not be used to update
the weights of the network. LSTM neural networks
introduced by Hochreiter and Schmidhuber, 1997



manage this problem by introducing a memory cell
to each neuron which allows LSTMs to learn long-
term dependencies.

Each LSTM cell has its own state. This state
is updated at each timestep in the process. The
cell state enables a constant gradient flow which
prevents vanishing (or exploding) gradients. These
properties could be useful particularly in real-world
applications such as closed-loop control where the
time in which the actuator is operated (possibly in
wet conditions) is unbounded.

LSTMs have a vast array of applications, partic-
ularly in relation to sequence modeling. They have
been used to model many sequence problems be-
fore and are currently one of the most sought after
solutions for such problems (Li et al., 2020; Lipton
et al., 2015).

The sample response may have some long and
short-term dependencies (which could be described
by an unknown set of differential equations) that
the LSTM may be able to learn. A sequence of in-
put vectors is presented to the LSTM for which the
resulting forces are predicted. The LSTM maintains
an internal state across time steps and can incorpo-
rate previous information in the upcoming predic-
tions. Figure 3.3 is a representation of how depen-
dencies within a sequence may be modeled. Red
boxes represent the input vector at time t. Blue
boxes represent the prediction for time t. Purple
boxes are the LSTM layer(s) with a certain state
at time t that maintain their state (or part of it)
in the next timestep(s) as represented by the hor-
izontal arrows (recurrent connections) connecting
them.

An LSTM layer is completely described by a sys-
tem of equations. Before demonstrating these equa-
tions, a few variables must be defined. For gate k,
matrix Wk is the input weight matrix, matrix ﬁk is
the recurrent connection weight matrix and vector
by, is the bias vector. The system of equations can
then be defined as follows:

fi = o(W;Z + Ryhy_1 + by) (3.5)
iy = o(Widy + Rihy_1 + b;) (3.6)
0y = 0(WoZy + Rohy_1 + bo) (3.7)
¢ = tanh(WaZy + Rehy1 4+ b:)  (3.8)
¢t = ftoci_1+i408 (3.9)
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Figure 3.3: Process of actuation as learnt by
LSTMs

hy = o4 o tanh(c;) (3.10)

Where o is the element-wise product, o is the sig-
moid activation function, tanh is the hyperbolic
tangent activation function and #; is the input vec-
tor at timestep t.

Equation 3.5 represents the forget gate’s activa-
tion, 3.6 the input gate’s activation and 3.7 the out-
put gate’s activation. Equation 3.8 is the LSTM
layer’s cell input activation vector and 3.9 repre-
sents the layer’s cell state vector. The hidden state
vector of the LSTM cells in a layer is represented
by 3.10.

As with the MLP, in this study, data is scaled
using the min-max scaler. The architecture used in
this study was a neural network consisting of 3 hid-
den LSTM layers similar to the architechture of the
MLP in figure 3.2 except with simple neurons re-
placed with LSTM cells. The first layer consists of
100 LSTM cells. The second, 10 LSTM cells and the
final layer; 100 LSTM cells. Multiple hidden lay-
ers can model more complex dependencies (Kruse
et al., 2013). All hidden cells within the neural net-
work had a 20% dropout chance to avoid overfit-
ting. The loss (error) function minimised by the
network is the mean squared error (MSE) The op-



timiser used to minimise this function was, as with
the MLP, the Adam optimiser. The neural network
was then trained for 7 epochs. Early stopping de-
termined that larger number of epochs results in no
improvement or poorer performance.

3.5 Model evaluation

To compare the performance of each model, a per-
formance metric must be applicable to the problem.
The metric must give some indication of how well
a model fits given data.

The problem description is a non-linear regres-
sion problem between force and time under the con-
trol conditions. A metric that can be used for the
evaluation of non-linear regression problems is the
root-mean squared error (RMSE), as in equation
3.11. This metric is suited to the problem descrip-
tion because it represents the average error in pre-
diction. A lower RMSE implies better model per-
formance.

RMSE = (3.11)

(yi — 9:)?

Where:
e y,; is the scalar target value
e ¢, is the scalar predicted value
e 1 is the number of predictions

A model’s ability to generalise to unseen data is
evaluated by comparing the RMSE on the test data
with the final RMSE on the training and validation
data. If they are similar, the models can generalise.
Model comparisons are drawn by comparing their
test RMSE to other models.

In addition, with the described experiment pro-
cess, there is a general region in which a sample
produces a force, when the sample response is dy-
namic. This region is in the first 20 seconds of the
sample response. This region will be referred to as
the region of actuation. It is therefore an important
region to consider and models must sufficiently cap-
ture the sample response in this region. Therefore
an additional condition to the model evaluation is
a second RMSE value on the test set for predic-
tions made in the first 20 seconds of each run. A
lower RMSE in this region than for the whole run

(80s after preprocessing) indicates that the model
learns to predict the dynamic part of the sample
response. A higher RMSE than for the whole run
indicates that the model has not learnt the dynamic
part of the sample response and instead minimises
the error when the sample is dehydrated which is a
mostly static region in the experiment process.

If any two models perform similarly in terms of
final test RMSE, a pairwise comparison is made.
This comparison is in the form of a scatter plot of
the models’ RMSE in the region of actuation. These
RMSE values will be grouped by voltage condition.

However, since the models are machine learning
algorithms, the RMSE can be misleading because
a machine learning algorithm can learn a noisy
relation (that does not follow the pattern in the
data) that results in a low RMSE. A sanity check
is therefore necessary. Such a check is overlaying
the model’s predictions over the actual data which
exhibits an initial increase, a peak and decay as
a result of sample dehydration. If the predictions
exhibit these features, the RMSE can be used to
support observations.

The prediction time for each model will also be a
metric to evaluate models. Lower prediction times
indicate a lower model complexity.

4 Results

In this section, the training results for the Multi-
Layer Perceptron (MLP), Long-Short Term Mem-
ory (LSTM) neural network and the curve fitted
model (CFM) are presented individually. Under the
Comparison subsection, the model evaluation met-
rics are used to compare models in relation to each
other.

The scaled root mean squared error (RMSE)
losses with respect to training epochs for the neu-
ral network models are included in their individual
subsections. The RMSE for the training and vali-
dation included in these plots is useful to evaluate
how much the model has learnt. For the curve fitted
model, training and validation losses with respect
to iterations in the Levenberg-Marquardt algorithm
(LMA) are not included, only the final losses are in-
cluded.
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Figure 4.1: MLP root mean squared error loss
with respect to epoch

4.1 Multi-layer perceptron

The decreasing RMSE losses with respect to train-
ing epochs in figure 4.1 indicate that the MLP
learnt a relationship between the input features and
the actuation forces. The MLP had a final scaled
training RMSE of 0.07513 (0.133 mN) and a final
scaled validation RMSE of 0.08589 (0.152 mN).

The model returned a scaled test RMSE of 0.136
(0.241 mN). This higher RMSE for the test data
compared to the training and validation data indi-
cates that the MLP model does not generalise to
the test (unseen) sample.

4.2 Long-short Term memory

The results of the LSTM’s training losses are in
figure 4.2. The model learnt a relationship between
the input features and actuation forces. This is in-
dicated by the decrease in (scaled) RMSE losses.
There is a close association between the scaled
RMSE of 0.0777 (0.137 mN) on the training data
and the scaled RMSE of 0.0896 (0.158 mN) on
the validation data. This close association also in-
dicates that the LSTM model was indeed able to
learn time dependencies in the training sample.

The model returned a scaled test RMSE of 0.142
(0.251 mN). This higher RMSE for the test data
compared to the training and validation data indi-
cates that the LSTM model does not generalise to
the test (unseen) sample.

4.3 Curve fitted model

The curve fitted model returns a final RMSE of
0.0755 mN and 0.1016 mN on the training and val-
idation data respectively.

Losses

—— Train loss
~— Validation loss

=

N\

H

Scaled RMSE
g 8 3

2

3
g

3
Epoch

Figure 4.2: LSTM root mean squared error loss
with respect to epoch

The model returned an RMSE of 0.313 mN on
the test data. This higher test RMSE on the test
data compared to the final training and validation
RMSE indicates that the curve fitted model does
not generalise to an unseen sample.

4.4 Comparison

The evaluation metrics for model comparison are
treated in this subsection. These metrics include
the sanity check (overlaying each model’s predic-
tion over the test data), a tabulation of test RMSEs
for all models and computational time for predic-
tion as described in section 3.5.

4.4.1 Sanity check

Figures that overlay an individual model’s predic-
tions on the test data are included in Appendix
A for one-to-one comparison. All pass the sanity
check (Figures A.1, A.2 and A.3 in Appendix A)
described in section 3.5. All models learn the pat-
tern of the sample response.

Figure 4.3 shows that the MLP and LSTM mod-
els exhibit similar performance with respect to pre-
diction with similar prediction patterns.

4.4.2 Root mean square error

Table 4.1 shows the RMSE in milli-Newtons (mN)
and indicates that the neural network models mod-
els predicted the dynamic part of the sample re-
sponse better than for the entire sample response.
It also indicates that for the test sample, the LSTM
returns the least expected error in the region of ac-
tuation. The MLP returns the least expected error
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Figure 4.3: MLP and LSTM predictions of test data overlaid on target data.
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| MLP | CFM | LSTM
0.175 | 0.326 | 0.170

<20s

0-80s | 0.241 | 0.313 0.251

Table 4.1: Root mean square error on test data.
Units are in mN.

LSTM
225

MLP | CFM |
13 | 13 |

Table 4.2: Average computational time for pre-
diction of a timestep. Units are in microseconds

(us)-

over the entire process. The curve fitted model per-
forms the poorest out of all three models. The curve
fitted model fails to generalise the sample response
as seen there is a higher RMSE in the region of
actuation than for the entire sample.

The MLP and the LSTM models perform sim-
ilarly on the test sample with reasonable RMSE
values. However, figure 4.4 indicates (by the ob-
served relation between model RMSEs) that the
MLP model was more reliable when presented with
the unseen sample.

4.4.3 Computational time

Table 4.2 shows the computation times for the pre-
diction of a single input vector with respect to each
model. This shows that the fastest predictive model
is the curve fitted model with an average prediction
time of 1.3 us.

All models have prediction times at least 440
smaller than 0.1s. They can therefore all realisti-
cally be used to predict actuation forces in real time
with the logging frequency of 10Hz as used in this
study.

5 Discussion

This section includes an interpretation of the re-
sults, provides explanations for these results and
suggests possible improvements. How (or if) the
models could be used for possible real-time pre-
dictions in future applications will be made from
the prediction time. The limitations of this study
and possible avenues for future research are also
discussed in this section which subsequently leads

into the conclusion of this study.

5.1 Model evaluation

All three models pass the sanity check (described
in section 3.5), meaning that the RMSE on all data
can therefore be used to evaluate model perfor-
mance.

The curve fitted model performed the poorest of
the three models with a considerably higher RMSE
on the test sample when predicting sample response
in the region of actuation and over the entire pro-
cess (see table 4.1). As a result of the translating
factor, the predictions start at (in some cases) val-
ues less than 0, observable as a "tail” in figure A.2,
Appendix A. This contributes to the higher RMSE.

The curve fitted model has the disadvantage of
making an assumption on the behaviour of a sam-
ple. This is shown by a very low training and vali-
dation RMSE but a considerably larger RMSE on
the test sample. This shows that the assumption
made by the model does not hold. An explanation
for this lies in the non-linearities IPMCs exhibit in
their actuation as described by Truong and Ahn,
2011.

Of all the models built for this study, the curve
fitted model was the simplest with only 99 param-
eters which made the model worth investigating.
This model simplicity also made it the most com-
putationally efficient model with a prediction time
of 1.3 ps which would be best suited for real-time
predictions if a good model is developed.

The Long-Short Term Memory (LSTM) model
was indeed able to learn dependencies in the train-
ing sample as demonstrated by similar RMSEs
for data from the training and validation datasets
which were both drawn from the same sample. The
Multi-Layer Perceptron (MLP) makes an assump-
tion of independence between input vectors. Using
this knowledge, the notion that the LSTM model
learnt dependencies in the training data is fur-
ther supported by the noticeable split in the train-
ing and validation RMSE with respect to training
epoch for the MLP in figure 4.1.

It is difficult however, to reconcile the added
model complexity for the LSTM model with a neg-
ligible improvement in overall prediction perfor-
mance and a prediction time 17 times higher than
that of the MLP. It is worth noticing however, that
although the same training data was used for all
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methods, the LMA and MLP received individual
data points as input coming to a total of 800 x
66 = 52800 ”independent” training examples. The
LSTM model received training examples as entire
runs meaning the model had only 66 independent
training examples to learn relationships in the data.

The MLP model is a simplified adaptation of
the general multi-layer perceptron neural network
(GMLPNN) developed by Truong and Ahn, 2014.
It is the most consistent model with generally good
performance across all metrics of evaluation as out-
lined in section 3.5. The model’s strongest point is
its relative simplicity as a universal function ap-
proximator (Hornik, 1991; Cybenko, 1992).

The MLP and LSTM models perform very simi-
larly but the MLP returns more reliable predictions
when individual voltage conditions are considered
(see figure 4.4) is the more consistent model. The
gains made by the added model complexity in the
LSTM model are undone by poor performance with
respect to the MLP in certain conditions, particu-
larly lower voltage conditions. Applying Occam’s
razor, the MLP is most likely the better model.

5.2 Limitations

A limitation in this study lies in data collection.
It is difficult to collect data due to the long fab-
rication and hydration process. This makes large
experimental datasets for black-box methods diffi-
cult to create.

The irremovable calibration error due to a sam-
ple’s loss of mass over the course of a run which
results in unpredictable errors between repeated
runs is a limitation in the experiment setup pro-
posed by this study. Modeling the weight loss of an
acting sample may help to reduce these errors be
considered in the preprocessing stage. Another so-
lution may be to reconfigure the experiment setup
to a horizontal configuration. That way, the sam-
ple pushes laterally against the load cell and any
effects of sample’s weight on force readings may be
minimised.

The sanity check proposed by this study is a lim-
itation in that for larger datasets, it is not feasible
to inspect all overlays in order to verify that models
capture the process of actuation. Cross correlation
between the target and predictions may also make
the verification. A decision threshold may be used
to define when to accept that models indeed cap-

ture the sample response. The cross correlation may
also be used together with root mean square errors
to evaluate model performance.

5.3 Future research

Neural network models in particular will benefit
from developing knowledge about the dynamics of
IPMC soft actuators. It may therefore be useful
to consider the variables considered in available
white-box methods that attempt to model IPMC
behaviour analytically. For example, Liu et al., 2017
consider the IPMC strip’s thickness and Young’s
modulus.

Recurrent neural networks and therefore by ex-
tension, LSTM neural networks have been success-
fully applied to model a number of physical pro-
cesses (Li et al., 2020; Elsworth and Giittel, 2020;
Kruse et al., 2013). The LSTM model’s success in
modeling the training sample’s dependencies but
failure to generalise to the unseen test sample in-
dicates that there may be some other system vari-
ables that need to be considered in order to cre-
ate a model that can generalise actuation forces.
When more is known about the underlying dy-
namics of IPMC actuation, it would therefore be
useful to investigate the application of LSTMs to
model the more complex dependencies. Particularly
in the case of dynamic voltage and displacement
modulation which would produce more complex be-
haviours.

6 Conclusion

This study proposed three black-box models to
model the actuation forces of a Nafion-117 IPMC
actuator. These models were a Multi-Layer Per-
ceptron (MLP), a curve fitted model optimised by
the Levenberg-Marquardt Algorithm (LMA) and a
Long-Short Term Memory (LSTM) neural network
which is a novel approach.

The study also proposed a framework to compare
the performance of these models in relation to each
other, contributing a model selection paradigm for
future IPMC actuation force modeling attempts.

The study showed that the assumption made
by the curve fitted model does not hold for un-
seen samples and that the LSTM neural network
and the MLP are better models that perform simi-
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larly with regard to prediction. However, the MLP
is best suited to model the actuation forces of a
Nafion-117 IPMC actuator. This observation was
made on balance of three factors. The first being
a prediction time of 13 us. The second being root
mean square errors on predictions of a test (unseen)
sample of 0.175 mN in the dynamic part of the
sample response together with an RMSE of 0.241
mN over the entire sample response. The third be-
ing the consistency of predictions across all voltage
(applied electric field) conditions.

The research aimed to demonstrate if predictive
models generalise the actuation forces produced by
a Nafion-117 IPMC soft actuator. The study con-
cluded that although models show the ability to
learn the structure of the sample response, they
cannot generalise the actuation forces produced by
a Nafion-117 IPMC soft actuator.
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A Appendix

This appendix contains predictions overlaid on the actual data for each method.
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Figure A.1: MLP predictions overlaid on test data
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Figure A.3: LSTM predictions overlaid on test data
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