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Abstract: This study explored the feasibility of modelling task switching with a skill-based
approach. A model of two switching tasks was built on the cognitive architecture PRIMs: the
number-letter task (NL) and the plus-minus task (PM), both of which require alternating between
two subtasks. The model followed a skill-based approach whereby procedural knowledge could be
maximally reused across tasks. Model feasibility was assessed through two tests: Test 1 evaluated
the fit to human response times (RT) in switch and repeat trials; Test 2 analysed skill transfer
between tasks. In Test 1, the model replicated human RT and showed switch cost: RT was
higher in switch trials than in repeat trials. In Test 2, the model showed a significant decrease in
switch cost for both tasks when trained on the opposite task, in line with human performance.
Furthermore, there was a greater reduction in switch cost when trained on switch trials than
when trained on repeat trials. Since the model showed an adequate fit to human RT and switch
cost, as well as near transfer across tasks, modelling task switching with a skill-based approach
is considered to be feasible.

1 Introduction

Applying old solutions to new problems is one of
the primary tools of cognition to function compe-
tently and efficiently in an ever-changing environ-
ment. When people face a task they have never
encountered before, they begin searching in the
pool of available knowledge for cues, experiences
and—hopefully—ready-made solutions that may
aid in solving the novel problem. These elements
are then replicated or recombined and ultimately
(re)applied to the new task at hand, in a process
known as skill transfer (Carraher and Schliemann,
2002).

In spite of its pivotal role, skill transfer is not
often implemented in models of human cognition.
In fact, in most cognitive architectures, models are
initialised as a blank slate, as if a person came to
perform a task with no knowledge or skills other
than those needed to initiate the task itself (Taat-
gen, 2014). This is far from approaching the wealth
of experience that a real human subject brings into
any task, no matter how novel.

Models of task switching, the executive function
responsible for directing attention from one task

to another (Miyake, Friedman, Emerson, Witzki,
Howerter, and Wager, 2000), typically follow this
blank slate approach. Though these models have
generally done well at replicating human perfor-
mance in switching tasks, they cannot demonstrate
how a person might be reusing previously learned
skills to perform more efficiently. Therefore, the
present study examines the feasibility of using skill
transfer as the guiding principle to build a cognitive
model of task switching. The proposed model fol-
lows a skill-based approach, possessing a common
set of skills that are reused across different tasks.

A review of skill transfer theory, task switch-
ing and advances in cognitive architectures is pro-
vided in the following subsections, ending with an
overview of the skill-based modelling approach.

1.1 Skill transfer

Skill transfer is the ability to use prior knowledge
and experience to solve novel problems (Nokes-
Malach and Mestre, 2013). The experience of trans-
fer is hardly foreign to any human being, as we
realise from a very young age that recalling past
learning is helpful—and even necessary—for ac-
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quiring new skills. As we go through the process
of learning the four basic arithmetic operations, we
might find ourselves drawing from our knowledge
of counting numbers to learn addition and sub-
traction, then using that knowledge of addition to
understand multiplication, and ultimately applying
the skill of multiplication and subtraction to per-
form division.

The idea of transfer being so habitual, it has been
widely studied in scientific literature for over a cen-
tury. As early as in 1901, Thorndike and Wood-
worth proposed the identical elements theory, pre-
senting transfer as the direct application of declar-
ative (factual) or procedural knowledge to novel
tasks, which must necessarily share some common
features with tasks previously encountered. More
contemporary research has found ample evidence
of this near transfer in multiple domains, such as
working memory tasks (Minear, Brasher, Guerrero,
Brasher, Moore, and Sukeena, 2016), solving syllo-
gisms (Speelman and Kirsner, 1997) and tasks that
involve the same executive control function (Miyake
et al., 2000; Karbach and Kray, 2009).

Moreover, studies have shown the occurrence
of far transfer between tasks that share few or
no identical elements. Pennington, Nicolich, and
Rahm (1995) found reliable transfer between com-
puter programming tasks involving completely dif-
ferent skills. Bassok and Holyoak (1989) reported
that students are able to solve physics problems
more effectively when they first practice algebra
problems. And studies by Miyake et al. (2000) and
Karbach and Kray (2009) show that training one
executive control function leads to improved per-
formance on tasks requiring other functions.

Research has also found evidence against trans-
fer, suggesting that the current theoretical account
is incomplete. Several studies have exposed sys-
tematic failures in people’s ability to apply previ-
ous learning to new situations, leading researchers
to call for a revision of transfer theory (Day and
Goldstone, 2012; Nokes-Malach and Mestre, 2013).
Carraher and Schliemann (2002) challenged the as-
sumption that transfer involves the passive trans-
port of learning from one situation to another. By
investigating how students learn to relate opera-
tions on numbers to operations on physical quanti-
ties, they found that knowledge is actively reshaped
and accommodated depending on the learner’s con-
text, rather than being merely replicated. Thus,

they coined the term transfer dilemma, implying
that denying transfer is denying that new learning
relies on former learning, but endorsing it as it is
currently understood implies subscribing to ques-
tionable ideas—in fact, Carraher and Schliemann
(2002) propose eliminating the concept of transfer
altogether.

1.2 Task switching

Miyake et al. (2000) investigated the relationship
between the executive control functions of switch-
ing (the ability to change focus from one task to
another in a dynamic context), updating (the abil-
ity to maintain the most currently relevant informa-
tion in working memory) and inhibition (the ability
to block automatic yet inadequate responses). Per-
formance in tasks that involved one function was
strongly correlated with performance in other tasks
requiring that and other functions, suggesting skill
transfer.

Among these three executive functions, task
switching is one that has elicited its own stream of
research. Karbach and Kray (2009) observed that
training in task switching produces near transfer to
other similar switching tasks, as well as far transfer
to other executive control tasks such as the Stroop
task, working memory tests and fluid intelligence
tests.

A key measure of performance in task switch-
ing is switch cost : the difference between the av-
erage response time in switching trials and non-
switching trials (Purić and Pavlović, 2012). Jersild
(1927), founder of the current switching paradigm,
proposed switch cost as a measure of the addi-
tional effort required to reorient attention to the
right task, representing the duration of the control
process that reconfigures task sets. This reconfig-
uration is what causes response time to be higher
when the subject must switch between tasks, com-
pared to when they repeat the same task.

Numerous cognitive models of task switching
have been built, aiming to replicate typical human
response times and switch cost. These include not
only computational models (Sohn and Anderson,
2001; Altmann and Gray, 2008; Chuderski, 2017),
but also mathematical models (Meiran 2000; Lo-
gan and Bundesen 2003; Meiran, Kessler, and Adi-
Japha 2008, as cited in Grange and Houghton 2014)
and connectionist (neural network) models (Gilbert
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and Shallice 2002; Brown, Reynolds, and Braver
2007, as cited in Grange and Houghton 2014).

While these modelling efforts have generated
valuable insight into task switching, they have been
primarily centred around switch cost, with little at-
tention devoted to skill transfer. An opportunity
thus arises to bridge this gap, applying recent devel-
opments in cognitive architectures to build a model
that is able to capture the full scope of task switch-
ing dynamics, with a skill-based approach.

1.3 Cognitive architectures

Currently, the predominant platform for build-
ing computational models of skill acquisition is
ACT-R (Taatgen and Lee, 2003; Anderson, Taat-
gen, and Byrne, 2005; Salvucci and Taatgen, 2008;
Taatgen, Huss, Dickison, and Anderson, 2008).
ACT-R (Adaptive Control of Thought-Rational)
is a symbolic cognitive architecture where declar-
ative knowledge is stored in chunks, whereas
procedural knowledge is expressed in production
rules—if-then statements that perform some ac-
tions with chunks under specified conditions (An-
derson, 2007). Salvucci (2013), for example, built
an ACT-R model that was able to learn new skills
by receiving instructions and converting them to
production rules, obtaining successful performance
in a task that the model had never encountered
before.

Building new skills from existing knowledge re-
quires two components: reuse, by which knowledge
is retrieved in novel contexts, and integration, by
which components of various skills are combined to
form a new skill (Salvucci, 2013). ACT-R incorpo-
rates reuse by retrieving existing chunks based on
activation, and allows for integration in a process
called production compilation, by which two pro-
duction rules that fire together are specialised and
combined (Taatgen and Lee, 2003).

Nonetheless, ACT-R falls short of demonstrat-
ing skill transfer, facing a particularly stubborn is-
sue with far transfer (Taatgen, 2013). Production
rules can only manipulate specific types of chunks,
which often limits their applicability beyond the
particular task at hand. While chunks can be eas-
ily reused across tasks, production rules typically
need to be rewritten to be applied in more than
one task (Taatgen, 2014). This makes it difficult to
shift away from the blank slate approach, mean-

ing that ACT-R models tend to be designed with
no knowledge or skills other than those needed for
one immediate task. The specificity in production
rules also impedes integration, decreasing their ca-
pacity to be combined into single production rules
to increase efficiency. Therefore, skill reuse and in-
tegration may not be sufficiently robust in ACT-R
to allow for building models with a skill-based ap-
proach.

Taatgen (2013) hence proposes the primitive
information processing elements (PRIMs) theory,
whereby production rules can be broken down
further, to the point where they are separated
into basic information processing units that are
more easily interchangeable between tasks. In this
paradigm, cognitive skills are based on only two
basic processes: comparing pieces of information,
or moving them across the workspace.

The PRIMs cognitive architecture developed by
Taatgen (2013) has if-then statements called oper-
ators—analogous to production rules in ACT-R—
which specify some conditions (comparing informa-
tion) and actions (moving information). This proce-
dural knowledge is encoded in declarative memory,
together with facts—unlike ACT-R, which desig-
nates a separate procedural module. Operators are
grouped into sets to construct a skill, and a skill can
contain variables that are instantiated with differ-
ent elements depending on the task, so it can be
reused in multiple situations. Production compila-
tion integrates PRIMs, operators and skills in order
to allow for maximal reuse and integration, allow-
ing to compose complex representations from sim-
ple elements.

Various skill-based models have been constructed
on PRIMs with favourable results in replicating
human behaviour and known cognitive phenom-
ena. For example, Hoekstra, Martens, and Taatgen
(2020) built a model of the attentional blink effect
from skills extracted from models of visual atten-
tion and working memory, showing the versatility of
the architecture for skill reuse across various tasks.
Furthermore, Taatgen has built sucessful models
of various tasks, such as arithmetic problems, task
switching, Stroop and text editing (2013; 2014).

PRIMs thus presents an attractive alternative
for building cognitive models with a skill-based ap-
proach, where preexisting skills are directly applied
in many different tasks.
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1.4 Overview of this study

In order to investigate whether it is feasible
to model task switching with a skill-based
approach, a model of two switching tasks was
built on the PRIMs cognitive architecture. The
tasks chosen were the number-letter task and the
plus-minus task, both of which involve alternating
between two subtasks. In the number-letter task
(Rogers and Monsell, 1995; Sohn and Anderson,
2001), the participant is shown a stream of digit-
letter pairs and is asked to alternate between indi-
cating whether the digit is even or odd, or whether
the letter is a consonant or a vowel. In the plus-
minus task (Jersild, 1927; Spector and Biederman,
1976; Rubinstein, Meyer, and Evans, 2001), the
participant is given a list of two-digit numbers and
is requested to alternate between adding or sub-
tracting three from those numbers.

The model was designed with a skill-based ap-
proach in mind, maximising skill reuse and integra-
tion as a priority. A common set of skills was im-
plemented in order to complete the two tasks suc-
cessfully, most of which were directly used in both.
In addition to switching between subtasks within
each task, the model was able to freely switch be-
tween both tasks (number-letter and plus-minus)
throughout trials. Rather than starting as a blank
slate every time it had to switch, the model had suf-
ficient preexisting knowledge to solve all four sub-
tasks across the two tasks.

The feasibility of the model was evaluated based
on the fit to human performance in the plus-minus
task and the number-letter task, as measured by
response times and switch cost, and the ability to
show positive skill transfer between tasks.

Demonstrating the feasibility of modelling cog-
nitive tasks with a skill-based approach may con-
tribute to building better, more realistic models of
cognition which closely approach the way skills are
formed, strengthened and transferred in the brain.
This is a step forward from current standard mod-
els, which need to be programmed and trained anew
every time a new task has to be performed. In the
long term, skill-based cognitive models may bring
us closer to developing more comprehensive intelli-
gent systems with a wide ranging skill set.

2 Method

The PRIMs model of task switching was designed
to perform the number-letter (NL) task (Sohn and
Anderson, 2001) and the plus-minus (PM) task
(Spector and Biederman, 1976; Rubinstein et al.,
2001). In the NL task, a digit-letter pair is shown
and the subtasks are to indicate (a) whether the
digit is even or odd (number subtask), or (b)
whether the letter is a consonant or a vowel (let-
ter subtask). In the PM task, a two-digit number is
shown and the subtasks are to report the result of
either (a) adding three to that number (plus sub-
task) or (b) subtracting three from that number
(minus subtask).

The model follows the experimental paradigm
used by Sohn and Anderson (2001) on human
participants. In this setup, each trial comprises
of two subtasks, which can either be the same
(such as plus-plus) or different (such as letter-
number)–––see Table 2.1 offers a list of all subtask
combinations. Trials where both subtasks are equal
are called repeat trials, whereas trials where sub-
tasks are different are called switch trials. Trials
are organised in blocks comprising of either repeat
or switch trials exclusively. Participants are told,
at the start of every block, whether they will have
to switch or repeat (Sohn and Anderson (2001) re-
fer to this as the foreknowledge condition), which
means they can prepare in advance for subtask 2.
Both the NL and PM tasks are implemented in this
way in the model, even though Spector and Bie-
derman (1976) and Rubinstein et al. (2001) used
a different experimental approach in their studies
with the PM task.

A trial began by showing a fixation dot on the

Table 2.1: Possible subtask combinations in one
trial

Trial Subtask 1 Subtask 2

NL repeat
number number
letter letter

NL switch
number letter
letter number

PM repeat
plus plus

minus minus

PM switch
plus minus

minus plus
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screen for 1 second. Then, the stimulus for subtask
1 was presented. For the NL task, the stimulus was
a pair of one digit and one letter, presented in ran-
dom order (digit first or letter first). Letters were
taken from the set [A,E,I,U,G,K,M,R] and digits
were taken from the set [2,3,4,5,6,7,8,9]. For the PM
task, the stimulus was a two-digit number between
10 and 99 (inclusive). The stimuli were accompa-
nied by a cue indicating which subtask should be
performed. In the NL task, the cue was the colour
in which the number-letter pair was shown: red for
the number subtask and green for the letter sub-
task. In the PM task, the subtask was indicated by
a plus or minus sign. In the model, these cues were
presented as a string (‘red’, ‘green’ in the NL task;
‘plus-sign’, ‘minus-sign’ in the PM task).

The stimulus was shown until an answer was pro-
vided. In the case of the NL task, the left key had
to be pressed if the digit was even or the letter was
a consonant, and the right key had to be pressed
if the digit was odd or the letter was a vowel (de-
pending on whether the number or letter subtask
was being performed). In the PM task, the result
of the addition or subtraction operation had to be
provided. After a response was given, a blank screen
was shown for 0.6 seconds. Then, the stimulus for
subtask 2 was shown until an answer was provided.
The trial ended when the response for subtask 2
was given. A trial was considered correct when the
appropriate responses for both subtasks had been
provided.

Two tests were performed in order to assess the
feasibility of the PRIMs model of task-switching.
In Test 1, the model’s ability to replicate human
performance was evaluated, in terms of RT and
switch cost for the NL and PM task individually.
The model’s mean RT and switch cost were com-
pared to those obtained in studies with human par-
ticipants: Sohn and Anderson (2001) for the NL
task, and Spector and Biederman (1976) and Ru-
binstein et al. (2001) for the PM task. These two
studies were considered for the PM task because
they report very similar switch costs, even though
they obtained different response times.

In Test 2, skill transfer between the NL and PM
tasks was analysed. Following research by Karbach
and Kray (2009), a decrease in switch cost is ex-
pected to occur as a result of training on the oppo-
site task. In the model, this general reduction can
be attributed to continuously reusing a set of com-

mon skills to perform the NL and PM tasks during
training. Karbach and Kray (2009) also found that
the decrease in switch cost is greater when train-
ing on switch trials than when training on repeat
trials. The model was implemented with two differ-
ent skills for switching and for repeating subtasks
within a trial. Repetitive use of the switching skill
while training on switch trials is expected to gener-
ate this further reduction in switch cost, compared
with training on repeat trials.

2.1 Model implementation

The model relies on six skills to perform the given
tasks. Four of them, which control task manage-
ment, are reused across both tasks. Another one
is responsible for solving the PM task and a sixth
one is dedicated to handling the NL task. Table 2.2
summarises the six skills used in the model, while
Figure 2.1 provides illustrates the tasks and their
respective skills and operators in a diagram.

In order to perform all necessary processes for
both tasks, the model’s declarative memory was
populated with several types of chunks. Table 2.3
presents a summary of these chunks.

The set-task skill allows the model to iden-
tify the subtask to be performed by looking at the
stimulus. It fires at the start of every trial, when
the subtask is unknown. First, the model looks at
the fixation dot and waits for the stimulus to ap-
pear. When the stimulus is shown, the model reads
the cue string, recalls the stimulus-task (S-T) map-

Table 2.2: Overview of skills

Skill Description
set-task Identify the subtask by

looking at the given cue
number-letter Find the correct response

for the NL task by re-
trieving class mappings

plus-minus Find the result of addi-
tion or subtraction by di-
rect retrieval or calcula-
tion

answer Respond and clear buffers
repeat Keep subtask 1 as a goal

for subtask 2
switch Update goal for subtask 2
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Figure 2.1: Diagram of the operators and skills
used in the model. Stars represent tasks, pen-
tagons represent skills and circles represent op-
erators. Operators shared by both tasks are
shown with a yellow halo.

ping for that cue, saves the corresponding subtask
in working memory and then places it in the goal
buffer.

Then, the skill relevant to the goal subtask is
executed. Using PRIMs’ capacity for instantiation,
the number-letter and plus-minus skills contain
variables that are instantiated to specific values,
depending on the subtask at hand. That allows the
model to reuse these two skills to complete all four
subtasks.

The number-letter skill finds the correct re-
sponse for the NL task by recalling class mappings.
First, the model decides whether it should focus on
the digit or the letter, as indicated by the current
goal. Then, it looks at the character on the left of
the screen. If it matches the focus object, it is held
in working memory and mapped to its class (for
instance, ‘A-letter-vowel’). Otherwise, the model
maps the character on the right. The stimulus-
response (S-R) mapping is then retrieved for the
encoded character (for example, ‘vowel-right’) and
kept in working memory.

The plus-minus skill formulates the result of ad-
dition or subtraction for the PM task, which the
model can do in two different ways: by retriev-
ing the answer directly from memory or by per-
forming a calculation. This follows research on the

cognitive processing of arithmetic problems, where
participants commonly report using a mix of di-
rect retrieval and various calculation strategies for
one and two-digit addition and subtraction (Camp-
bell and Xue, 2001; Lemaire and Arnaud, 2008).
The proportion of direct retrieval and calculation,
as well as the exact calculation strategy, can vary
greatly depending on factors such as age and cul-
tural background. Therefore, the model was built
to perform direct retrieval approximately 50% of
the time and calculation the other 50%. When the
model initialises, declarative memory is populated
with a set of addition and subtraction facts that
provide the result of adding and subtracting three
from various two-digit numbers. The numbers for
these facts are sampled randomly without replace-
ment from the full set of integers from 10 to 99.

The direct retrieval and calculation processes
rely on a different set of operators within the
plus-minus skill. The operators responsible for the
retrieval strategy always fire first, attempting to re-
trieve the answer to the operation at hand from
declarative memory. This follows the assumption
that a human participant would try to recall the
result of a simple operation before doing any cal-
culation, as a time saving strategy. If the answer
is found, it is saved in working memory. If not, a
chain of operators fires that carries out the calcu-
lation process. The procedure involves the follow-
ing steps: decomposing the two-digit number into
units and tens, adding or subtracting three from the
units, checking whether there is a remainder that
should be carried over to increase or decrease the
tens, and finally adding the resulting units and tens
to compose the answer. This result is then saved in
working memory.

The answer skill provides the response and clears
the workspace, both for the NL and PM task. It
fires when the model has saved the final result for
a subtask in working memory.

After providing an answer, the screen goes blank
and the model must transition to subtask 2. Two
skills can be used to handle this transition: repeat
or prepare, depending on the type of block.

The repeat skill ensures that subtask 1 is again
set as the goal for subtask 2 in repeat trials. The
model keeps recalls subtask 1 from working mem-
ory, puts it in the goal buffer and waits for the next
stimulus to appear on the screen. It then applies the
same instantiated skill used for solving subtask 1 in
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Table 2.3: Chunks in declarative memory

Chunk type Description
Number-letter task

S-T mappings Pairs of subtask
cues (red/green)
and their corre-
sponding subtasks

Subtask map-
pings

Pairs of opposing
subtasks (N-L/L-N)

Class map-
pings

Characters with cor-
responding classes

S-R mappings Character classes
with corresponding
keys

Plus-minus task
S-T mappings Pairs of subtask

cues (+/-) and
their corresponding
subtasks

Subtask map-
pings

Pairs of opposing
subtasks (+-/-+)

Addition &
subtraction
facts

Results for direct re-
trieval

Decompositions Two-digit numbers
broken down into
units and tens

Remainders Results from carry-
ing over remainders
from units to tens

Compositions Units and tens
added into two-digit
numbers

subtask 2.
The switch skill, on the other hand, updates

the goal for subtask 2. This goal update requires
the model to take additional steps, which results
in switch cost. Two different strategies can be used
to transition to the new subtask: the model may
simply wait for the second stimulus to be shown
and then encode the new subtask cue or, in a more
proactive strategy, it may update its goal for sub-
task 2 by recalling the opposite of subtask 1.

Whether the model applies the proactive or reac-
tive strategy depends on the activation of two oper-
ators within the switch skill: forget and prepare.
If the blank screen is shown and the forget oper-
ator is more highly activated, the model clears the
goal buffer and waits for the second stimulus to
appear. It then fires the set-task skill to encode
the cue for subtask 2 as a new goal, repeating the
procedure used in subtask 1. This reactive strategy
simulates a situation where the subject does not
know what the next subtask will be and therefore
decides to wait in order to ensure it performs the
correct one.

If, on the other hand, the prepare operator has
a higher activation, the proactive strategy is en-
forced. The model performs a memory retrieval to
identify the opposite of whatever subtask was car-
ried out first, which it places in the goal buffer.
Note that the prepare operator can only fire while
the screen is blank, so if it takes longer than the
inter-stimulus interval, the preparation fails and
the model is forced to use the reactive strategy in-
stead. Figure 2.2 provide a schematic depiction of
this implementation.

This dual approach, based on a competition be-
tween a reactive and a proactive strategy, has
been applied in previous research. Sohn and An-
derson’s (2001) ACT-R model, built on this prin-
ciple, was able to replicate human response time
(RT) and switch cost with various inter-stimulus
intervals. Also using this approach, Taatgen (2013)
successfully modelled skill transfer between switch-
ing tasks, whereby training on switch trials led to
a greater decrease in switch cost in posterior test
trials, compared to training on repeat trials. In the
model built for this study, this effect is expected
to derive from reusing the switch skill while train-
ing on switch trials, which increases activation of
the skill’s operators and therefore reduces firing la-
tency. In contrast, reusing the repeat skill while

7



Figure 2.2: Depiction of the skill execution pro-
cess in one trial. The gray boxes represent the
possible instantiations of a certain skill.

training on repeat trials does not produce this ac-
tivation benefit.

2.2 Parameter settings

Model parameters were tuned for purposes of fit-
ting the model to human data (see Table 2.4), by
promoting learning through production compila-
tion and regulating chunk activation. In PRIMs,
facts and operators are retrieved or fired based
on their activation value (Taatgen, 2019). When
the activation of a chunk is above the retrieval
threshold, it can be successfully retrieved. Activa-
tion is calculated with equation 2.2, where Bi is
the chunk’s base level activation, Sji is the strength
of association between the chunk and buffer slots,
Wk is spreading activation from buffers, Ski is the
strength of association between the chunk and skills
and Ak is spreading activation from skills. Thus, a
chunk receives spreading activation from buffers,
slots and skills it is associated with.

Ai = Bi +

buffers∑
k

slots∑
j

SjiWk +

skills∑
k

SkiAk (2.1)

The time it takes for a chunk to be retrieved or

an operator to be fired (latency) depends on activa-
tion, as indicated by the time for retrieval equation
below, where Ai is the chunk’s activation and F is
the latency factor (a global parameter) (Taatgen,
2019).

tretrieval = Fe−Ai (2.2)

Default activation is the parameter that deter-
mines the lower bound in base level activation
Bi for all chunks (including operators) (Taatgen,
2019). Increasing default activation (default = 0.0)
means that retrieval failure is less likely and that re-
trieval or firing latency for all chunks will be lower.

Default operator association controls the degree
of spreading activation (Ski) between a skill and the
operators it contains (Taatgen, 2019). This param-
eter is set higher than the 4.0 default (6.0 for the
NL task and 10.0 for the PM task), making it less
likely that the model will fire operators belonging
to skills that are not currently in the goal buffer.

Production compilation occurs as the model
learns new production rules that allow it to fire
several PRIMs at once for one operator (Taatgen,
2019). When rules are fully compiled, all operators
can be fired in approximately equal time, regard-
less of their size. The learning rate (α) controls the
speed of production compilation. While the default
value for α is 0.1, the model uses a learning rate
of 0.05 for the NL task and 0.07 for the PM task.
This slows down production compilation, accentu-
ating differences in firing latency, which is desirable
for reproducing the effects of switch cost and skill
transfer.

3 Results

3.1 Test 1

The model was run 20 times for 16 blocks of 25
trials. Each task (NL and PM) was tested indepen-
dently––the model never performed both of them

Table 2.4: Non-default parameter values used

Parameter NL PM
Learning rate (α) 0.05 0.07
Default operator association 6.0 10.0
Default activation 1.5 0.0
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Figure 3.1: Mean RT and switch cost in the NL
task. Data from Sohn and Anderson (2001). Er-
ror bars represent standard deviation.

in one run. Blocks alternated between switch and
repeat, so no consecutive blocks were the same.

The first eight blocks were practice and their
data were excluded. After these eight blocks, RT
had been driven to an acceptable range by produc-
tion compilation. This is typical of PRIMs models,
which need to perform a number of trials before ac-
tivation and utility values stabilise. Data from the
following eight blocks are reported, which is four
repeat blocks and four switch blocks, totalling 200
trials in each run.

Model fit to human performance was assessed in
terms of RT and switch cost. RT was measured
as the time elapsed between the stimulus presenta-
tion and the model’s response for subtask 2 in cor-
rect trials, averaged over repeat blocks and switch
blocks separately, over all runs. Switch cost was
measured as the difference between mean RT in
switch blocks and mean RT in repeat blocks, av-
eraged over all runs. Null values from trials with
incorrect responses (17 for the PM task and none
for the NL task) were replaced with mean RT from
the same run and type of block, so as to equate the
number of trials of each type of block for analysis.

Results for the NL task are presented in Figure
3.1. The model closely approaches RT from par-
ticipants in Sohn & Anderson’s (2001) experiment,
with a slightly larger difference between switch and
repeat blocks. Switch blocks take an additional
0.34s on average to provide a response than re-

Figure 3.2: Mean RT and switch cost in the PM
task. Data 1 from Rubinstein et al. (2001) and
data 2 from Spector and Biederman (1976). Er-
ror bars represent standard deviation.

peat blocks. A paired Wilcoxon signed-rank test
shows that the difference in RT between switch
blocks (M = 0.94s, SD = 0.23s) and repeat blocks
(M = 0.6s, SD = 0.2s) is statistically significant,
Z = −35.38, p < .0001, r = .79.

With respect to the PM task, the model output
is compared to data from human participants in ex-
periments by Rubinstein et al. (2001) and Spector
and Biederman (1976). Both studies were consid-
ered since they report very different RT, yet they
show similar switch cost (0.43s and 0.4s respec-
tively). Both presented stimuli in physical form and
only measured total completion time for a full block
of trials. RTs from these studies is presented in
Figure 3.2 as the mean completion time for one
block, divided by the number of trials in a block.
The large RT difference between the two is due to
their methods: Rubinstein et al. (2001) used printed
cards, where flipping each card manually added to
completion time, whereas Spector and Biederman
(1976) used a list of numbers printed on paper.

Model RT is located at an intermediate level
between these two studies. The 0.57s difference
in RT between switch blocks and repeat blocks
is slightly over the average switch cost found by
Rubinstein et al. (2001) and Spector and Bieder-
man (1976). This is likely due to the low learning
rate used in the model, which leads to larger dif-
ferences in latency. A paired Wilcoxon signed-rank

9



test shows that the difference in RT between switch
blocks (M = 2.54s, SD = 1.22s) and repeat blocks
(M = 1.97s, SD = 1.26s) is statistically significant,
Z = −13.16, p < .0001, r = .29.

The model is thus successful in replicating human
performance in terms of RT and switch cost, both
for the NL and the PM task. In both cases, switch
cost is statistically significant and slightly larger
than that observed in human participants.

3.2 Test 2

A pretest-training-posttest approach was used to
evaluate whether training on one task (for exam-
ple, PM) would lead to decreased switch cost in a
different task (NL), indicating skill transfer. The
pretest and posttest were identical: they included
16 blocks of 25 trials, alternating between switch
and repeat blocks. The first eight were practice
blocks, whose data are not included. In between
pretest and posttest, the model was trained on 40
blocks of 25 trials of the opposite task, either switch
or repeat exclusively, for a total of 1,000 trials.

Transfer from the PM task to the NL task and
from the NL task to the PM task were both assessed
via a two-by-two factorial design, with training type
(switch/repeat) as a between-subject variable and
testing time (pretest/posttest) as a within-subject
variable. The model was run 20 times for each train-
ing condition and task. RT was recorded for correct
subtask 2 trials, at pretest and posttest, averaged
over all runs in each training condition. Null values
(29 for the PM task and 23 for the NL task) were
again replaced with mean RT from the same run,
type of block and test (pre/post) in order to equate
the number of trials for analysis. Transfer was mea-
sured by comparing switch cost as the difference in
mean RT between switch and repeat trials across
each condition and task.

Figures 3.3 and 3.4 present results for the NL and
PM task, respectively. Mean switch cost found in a
similar experiment by Karbach and Kray (2009) is
shown as a reference. In their study, at pretest and
posttest participants indicated whether a picture
showed a fruit or a vegetable or whether the picture
was small or large (food-size task). In repeat train-
ing, they performed repeat trials of the food or size
task, whereas in switch training they performed a
transportation-number task where they had to de-
cide whether the pictures showed planes or cars, or

Figure 3.3: Mean switch cost in pretest and
posttest per training condition in the NL task.
Data from Karbach and Kray (2009).

whether one or two planes/cars were presented.

Although a different task set was used, data from
this study clearly show the effects of skill trans-
fer as a decrease in switch cost from pretest to
posttest, which is more pronounced when subjects
are trained on switch trials than on repeat trials.
Since Karbach and Kray (2009) found no signif-
icant difference in switch cost across age groups,
the figures show the aggregated means.

In the NL task, training on switch trials of
the PM task led to a notable decrease in switch
cost from pretest (M = 0.34s) to posttest (M =
0.11s), while training on repeat PM trials pro-
duced a slightly smaller reduction in switch cost
from pretest (M = 0.34s) to posttest (M = 0.15s).
A two-way mixed ANOVA was performed to test
for the effects of testing time and training type
on switch cost. A statistically significant effect was
found for testing time (F (1, 38) = 909.25, p <
.0001, η2G = .91), as well as a significant two-
way interaction between testing time and train-
ing type (F (1, 38) = 7.26, p = .01, η2G = .07).
No significant effect of training type was found.
Post hoc one-way ANOVAs revealed a significant
effect of training type on switch cost at posttest
(F (1, 38) = 14, p = .001, η2G = .27), but not at
pretest. On the other hand, testing time was found
to have a significant effect both for the switch train-
ing group (F (1, 19) = 427, p < .0001, η2G = .92) and
for the repeat training group (F (1, 19) = 511, p <
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Figure 3.4: Mean switch cost in pretest and
posttest per training condition in the PM task.
Data from Karbach and Kray (2009).

.0001, η2G = .9).
With regard to the PM task, training on switch

trials of the NL task led to a considerable reduc-
tion in switch cost from pretest (M = 0.57s) to
posttest (M = 0.23s). Training on repeat NL tri-
als also elicited a reduction in switch cost from
pretest (M = 0.65s) to posttest (M = 0.33s), al-
beit less pronounced than in the switch training
group. A two-way mixed ANOVA showed a statis-
tically significant effect of testing time (F (1, 38) =
68.01, p < .0001, η2G = .48) as well as training type
(F (1, 38) = 5.4, p < .05, η2G = .06), with no sig-
nificant two-way interaction between training type
and testing time.

Hence, results from Test 2 are similar for both
transfer cases. In general, switch cost was signif-
icantly decreased (by over 50%) from pretest to
posttest, by training on the opposite task. Depend-
ing on the type of training, this reduction was rela-
tively different in size: training on switch trials led
to a somewhat larger decrease in switch cost than
training on repeat trials.

4 Discussion

This study investigated the feasibility of modelling
task switching with a skill-based approach, for
which a model of two switching tasks was built
on the PRIMs cognitive architecture: the number-
letter (NL) task and the plus-minus (PM) task. Fea-

sibility was evaluated based on two criteria: the fit
to human RT and switch cost in each task (Test
1), and the ability to show skill transfer between
tasks, by decreasing switch cost after training on
the opposite task (Test 2).

Test 1 showed that the model closely approaches
human performance in terms of RT and switch cost,
both for the NL and the PM task, with switch cost
being slightly over that of human participants. In
Test 2, a significant decrease in switch cost from
pretest to posttest was found for both tasks, when
trained on the opposite task. For the NL task
trained on the PM task, the model showed a greater
reduction in switch cost when trained on switch tri-
als than when trained on repeat trials. This addi-
tional switch training reduction did not occur for
the PM task trained on the NL task.

The adequate fit of the model to human RT and
switch cost suggests that the skill-based approach,
whereby general skills can be directly reused across
tasks, renders feasible models of task switching.
PRIMs facilitates this skill-based approach, allow-
ing for greater generalisation of procedural knowl-
edge than ACT-R and other cognitive architectures
where tasks must be implemented with very spe-
cific production rules, impeding skill reuse. Thus, it
provides a partial solution for the blank slate prob-
lem, as it comes one step closer to the way human
cognition imports knowledge from previous expe-
riences (Taatgen, 2014). It is important to stress
that the solution is partial, as PRIMs is still far
from approaching the wealth of skills that a person
may accumulate throughout life. However, it sets
a starting point for what in the future could be a
cognitive architecture that possesses a large stor-
age of knowledge that can be easily reapplied in
new tasks.

The replication of switch cost in the model sup-
ports the proposal that switching involves taking
extra cognitive steps in order to update goals,
which need not be taken when the same task is re-
peated, as theorised by Jersild (1927). In the model,
switching requires either recalling the opposite task
(proactive strategy) or waiting for the external cue
in order to update the goal (reactive strategy), both
of which involve many operators and memory re-
trievals. Repeating, however, can be done with only
one operator and one retrieval.

The model is therefore able to reproduce the
lack of preparation component of switch cost, pro-
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posed by Sohn and Anderson (2001). Lack of prepa-
ration is enforced by the reactive strategy, which
forces the model to re-encode the subtask when it
has to switch. Meanwhile, when repeating is due,
the goal set in the previous subtask is directly
reused––hence, the model is always prepared in re-
peat trials. Note that, through production compi-
lation, the model eventually learns to prepare for
subtask 2 within the inter-stimulus interval. If it
only used the proactive strategy, provided that the
inter-stimulus interval is long enough, it would ulti-
mately be prepared at all times when the stimulus
appears, showing no difference in RT compared to
repeat trials. Therefore, the reactive strategy is key
for switch cost.

In general, the model showed positive transfer
from the PM task to the NL task and vice versa,
as measured by switch cost decrease. The primary
source of this transfer was the reuse of a set of com-
mon skills, which allowed the model to strengthen
their activation and perform production compila-
tion even while training on a different task, thus
reducing overall latency. This is in line with find-
ings from Karbach and Kray (2009), who reported
an overall decrease in switch cost when human par-
ticipants were trained on one type of switching
task and then tested on another switching task.
In agreement with Thorndike and Woodworth’s
(1901) identical elements theory, transfer in the
model is realised by the direct application of pro-
cedural knowledge in multiple tasks, so this can be
considered a case of near transfer.

Also important to reducing switch cost was train-
ing the switch skill, which was favoured when
the model was trained exclusively on switch trials.
As reported in Karbach and Kray (2009), it was
found that switch training led to a stronger effect
of transfer than repeat training. Sohn and Ander-
son (2001) and Taatgen (2013, 2016) attribute this
reduction in switch cost to the fact that training on
switch trials promotes the application of the proac-
tive switching strategy, which is more time-efficient
than the reactive strategy. However, this reinforce-
ment of the proactive strategy did not occur in the
model, since the operators for both strategies were
contained within the same skill. That means they
spread activation to each other as they fired, creat-
ing an approximately equal distribution throughout
trials.

Still, training the model on switch trials led to a

greater reduction in switch cost than repeat train-
ing, suggesting that reinforcing proactive switching
may not be the only factor contributing to reduc-
ing switch cost. Production compilation may have
therefore played a central role in facilitating trans-
fer based on the switching skill. Switch training
may have promoted compilation of the prepare op-
erator production rules for posttest, thus ensuring
that it could fire before the inter-stimulus interval
ended. Considering that the learning rate was low,
full compilation of the prepare operator rules may
not have been possible with repeat training, occa-
sionally leading to failure of the proactive strat-
egy. The model thus shows that production compi-
lation alone can suffice to reproduce a visible dif-
ferential effect of switch training with respect to
repeat training. Even though that effect is modest,
it serves to demonstrate how practicing switching
as an executive control function could, in and of
itself, lead to a significant decrease in switch cost,
with no need to account for a specific switching
mechanism.

The limitations of the study are presented here-
after. It should first be noted that the feasibility
of the model was assessed by comparing its out-
put to data from other studies with human partic-
ipants, which often used a different experimental
design and a different task set––the PM task, espe-
cially, was implemented very differently in studies
with human participants. Also, their full data set
was not available, which meant that no statistical
analysis was possible. Comparisons with primary
data could have provided greater validity and in-
sight, though this was not possible at the time of
the study.

The investigation was based on two tasks
with similar characteristics (namely, they required
switching) but greatly different complexity, as the
PM task requires several more operators and mem-
ory retrievals than the NL task. Also, the model
could alternate between direct retrieval and calcu-
lation for solving the PM task, which caused RT to
be more widely spread. This could have biased the
analysis of skill transfer in particular, which is why
considering tasks with equal cognitive load, and
repeating the analyses with more than two tasks,
would contribute to increasing validity.

Lastly, PRIMs is a young cognitive architecture
with little previous research. Information on how
the architecture works is limited and few mod-
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els have been made on PRIMs thus far (compared
to more established architectures such as ACT-R).
There was a scarcity of examples to guide the re-
search and many of the platform’s details had to be
learnt by experimentation, which prolonged devel-
opment time and could have made the model prone
to error.

These observations invite potential topics for fu-
ture research. Initially, the task switching model
should be validated by collecting data from human
participants with the same experimental design and
tasks. This would allow to perform statistical anal-
ysis to compare model output to human data, pro-
viding a way to directly test the model.

Feasibility of the model can also be assessed with
the same experimental design, but using different
tasks with various levels of complexity. Thus, the
model’s ability to fit human performance and to
show near and far transfer could be further val-
idated. The new tasks would have to be imple-
mented with the same skill-based approach, max-
imising skill reuse across tasks.

The first step in this line of research would be
to test the current model with two tasks of equiv-
alently low complexity, such as the number-letter
task and the food-size task used by Karbach and
Kray (2009), to examine whether an adequate fit
to RT and switch cost are maintained, and whether
the skill transfer effect on switch cost can be repli-
cated. Going further, the model could be extended
to examine far transfer between switching tasks
and tasks that involve different executive functions,
such as the Stroop task, which is based on inhibi-
tion. Miyake et al. (2000), who study correlations
between tasks that tap on various executive func-
tions, may provide a blueprint for this research.

Other dynamics of task switching, besides switch
cost and skill transfer, could also be studied with
this modelling approach. For example, Sohn and
Anderson (2001) found that shorter inter-stimulus
intervals produced higher switch cost than longer
intervals, which they attributed to subjects not
having enough time to prepare for subtask 2 before
the second stimulus appeared, forcing them to use
a reactive strategy. The current model can easily be
used to test this by adapting its experimental de-
sign. Also, Taatgen (2016) built PRIMs models of
various tasks which were able to replicate the effects
of diminishing returns in training, as well as trans-
fer between tasks that require skills at progressive

stages of development. Attempting to show these
effects with the task switching model could provide
an interesting perspective of the versatility of the
skill-based approach.

The model, designed with a skill-based approach
where skill reuse across tasks is maximised, pro-
vided an adequate fit to human RT and switch cost
for the NL and PM tasks. It also showed near trans-
fer across these tasks through switch cost reduction,
with an additional decrease from training on switch
trials. Since the model is able to match human per-
formance in switching tasks, it can be concluded
that modelling task switching with a skill-based ap-
proach is feasible.

Moreover, the study adds to an incipient body
of research on PRIMs, validating it as a cognitive
architecture with potential to provide a more real-
istic account of human cognition, which is charac-
terised by frequent reuse and adaptation of existing
knowledge. The hope is that more researchers will
be encouraged to develop skill-based models that,
in the long term, may set the ground for creating
more comprehensive intelligent systems with a rich
set of skills.
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