

faculty of science and

engineering

 biomedical engineering

PARKINSON’S, ALZHEIMER’S DISEASE DIAGNOSIS USING
FDG-PET IMAGES WITH NEURAL NETWORKS

Alok Yathiraj

S4128427

Dept. of Biomedical Engineering

University of Groningen

The Netherlands

Period: 08/04/2020 - 31/08/2020

Internship

Supervisor: Rick van Veen, PhD student, University of Groningen

Mentor: Marcel Greuter, Faculty of Medical Sciences, UMCG

1

Contents

 ABSTRACT 2

1. INTRODUCTION 3

2. DATA 4

3. METHODS 5

3.1 Feature Extraction 5

3.2 Neural Network Design 6

3.2.1 Neural Network Architecture 6

3.2.2 Activation Function 8

3.2.2.a ReLu Function 8

3.2.2.b Sigmoid Function 9

3.2.2.c Advantages and Disadvantages of the ReLu and Sigmoid

Activation Functions

10

3.2.2.d SoftMax Function 10

3.2.3 Back Propagation of Error 11

3.3 Division of Data 11

3.3.1 N Times Repeated K-Fold Cross Validation 12

4. RESULTS 12

4.1 AD vs PD 13

4.2 HC vs AD 13

4.3 HC vs PD 14

5. DISCUSSION 15

6. CONCLUSION 15

7. BIBLIOGRAPHY 16

8. APPENDIX 18

2

Abstract:

Parkinson’s (PD) and Alzheimer’s (AD) disease are two of the most common neurological diseases

worldwide. PD is caused due to the death of dopamine-producing neurons in the midbrain leading

to motor disabilities as dopamine is an important neurotransmitter that controls voluntary and

unconscious movement. Whereas AD is caused by the buildup of abnormal proteins in and around

the brain cells, this then leads to the decrease of neurotransmitters which send and receive signals

between brain cells.

The diagnosis of these two diseases is especially hard, currently there are no standard tests or

biomarkers in use for detection at early stages. In the case of PD, physicians make a subjective

score based on visual observations. For AD the diagnosis is based on cognitive tests. The diagnosis

for both these diseases are subjective, making them unreliable as results could vary clinic to clinic.

With each of these diseases having different treatment plans it is imperative to diagnose them

accurately at an early stage. It has been found that some areas of the brain degenerate and others

become more active for each of these neurological diseases, this change in activity can be

visualised using [18F]-fluoro-deoxyglucose positron emission tomography (FDG-PET) which

depicts the metabolic activity of the brain. It has also been found that using Scaled Subprofile

Modelling/Principal Component Analysis (SSM/PCA) on the FDG-PET images helps by

converting the data into a space where disease specific patterns of covariation in the brain can be

seen easily. This makes it easier to distinguish between different patterns seen in the FDG-PET

images.

The goal of this paper is to analyse the effectiveness of using feed forward neural networks and

the influence of using two different activation functions to classify AD from PD patients, using

FDG-PET images that have been pre-processed using SSM/PCA as the input features.

Additionally, performance of the network to classify AD from healthy controls (HC) and PD from

HC is also tested with the parameters of each network chosen such that the highest accuracy can

be achieved.

3

1. Introduction

It is estimated that around 50 million people have Alzheimer’s or related dementia [1] and more

than 10 million people have Parkinson’s worldwide [2]. Additionally, only one in four people with

AD are diagnosed and only 4% of people with PD are diagnosed with PD before the age of 50.

The symptoms seen during the early stages of AD include memory impairment, having problems

with language and executing complex tasks. As the disease progresses, patients struggle with

simple daily tasks as well. The symptoms seen during the early stages of PD include cognitive

impairment, problems with motor function such as tremors at rest, shuffling gait. Later stages of

PD can lead to the development of dementia as well [3]. These two neurological disorders have

overlapping symptoms, especially in the early stages, which makes it hard to diagnose the right

disease. It is important to differentiate these diseases as it helps choose the right form of treatment.

Currently, the diagnosis of these diseases are subjective and based on the clinical symptoms shown

by the patient.

[18F]-fluoro-deoxyglucose positron emission tomography (FDG-PET) is used to obtain three

dimensional images of the brain, which depicts the metabolic activity in different regions. Making

use of a combination of FDG-PET images and machine learning not only helps distinguish and

diagnose PD and AD at an earlier stage but also reduces the subjectivity of the diagnosis, making

a more universal diagnosis. Previous research in the field uses Support Vector Machine (SVM), a

family of machine leaning algorithms for the purpose of classification. It is known to be accurate

in high dimensional spaces, i.e. it works by mapping non-linear data to a high dimensional space

where the data is linearly separable. It was found that the SVM algorithm gives a mean accuracy

of 94.5% for the classification of AD patients from healthy controls using three dimensional T1

weighted MR images [4]. Other research using SVM to classify PD patients from control subjects

using MR images found accuracy of up to 97.5% [5]. Other research uses Learning Vector

Quantization (LVQ) as the machine learning algorithm for the binary classification of Control

subjects, AD and PD patients using data from FDG PET scans. It was found that LVQ shows an

average accuracy of 95% when classifying PD and AD subjects using data from within a study

centre [6]. LVQ creates an interpretable model, allowing visual interpretation of what the

algorithm has learnt in the original voxel/brain space, hence making it more user friendly [7].

4

This project focusses on using Scaled Subprofile Modelling/Principal Component Analysis

(SSM/PCA) for feature extraction from FDG PET images of the brain. Research shows that the

SSM/PCA method can construct specific covariance patterns per disease. Of which the expression

of these patterns can be calculated in new/unseen patients. [8]. The expression scores obtained

from SSM/PCA are then used as input features for a feedforward neural network for the binary

classification of AD, PD, and control subjects (HC).

2. Data

For this study [18F]-fluoro deoxyglucose - positron emission tomography (FDG-PET) images of

the brain are used. FDG is a radioactive tracer which can be used to measure the metabolic activity

of the brain, as it follows the same path as the only source of energy for the brain would, i.e.,

glucose. Functionally, FDG acts the same as glucose, except it emits a positron when consumed,

which can be detected by the PET scanner. In the case of neurodegenerative brain diseases, certain

areas of the brain degenerate which causes patterns of metabolic activity displayed on the FDG

PET images. The data used includes the FDG PET images of Parkinson’s and Alzheimer’s

patients, along with healthy control subjects from five studies at the University Medical Centre

Groningen (UMCG). Namely, TEUNE, MD5, KOK, REESINK and SKM studies.

Source Study ID No. of PD patients No. of AD patients No. of HC subjects

UMCG

TEUNE 19 0 17

MD5 54 38 0

KOK 0 0 16

REESINK 0 0 12

SKM 0 0 19

Table 1: Number of FDG Pet images available from each study at UMCG for PD, AD and HC subjects

5

3. Methods

3.1 Feature Extraction

Subject scores are calculated from the FDG PET images and are used as the input features for the

neural network. This is done using the Scaled Subprofile Modelling/Principal Component Analysis

(SSM/PCA) method [8]. The first step is to reduce the dimensionality of the data by converting

the 3D image into a flattened (1D) array of voxels. This is then put through a threshold mask

(threshold of 35% whole brain maximum) to remove noise and out of brain voxels. The next step

is a log transform and the subtraction of subject mean from each subject’s voxel values. This is

then subtracted by the group mean profile, which is the voxel-wise mean of the healthy control

subjects from the TEUNE study [9] resulting in the subject residual profiles. This step scales the

data around the mean of the healthy control’s FDG PET scans. This results in an output matrix

with both positive and negative values, positive indicating a greater brain activity and negative

indicating a lower brain activity than a healthy subject in those specific regions of the brain.

The next step is to use principal component analysis (PCA) on the subject residual profiles, this

helps with dimension reduction. PCA converts the subject residual profiles into clusters of

correlated variables (Subject Scores) using principle components (PCs) [10]. PCs are orthogonal

uncorrelated variables, which define the new space in which the subject scores exist. The number

of PCs generated is equal to the number of subjects in the reference group and these PCs are

arranged in descending order of variance, this results in the first few PCs having most of the

variance. Here the TEUNE group (table 1.) is used as the reference group, which consists of 36

PD and HC subjects, hence 36 PCs are generated, resulting in dimension reduction. Subject scores

were derived from the MD5 group for the AD and PD subjects, and the HC subject scores were

obtained from the KOK, REESINK and SKM studies. As the reference group (TEUNE) consists

of only PD and HC subjects, the subject scores are specific to the PD disease pattern. This enables

distinguishing various neurodegenerative diseases such as Parkinson’s and Alzheimer’s easier.

The subject scores are then fed into the neural network as features for the classification of these

diseases. Fig.1 shows the leading two subject scores plotted against each other of AD and PD

subjects. It can be seen that SSM/PCA alone is not enough to distinguish the two diseases, but it

does help reduce dimensionality of the FDG-PET images, making it easier to use as input features

for a feed forward neural network.

6

Figure 1: Graphical representation of the subject scores, with the x axis representing the first PC with highest variance and the y
axis representing the second PC with the second highest variance.

3.2 Neural Network Design

Artificial neural networks (ANN) aim to mimic the learning abilities of the human brain which is

made up of billions of neurons connected by synapses. At a primitive level, neurons are essentially

computational units that take inputs through their dendrites as electrical inputs which are called

"spikes". These inputs are then channelled to outputs through the axons. In our model, the dendrites

are the input features, and the output is the result of our hypothesis function. Thus, an artificial

neural network consists of interconnected processing units. The weights of the network are

determined through supervised learning.

3.2.1 Neural Network Architecture

In this case the ANN is used to determine whether the FDG-PET images represent Parkinson’s or

Alzheimer’s subjects. A one-hidden-layer feedforward neural network that consists of one hidden

layer, one output layer and one input layer is used. The subject scores obtained from the SSM/

PCA method are used as the input features, each FDG-PET image generates 36 features as

discussed in section 3.1. The last feature is excluded from the classification process as its

7

eigenvalue is 0 and does not help with classification. Hence, the input layer has 35 nodes. The

output layer has 2 nodes, one indicating the probability of Parkinson’s and the other the probability

of Alzheimer’s. The number of nodes in the hidden layer was chosen based on the ANN obtaining

the least error, further discussed in section 3.3.1. The architecture of the feed forward neural

network is shown in Fig. 2 below.

Figure 2: Architecture of neural network with one hidden layer used

The input nodes in layer 1, also known as the “input layer” are fed into every node in layer 2, i.e.

the “hidden layer”. The hidden layer then outputs the hypothesis function, also known as the

“output layer”. The value obtained in each node in the hidden and output layer is dependent on

three variables, the inputs, weights and the biases and is given by:

𝑦𝑗 = ∑ (θ𝑘𝑗 ∗ 𝑋𝑘)92
𝑘=1 + 𝐵𝑖𝑎𝑠 ,

8

where the weights are represented by θkj and θji (Fig.2), θkj represents the weight from the kth

node in the input layer to the jth node in the hidden layer and θji represents the weight from the jth

node in the hidden layer to the ith node in the output layer, yj represents the output to the jth node

in the hidden layer and Xk represents the kth node in the input layer. These weights and biases are

adjusted repeatedly until the error between the predicted output and the actual output is

minimized using back propagation of error, which is discussed further in section 3.2.3.

3.2.2 Activation Function

Before the output “y” is used as the input for the next layer, it is altered using an activation

function: f(x). This activation function is part of each node and is used to determine whether the

node should be activated or not depending on the input to the node. Applying an activation

function in the network introduces non-linearity to the output, enabling the network to learn

more complex tasks. Therefore, the final output of each node in the hidden layer is given by:

𝑌𝑗 = 𝑓(𝑦𝑗) = 𝑓(∑ (θ𝑘𝑗 ∗ 𝑋𝑘)92
𝑘=1 + 𝐵𝑖𝑎𝑠) .

Similarly, application of the weights and biases along with the activation function is repeated

between the hidden layer and the output layer as seen in Fig.2. There are various activation

functions that can be used, for this project the Rectifier Linear unit (ReLu) function and the

Sigmoid function were used at the hidden layer in the neural network separately to check which

function would yield better results. The activation function used between the hidden layer and

the output layer is the SoftMax function as it provides the probability of the data representing a

particular class of output, which is useful when classifying.

3.2.2.a ReLu Function:

Mathematically the ReLu function is defined as,

𝑅𝑒𝐿𝑢(𝑥) = {
𝑥, 𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 ≤ 0

Where, x is the input. This is a linear function that leaves positive inputs untouched and outputs a

0 for all negative inputs.

9

Figure 3: Graphical representation of the ReLu function

3.2.2.b Sigmoid Function:

Mathematically, the sigmoid (σ) function is given by,

𝜎(𝑥) =
1

1 + 𝑒−𝑥

The way that the sigmoid function works is that when the input given to it is greater than or equal

to zero, its output is greater than or equal to 0.5. It is a logistic function, hence the output is always

scaled between 0 and 1. The function has an s-shaped graph as shown in Fig. 4.

Figure 4: Graphical representation of sigmoid function

10

3.2.2.c Advantages and disadvantages of the ReLu and sigmoid activation functions:

Activation

Function

Pros Cons

ReLu  Computationally inexpensive

 Avoids vanishing gradient

problem [11]. Which occurs when

a large range of input is

compressed into a small range

such as in the sigmoid function.

This leads to the gradient/

derivative of the activation

function becoming a small value,

which in turn results in the

updating of the weights per epoch

being very small during back

propagation (section 3.2.3)

 Dead ReLu problem, where the weights

and biases of certain nodes do not get

updated due to the input being negative,

hence causing the output to be zero

every time. This results in negative

inputs not being used effectively to train

the model.

 Cannot be used as the activation

function for the output layer as the sum

of outputs of each class is not equal to

one, i.e. it does not give the

probabilities of each class

Sigmoid  No dead ReLu problem.

 It can be used for models that

predict probability more

efficiently as the outputs lie

between 0 and 1.

 Vanishing gradient problem

 Computationally expensive due to the

exponential operation.

 Cannot be used as the activation

function for the output layer as the sum

of outputs of each class is not equal to

one, i.e. it does not give the

probabilities of each class

Table 2: Pros and Cons of the ReLu and Sigmoid activation functions.

3.2.2.d SoftMax Function:

While using a neural network to classify, SoftMax activation function is used at the output units

to interpret the output values as posterior probabilities. The mathematical representation of the

function is given below.

11

𝑆(𝑌𝑖) =
𝑒𝑌𝑖

∑ 𝑒𝑌𝑗
𝑗

Where, Yi represents the input to the ith output node. The SoftMax function gives output such that

the sum of the outputs from all output layer nodes is 1, i.e., the probability of each class is the final

output.

3.2.3 Back Propagation of error

Back propagation [12] is a term used in neural networks for minimizing the cost function (J(θ))

(Appendix) of the neural network, which is done by adjusting the weights (θ) in the network. The

gradient/ derivative of the cost function with respect to the weights is calculated for each node.

This value shows how quickly the cost changes when weights are adjusted. This allows us to

identify the nodes at which modification of weights leads to the greatest reduction of error. Further

details on the back propagation algorithm are provided in the appendix.

3.3 Division of Data

The data used for the feedforward Neural Network is the MD5 data from the UMCG (Table.1),

which consists of 54 PD and 38 AD subject’s FDG-PET data. The TEUNE data is not used as it is

used to construct the transformation of the data during the SSM/ PCA feature extraction and using

this data again to train the ANN would result an inflated performance. These 92 subject’s data are

divided into 2 groups after randomization of the order of the data: training (82), and test (10)

groups. The training group is used to train the neural network, using backpropagation method, the

weights and number of nodes in the hidden layer are altered so that the data is classified accurately.

However, this could result in overfitting, where the classification is too specific to the training

data. To counter this, a 10 times repeated 10-fold stratified cross validation is performed. The

following parameters are optimized based on the accuracy the network shows after this process:

the number of hidden nodes, the learning rate, the number of loops of back projection done to

adjust the weights of the network and the activation function used. The range of the parameters

used to find the optimum parameters is, number of hidden nodes tried between 20 to 80, learning

rate chosen between 10-3, 10-4 and 10-5, number of back projection loops chosen between 200 to

1000 in steps of hundred. The test group remains completely left out of this process, i.e. no

12

parameters of the model are adjusted based on the test group. This helps simulating a real world

situation and the accuracy can be calculated based on new unseen data.

3.3.1 N times Repeated K-Fold Cross Validation

For this neural network to have a practical application it needs to be tested with unseen data, i.e.

data that is not used to train the model. The accuracy calculated from data already known to the

model does not give an idea of how well the model will work with new subjects in a real world

environment. Using unseen data to validate the model helps to check if the model is over-fitting,

under-fitting or generalizing well.

Stratified K-fold cross validation works by dividing a dataset into k folds, each fold having

approximately equal number of subjects with the ratio of AD and PD subjects in each fold being

approximately equal to the original ratio between AD and PD patients. With N-times repeated K-

fold stratified cross validation, this process is repeated N times, so as to give a new set of K folds

from the dataset each time. In this case 10 times repeated 10 fold stratified cross validation was

used, the training set (82 subjects) is divided into 10 folds. 8 folds having 8 subjects each and 2

having 9 subjects each. With approximately equal ratios of PD: AD subjects in each fold. Nine of

these folds are then used as the training set and the remaining one as the validation set. The

accuracy of the model having a fixed number of nodes in the hidden layer is then calculated. This

is then repeated such that every fold is used as a validation set with the remaining folds as the

training set, hence generating an array of 10 accuracies. This process is repeated 10 times resulting

in an array of 100 accuracies from which the average accuracy and standard deviation is calculated.

This 10 times repeated 10 fold cross validation is repeated several times with the number of nodes

in the hidden layer, the learning rate, the number of loops of back projection to adjust the weights

of the model being changed each time and the activation function used. These four parameters are

then chosen such that the average accuracy is the highest and the standard deviation is the least.

4. Results

A one layer feed forward neural network that consists of one hidden layer, one output layer with

2 output units and one input layer with 35 input units that are fed with the 35 features extracted

13

using SSM/PCA is used. Accuracy, sensitivity, and specificity of the neural network were

calculated for the training, validation, and test data sets. Due to the 10 times repeated 10 fold cross

validation training and validation resulted in 100 values of accuracy, sensitivity and specificity,

the average and standard deviation of these are given below.

4.1 AD vs PD

Table 3 shows that the sigmoid function achieves better accuracy, sensitivity and specificity when

compared to the ReLu activation function in both the training and validation groups. The two

functions show equal results in the test group.

 Accuracy Sensitivity Specificity

ReLu Sigmoid ReLu Sigmoid ReLu Sigmoid

Training 91% (0.03) 94% (0.02) 89% (0.05) 93% (0.03) 92% (0.04) 95% (0.02)

Validation 72% (0.15) 77% (0.14) 64% (0.27) 70% (0.25) 77% (0.18) 83% (0.17)

Test 70% 70% 50% 50% 83% 83%

Table 3: Training, Validation and Test results of the neural network. Average values shown with standard deviation in brackets.
Higher scores in bold face.

Activation Function No. of Nodes No. of back projection iterations

ReLu 66 200

Sigmoid 63 600

Table 4: Neural network parameters that achieved highest accuracy.

4.2 HC vs AD

Table 5 shows that the ReLu function achieves better results in the training group but does not

perform as well as the sigmoid function in the validation and test groups. This indicates that the

ReLu function is overfitting.

14

 Accuracy Sensitivity Specificity

ReLu Sigmoid ReLu Sigmoid ReLu Sigmoid

Training 99.9% (0.001) 98.8% (0.01) 100% (0) 97.8% (0.02) 99.9% (0.002) 99.6% (0.01)

Validation 92.4% (0.09) 93.5% (0.08) 90.5% (0.16) 92.5% (0.14) 94% (0.11) 94% (0.11)

Test 90% 100% 80% 100% 100% 100%

Table 5: Training, Validation and Test results of the neural network. Average values shown with standard deviation in brackets.
Higher scores in bold face.

Activation Function No. of Nodes No. of back projection iterations

ReLu 65 300

Sigmoid 69 500

Table 6: Neural network parameters that achieved highest accuracy.

4.3 HC vs PD

Table 7 shows that the ReLu activation function is overfitting again with better results in the

training group, but worse in the validation group when compared to the sigmoid function.

 Accuracy Sensitivity Specificity

ReLu Sigmoid ReLu Sigmoid ReLu Sigmoid

Training 99.7% (0.006) 97.9% (0.01) 99.5% (0.01) 96.3% (0.02) 99.9% (0.002) 99.7% (0.008)

Validation 83% (0.12) 84% (0.1) 82% (0.2) 82.4% (0.16) 84% (0.18) 86% (0.16)

Test 100% 100% 100% 100% 100% 100%

Table 7: Training, Validation and Test results of the neural network. Average values shown with standard deviation in brackets.
Higher scores in bold face.

Activation Function No. of Nodes No. of back projection iterations

ReLu 66 500

Sigmoid 68 900

Table 8: Neural network parameters that achieved highest accuracy

15

5. Discussion

From table 4, 6 and 8 we see that the ReLu activation function required lesser iterations of back

projection to train the single layer feed forward neural network when compared to the sigmoid

function. This is due to the vanishing gradient problem seen with the sigmoid function mentioned

in section 3.2.2.c. The combination of greater iterations and it being more complex resulted in the

sigmoid function having a greater computation time. However, due to the dead ReLu problem as

mentioned in section 3.2.2.c where negative inputs do not contribute to the model, the ReLu

function was found to be less effective in classifying the validation and test groups when compared

to the sigmoid activation function. This might have had a bigger influence as the data was cantered

around the HC subject, hence the areas of the brain with lesser activity than seen in HC subjects

did not influence the model It was also found that the training results were higher when using the

ReLu activation function when classifying AD and PD patients from HC subjects (Table 5, 7), yet

the validation and test results were lower than the model using sigmoid activation function,

indicating over fitting. With respect to the number of nodes, there was no drastic change in

accuracies seen if the number of nodes were between 55-70.

Overall, the neural network using the sigmoid function performed better than the ReLu function.

The greater training time was also not significant due to the amount of data used to train the

network and the reduced dimensionality achieved by the SSM/ PCA. Some of the limitations of

this study would be that ROC curves were not used to visualize the results. The use of a larger

database would be very useful. Additionally, the classes within the data are unbalanced and were

kept unbalanced by using stratified k fold cross validation, these could be balanced out by using

synthetic minority oversampling technique (SMOTE) to increase the minority class by randomly

replicating them.

16

6. Conclusion

Neural networks are able to distinguish (with limitations discussed in section 5) between HC, AD and PD

well. Furthermore, the sigmoid function is the better choice for activation function compared to the ReLu.

Comparing it to previous work done with LVQ in [6] performance can still be improved with respect to

problem AD vs PD. The performance of the neural network with HC vs PD is equal to that of the

LVQ. With HC vs AD, the LVQ model performs slightly better. As neural networks are more

complex, a larger database would result in more accurate classification.

Further research can be done using different techniques such as adding more hidden layers to the

network, using other activation functions or using other types of neural networks such as

convolutional neural network (CNN). Using CNN on the FDG-PET images directly without the

use of SSM/ PCA might be beneficial as the main advantage of CNN is its ability to identify

important features in the data without human supervision. Additionally, the network performs

well on the HC vs AD classification even though the reference group during the SSM/ PCA

consisted of only HC and PD subjects, making the subject scores more specific to PD patterns.

With a larger database using AD subjects in the reference group would be possible, which might

lead to better results.

7. Bibliography

[1] “alzheimers.net,” [Online]. Available: https://www.alzheimers.net/resources/alzheimers-

statistics/.

[2] “parkinson.org,” [Online]. Available: https://www.parkinson.org/Understanding-

Parkinsons/Statistics.

[3] S. Risacher and A. Saykin, “Neuroimaging biomarkers of neurodegenerative diseases and

dementia,” Seminars in Neurology, vol. 33, no. 4, pp. 386-416, 2013.

[4] B. Magnin, L. Mesrob, S. Kinkingnehun, M. P ´ el´ egrini-Issac, O. Colliot, M. Sarazin, B. Dubois,, ´

S. Lehericy and H. Benali, “Support vector machine-based classification of Alzheimer’s disease

from ´ whole-brain anatomical MRI,” Neuroradiology, vol. 51, no. 2, p. 73–83, 2009.

[5] S. Haller, S. Badoud, D. Nguyen, V. Garibotto, K.O. Lovblad and P.R Burkhard, “Individual

Detection of Patients with Parkinson Disease using Support Vector Machine Analysis of Diffusion

17

Tensor Imaging Data: Initial Results,” American Journal of Neuroradiology, vol. 33, no. 11, pp.

2123-2128, 2012.

[6] R. van Veen, L. Talavera Martinez, R. V. Kogan, S. Meles, D. Mudali, J. Roerdink, F. Massa, M.

Grazzini, J. Obeso and . M. Rodriguez-Oroz, “Machine Learning Based Analysis of FDG-PET Image

Data for the Diagnosis of Neurodegenerative Diseases,” Applications of Intelligent Systems, vol.

310, pp. 280-289, 2018.

[7] R. v. Veen, V. Gurvits, R. V. Kogan, S. K. Meles, G.-J. de Vries, R. J. Renken, M. C. Rodriguez-Oroz,

R. Rodriguez-Rojas, D. Arnaldi, S. Raffa, B. M. de Jong, K. L. Leenders and M. Biehl, “An

Application of Generalized Matrix Learning Vector Quantization in Neuroimaging,” Computer

Methods and Programs in Biomedicine, 2020.

[8] Spetsieris PG and Eidelberg D, “Scaled subprofile modeling of resting state imaging data in

Parkinson's disease: methodological issues,” Neuroimage, vol. 54, no. 4, pp. 2899-2914, 2011.

[9] Laura K. Teune, Anna L. Bartels, Bauke M. de Jong, Antoon T. M. Willemsen, Silvia A. Eshuis,

Jeroen J. de Vries, Joost C. H. van Oostrom and Klaus L. Leenders, “Typical Cerebral Metabolic

Patterns in Neurodegenerative Brain Diseases”.

[10] Lever, J., Krzywinski, M. and Altman, N., “Points of Significance: Principal component analysis.,”

Nature Methods, vol. 14, no. 7, pp. 641-642, 2017.

[11] Hong Hui Tan and King Hann Lim, “Vanishing Gradient Mitigation with Deep Learning Neural

Network Optimization,” in 7th International Conference on Smart Computing & Communications

(ICSCC), 2019.

[12] M. Nielsen, “Neural Networks and Deep Learning,” 2019. [Online]. Available:

http://neuralnetworksanddeeplearning.com/chap2.html#:~:text=Plan%20of%20attack%3A%20B

ackpropagation%20is,gradient%20of%20the%20cost%20function.&text=An%20equation%20for

%20the%20error,%E2%80%B2(zLj).. [Accessed 2020].

18

8. Appendix

Back propagation of error [12]:

The cost function (J(θ)) is given by:

𝐽(𝛩) = −
1

𝑚
 ∑ ∑[𝑦(𝑖)𝑘𝑙𝑜𝑔(ℎƟ(𝑥(𝑖))𝑘 + (1 − 𝑦(𝑖)𝑘) 𝑙𝑜𝑔(1 − (ℎƟ(𝑥(𝑖))𝑘)]

𝐾

𝑘=1

𝑚

𝑖=1

+
𝜆

2𝑚
∑ ∑ ∑ (𝛩(𝑙)𝑗 , 𝑖)

2
 ,

𝑠𝑙+1

𝑗=1

𝑠𝑙

𝑖=1

𝐿−1

𝑙=1

where,

 L- Number of layers in the network

 Sl- number of units in layer l

 k- number of output nodes in the neural network

 hƟ(x)k is denoted as the hypothesis that results in the kth output.

 𝜆 is the regularization parameter.

 𝑦 is the given output value.

 𝑚 is the number of training samples.

The nested summations account for our multiple output nodes.

Back Propagation Algorithm:

Given training set {(x(1),y(1)), (x(2),y(2))…..(x(t),y(t))}

 Set Δi,j
(l) := 0 for all l,i,j where Δ is the gradient, l is the layer going from l= 2,3…L.

 For training example t going from 1 to t, where t is the number of samples,

Set at
(1) := x(t), where at

(1) is the tth node value at layer l =1.

 Implement forward propagation to compute a(l) for l = 2,3..L.

19

 Using y(t), compute δ(L) = a(L)- y(t), where L is our total number of layers and a(L) is the

vector of outputs of the activation units for the last layer.

So, our "error values" for the last layer are simply the differences of our actual results in

the last layer and the correct outputs in y. To get the delta values of the layers before the

last layer, we can use an equation that steps us back from right to left.

 Compute δ(L-1), δ(L-2)….,δ(2) using:

δ(l) = ((Ɵ(l))T δ(l+1)). * a(l). * (1- a(l))

The delta values of layer l are calculated by multiplying the delta values in the next layer

with the theta matrix of layer l. Then, element-wise multiplication is performed with a

function called σ', or g-prime, which is the derivative of the activation function σ evaluated

with the input values given by z(l).

The g-prime derivative terms can be written as:

σ'(z(l)) = a(l). * (1-a(l))

 Now,

Δ(l) := Δ(l) + δ(l+1) (a(l))T

Hence, we update our new Δ matrix.

𝐷𝑖,𝑗
(𝑙)

≔
1(𝛥𝑖,𝑗+ 𝜆Ɵ𝑖,𝑗

(𝑙)
)

𝑚
 , if j≠0

𝐷𝑖,𝑗
(𝑙)

≔
1(𝛥𝑖,𝑗)

𝑚
 , if j=0

The matrix D, is an accumulator that is used for summation of all values as we go along to

obtain the partial derivative.

Thus,
𝛿

𝛿Ɵ𝑖,𝑗
(𝑙) 𝐽(Ɵ) = 𝐷𝑖,𝑗

(𝑙)
.

 Update rule:

Ɵ𝑗 ≔ Ɵ𝑗 − 𝛼𝐷𝑖,𝑗
(𝑙)

, where 𝛼 is the learning rate. All Ɵ values are simultaneously updated.

