
QVA-learning: Testing a Novel Reinforcement

Learning Algorithm Using Other-Play in the

Helenix Environment

Bachelor’s Project Thesis

Job Heeres, k.j.heeres@student.rug.nl,

Supervisor: Dr M.A. Wiering

Abstract: In this paper we use the Helenix environment and other-play, to test a new rein-
forcement learning algorithm called QVA-learning. This algorithm builds upon QV-learning by
adding a function which should improve the learning behaviour. Within the game of Helenix, 5
different algorithms will train against each other using other-play. We found that when compar-
ing the final models, Q-learning performed best under these conditions and that QVA-learning
managed to outperform both double Q-learning and its predecessor QV-learning. However, when
looking at the entire learning process, only SARSA manages to outperform QVA-learning. We
conclude that QVA-learning shows potential and improves upon its predecessor QV-learning.

1 Introduction

Artificial Intelligence(AI) research often uses com-
petitive games to test out hypothesis, compare dif-
ferent algorithms or show how well an AI can com-
pete against a human. In 1978 the program Chess
4.7 managed to beat the chess master David Levy
in a game of chess(Douglas, 1978). This was the
first victory of a computer against a human chess
master. 40 years later, in 2019, AlphaStar would
use multi-agent reinforcement learning to play the
incredibly complex game of Starcraft 2. Using both
human and agent matches to train on, it managed
to rank among the top 0.2% of players, putting it
on the level of a Starcraft 2 grandmaster (Vinyals
et al., 2019). Competitive games provide an en-
vironment with strict rules and simple logic that
makes them excellent for AI research. Rather than
trying to implement AI directly into complex situ-
ations, we first want to see how effective they are in
solving these simpler problems. This is why we de-
cided to use the game of Helenix (Louwers, 2019)
to test the QVA-learning algorithm against other
reinforcement learning algorithms.

Reinforcement learning is a form of machine
learning where the agent tries to find when to per-
form which actions to maximise the reward that
it receives. It is not told which actions are good

or bad, but instead has to discover this by trying
them out. Because of the way this works, it also al-
lows the agent to consider the whole problem and
make decisions that might cause it to lose points
in the short term, but will give a much bigger re-
ward in the long term(Sutton and Barto, 2018).
This means that reinforcement learning is suited
for solving more general problems, like playing a
game, with much less need to divide the problem
into very small sub-problems. This can be seen in
AlphaZero which managed to master the three dif-
ferent games of chess, shogi and Go.(Silver et al.,
2018)

There are multiple ways to train an agent in a
game environment. One such method is using re-
inforcement learning with self-play. With self-play
the agents playing the game are all powered by
the same algorithm. This is a very effective method
for training a reinforcement learning algorithm as
can be seen in (Silver et al., 2018) whith Alp-
haZero learning to play chess, shogi and Go, and
in (Vinyals et al., 2019) for starcraft, which we also
mentioned before. A big advantage of this method
is that it allows the algorithm to very quickly play
a huge number of games against itself. The trial
and error nature of reinforcement learning means
that this is necessary for the algorithm to properly

1

learn how to play. We could compare different al-
gorithms by first having them train using self play
and then letting them play against each other, as
can be seen in (Dries and Wiering, 2012). However,
in (Louwers, 2019) we see a different method used
in Helenix, the same environment we will be us-
ing. We believe it would be interesting to try out
QVA-learning in a similar setup. This method is
called other-play. As the name already suggests,
this method involves the different agents being con-
trolled by different algorithms during training. By
doing this the training process will be quite differ-
ent from self-play, with the agents being trained
against specific algorithms.

In this paper we will be using the game of Helenix
as seen in (Louwers, 2019). The game of Helenix is
very similar to a two player version of the game
splix.io, which in turn has mechanics similar to the
game Pac-Xon. Pac-Xon was also used in (Schilper-
oort et al., 2018), where a Q-learning and two dou-
ble Q-learning algorithms are trained to play it. In
Helenix, two players each control a head starting in
their own territory. The goal is to capture more ter-
ritory and eliminate the other player. There will be
a more in depth description of the game later on. In
this game we will be comparing five different algo-
rithms. These algorithms are Q-learning (Watkins,
1989; Watkins and Dayan, 1992), SARSA (Rum-
mery and Niranjan, 1994), double Q-learning (van
Hasselt, 2010), QV-learning (Wiering, 2005) and
QVA-learning. We want to find how well QVA-
learning performs against established reinforcement
learning algorithms, and whether it significantly
improves upon its predecessor QV-learning.

2 Reinforcement Learning

In this section we will shortly explain how reinforce-
ment learning problems are formulated. We then go
over different part of reinforcement learning, and
explain the different hyper parameters that we will
be using along the way. We will also explain the
different algorithms that we will be comparing in
our experiment.

2.1 Reinforcement Learning
Problems

When formulating a reinforcement learning prob-
lem with an agent and an environment there are
a few elements that are important. The states S
that the problem can be in, the actions A that the
agent can perform in these states, and the rewards
Ra(s, s′) for transitioning from one state to another
using an action. This kind of problem is called a
Markov Decision Process. At each point in time t
the agent gets to see what state it is in and has to
determine what action to perform. Once the action
has been performed the environment will tell the
agent the reward it has received, and the new state
it is in. This continues until a termination condition
has been reached.

Another important aspect are the transition
probabilitiesPa(s, s′). This is the probability that
an action a in a state s will lead to a new state s′.
These transition probabilities exist for every action
in every state in a Markov Decision Process, but
are often not known to the agent.

2.2 Value Functions

When using reinforcement learning, an agent tries
to maximise the reward that it receives from its
environment. It does this by estimating the value
of every it visits. Whenever it experience a certain
action in a certain state, it calculates the value of
that state. The estimation of the reward of a state
is done through a value functionV (s). It is also pos-
sible to use a value function for the estimated value
of an action in a state, in which case we use Q(s, t).
So simply put, the value function dictates how the
reward is used in determining the value of a state
or action.

For example the function:

V (St) = Rt+1 +Rt+2....RT (2.1)

With V (St) being the value of state S at point t
and Rt+n being the reward at the nth points after
t. So in this case, the value of a state is based on
the rewards that it can get in the future. Where
every future rewards is equally valuable.

Let’s simplify equation (2.1) to the following:

V (St) = Rt+1 + V (St+1) (2.2)

2

This function might work in very simple envi-
ronments where the agent knows exactly what the
future holds. In a situation where the far future is
much harder to estimate than the near future, this
function is not sufficient. To solve this we intro-
duce the discount factor γ. When an agent doesn’t
know exactly what the odds are of getting into fu-
ture states, it is useful for early rewards to have a
bigger impact than later rewards, seeing as these
earlier rewards are easier to estimate. γ is a value
between 0 and 1 that is used for this. If we change
equation (2.2) to include this we get:

V (St) = Rt+1 + γV (St+1) (2.3)

The result is that now the rewards are multiplied
by γn where n is the number of steps after t. So
now that we have introduced the concepts of value
functions and discount factors, how exactly are the
values updated?

2.3 Update Rules

There is still a problem with equation (2.3). If
the agent is not certain of what the future holds,
it can’t always make an accurate estimation im-
mediately. In competitive games, agents do not
know the transition probabilities of their environ-
ment. This means that what worked once might not
work again, which is when the actual reinforcement
learning comes into plate. If we were to use equa-
tion (2.3) we would be recalculating the estimated
value of a state every time we arrive at that state.
Instead we want the agent to update the estima-
tion that it already has, with the new experiences
it gets whenever it reaches that state.

However, this raises a question. How heavily
should new experiences influence the already es-
tablished estimation? To determine this we need to
introduce another variable, the learning rate α. α
is a value between 1 and 0 that can be used to do
this. These points would change equation (2.3) as
follows:

V (St) = (1−α)V (St)+α(Rt+1 +γV (St+1)) (2.4)

The result is that we use both the current esti-
mated value as the new estimation. The larger α is
the heavier new experiences will influence the esti-
mated value of a state. Determining what α to use
for a problem is a matter of experimentation.

The exact equations used to update the value es-
timations differ per algorithm. Though most algo-
rithms we use in this paper use Q(St, At) instead of
V (St), equation (2.4) can still be seen as the basis
for most of the equations used in these algorithms.

2.4 Action Quality

The action that an agent should take in a state is
that agent’s policy π. The goal of the algorithms is
to find the optimal policy. The way the policy can
be seen is as the collection of all value estimates.

In simpler problems, with not too many states
and where the transition probabilities are know,
it is possible to calculate the estimates for every
action and every state of the problem. These esti-
mates can then be put into a table which can then
be used by the agent to look up which actions to
take.

For more complex problems, like Helenix, this is
not really feasible. The biggest problem is the sheer
number of possible states that can occur. Having to
visit them all to be able to properly calculate the
ideal policy would significantly decrease learning
speed. It would also require a really big table. An-
other problem is that the agent does not know what
their opponent will do, and thus does not know the
transition probabilities, which means that it needs
to perform actions multiple times for an accurate
estimation. What we need instead is some way to
approximate the value function.

A function approximator is some method with
an adjustable weight that can be used to approx-
imate a function. In this case the value function.
The approximator we will be using is a multilayer
perceptron (MLP) (Rumelhart et al., 1986). MLPs
are feedforward artificial neural networks. The way
we will be trying to approximate the value func-
tion is by mapping the state to the MLP’s input
nodes. The MLP will have a single hidden layer
that is fully connected to both the input and out-
put layers. Depending on whether we are using the
MLP to approximate V (s) or Q(s, a), we map one
node for the state, or one node for each action that
the agent can perform in that state, to the output
layer. When given a state as input, this means that
MLPs used to approximate V (s) will output an ap-
proximation of the value of that state. MLPs used
to approximate Q(s, a) will instead output an ap-
proximation of the value of every action that can

3

be performed within that state.

This approximation will be based on the weights
of the MLP, which will be adjusted during train-
ing. The MLPs are trained using stochastic gra-
dient descent combined with back-propagation,
which is fairly standard for artificial neural net-
works.(LeCun et al., 1998)

2.5 Action Selection

There is still one factor that needs to be mentioned.
How should the algorithm use the estimations to
decide what to do? The naive solution would be to
use the policy of always choosing the action with
the highest estimate. This would result in the algo-
rithm very quickly settling on a policy that is sub-
optimal. The algorithm will keep using this policy
that it thinks is the best one, for the sole reason
that any action that would deviate from this policy
is considered worse. To deal with this we will be
using an action selection algorithm.

During training we will be using the ε-greedy ac-
tion selection algorithm. The way this algorithm
works is quite simple. When an agent has to select
an action it will not automatically choose the ac-
tion with the highest estimate. Instead the policy
will be that there is a probability of 1− ε that the
agent chooses the action with the highest estimate
and a probability of ε that instead a random action
is chosen. This simple algorithm prevents the agent
from getting stuck in a sub optimal policy, and fa-
cilitates a much larger exploration of options than
would otherwise be the case.

The further along the training gets, the higher
the chances are that the estimates are accurate and
the less desirable it is for a random action to be
selected. To make use of this ε decreases linearly
during training, setting both a starting ε and a final
ε. This way the agent has the advantage of being
able to explore a lot in the early parts of training,
and being able to exploit what it has discovered in
the later parts of training.

Another action selection algorithm we will be us-
ing is Boltzmann exploration. This algorithm uses
the following policy:

π(s, a) =
eQ(s,a)/T

m∑
i=1

eQ(s,ai)/T

(2.5)

In which m is the number of actions. Instead of ε
we use T here. Where a high T correlates with a lot
of exploration and a low T with little exploration.

2.6 Algorithms

In the following section we will use what we just
discussed to describe the different algorithms that
we are going to compare to each other. To prevent
the equations from becoming cluttered we will be
using the following notation:

V (St)← Rt+1 + γV (St+1) (2.6)

instead of:

V (St) = (1−α)V (St)+α(Rt+1 +γV (St+1)) (2.7)

For each of the following algorithm it also holds
that if the next state S + 1 is the final state, then:

Q(St, At)← Rt+1 (2.8)

2.6.1 Q-Learning

Q-learning (Watkins, 1989; Watkins and Dayan,
1992) is the oldest algorithm on this list and uses
the following equation to update the state-action
value estimation:

Q(St, At)← Rt+1 + γmax
a

Q(St+1, a) (2.9)

This equation means that the state-action value es-
timate of action At in state St, is updated using
the reward plus γ times the estimated state-action
value of the next state St + 1 if the agent were to
take the estimated best action a. This is used to
train a single MLP, which is then used in the ac-
tion selection process.

2.6.2 SARSA

SARSA (Rummery and Niranjan, 1994) is very
similar to Q-learning but uses the next action that
will be taken rather than just the action with the
highest expected value to update the state-action
value estimate:

Q(St, At)← Rt+1 + γQ(St+1, At+1) (2.10)

The idea is that this would improve learning by not
overestimating, like Q-learning might do.

4

2.6.3 Double Q-Learning

Double Q-learning (van Hasselt, 2010) updates two
different state-action value estimates rather than
one:

Q1(St, At)← Rt+1+γQ2(St+1, arg max
a

Q1(St+1, a))

(2.11)
Q2(St, At)← Rt+1+γQ1(St+1, arg max

a
Q2(St+1, a))

(2.12)
Double Q-learning uses two MLPs, on for each esti-
mate. During training the algorithm randomly up-
dates one of the two estimates, which then trains
the associated MLP. When it has to select an action
it randomly chooses which MLP to use.

2.6.4 QV-learning

QV-learning (Wiering, 2005) also uses two esti-
mates to determine which actions to take. The first
one is a state-action value estimate. The second one
is a state value estimate.

V (St)← Rt+1 + γV (St+1) (2.13)

As we can see here, the state value is updated using
γ times the expected value of the next state. The
state value is then used to train an MLP which is
used to calculate the state-action-value estimate.

Q(St, At)← Rt+1 + γV (St+1) (2.14)

The state action value estimate is calculated using
the state value, and then used to train a different
MLP. This MLP is also the one used in the action
selection process.

2.6.5 QVA-learning

QVA-learning seeks to improve upon QV-learnig
with a third estimate. The state-action value es-
timate and the state value estimate are the same
as they were for QV-learning.

V (St)← Rt+1 + γV (St+1) (2.15)

Q(St, At)← Rt+1 + γV (St+1) (2.16)

However, rather than using the state-action MLP
to choose an action, a third advantage estimate is
made using the other two MLPs.

A(St, a)← Q(St, a)− V (St) (2.17)

Where A(St, a) is calculated for every action a in
state St.
This advantage estimate is then used to train a
third MLP which is used to determine which ac-
tion to take. The idea is that this could lead to
significantly improved learning behaviour over QV-
learning.

3 Helenix

In this section we will describe the game of Helenix.
We will first explain the rules and mechanics of the
game. After that we will explain how to get points,
and how the states of Helenix are represented using
vision grids, which are then used as input for the
different MLPs.

3.1 Rules and Mechanics

As mentioned before, Helenix is mechanically very
similar to a two player version of (splix.io). The me-
chanics of the game are quite simple. The players
control a unit which takes up one tile of the board.
This unit will be called the ”head” of a player. Ev-
ery time unit the head has to move forward, left or
right. When it moves it changes its orientation to-
wards the direction it has moved. Each player starts
with some squares marked as their territory. Within
this territory they can move safely. When the head
leaves its territory it will leave a trail which will
be called the ”tail” of the player that controls that
head. An agent in their territory and an agent leav-
ing their territory can be seen in figures 3.1 and 3.2.
When the head reenters its own territory, the area
that is enclosed by its tail, including the tail itself,
will become parts of that player’s territory. If any
of this territory is owned by another player, it is
transferred to the player that just encircled it. This
process can be seen in figures 3.3 and 3.4. However,
when the head is outside of its own territory, and
a second player’s head intersects the first player’s
tail, the first player dies and the game ends. This
is demonstrated in figures 3.5 and 3.6.

This about covers the basic mechanics of the
game. There are a few specific situations that are
worth mentioning. Firstly, when two heads collide
in a neutral square, both players are eliminated. If
they collide in a square controlled by one of the
players, only the player that does not control the

5

Figure 3.1: A player
at the edge of its
own territory.

Figure 3.2: A player
that has left its own
territory.

Figure 3.3: A player
in neutral territory,
about to reconnect
with its own terri-
tory.

Figure 3.4: A player
That has just re-
connected with its
territory.

square is eliminated. This can be seen in figures 3.7,
3.8, 3.9 and 3.10. Secondly, though the snake like
nature might raise the idea that it would be the
case, nothing happens when a player crosses their
own tail. Finally, if a player goes out of bounds that
player is eliminated.

The starting setup for every game is the same.
We have a 21x21 grid where the outer most squares
are marked as the edge, leaving a 19x19 grid for
the agents to play on. The players spawn at the
coordinates (4,11) and (18,11), facing towards each
other. Both players are also given a 5x5 piece of
territory centered around their head at the start of
the game. This starting setup can be seen in figure
3.11.

3.2 Points

For the algorithms it is important to know which
actions are desirable and which actions are not. The
goal of the game is getting as much territory as
possible or eliminating your opponent. To achieve
this we give the agents feedback based on their ac-
tions. For every square that an agent captures they
gain 1 point. For every square that an agent loses

Figure 3.5: A player
that is about to be
intercepted by an-
other player.

Figure 3.6: A player
That has just in-
tercepted another
player.

Figure 3.7: A
player about to col-
lide with another
player on its own
territory.

Figure 3.8: A
player having elim-
inated another
player through
head collision.

Figure 3.9: Two
players about to
collide in neutral
territory.

Figure 3.10: Both
players being elim-
inated by the colli-
sion.

6

Figure 3.11: The starting setup for every match
of Helenix

they lose one point. If an agent eliminates another
agent, that agent gains 50 point. If an agent is elim-
inated they lose 50 points. If both agents eliminate
each other by colliding in neutral territory, neither
agent gains or loses any points. These points are
used as the reward for the reinforcement learning
algorithms.

3.3 States

To train the MLPs used in these algorithms we
must be able to tell it what state the agent is in,
and which actions it can take. The actions part is
easy, as this is always the same. The agent can go
left, right or forward. The states is slightly more
complicated. Using the full 21x21 area as input
would be inefficient. Due to all of the information
that would have to be conveyed this would result in
a very large number of input nodes, which would
significantly slow down learning speed. Instead it
uses a 5x5 vision grid to limit the number of input
nodes, a technique which has been used successfully
in other experiments (Shantia et al., 2011; Knegt.
et al., 2018).

Rather than use the entire board, these vision
grids map the area around the agent. These vision
grids are matrices representing the area around the

agent using ones and zeros. There are 6 different
features that have to be conveyed, meaning that
each of these will have its own vision grid, where
a 1 marks the presence of that feature and a 0 the
absence. These features are the edge of the board,
the agent’s own tail segments, the agent’s own ter-
ritory, enemy tail segments, enemy territory and
enemy heads.

To further reduce the number of different states
that have to be considered, it also uses a rotation
invariant vision grid, as seen in Knegt. et al., 2018.
This means that for each state, all rotation of that
state are considered the same state

4 Experimental Setup

The MLPs for the experiment take the previously
mentioned vision grid as input, resulting in an in-
put layer of 25 ∗ 6 = 150 input nodes. They have
500 hidden nodes, and have an output layer of three
nodes if estimating actions, or one node if estimat-
ing states. The nodes within the MLPs use a sig-
moid non-linearity function for activation.

To be able to make a more accurate compari-
son we use different learning rates for certain al-
gorithms. We used a learning rate of 0.001 as our
base. We found that QV-learning performed bet-
ter with a learning rate of 0.0005 for it’s Q and V
mlp, and that QVA-learning performed better with
a learning rate of 0.002 for its A mlp. The other
algorithms performed best with the base learning
rate of 0.001.

For the experiment we need to consider ten differ-
ent algorithm combinations. We run each of these
combinations ten times, with 1 million episodes per
run. With each episode taking 100 actions or un-
til a player is eliminated. The discount factor that
is used is 0.99. Each action has a small penalty of
0.01 to encourage exploration. The exploration that
we will be using is ε-greedy with ε decreasing lin-
early from 0.4 to 0.01. These parameters are based
on Louwers, 2019 and testing to confirm that they
work.

Once the networks have been trained we will let
them play games against each other to see how
well they perform. Per algorithm combination we
will have each network of the first algorithm play
against each network of the second algorithm for
1000 episodes. This means that for each algorithm

7

combination we will receive the average points per
episode over 10*10*1000 episodes of those algo-
rithms against each other. During these runs the
networks will not be learning anymore and we will
be using Boltzmann exploration with T = 0.5, in-
stead of ε-greedy.

5 Results

The learning curves of the different algorithms can
be seen in the appendix. The ten graphs show the
ten algorithm combinations. Each line consists of
average number of point of the ten different runs
with the standard deviation shown in a transpar-
ent sleeve around the line. The graphs have the
episodes on the x-axis and the average number of
points on the y-axis.

Table 5.1 shows the mean number of points of
each algorithm over the entire learning process. Per
algorithm pair, we calculated these by taking the
means of the ten runs, and taking the mean and
standard deviation of those. Because the data is not
normally distributed, we used the Wilcoxon signed
rank test to determine if the differences were sig-
nificant. We found that in all ten combinations the
p-value was smaller than 0.05, which means that
the differences between the means are significant.

The results of the final models can be seen in
table 5.2. This table shows the average number of
points for each algorithm in each algorithm combi-
nation. This was generated by having the trained
models of each combination play against each other
for 1000 episodes. We found that this data is also
not normally distributed so we will again be using
the Wilcoxon signed rank test to determine signif-
icance. We found that the p-value for each of the
algorithm combinations is smaller than 0.05. There-
for, the differences between the means are signifi-
cant.

6 Conclusion

When looking at the final models, we see that Q-
learning performs significantly better against every
other algorithm. We also see that the final QVA-
learning models manage to outperform both double
Q-learning, and QV-learning.

When we look at the learning curves and com-
pare the algorithms in that context, QVA-learning
performs much better. Beating every other algo-
rithm except for SARSA.

The final conclusion we can take away from this
is that QVA-learning shows potential. It manages
to outperform established reinforcement learning
algorithms. It also performed better in both sit-
uations than its predecessor QV-learning, showing
that the additions made with QVA-learning appear
to have improved learning behaviour.

7 Discussion

QVA-learning performed fairly well, however to de-
termine the true potential of QVA-learning more re-
search will be required. There are a few different ex-
periments that come to mind. First would be test-
ing QVA-learning using self-play rather than other-
play. If also done in helenix this could also provide
interesting results for comparing the effectiveness
of self-play vs other-play. Testing QVA-learning in
other games and environments would also be useful
for determining its effectiveness. Further fine tun-
ing variables might also show how the AMLP in
QVA-learning could best be utilised. Finally, as also
suggested in Louwers (2019), adapting the environ-
ment to allow more than two players could be inter-
esting. Especially if looking at the performance of
the algorithms at different player counts. It would
be interesting to see how QVA-learning performs in
an environment with a lot of other agents.

References

J. R. Douglas. Chess 4.7 versus david levy. BYTE,
page 84, 1978.

S. van den Dries and M. A. Wiering. Neural-fitted
td-leaf learning for playing othello with struc-
tured neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 23(11):
1701–1713, 2012.

Stefan J. L. Knegt., Madalina M. Drugan., and
Marco A. Wiering. Opponent modelling in the
game of tron using reinforcement learning. In
Proceedings of the 10th International Conference

8

Q SARSA DQ QV QVA
Q - 35.76(1.10) 43.6(0.86) 36.71(0.78) 35.44(0.96)
SARSA 63.93(0.93) - 67.52(0.68) 70.54(1.09) 68.85(1.12)
DQ 40.23(0.60) 34.80(0.70) - 36.16(1.00) 35.48(0.56)
QV 62.21(1.14) 65.02(1.18) 65.93(1.06) - 65.64(1.67)
QVA 63.95(0.80) 66.90(1.26) 67.25(0.72) 69.72(1.43) -

Table 5.1: Mean points per episode of the left algorithm against the top algorithm calculated over
the entire learning process. The standard deviation is shown in brackets.

Q SARSA DQ QV QVA
Q - 185.89(35.85) 200.41(28.95) 200.46(41.75) 195.09(31.67)
SARSA 105.57(28.10) - 171.01(26.79) 150.91(18.89) 164.47(22.87)
DQ 81.17(21.57) 111.05(18.78) - 135.69(22.79) 134.30(21.42)
QV 91.86(30.42) 131.68(17.81) 150.07(28.37) - 125.18(27.04)
QVA 98.25(21.73) 127.68(19.00) 155.09(20.56) 148.44(22.88) -

Table 5.2: Mean points per episode of the left algorithm against the top algorithm calculated after
1000 episodes of the final models playing against each other. The standard deviation is shown in
brackets.

on Agents and Artificial Intelligence - Volume 1:
ICAART, pages 29–40, 2018.

Yann LeCun, Leon Bottou, Genevieve B. Orr, and
Klaus Robert Müller. Efficient BackProp, pages
9–50. Springer Berlin Heidelberg, 1998.

B. Louwers. From self-play to other-play: learning
by playing against different algorithms in the he-
lenix environment, bachelor’s thesis, university of
groningen, 2019.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning representations by back-propagating
errors. Nature, 323(6088):533–536, October 1986.

G. A. Rummery and M. Niranjan. On-Line Q-
Learning Using Connectionist systems. Cam-
bridge University Engineering Department, 1994.

J. Schilperoort, I. Mak, M. M. Drugan, and M. A.
Wiering. Learning to play pac-xon with q-
learning and two double q-learning variants. In
2018 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1151–1158, 2018.

A. Shantia, E. Begue, and M. Wiering. Connection-
ist reinforcement learning for intelligent unit mi-
cro management in starcraft. In The 2011 Inter-
national Joint Conference on Neural Networks,
pages 1794–1801, 2011.

D. Silver, T. Hubert, J. Schrittwieser,
I. Antonoglou, M. Lai, A. Guez, M. Lancot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap,
K. Simonyan, and D. Hassabis. A general
reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

splix.io. https://splix.io/about.

R. S. Sutton and A.G. Barto. Reinforcement learn-
ing: An introduction. MIT press, 2018.

H. P. van Hasselt. Double q-learning. Advances in
neural information processing systems 23, 2010.

O. Vinyals, I. Babuschkin, W. M. Czarnecki,
M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, J. Oh,
D. Horgan, M. Kroiss, I. Danihelka, A. Huang,
L. Sifre, T. Cai, J. P. Agapiou, M. Jader-
berg, A. S. Vezhnevets, R. Leblond, T. Pohlen,
V. Dalibard, D. Budden, Y. Sulsky, J. Molloy,
T. L. Paine, C. Gulcehre, Z. Wang, Pfaff T.,
Y. Wu, R. Ring, D. Yogatama, D. Wünsch,
K. McKinney, O. Smith, T. Schaul, T. Lilli-
crap, K. Kavukcuoglu, D. Hassabis, C. Apps, and
D. Silver. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature 575,
pages 350–354, 2019.

9

C. J. Watkins. Learning from Delayed Rewards,
PhD thesis, Cambridge University. PhD thesis,
1989.

C. J. Watkins and P. Dayan. Q-learning. Machine
Learning, 8:279–292, 1992.

M. A. Wiering. Qv(λ)-learning: A new on-policy
reinforcement learning algorithm. Proceedings
of the 7th European Workshop on Reinforcement
Learning, pages 17–18, 2005.

10

Appendix

Figure .1: Learning curve of Q-learning versus SARSA

Figure .2: Learning curve of Q-learning versus double Q-learning

11

Figure .3: Learning curve of Q-learning versus QV-learning

Figure .4: Learning curve of Q-learning versus QVA-learning

12

Figure .5: Learning curve of SARSA versus double Q-learning

Figure .6: Learning curve of SARSA versus QV-learning

13

Figure .7: Learning curve of SARSA versus QVA-learning

Figure .8: Learning curve of double Q-learning versus QV-learning

14

Figure .9: Learning curve of double Q-learning versus QVA-learning

Figure .10: Learning curve of QV-learning versus QVA-learning

15

