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There are many theories that try to explain how syllogistic reasoning works in our brain. These are
usually based on predicate logic, mental-model theories or a heuristic theory. Bart Geurts (2003) points
out several problems with each method and proposes his own theory based on concepts from natural
language semantics. In this theory he claims that sentences with only upward entailing quantifiers are
easier than those that also include downward entailing quantifiers. In this study we aim to test if this has
an effect on the verification times of sentences. We tested this through an experiment where participants
need to verify if a sentence is true or false for a picture. The verification time and accuracy was then
compared between the two types of quantifiers. There was no significant difference observed, which
suggests that quantifier entailment does not influence the way we verify sentences.

1 Introduction

Deductive reasoning is an essential skill for us hu-
mans. A lot of research has therefore been done to
try and explain the internal processes used when
reasoning. A type of reasoning that has been stud-
ied extensively is syllogistic reasoning. This type of
reasoning involves a conclusion being drawn from
two given premisses. An easy example would be the
following premisses and their conclusion:

Premiss 1: All surgeons are golfers
Premiss 2: All golfers are club members
Conclusion:  All surgeons are club members

We as humans are actually rather good at this
type of reasoning. Correct lines of reasoning are
often recognized as such, and most mistakes that
are made are on syllogisms that are very similar to
valid syllogisms (Geurts 2003).

1.1 Theories of reasoning

A lot of theories have been developed over the years
to try and explain how we arrive at this conclusion.
Some theories are based on predicate logic (Geurts
2003). In these theories, it is usually assumed that
we as humans have some sort of internal natural
deduction, allowing us to apply inference rules to
arrive at a conclusion. This makes sense for the

example given above, which can be represented in
predicate logic quite easily:

Premiss 1:  Va[surgeon(x) A gol fer(x)]
Premiss 2:  Va[gol fer(xz) A member(x)]
Conclusion:  Vz[surgeon(z) A member(x)]

One of the problems with this theory is that
there is no good way to represent the quantifier
“most” and similar quantifiers, like “less than half”,
in predicate logic. This in and of itself is not a big
problem, were it not that we know from experi-
mental evidence that we can reason with the word
“most” as easily as we can with “all” (Oaksford and
Chater 2001). This is best illustrated by changing
one of the premisses:

Premiss 1: Most surgeons are golfers
Premiss 2: All golfers are club members
Conclusion: Most surgeons are club members

This line of reasoning would be impossible to ex-
press in predicate logic, but we are just as fast in
coming up with the conclusion here as we are in the
example where all the quantifiers were ’all’.

Additional problems arise when reasoning with
quantifiers like “at least one”. To represent this
in predicate logic one would need variables. Trans-
lated into predicate logic, it would look like this:

While one is a manageable number to keep track



a set in order to reason about it in terms of exact
numbers.

1.2 Entailment and reasoning

So far none of the discussed theories have given a

Premiss 1: At least one surgeon is a golfer
Premiss 2: All golfers are club members
Conclusion: At least one surgeon is a club member
Premiss 1:  Jx[surgeon(x) A gol fer(x)]

Premiss 2:  Va[gol fer(xz) A member(x)]
Conclusion:  Jz[surgeon(xz) A member(x)]

of in our head, we can also reason perfectly fine with
“more than a thousand”. If we were utilizing some
predicate logic for syllogistic reasoning, we would
need to keep track of a thousand separate individ-
ual variables to represent the expression, which is
obviously not feasible.

Another theory that tries to tackle the problem
of how we reason is based on mental models (Buc-
ciarelli and Johnson-Laird 1999). These models pre-
dict that we keep track of the information in a pre-
miss by representing it in terms of individuals. This
theory quickly runs into one of the same problems
logic based theories run into. It can not efficiently
represent quantifiers like “at least three”. If we were
creating a mental model of the situation described
by the premiss, a premiss like “at least a thousand
surgeons are golfers” would have us imagine a thou-
sand individual surgeons that are also golfers. As
said before, this is simply not feasible.

A different approach is taken by models based
on probability (Oaksford and Chater 2001). The
reasoning behind this is that we as humans are
adapted to reason with a certain degree of uncer-
tainty. This leads to the premiss “all surgeons are
golfers” having the representation that each sur-
geon has a 100% probability of being a golfer. This
theory is well suited for handling “most”. “Most
surgeons are golfers” will simply be represented as
each surgeon has a probability of more than 50% to
be a golfer. It does run into problems with quanti-
fiers that call for a specific amount. In order to rep-
resent “exactly 6 surgeons are golfers” one would
need to know the cardinality of the set of all sur-
geons. Say there are 10 surgeons; this would lead
to the premiss having the representation that there
is a 60% chance of a surgeon being a golfer. Now,
if there were 20 surgeons, suddenly the representa-
tion would need to change to each surgeon having
a 30% chance of being a golfer. Further complicat-
ing the case for probabilistic reasoning is that we
as humans do not need to know the cardinality of

satisfying answer to the question of how we, as hu-
mans, reason. In order to try and circumvent the
problems other theories are having, Bart Geurts
(2003) proposed a theory based on entailment prop-
erties of the quantifiers used in syllogistic reasoning.

A quantifier can be upward or downward entail-
ing. An example of an upward entailing quanti-
fier is “some”. If it is given that “some surgeons
are golfers”, one can conclude that “some doctors
are golfers” as well. This ability to generalize “sur-
geons” to its superset “doctors” makes “some” up-
ward entailing. We can not generalize to a subset
of “surgeons”, as is demonstrated by the fact that
the sentence “some brain surgeons are golfers” does
not follow from the given premiss. If we take a look
at a downward entailing quantifier like “all” how-
ever, the situation is reversed. From a given sen-
tence “all surgeons are golfers”, it can be concluded
that “all brain surgeons are golfers”. It however
does not lead to the conclusion that “all doctors
are golfers”. The ability to generalize to a subset
of “surgeons” makes “all” downward entailing. En-
tailment is something that we use without even re-
alizing it. There are studies that show that even
very young children are aware of certain entailment
properties (O’Leary and Crain 1994).

In their paper from 2005 Bart Geurts and Frans
van der Slik predict reasoning with upward entail-
ing quantifiers to be easier than reasoning with
downward entailing quantifiers. The theory behind
this is as follows. In many languages there exist a
lot of word pairs describing the same property of
something. Two examples from English would be
“big” and “small”, which both describe size, and
“old” and “young”, which both describe age. Since
they both describe the same property, it would be
reasonable to assume that each word in a pair could
be used fairly interchangeably. This however is not
the case, as there is a fundamental asymmetry be-
tween the words in a pair; one of them carries am
implicit judgment about the property it describes.
If you were to ask someone how old she is or how
tall she is, that would not carry any extra mean-
ing. In contrast, if you ask how young or how short



someone is, you are implying that that person is
quite young or quite short. These two words are
marked, in the sense that they convey implicit ex-
tra meaning. This asymmetry between marked and
unmarked words exists across languages and in all
cases the unmarked word is used more often and
generally preferred.

The fundamental property that differs between
marked and unmarked words is that of bounded-
ness. From the earlier examples, “big” and “old”
are unbounded. There is no limit to how big or
how old something can be. This is not the case for
“small” and “young” however; these both do have
a limit. Geurts (2003) then compares this to quan-
tifier entailment. Upward entailing quantifiers can
keep on generalizing for ever; there is no limit to
the size of a set. Downward entailing quantifiers on
the other hand run into the hard limit of not being
able to generalize further than the empty set. In
this way, upward entailment is similar to the un-
marked words and downward entailment is similar
to the marked words. So if unmarked words are pre-
ferred and easier for us, maybe upward entailment
is also preferred and easier for us.

Geurts and van der Slik (2005) then go on to
show with an experiment that people indeed make
fewer mistakes when reasoning with upward entail-
ing quantifiers only than when downward entail-
ing quantifiers are also involved. In this experiment
participants were presented with syllogistic lines of
reasoning in the form seen in here:

Premiss 1: X A played against Y B
Premiss 2:  “All B were C” or “All C were B”
Conclusion X A played against Y C

X and Y would be one of a number of quantifiers
and A, B and C would be names describing arbi-
trary groups of people. The participants were then
asked to determine whether the conclusion given is
valid when taking the premisses as being true. The
results confirmed their suspicions of upward entail-
ing quantifiers being easier, with 79,75% correct
when only upward entailing quantifiers are involved
and 61,40% correct when there are also downward
quantifiers involved.

1.3 Beyond syllogistic reasoning

Given that we prefer upward entailing quantifiers
when reasoning, maybe we also prefer it for other
tasks. One of these other tasks potentially impacted
by quantifier entailment is sentence verification. If
reasoning with upward entailing quantifiers is eas-
ier, it sounds plausible that the verification of sen-
tences with upward entailing quantifiers is also eas-
ier. To determine whether this is the case, we pose
the following research question: Are people bet-
ter at picture-sentence verification tasks that in-
volve the upward entailing quantifiers “Some” and
“Only” than those that involve the downward en-
tailing quantifiers “No” and “All”?

1.4 The experiment

In order to answer this question an experiment was
performed. In this experiment participants were
shown a sentence along with an accompanying pic-
ture and they had to determine if the sentence
was true given the situation in the picture. Simi-
lar sentence verification tasks are sometimes paired
with an additional working memory load (Neys and
Schaeken 2007). This is done both to possibly dis-
cern an influence of working memory capacity on
the amount of correct answers or the speed of an-
swering and to ensure that the task is not too easy
by limiting the mental resources the participant has
access to. In the cited paper 3 by 3 grids that had
a dot in 4 of the cells were used. The participant
is then asked to remember the configuration of one
of these grids while they perform tasks for the ex-
periment. The same technique was also used in our
experiment. An example of one of these grids is
given in section 2, figure 2.3

Previous papers that also described picture-
sentence verification tasks used very abstract stim-
uli (Zajenkowski, Szymanik, and Garraffa 2013).
For example, simple white screens filled with sev-
eral black or white circles. This has the disadvan-
tage of making sentences like “all circles are black”
trivially easy, since it can be seen almost instantly
if one of the circles is white in the picture. To pre-
vent this, more realistic pictures were used. Be-
cause these pictures have more details they require
more of a verification strategy than simply seeing
that there are white circles as well, which should
make the effect the quantifier has more pronounced.



These more realistic pictures features figurines of
pirates and policemen each of which may or may
not be holding an object.

Four different quantifiers were used in the sen-
tences, “some”, “only”, “no”, and “all”’. The first
two of those are upward entailing, the last two
are downward entailing. To prevent the verification
strategy from influencing the result, not all quan-
tifiers can be applied to the same picture. From
the four quantifiers, two pairs were made. In each
pair the quantifiers have very similar conditions for
when they are true or false. The first pair is “some”
and “no”, and the second pair is “only” and “all”.

By using these pairs where the conditions are
similar the only difference between the verification
of the sentences is the entailment of the quantifier.
To illustrate these similar conditions, take a look
at this example for “some” and “no”. If you have
the sentence “Some/No figurines have a bucket”,
you get the truth conditions specified in table 1.1.
This table makes it clear that the truth conditions,
and therefore the verification strategies, of a true
“some” sentence are the same as those of a false
“no” sentence and vice versa. The “only” and “all”
pair is very similar in this regard, as can be seen
in table 1.2. The only complication comes from the
fact that for the “All pirates have a bucket” sen-
tence to be true, all pirates need to have a bucket,
while the “Only pirates have a bucket” needs no
policeman to have a bucket and at least one pirate
to have a bucket. This issue is averted by making
the picture-sentence combinations in such a way
that the situation where the figurine featured in an
“only” or “all” sentence does not have the object
mentioned in the sentence never occurs.

2 Method

2.1 Participants

33 native English speaking participants completed
the experiment. 15 of the participants were women
and their mean age was 31. All participants gave
informed consent to be a part of the experiment.
The participants were recruited through a Prolific,
a service where people earn money in reward for
participating in experiments. The participants were
therefore rewarded with £2.25.

2.2 DMaterials

The experiment was made using Psytoolkit (Stoet
2010, Stoet 2016), which is a web based experi-
ment development environment that provides free
hosting. The stimuli were made with Playmobil fig-
urines and several Playmobil accessories. Perhaps
the best way to illustrate the structure of the pic-
tures is with some examples. Figure 2.1 shows a
picture that was used in the experiment to explain
to the participants what they were going to see.

The pictures will each show 16 figurines,
some of which are holding some objects. The
figurines are of policemen and of pirates.
These objects are
A bucket

&

A bag

A basket A chest

-

This is an example of
a policeman holding a
bucket and a bag

Press 'space' to continue

Figure 2.1: An explaining picture used in the
experiment

Figure 2.2 shows a picture from the experiment.
This specific picture could have appeared with ei-
ther the sentence “Only policemen have a bag” or
the sentence “All policemen have a bag”. In the first
case, the correct response is “true”, since there is
at least one policeman with a bag and there are
no pirates that have a bag. In the second case, the
correct response is “false”, since while some police-
men have a bag, there are also policemen that do
not have one.

2.3 Procedure

Each participant was recruited through the on-
line service Prolific, and gave informed consent
prior to starting the experiment. Then, after some



Table 1.1: Truth conditions for “Some” and “No”

Sentence True when

False when

Some figurines have a bucket

At least one figurine has a bucket

No figurine has a bucket

No figurines have a bucket

No figurine has a bucket

At least one figurine has a bucket

Table 1.2: Truth conditions for “Only” and “All”

Sentence True when

False when

Only pirates have a bucket

No policemen have a bucket

All pirates have a bucket
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Figure 2.2: An example picture from the exper-
iment

fe

explanation about what to expect, the practice
block begins. This consists of four sentence veri-
fication tasks with sentences in the form “All pi-
rates/policemen have a chest/basket/bucket/bag
and the policemen/pirates do not”. This is a sen-
tence type that is not featured in the rest of the
experiment.

For each sentence verification task a participant
is first told to remember the grid that is going to
flash on screen. The grid then flashes on screen for
850 milliseconds. One of these grids is shown in
figure 2.3. Then the sentence appears, and the par-
ticipant has two seconds to read it before the pic-
ture appears. At this point the participant needs to
press a key depending on whether he/she believes
the sentence to be true or false within 15 seconds.
Lastly, nine grids are show on screen and the par-
ticipant needs to select the one they were shown
before the task. This is shown in figure 2.4. Every-

All pirates have a bucket

At least one pirate does not have a bucket

Figure 2.3: An example working memory grid
from the experiment

thing then repeats itself for the next task.

When the practice block has been completed the
two experiment blocks are done, each of which con-
sists of 24 trials. Between these two blocks the par-
ticipant is given an opportunity to take a break.
After completing all items the participant is sent
back to Prolific to receive payment.

2.4 Design

There are 48 experiment trials in total. This is
made up of 24 pictures for the “some” and “no”
pair and 24 pictures for the “only” and “all” pair.
Within each pair each quantifier receives 12 pic-
tures. These 48 trials are then randomly divided

At least one policeman does not have a bucket



Figure 2.4: An example working memory grid
selection screen from the experiment

into two groups of 24 trials; the first and second
block. In between these two blocks is a break.

The measured variables were whether the answer
to the verification task was correct, the speed of the
verification, and whether the answer to the working
memory grid was correct.

3 Results

Three of the participants were removed from the
dataset because it was clear they were not per-
formed correctly. Two participants rapidly clicking
random answers, and the third participant did not
do anything and simply timed out each trial. The
whiskers boxplots used to illustrate the data are
drawn to the datapoint furthest from the mean but
not further than 1.5 times the interquartile range.

3.1 Accuracy of verification

The first result we are going to take a look at is
that of accuracy per entailment. The performance
of each participant was taken as a data point and
plotted as a boxplot in figure 3.1. A generalized
linear mixed effect model was used that predicted
the correctness of the task using the fixed effect of
entailment type and the random effects of partici-

100

accuracy percentage
50 60 70 B0 90

Upward Downward

quantifier entailment

Figure 3.1: Boxplot of the accuracy per entail-
ment (“some” and “only” are upward entailing,
“no” and “all” are downward entailing)

pant ID and picture ID. This model was compared
using ANOVA to a simpler model that did not use
the fixed effect. This analysis showed that there is
no significant difference between the two models (P
= 0.292), meaning that the entailment type is not
a significant factor in determining accuracy.

If we look at the accuracy for each quantifier sep-
arately, we get the boxplot in figure 3.2. An analysis
using a general linear mixed effect model predicting
the correctness of the task using the fixed effect of
the quantifier and the random effects of participant
ID and picture ID was compared using ANOVA to
a similar model without the fixed effect. This anal-
ysis showed no significant difference between the
two models (P = 0.087)

3.2 Verification time

For the analyses using the verification time the time
was first log-tranformed. In the boxplot in figure
3.3 the verification time per entailment is shown.
A linear mixed effect model that predicted the ver-
ification time using the fixed effect of entailment
and the random effects of participant ID and pic-
ture ID was compared using ANOVA to a similar
model, but without the fixed effect. The analysis
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Figure 3.2: Boxplot of the accuracy per quanti-
fier
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Figure 3.3: Boxplot of the verification times per
entailment (“some” and “only” are upward en-
tailing, “no” and “all” are downward entailing)

showed that the entailment type does not signifi-
cantly affect the verification time (P = 0.683).

As can be seen in figure 3.4, when looking at
the differences between individual quantifiers the
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Figure 3.4: Boxplot of the verification times per
quantifier

quantifier pairings are nicely reflected in the reac-
tion times. “Some” and “no” are fairly equal, as are
“only” and “all”. Within each pairing there does
not seem to be very big differences though. The
models used in the following analysis are identi-
cal to the one described previously, except for their
fixed effect.

First, the effect of the quantifier overall. A linear
mixed effect model was used to predict the verifi-
cation time with the fixed effect of the quantifier
and the random effect of participant ID and pic-
ture ID. A comparison using ANOVA with another
model with the same random effects but without
the fixed effect suggests that the quantifier plays a
role in verification time (P < 0.001).

3.3 Accuracy of grid recall

The last measurement is the accuracy of the grid
recall after each task. This data is shown in the
boxplot in figure 3.5. For the analysis a categorical
linear mixed effect model was used. It predicted the
correctness of the grid recall using the fixed effect of
entailment and the random effects of participant ID
and picture ID. A comparison with a simpler model
that did not have the fixed effect showed that the
difference between the models was significant (P <
0.030), with upward entailing quantifiers having a
higher accuracy percentage. This model is shown in
Appendix A, Table A.1.
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Figure 3.5: Boxplot of the grid accuracy per en-
tailment (“some” and “only” are upward entail-
ing, “no” and “all” are downward entailing)
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Figure 3.6: Boxplot of the grid accuracy per
quantifier

Figure 3.6 shows the grid recall percentages per
quantifier, which were analysed using an ANOVA
comparison between a categorical linear mixed ef-
fect model predicting the correctness of the grid

recall using the fixed effect of entailment and the
random effects of participant ID and picture ID and
a similar model without the fixed effect. This anal-
ysis showed that the quantifier had a significant
effect on the correctness of the grid recall (P <
0.036). The quantifier “some” was taken as a ref-
erence level. The estimate of the intercept was sig-
nificantly different for “all” (8 = 0.549, z value =
2.812, p < 0.005) and for “no” (8 = 0.423, z value
= 2.146, p < 0.032). This model is presented in
Appendix A, Table A.2. When choosing “no” as a
reference level, the only significantly different in-
terval is “some” (8 = -0.423, z value = -2.146, p <
0.032).

4 Discussion

The results in section 3.3 show that it is easier
to remember the working memory grid when then
upward entailing quantifiers are used. This could
mean that while we don’t verify upward or down-
ward entailing quantifiers at different speeds or
with different accuracies, they take less resources
to verify. This however is not a definite proof, since
it could very well be that this difference between
the entailment types is solely caused by the fact
that “some” has a very high accuracy percentage,
as can be seen in figure 3.6.

One of the things that might have given rise
to some issues is the difficulty of our task. The
aim was to make it more realistic and more diffi-
cult than comparable experiments in the past. This
was meant to enlarge the effect that the quanti-
fier would have. Maybe we went a bit overboard
and made the pictures too complex. This would
mean that the participant spend a large part of
the reaction time simply looking at the picture.
The amount of time that an easy/difficult quan-
tifier may save/cost is then very small compared to
the search time. This would obscure the effect of
entailment.

As mentioned in the conclusion, it could also be
the case that picture-sentence verification simply
uses different internal processes than syllogistic rea-
soning. If that is true, then it makes sense that
Geurts’ theory does not apply in picture-sentence
verification tasks.

Finally, due to the Covid-19 epidemic the exper-
iment had to be performed online. This took all



control of the environment out of our hands. It also
made it difficult to ensure that every participant
understood everything correctly and completed the
tasks seriously, since we could not be present when
the participant took the experiment.

In the future it would be useful to look into the
processes used for picture-sentence verification, and
if they are the same as those used in syllogistic rea-
soning. If this is not the case, then a study similar
to this one but with a task more closely related to
syllogistic reasoning may be useful in determining
if entailing have an effect on verification. One pos-
sibility is to not rely on pictures to provide the sit-
uation the sentence is applied to, but to instead use
the participants knowledge. Sentences like “All pid-
geons are birds” and “Some insects can fly” could
be used here. This however can be difficult, since
it is hard to control the knowledge of the partici-
pants.

5 Conclusion

None of the analyses that say anything about the
research question show a significant result that
agrees with our prediction that upward entailing
quantifiers make for easier sentence verification
than downward entailing quantifiers. This suggests
that entailment is not a significant factor in the
difficulty of sentence verification.

The only statistic that had participants perform
better with the upward entailing quantifiers was
the grid recall accuracy percentage. It however is
a stretch to take this single statistic and use it to
conclude that upward quantifiers are easier to ver-
ify.

This does not also mean that Geurts is wrong. It
could be that the processes involved with sentence
verification are simply different from those used in
syllogistic reasoning, or that there were problems
with our approach to measuring the impact of en-
tailment on sentence verification difficulty.

Another possibility is that the mechanisms be-
hind Geurts’ results involves the interplay between
upward en downward entailing quantifiers. In our
experiment there was only ever one quantifier at
a time, so there was no opportunity for interplay
between two quantifiers of the same or different en-
tailment.

Finally, it could be the case that for some rea-

son the quantifiers that were chosen were not good
choices. Maybe, with different quantifiers, a clear
difference between the upward and downward en-
tailing quantifiers would have arisen.
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A Appendix

Table A.1: Model = GridCorrect ~ Entailment
+ (1|ParticipantID) + (1|Picnum)

Predictor Estimate | Standard Error | z-value | p-value
(Intercept) -1.3746 0.2520 -5.455 | <0.001 **+*
EntailmentDown | 0.2977 0.1357 2.193 0.0283 *
Table A.2: Model = GridCorrect ~ Quantifier
+ (1|ParticipantID) + (1|Picnum)
Predictor Estimate | Standard Error | z-value | p-value
(Intercept) -1.5643 0.2743 -5.703 | 1.18e-08 ***
QuantifierAll 0.5489 0.1952 2.812 0.00493 **
QuantifierNo 0.4232 0.1972 2.146 0.03187 *
QuantifierOnly | 0.3652 0.1975 1.849 0.06440 .
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