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Abstract

Predictive Maintenance is one of the utmost importance in the production process in indus-
try. One of its examples is preventing a potential bad batch during production. Pertaining to
the context of the data, a bad batch is typically indicated by triggering an alert or when an
anomaly occurs in the data. In this thesis, we investigate the influence of parameter settings
of six injection moulding machines to the potential alerts that are predicted by the models. We
hypothesised that any changes in the parameter settings could lead to unusual activity on the
machines which would potentially lead to alerts in the observed measurements.

Two approaches were considered, namely univariate and multivariate analysis. For univari-
ate analysis, we developed ARIMA models for each of the selected features and we analyse the
effect of each individual feature by forecasting future trends. These models were tested during
the development phase and their performances were measured by calculating the Mean Absolute
Percentage Error (MAPE). The results show that while the models were able to forecast future
trends rather well, the inconsistencies in MAPE suggest that an alert is more likely to be caused
by a combination of one feature and possibly others.

Subsequently, the results from multivariate analysis imply that the combination of PCA
and ARIMA models helps us to better identify the potential cause of an alert. This was done
by means of checking if the predicted trends consist of values which are either above or below
certain thresholds and then looking at the absolute weights given by the sorted eigenvectors to
determine which features have the most influence on the alerts. From the two approaches, one
can conclude that the multivariate approach provides a more practical understanding of the
cause of the detected or predicted (future) alerts yielded by the models.
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1. Introduction
An outlier is a data point that is significantly different than the remaining data points in a data
set [1]. In most data mining and statistics literature, an outlier is also often referred to as anomaly.
However, an outlier typically refers to abnormalities or even noise in the data whereas an anomaly
is a specific kind of outlier as it may indicate an unusual behaviour. Pertaining to the context
of this project, this anomaly may represent a failure of a system or a potential bad batch when
producing the plastic parts for the electric shaver.

Over the past couple of years, Philips has developed many household products. One of which is
electric shavers. Philips Drachten encompasses a large suite of highly automated processes used
during the manufacturing of electric shavers. Of these manufacturing processes, injection moulding
is of particular importance, as this is used during the fabrication of plastic components for electric
shavers. All of these plastic parts are manufactured onsite at Drachten, requiring approximately
80-90 moulding machines. Injection moulding, however, is a competitive market, making it essential
for Philips Drachten to continuously improve on quality, production performance, and costs where
this process is concerned.

The aim of this project is to model time series predictions in order to detect potential anomalies
on the datasets that are produced by the machines. It should pre-warn the operators with an alert
on a bad batch (when the machines parameters are off, it can lead to a batch that can not be
used). Thus, we will analyse if there are any anomalies in the machine settings in order to alert the
workers on a potential bad batch, eventually reducing fall-off rate. At the moment they inspect
this manually, but evidently it is very time consuming.

Currently the quality inspection is done manually. But an automated process is much more
desirable such that it can give alert in advance in order to prevent producing bad batches. This is
to be avoided since a batch could consist of approximately 3000 products in which each has an
estimate cost of 0.50 - 1 euro. Of course with this amount, if there are only one or even up to 10
badly produced plastic parts, it does not seem too severe. However, since everything is produced
in batches, the cost will be higher if we have to throw away the current batch due to bad quality.
Consequently, this kind of cost is more preferred to be reduced while also maintaining the quality
of the produced plastic components on the electric shavers.

This thesis aims to answer the following research question: To what extent do machines’
parameter settings influence the predictions of alerts?

In this research, two approaches were considered namely univariate and multivariate analysis.
This means that in the former, we will analyse one individual machine parameter at a time whereas
the latter we take into account a combination of different parameters. In addition, we will be
analysing six different injection moulding machines of which four are from the same brand and the
other two are from another brand.

The rest of the thesis is structured as follows: in section 2, we will lay out a couple state-of-the-
art methods with respect to the two approaches that we considered. In section 3, we discuss the
methodology used in this research in terms of feature selection method, univariate and multivariate
models and we will also explain the experimental settings. Then, we present our findings and
discuss our observations in section 5 and section 6 respectively. Finally, we draw our conclusion in
section 7 as well as provide suggestions for future work.
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2. State of the Art
Time Series has become a popular research topic within the Data Science field. Nowadays, one
can find time series data almost in every field. Some common textbook examples of a time
series data include, but not limited to, stock markets in financial field or oil consumption of
an aeroplane in automotive. One may also encounter the use of time series data in some other
fields such as in modern manufacturing industries and/or information services [21] where the
data is taken from the sensors of the IoT devices, for instance. Pertaining to this project, we
are mainly dealing with sensors data as well which consists of measurements taken at certain
timestamps from six injection moulding machines. With the growth of the popularity of time series,
it can be encountered almost in every area of research, even also almost in every branch of industries.

One particular task in time series mining that has also become increasingly popular is outlier
or anomaly detection [5]. The extent of its significance often can become trivial in quite a variety
of application domains such as credit card fraud detection where one can identify if there are some
unusual activities originated from someone’s card. Network intrusion detection in cybersecurity
whereby if there is a hacker who may be trying to access or send sensitive data to its target, it
could produce an abnormal traffic in the computer network [14]. Another example from automotive
field is early detection of oil leakage occurrences which turns out to be a challenging problem due
to the continuous movement of oil across the machinery equipment parts [15]. In this particular ex-
ample, the anomaly detection is aiming towards predictive maintenance whereby one uses anomaly
detection in order to prevent oil leakage since that could be dangerous. Besides, this research also
has the same goal as this thesis whereby we develop models to detect anomalies in order to prevent
the injection moulding machines to produce a bad batch of the plastic parts.

There are many algorithms that can be used for anomaly detection, some of which have open
source implementation or are implemented in a package or library of certain programming languages.
Gaussian Processes, (Deep) Neural Networks, Long Short-Term Memory (LSTM) and ARIMA
models, to name a few, are the state-of-the-art of anomaly detection techniques particularly in
time series data.

Gaussian Processes The authors of paper [4] propose a novel machine-learning-based method
for discovering the inherent structures of anomalies arising in Internet-of-Things (IoT) sensor data.
Their ideas consist of modeling and describing anomalies by means of kernel expressions, which
are combinations of four well-known kernels. Fitting these kernel expressions to the sensor data
allows them to decompose the inherent structure of an anomaly. Moreover, one can also describe
its individual behaviour such as linearity and periodicity by natural language. The results show
that their method is suitable for modeling differently structured anomalies. Moreover, Gaussian
processes turns out to provide a powerful tool for future algorithmic investigations of IoT sensor
data. This particular research is relevant for this thesis as it demonstrates the application of
Gaussian Processes in anomaly detection problem using sensor data, which incidentally is the same
kind of data set that is used in this project.

Neural Network As mentioned previously, another method for anomaly detection is by using a
form of Neural Network. In [7], two networks namely Hierarchical Temporal Memory (HTM) and
Bayesian Network (BN) were used for a real-time anomaly detection algorithm (RADM). The HTM
model was used to evaluate the real-time anomalies of each univariate-sensing time-series. Then, a
model of anomalous state detection in multivariate-sensing time-series based on Naive Bayesian
is designed to analyze the validity of the above time-series. Lastly, considering the real-time
monitoring cases of the system states of terminal nodes in Cloud Platform, the effectiveness of
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the methodology is demonstrated using a simulated example. Extensive simulation results show
that using RADM in multivariate-sensing time-series is able to detect more abnormal, and thus
can remarkably improve the performance of real-time anomaly detection. This paper appears to
be very much inline with this thesis as well since it considers two approaches, i.e. univariate and
multivariate as does this project.

Long Short-Term Memory Long Short-Term Memory (LSTM) is not only becoming popularly
used for Natural Language Processing tasks, but it can also be used for anomaly detection technique.
In paper [19], a Multivariate Convolution LSTM with Mixtures of Probabilistic Principal Component
Analyzers was developed for a data-driven anomaly detection algorithm. The proposed approach
uses both neural networks and probabilistic clustering to improve the anomaly detection performance
which was then evaluated with a total of 22 million telemetry samples collected for 10 months from
Korea Multi-Purpose Satellite 2 (KOMPSAT-2), as well as being compared to other state-of-the-art
approaches. The results show that their proposal yields 35.8% better in precision, and 18.2% better
in F1 score than the best baseline approach.

PyOD library Aside from the aforemetioned papers, there is also a Python library / package
called PyOD [22] which consists of implementations of different anomaly detection algorithms.
This library was specifically developed for anomaly or outlier detection algorithms. It contains
implementations for some well-known algorithms such as Histogram-based Outlier Detection, Local
Outlier Factor (LOF), IsolationForest Outlier Detector (IForest) as well as some state-of-the-art
methods like XGBOD: Improving Supervised Outlier Detection with Unsupervised Representation
Learning, Variational Auto Encoder (VAE) and beta-VAE for Unsupervised Outlier Detection,
Multiple-Objective Generative Adversarial Active Learning (GAAL) to name a few. The reason
why we considered this package was because our project mainly deals with unsupervised learning
and it provides several implementation of unsupervised anomaly detection algorithms. However,
we did not make use of this package since their output is not very inline with what our models try
to achieve.

ARIMA model The last method that we considered was using ARIMA models which is a very
common method for time series analysis, particularly in terms of univariate analysis. In [20], three
models were developed to forecast Hepatitis incidence in Heng County China. These models include
an ARIMA model and Generalized Regression Neural Network (GRNN) which were trained using
the incidence data from the HengCounty CDC (Center for Disease Control and Prevention), and
later a hybrid model which consists of the combination of the two aforementioned models was devel-
oped. In order to determine which of these three models perform best, several performance metrics
were considered namely mean absolute error (MAE), root mean square error (RMSE), mean absolute
percentage error (MAPE) and mean square error (MSE). Based on the results of these four metrics,
the paper concludes that the hybrid model outperforms the other baseline models in the validation
stage and can be a potential decision-supportive tool for controlling hepatitis in Heng County, China.

Another research that uses ARIMA model to detect anomalous user behaviour on social media
[12]. The author hypothesizes that if the gathered user data can be distinguished from white noise,
then an ARIMA model can be parameterized in order to identify the underlying structure and
forecast data. The results indicate that ARIMA models can identify the anomalous behaviour in
the data by means of analysing the underlying patterns, provided that there is enough data available.

Having mentioned the different methods above, there are some advantages and disadvantages
that come with each of them. One of the literature demonstrates the robustness of Gaussian
process which turns out to provide a powerful tool for for modeling differently structured anomalies.
However, there are two limitations of Gaussian processes[8]: 1) the time complexity is O(n3) where
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n is the number of data points. Given this reason, one can automatically deduce that it will be
very time consuming to run the training. 2) Gaussian Processes are examples of non-parametric
models which are based on the Bayesian rule. This concept is unfortunately still unfamiliar to
industrial engineers. Neural Network-based techniques are also typically computationally expensive,
but there are also some advantages for instance Bayesian Network has the ability of dealing with
uncertainties by showing the relationship between parameters in the form of probability [7]. Despite
these aforementioned advantages, we were not able to implement these methods due to the limited
computational resources available during the course of the project.

From the state-of-the-art methods listed above, the only viable option for us was to use ARIMA
model. Using this model, making forecasts or predictions can be done easier and it does not need
as much resources as the other methods. This is because ARIMA models ignore any additional
input variables, or to put it simply, it takes one feature in the model at a time. Moreover, the basis
of the analysis can simply be done with respect to the provided historical time series data [18].
Given these reasons, it seems to be an appropriate choice of method for the univariate approach at
the very least. Although, one can not draw any causal inferences from the fitted ARIMA model.
This means that the model does not necessarily suggest the effect of the parameters of interest has
on the detected anomalies. Furthermore, it is important to note that the aforementioned methods
are based on multivariate analysis. However, due to the limited computational resources, we had
to take another turn and decided to also use ARIMA model in combination with PCA, by making
an assumption that the relationship between the eventual selected features are linear.



AI For Predictive Maintenance For Injection Moulding Machines 11

3. Methodology
Preprocessing step is very essential in any data science projects. This is due to the fact that
typically, we are dealing with real data which consists of a lot of measurements and subsequently
a lot of features or dimensions. However, it is not very feasible to be dealt with because it also
limits further the computational power. Pertaining to this project, the preprocessing step includes
cleaning up data and feature selection in order to reduce dimension and only base the analysis on
the most informative features. The data preprocessing will be discussed more in details in section 4.

As a part of preprocessing step, feature selection is also of importance because this way we can
investigate all features that are present in the data and choose the ones that are more informative
or have more influence to the models. Typically, most feature selection methods are wrapper
methods which make use of machine learning algorithms to assess the variables and select a subset
of those subsequently. However, they usually require having independent and dependent variables
and since our data set does not have any independent variables, therefore we opted to do Filter
method.

This section is organized as follows: first, we will explain the method that is used for feature
selection. Then, we will cover the theory behind time series analysis which includes what it entails,
its objectives, its components, and some examples for illustrations. More importantly, we will also
introduce the fundamental concepts of the model that we used in the experiment, i.e. ARIMA
model. This includes the mathematical definitions, the concept of stationarity series prior to
applying the model, parameters of the model as well as the tuning process which yields the best
performing model as indicated by the Akaike Information Criteria (AIC). And finally, we will also
describe two metrics that were used to evaluate the models’ performances.

3.1. Filter method
Filter method aims to choose the best subset of features which are selected based on statistical
criteria. This method seems to be the most appropriate considering the size of the six different
data sets that we are working with and its further implication on the computational power and
running time.

The data sets consist of features which are highly correlated with each other. If feature A is
highly correlated with feature B, it means that they are highly dependent on each other which is
not really desirable in the context of regression nor classification. Hence, we can exclude features
which have high correlations by means of calculating the pairwise correlation using the standard
Pearson method [9] which is defined by the following equation

ρ(x, y) =
∑

i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2(yi − ȳ)2

(1)

Since we do not have independent and dependent variables, therefore we calculated the correlations
between features. This way, we can investigate which features are dependent on others and which
are not. It is important to note that a subset of features where they have low correlations with
each other is much more preferable since highly correlated features most likely tend to convey the
same information and hence the interpretation of results will eventually become slightly redundant.

Furthermore, another statistical criterion was also considered which is variance [3] of the
remaining features after having removed the highly correlated ones. This is because we want to
ensure to filter out the features with low variance since those generally do not have very high
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predictive capability. In order to achieve this constraint, one can set a threshold as a fixed constant
which denotes the minimum variance that will be accepted. This means that any features whose
variance is lower than this threshold will not be included in the final resulting subset of features
which will be used for the models.

3.2. Time Series
A time series is a sequentially ordered set of values that are observed over a certain time period
[18]. In the literature, it is usually denoted by x1,x2, ...,xt, where t indicates the time step and xt

denotes the observed value of set x at a specific point in time t. Its objectives are to identify and
model the structure of the time series and/or to forecast future values in the time series or to put
it simply, predict future trends.

Figure 1: Example time series

Figure 1 shows an example of a time series that is taken from the data set. In this particular
example, the series consists of observations of injection pressure that are recorded at every shot
made by the machine. Looking closely at the plot, it can be seen that each of the observed value
in the series is recorded at a specific time stamp.
Typically, a time series consists of the following four components:

• Trend indicates whether the values in the series exhibit increasing or decreasing trend over
time.

Figure 2 shows an example of a time series which exhibits an increasing trend. Looking
closely at the plot, it can be clearly seen that in the observations, the value at time t+ 1
tends to always be higher than the value at time t. Furthermore, a small insight that we can
observe from such a plot is that most likely, this series represents a cumulative sum or total
heating energy that is consumed by the machine.
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Figure 2: Example of trend in a time series

• Seasonality describes the fixed, periodic fluctuation in the observations over time. Example:
monthly retail sales can fluctuate over the year due to the weather and holidays. It is
important to note that if we observe seasonality in the data, we should account for this in
the model. Usually, if a time series exhibits this behaviour, one can detrend or makes the
series stationary by means of differencing it with a fixed order s. In this case, s denotes the
seasonal period which takes values 7 for daily data, 52 for weekly data, 12 for monthly data
or 365 for annual data [18]. Seasonal Autoregressive Integrated Moving Average model, or
SARIMA for brevity, provides a means to do so. Denoted as SARIMA(p,d,q) × (P,D,Q)s,
where

– p, d, and q are the original ARIMA parameters.

– s = the seasonal period, e.g. 7 or 52 or 12 etc.

– P = the order of an AR model across the s periods.

– D = the order of differencing applied across the s periods.

– Q = the order of an MA model across the s periods.

• Cyclic refers to, same as seasonality, a periodic fluctuation except that it does not always
happen at the exact fixed period of time.

Figure 3 depicts an example of a time series which exhibits a cyclic behaviour. Looking
closely at the plot, it is clear that series shows an increasing trend which does not always
occur at a fixed time period. Furthermore, the parameter shot counter indicates the number
of cycle that the machines produce. The counter is first initialized to 0 and is incremented
by 1 until it resets back to 0, which indicates that the machine starts a new cycle.
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Figure 3: Example of cycle in a time series

• Random components of the series; which refers to the remaining observation after accounting
the previous three components.

The Box-Jenkins methodology [18] for time series analysis involves the following steps:

1. Investigate data by means of identifying and accounting for any trends and seasonality in the
time series.

2. Examine the remaining time series and determine a suitable model.

3. Estimate the model parameters.

4. Assess the model and return to step 1, if necessary.

3.3. Stationarity
It is important to note that in order to apply an ARIMA model, the series must be stationary.
One of its reasons is because, the effect of stationarity allows us to make assumptions that all
observations are all independent of each other. Yet, we know that in a time series, all observations
are time dependent as each of its value is being recorded at a certain period of time. A series is
said to be stationary if it satisfies the following conditions:

• The mean is constant over time.

• The variance is finite and constant over time.

• The covariance of yt and yt+h depends only on the value of h = 0, 1, 2, ... for all t.
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To check for stationarity in a time series, one can go about with two approaches whereby ei-
ther one can check the series manually, or by using some stationarity tests. Specific to this
project, we considered two hypothetical tests namely Augmented Dickey Fuller (ADF) and
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests. These two tests are based on unit root test
which can be used to determine if the time series should first be differenced in order to make it
stationary [23].

Augmented Dickey Fuller (ADF) test is a unit root test for stationarity. In this test, the
null hypothesis says that there is a unit root and hence, time series is not stationary. On the other
hand, the alternative hypothesis suggests that the series is stationary. To determine if the series is
stationary or not, one can check if the test statistics is larger than the critical value, for instance
at 5% significance level of the test. Or, one can also refer to the p value and see if it is less than
0.05. If either of these conditions are met, then one can conclude that the time series is stationary.

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test checks if the time series is stationary
around a mean or linear trend, or is non-stationary due to a unit root. This test is less popular
than the ADF test and has contrary null and alternative hypotheses. In this test, the null hy-
pothesis suggests that time series is stationary whereas the alternative hypothesis suggests that
it is non-stationary. Subsequently, one should check if the p value is larger than 0.05 in order to
conclude that the time series is stationary.

Aside from the two hypothetical tests that are mentioned above, one can also consider to use
some transformations to make a time series stationary. One of the most common method is to
apply log transformation to the series, such that we can achieve variance stationary over time.
Another method, that is also tied with one of the parameters of an ARIMA model, is to apply
differencing such that we achieve mean stationary over time.

3.4. ARIMA model
Autoregressive Integrated Moving Average models [18], or ARIMA for brevity, are a subset of linear
regression models that allow us to predict or forecast future values using the target variable’s past
observations. It is a combination of three sub-models namely Autoregressive model (AR), Integrated
model, and Moving Average model (MA). Consequently, an ARIMA model is parameterized by
a combination of each sub-model’s parameter. To be more specific, if we consider an AR model
with order p, with differencing order of d and an MA model with order q, the ARIMA model takes
parameters (p, d, q).

Formally, an Autoregressive and Moving Average model of order p and q (ARMA(p, q)) is defined
by the following equation

yt = δ + φ1yt−1 + φ2yt−2 + ... + φpyt−p + εt + θ1εt−1 + θ2εt−2 + ... + θq (2)

It is important to note that Equation 2 is composed of two smaller expressions for each of the
sub-model which will be explained in the following subsections.

3.4.1. Autoregressive Model

In an Autoregressive model, or AR for brevity, the currently observed value can be expressed as
a linear function of its past p values [18] or also referred to as p-lags of values. An AR model of
order p is defined by the following equation

yt = δ + φ1yt−1 + φ2yt−2 + ... + φpyt−p + εt (3)
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In Equation 3, δ denotes the mean of the series. If the series is assumed to be stationary with zero
mean, therefore δ = 0 [6]. φj denotes a constant for j = 1, 2, ..., p and φp 6= 0. From this equation,
one can say that an Autoregressive model of order p regresses the current value of time series yt

by means of linear combination of its past values plus a white noise process, denoted by εt. This
term is drawn from a normal distribution where εt ∼ N(0,σ2

ε ),∀t and is used to represent random,
independent fluctuations which occur in the time series. It is important to note that this particular
model has one parameter, p, which denotes the number of past observations that we take into
account in order to forecast the current value.

Partial Autocorrelation Function The parameter p of an AR model is directly related to the
partial autocorrelation function (PACF). In fact, one can use the PACF plot in order to determine
the value of p. Partial Autocorrelation Function calculates the correlation of the remaining series
after removing the effect of yt+1 to yt+h−1 values from the measure. It is expressed by the following
equation

PACF (h) = corr(yt − y∗
t , yt+h − y∗

t+h), for h ≥ 2 (4)
= corr(yt − yt+1), for h = 1 (5)

From Equation 4, it can be said that the PACF describes the relationship between an observed
value at a certain time point t and its lag. Thus, to determine the parameter p of an AR model,
one can, again, look at the PACF plot and analyse if there is still any correlation for lag values
after lag p. If not, then it is clear from the plot that the series needs an AR model of order p.

3.4.2. Integrated Model

In order to apply ARIMA model, one has to make sure that the time series is stationary. One
way to do so is to apply differencing step to the series [18], which is basically what the integrated
model does. Referring back to step 1 of the box-jenkins methodology as mentioned in the previous
subsection, one has to identify and account for any trends in the time series. If it appears that the
series does exhibit a certain trend, for instance it shows an increasing trend over time, one has to
remove this trend in order to make the series stationary. One way to do so can be by means of
applying differencing of order d. This means that we subtract the value at xt with its consecutive
previous value, i.e. xt−1. Formally, integrated model can be defined by the following formula

dt = yt − yt−1, for t = 2, 3, ...,n (6)

In most cases, this model needs at most d = 1, which means that we only compute the differences
between each successive values in the series. However, some special circumstances may require a
higher order for d than 1 and it fully depends on the time series data that is used.

3.4.3. Moving Average Model

A Moving Average Model, or MA for brevity, makes predictions or forecasts the target variable
using the model’s past errors; which is defined as the deviations between the actual values from
the time series and the predicted values generated by the model. More formally, in an MA model,
the value of a time series is a linear combination of the current white noise term and the prior q
white noise terms [18]. An MA model of order q is defined by the following equation

yt = εt + θ1εt−1 + θ2εt−2 + ... + θqεt−q (7)

Similar to the Autoregressive model, in Equation 7, θj denotes a constant for j = 1, 2, ..., q and
θq 6= 0 and εt represents a white noise process which is drawn from a normal distribution where
εt ∼ N(0,σ2

ε ), ∀t. This model forecasts the current value yt in the time series by means of forming
a linear combination of its past error terms. Subsequently, it also takes one parameter, q, which
indicates how many past errors taken into account to predict the current value.
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Autocorrelation Function Likewise, the parameter q is directly related to the autocorrelation
function (ACF). It measures the correlation of two variables corr(yt, yt+h) and is defined by the
following equation

ACF (h) =
cov(yt, yt+h)√

cov(yt, yt) · cov(yt+h, yt+h)
=

cov(h)
cov(0) (8)

In Equation 8, the value of ACF lies between −1 and 1 and h denotes the "lag", or the difference
between the time points t and t+ h. The closer ACF(h) to 1 the better predictor is yt−h for yt. To
determine the parameter q for an MA model, one has to look at the ACF plot. Subsequently, one
can observe a moving average process that shows a strong correlation between yt−h and yt only up
to the lag of q and then a sharp decline to 0. This implies that the time series can be modeled
using an MA model of order q.

Summarizing the three sub-models of an ARIMA model, one can conclude that in this model,
the current value of the series can be calculated by a linear combination of its past p observations
and its q past error terms, as well as incorporating the order of differencing in order to make the
series stationary.

3.5. Principal Component Analysis
For the multivariate approach, we assume that a set of different features would make a better
predictor rather than only one single feature. In other words, a combination of parameters would
allow us to better predict an alert in the future. Hence, in addition to the ARIMA model, we also
considered the Principal Component Analysis model, or PCA for brevity. PCA is most commonly
used as a dimensionality reduction technique whereby if the data consists of many dimensions, we
can project them into a smaller number of dimensions by means of forming a linear combination
between them. Its objective is to rigidly rotate the axes of the data into some principal axes
whereby the greatest cumulative variance of the data is captured or can be explained by a smaller
number of dimensions[2]. The principal axes have the following properties:

1. The principal axes are ordered in such a way that principal axis 1 has the highest variance,
axis 2 has the second highest, and so on.

2. The principal axes are uncorrelated; meaning that covariance among each pair of the principal
axes is zero.

Before applying PCA, it is important that the data should be centered at the origin, or more
commonly known as "mean centering" of the data. This was done by means of subtracting the mean
of the data set from each observation in the data; hence making the PCA a row-wise operation. In
this project, PCA is applied to the remaining data that we obtained after feature selection. Then,
we check how many principal components that we need in order to explain > 85% of cumulative
variance of the data. Having done so, we then fit an ARIMA model to the resulting PCA models
and make predictions afterwards.

3.6. Parameters tuning
In steps 3 and 4 of the box-jenkins method, one should estimate the model parameters and assess
the model. This means that first we have to set the values for each of the parameters of an
ARIMA model, i.e. (p, d, q), and evaluate the fitness or goodness of the model. Provided that
the series is stationary, one can estimate the parameter p of an AR model by looking at the
Partial Autocorrelation function (PACF) plot. Similarly, the parameter q of an MA model can be
determined by looking at the Autocorrelation function (ACF) plot.
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3.6.1. Auto Arima

Another way to estimate the parameters of an ARIMA model is to use the auto arima functionality
[11]. Developed by Rob J. Hyndman and Yeasmin Khandakar, this function is a part of the updated
version of forecast package in R. This function aims to choose the optimal orders of a (seasonal)
ARIMA model by using unit root tests and the AIC. Meaning, that they use unit root tests to
check for stationarity and the Akaike Information Criteria (AIC) to evaluate the fitness of the
model. It performs a step-wise algorithm for traversing the model space efficiently since it is much
more computationally heavy if one has to take a grid search approach where we fit every potential
model and choose the one with the lowest AIC. Furthermore, the user has to specify the range for
the parameters. The step-wise algorithm is described as follows

1. Try four possible models to start with using the pre-defined range of parameters. Of these
four models, select the one with the smallest AIC, or is also referred to as the "current"
model.

2. Consider up to 17 variations on the current model by means of varying the (combinations of)
parameters by ±1. This step is repeated by updating a new model with lower AIC to be the
current model. The algorithm stops when it cannot find another model whose AIC is lower
or close to the current model’s.

This algorithm is guaranteed to converge and return a valid model. Since, at convergence, the
model space is finite and at least one of the starting four models will be accepted. However, there
are several constraints on the fitted models to avoid problems with convergence or near unit-roots
which are outlined below.

• The values of p and q should not exceed 5 and the values of P and Q (in a SARIMA model)
should not exceed 2 in each case respectively.

• The algorithm rejects any model which tends to lead to non-invertible or non-causal.

• The algorithm rejects any models which arise any errors in terms of non-linear optimization
routine used for estimation. The reason being that if a model is difficult to fit, thus this
model is most likely not a good representative for the data.

If the reader is interested to learn more about the implementation, please refer to [11].

3.7. Evaluation Metrics
In the interest of this project, we mainly deal with unsupervised learning and hence evaluation
metrics such as accuracy, f1-score, area under the ROC curve might not necessarily be the best choice
since they all require having labels in both actual data and the predicted data. Hence, to measure
the performance of the models we consider two different metrics for univariate and multivariate
approach, namely Mean Absolute Percentage Error and Mean Squared Error respectively.

3.7.1. Mean Absolute Percentage Error

Mean Absolute Percentage Error (MAPE, for brevity) is a forecast evaluation measure that is most
widely used in industry practitioners [13]. It is defined by the following equation

MAPE =
1
N

N∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣× 100 (9)

where

• At denotes the actual values at time point t.
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• Ft denotes the forecast values at time point t.

• N denotes the number of data points.

The MAPE has an advantage of being scale-independent which means that the calculated error is
independent on the scale of the data and thus it can be used to compare forecasts across different
data sets with possibly different scales [10]. Additionally, it is also easy to interpret. On the other
hand, it also has quite a couple of disadvantages, one of which is since it highly depends on the
division with the actual values (At), it tends to yield infinite or undefined values if the actual values
consist of 0’s and has a skewed distribution when the actual values are close to 0 (At ∼ 0). Given
this reason, it is quite impractical to use this measure for the multivariate approach. This is due to
the fact that the result after applying PCA to the data brings the scale of the data to somewhere
close to 0. Thus, we should consider another evaluation metric which is the mean squared error.

3.7.2. Mean Squared Error

Mean Squared Error (MSE) is a model evaluation metric often used with regression models [17]. It
measures the average of the squared deviation between the actual values and the forecast values
over all data points in the time series. The deviation measures how much the forecast values vary
from the actual values. Mathematically, it is defined as follows

MSE =
1
N

N∑
t=1

(At − Ft)
2 (10)

where

• At denotes the actual values at time point t.

• Ft denotes the forecast values at time point t.

• N denotes the number of data points.
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4. Experiments
We carried out experiments using the two aforementioned approaches; i.e. univariate and multivari-
ate. Both approaches mainly follow the same pipeline with a small difference for the multivariate
approach. In this section, we will explain the details in each step of the experiments, includ-
ing certain decisions that we made along the way based on the intermediate results that we obtained.

Figure 4: Experimental Setting

Figure 4 depicts the pipeline of the experiments. Looking closely at this figure, it can be clearly
seen that there are two phases of the experiment involving 1) the (preprocessed) training data and
2) the held-out test data. We used the preprocessed data to develop the models. This data was
split into training and development sets where the training set is used for feature selection and
train the models. Then, using these pre-trained models, we generate the predictions and evaluate
its performance using the development set.

In the second phase, we applied the models to the held-out test data. It is important to
note that the significant difference between this data and the training data puts an emphasis on
the importance of retraining the models. Subsequently, we might also get different models since
the parameters could change with respect to the used data. Furthermore, even though the two
approaches follow the same pipeline, there is a major difference in the final steps particularly for
the multivariate approach. It involves the generation of thresholds to detect the anomalies in phase
1 and we only applied the second phase in the multivariate approach. The reason is because the
results from the univariate analysis gives us more insights to the behaviour of the data between
certain time periods as well as the relations between dissimilar features. With respect to the former
reason, we found that sometimes the data from today can be very different from the data that was
collected yesterday. More so if we compare the data this week to the previous week, and so on.
Based on this observation, we decided that it would be more practical to train the models within a
shorter period of time. On the other hand, we observed that if there is an anomaly in the data,
it could most likely be caused by a combination of features. More on this will be explained in
subsection 4.1 and subsection 5.1 respectively.

Aside from the two phases in the experiment, since we are considering six machines, therefore we
will have six different sets of data for both training and held-out testing data. The machines are
listed in Table 1 as follows
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Table 1: Tables of machines categorized into brands

BY machines EN machines

machine by20
machine by19

machine 2406
machine 1622
machine 1805
machine 2605

4.1. Data

The data was obtained from different machines, since the analysis is done independently. We have
two sets of data, whereby the first one is used as training while the other one is considered as a
held-out test data. The training data consists of 100000 measurements for all machines and 53767
for machine 2605. The reason being that this machine is most likely not used very often and only
used to produce special products and therefore it has marginally less measurements. Furthermore,
it contains measurements for ± 5 months, i.e. from October 2019 to early February 2020. As
depicted in Figure 4, this data is split into training and development sets using 80:20 ratio where
training set consists of 80% of the data and the development set consists of the remaining 20%.
Coincidentally, the training set is composed of the first 5 months of the data and the development
set has measurements from the last two weeks in February. On the other hand, the held out test
data only has measurements for two weeks, i.e. roughly from late June or beginning of July towards
mid-July of 2020. It is important to note that while in the first phase we are training the models
on a larger data set and test the models on a rather smaller data set, it is much more practical if
we train the models on a much shorter period of time. This is exactly what is done in the second
phase where we re-train the models only on two weeks of data since, based on the results that we
obtained, this seems to be an appropriate time frame where the machines do not yield too much
inconsistencies in the data.

4.1.1. Preprocessing

1. Remove set parameters and constant series. The data sets not only consist of measure-
ments that are taken at certain time period, but they also contain some set parameters which may
refer to certain settings that were done by the operators of the machines. Moreover, there are also
some parameters, ones that are not setting parameters, which indicate constant series since their
values do not change over time. Generally, these constant series are not necessarily considered to
be very informative or useful to the models and further analysis. Therefore, we need to remove
them.

2. Preprocess clamp force parameter for BY machines. After having done the univariate
analysis on the parameter clamp force for both BY machines, we realized that it yields very poor
model as indicated by its performance. Then, we looked back to check the data and noticed that it
contains quite a few irregular values which do not necessarily lie within the expected range. To
ensure if this is really the case, we consulted this concern with the domain expert and he confirms
that it is indeed true. However, since it is still unknown to us what was the cause behind the
generation of these irregular values, therefore we treated them as if they were missing values which
occur at random and therefore should be removed. Figure 5 shows an example of irregular values
that occur in the clamp force parameter. As can be seen, the expected observed value in the by20
machine should be ≥ 96 and any values below 96 are considered to be irregular. Likewise, the data
in the by19 machine expects the observed values to be ≥ 60.
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(a) Example data set for machine by20 (b) Example data set for machine by19

Figure 5: Example of irregular values in clamp force parameter for BY machines

3. Remove occurrences in the first hour when the machine is turned off and turned
back on again. The machines exert a somewhat strange behaviour when they are turned off
and turned back on again. This behaviour is shown by a sudden peak in the data, yet, this should
not be considered as anomaly. Moreover, this particular step becomes very useful for generating
thresholds to detect anomalies, since it requires finding a stable period where there is not a lot of
change or inconsistencies.

4.2. Features

Table 2: Table of initial number of features per machine

Machines Number of features
by20
2406
1622
by19
1805
2605

26 features
44 features
37 features
26 features
46 features
43 features

Although the number of measurements in the training data is the same across all machines in
general, the number of features do differ. Table 2 shows the number of features that each machine
has. See appendix A for a complete list of all feature names. It is important to note that these
numbers are obtained after having cleaned up the data. Furthermore, according to the domain
expert, these features have a lot of dependencies with each other. A change of one feature could
potentially affect the observed measurement of another feature and/or the combination of them
could cause what we observe as "peaks" in the data. Hence, we should calculate the correlations
between features and remove the highly correlated ones.
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4.2.1. Correlation

Figure 6: Correlation matrix for machine 2406

Figure 7: Correlation matrix for machine by19

As explained in subsection 3.1, correlation measures statistical dependencies between two variables.
In this case, between different pairs of features. Figure 6 and Figure 7 depict correlation matrices
of features for machine 2406 and machine by19 respectively. In these matrices, it can be seen
that any features which have correlation values between 0.9 and 1.0 are considered to have high
correlations, whereas anything less than that is considered low correlations. In these two matrices,
it can be clearly seen that machine 2406 have more highly correlated features compared to machine
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by19. And as a result of feature selection, we might expect to have less number of selected features.
Looking closely at Figure 6, there are 44 features and as can be seen from the matrix, we see a
lot of features which are highly correlated with the others. For example, the temperature zones
parameters seem to have high correlations with each other and this is due to the fact that they
control the temperature of the heating of the barell. Or, if we look closely at Figure 7, we can see
that Hold pressure and Injection pressure are also strongly correlated. This could be due to the
fact that during the injection moulding process, the machine has to do the injection at a certain
pressure.

4.2.2. Variance Threshold

After removing the highly correlated features, we apply another method that is called Variance
Threshold [16]. As the name suggests, the objective is to exclude features with very low variance
since generally they do not necessarily have a strong predictive capability. For the purpose of this
project, the variance threshold for all EN machines is set to be 0.0001, since we have already ruled
out features with zero variance by means of removing constant series. On the other hand, the
threshold for BY machines is set to be 1.0, because it appears that features whose variance is less
than 1.0 do not really help us to reduce the number of features and their results were not that
informative in the end. Ultimately, the point of using the variance threshold is to ensure that our
final subset consists of features with non-zero variance.

4.2.3. Common features across machines

The last step of the feature selection phase is to find common features across machines, provided
that they belong to the same brand. This means that we will eventually have two final sets of
features, i.e. for EN machines and BY machines. Below we show the final list of features that are
considered for the models and the analysis.

Table 3: Results from feature selection

BY machines EN machines
Hold pressure peak 1
Injection pressure peak 1
Flow number 1
Clamp force
Mold protection time actual value
Oil temperature
Temperature zone 8

Cycle time last value
Injection pressure peak 1
Mold protection time actual value
Heating energy actual value last cycle

Looking closely at Table 3, it can be clearly seen that we have selected 7 features for both BY
machines and 4 for EN machines. Having done this step, one may ask if these features are indeed
comparable with each other. To do so, we perform a small t-test to investigate whether the same
feature from different machines are comparable.

Figure 8a shows the boxplots of parameter Temperature zone 8 with respect to both BY
machines. As can be seen from the plot, they seem to be rather comparable. Even though their
means are slightly different but their distributions would still be more or less similar to each other.
Furthermore, Figure 8b shows the boxplots of parameter Injection pressure peak with respect to
different EN machines. From a hindsight, we can see that it depicts a contrast observation than
what we can derive from Figure 8a. By contrast, Figure 8b shows that this parameter is not really
comparable across all machines. This is due to the fact that these machines produce different
products and therefore will not be comparable.
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(a) Boxplot for Temperature zone 8 (b) Boxplot for Injection pressure peak 1

Figure 8: Boxplot of a feature across BY machines (left) and EN machines (right).

4.3. Stationary Series

(a) Original series (b) Log transformed

Figure 9: Example of non-stationary series

Figure 9 and Figure 10 show an example of the process of making the series Injection pressure
peak stationary whereby in Figure 9a we can see the original time series, in Figure 9b we can
see the series after log transformation and lastly in Figure 10 we can see the resulting series after
being differenced. To check for stationarity, we applied the ADF and KPSS tests to each of these
series, then we perform the typical hypothetical testing in order to draw a conclusion. We can
either check if the test statistics value is higher or lower than the critical value at 5% significance
level of the test, or see if the p-value is higher or lower than 0.05. Confirming whether the series is
stationary or not is based on this and the initial null and alternative hypotheses.

Table 4 shows the results applying the ADF test and KPSS test to check for series’ stationarity.
Looking closely at the result, the test outputs all values for the test statistics, p-value and the
critical values at 1%, 5% and 10% levels. First, let us check whether the original series is stationary
or not. If we compare the values for t-statistics and critical value at 5%, it is clear that the former
is smaller than the latter. Moreover, the p-value is also larger than 0.05. Provided that the null
hypothesis for the ADF test is that there is a unit root and hence, time series is not stationary, we
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Figure 10: Example of stationary series

Table 4: Stationarity tests

Series ADF test KPSS test

Original
series

t-statistic: -2.2002264791706927
p-value: 0.20616326824737136

Critical Values:
1%: -3.4304845661434378
5%: -2.8615994754339664
10%: -2.5668016568130527

t-statistic: 6.6727403385824235
p-value: 0.01

Critical Values:
1%: 0.739
5%: 0.463
10%: 0.347

Log transformed
series

t-statistic: -2.2260394446748633
p-value: 0.19693072818850427

Critical Values:
1%: -3.4304845661434378
5%: -2.8615994754339664
10%: -2.5668016568130527

t-statistic: 6.6350740320854324
p-value: 0.01

Critical Values:
1%: 0.739
5%: 0.463
10%: 0.347

Log transformed
and differenced series

t-statistic: -42.83364131968597
p-value: 0.0

Critical Values:
1%: -3.4304845661434378
5%: -2.8615994754339664
10%: -2.5668016568130527

t-statistic: 0.08072046457688913
p-value: 0.1

Critical Values:
1%: 0.739
5%: 0.463
10%: 0.347
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can conclude that based on this test, the series is not stationary. Now, we will see if applying log
transformation could render the series stationary. As it turns out, we encounter a similar situation
where the t-statistic is smaller than the critical value at 5% and the p-value is still larger than
0.05. Hence, we can again deduce that the series is still not stationary. Finally, as a last resort, we
apply differencing to the log transformed data and perform the test again. Now, we obtained a
completely different result where the t-statistic value is now much lower than the critical value
at 5%. And, the p-value is smaller than 0.05. Hence, from this test, we can conclude that the
differenced series is stationary.

Now, we take a look at the results given by the KPSS test. Looking closely at the results for
the original and the log-transformed series, we can see that both of the p-values are lower than
0.05. This means that we reject the null hypothesis and accept the alternative hypothesis. In other
words, we can conclude that the series is not stationary. On the other hand, the resulting p-value
for the log transformed and differenced series is larger than 0.05, which means that the series is
stationary. From the two tests, we can conclude that in order to render the series stationary we
have to 1) apply log transformation to the data and 2) apply first order differencing.

4.4. Anomaly detection
In order to detect anomalies in the data, we took an approach whereby we generate a threshold
which defines a lower and upper bounds of the acceptable range in the data and is only applicable
to one particular data set. This means that we aim to have one threshold per machine. To generate
such threshold, there are a couple of steps that need to be taken

1. Find a stable period.
We set a window size which denotes the number of records that we take into account. Then,
we use a sliding window to find a part of the time series whereby within the selected period
of time, there is not much variations. In another word, stable.

2. Make predictions on the selected period.

3. Calculate the threshold and count the number of alerts.
The threshold was defined as ±3.5 · std, or the standard deviation, of the selected period. We
tried different values for it but we chose 3.5 to be the suboptimal solution since typically
3 · std is used as a rule of thumb in a general industry problem but the results obtained from
using that as a threshold is there are a lot of points which are detected as alerts but we can
know for sure that they are not by looking at the resulting plots. Aside from that, we also
considered a higher threshold but this could lead to having a lot of false negatives. Long
story short, the threshold was found by means of trial and error. Having calculated the
threshold, we can then apply it to the predictions to count how many values exceed it.

As a result, there will be two final thresholds generated from two different window sizes and as a
final one, we chose the value which leads to the minimum number of detected alerts. Having done
so, we can then apply it to the predictions on the development set and count the number of values
which are either above/below the thresholds, i.e. anomalies.
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5. Results
This section will be divided into three parts; the first part will present the steps taken to make the
time series stationary using the ADF and KPSS tests as presented in subsection 3.3. Then, on the
second and third parts we present all the results obtained from the univariate and multivariate
models, respectively.

5.1. Univariate
We developed 30 ARIMA models for each of the selected features for all six machines. Their
parameters were automatically determined by applying auto arima [11]. As for starting point, the
initial parameters of an ARIMA model were set to be (1, 0, 1), and the auto arima will adjust
these values until it finds the most optimal parameters. More specifically, this function returns
the best performing model; one which has the lowest AIC value, with the total training time of 2
hours, 9 minutes and 28.44 seconds. This model was found from the steps that are explained in
subsubsection 3.6.1, whereby for each intermediate model, or current model, the function calculates
the corresponding AIC value and chooses the model which has the lowest AIC. After that, we
make predictions based on the development set and evaluate the models’ performances by means
of calculating the Mean Absolute Percentage Error (MAPE, for brevity).

5.1.1. Models

Table 5: ARIMA models for BY machines

Features by20 by19
series_Hold pressure peak 1
series_Injection pressure peak 1
series_Flow number 1
series_Clamp force
series_Mold protection time actual value
series_Oil temperature
series_Temperature zone 8

ARIMA(0, 1, 3)
ARIMA(0, 1, 3)
ARIMA(1, 1, 1)
ARIMA(3, 0, 3)
ARIMA(3, 0, 3)
ARIMA(1, 0, 2)
ARIMA(0, 1, 3)

ARIMA(2, 0, 3)
ARIMA(3, 0, 3)
ARIMA(3, 0, 3)
ARIMA(3, 0, 3)
ARIMA(3, 1, 1)
ARIMA(1, 0, 0)
ARIMA(2, 1, 2)

Table 6: ARIMA models for EN machines

Features 2406 1622 1805 2605
series_Cycle time last value
series_Injection pressure peak 1
series_Mold protection time actual value
series_Heating energy actual value last cycle

ARIMA(3, 0, 3)
ARIMA(2, 0, 1)
ARIMA(1, 0, 1)
ARIMA(3, 0, 3)

ARIMA(2, 0, 3)
ARIMA(3, 0, 3)
ARIMA(3, 0, 3)
ARIMA(3, 0, 3)

ARIMA(2, 0, 2)
ARIMA(3, 0, 3)
ARIMA(2, 0, 2)
ARIMA(1, 0, 3)

ARIMA(2, 0, 0)
ARIMA(3, 0, 1)
ARIMA(3, 0, 3)
ARIMA(3, 0, 0)

Table 5 and Table 6 show the list of models for all machines. Looking closely at Table 5, it
can be seen that in most cases, applying logarithm to the series is enough to make the series
stationary. However, there were also some features which require differencing to achieve station-
arity for instance hold pressure peak, injection pressure peak, flow number in machine by 20,
mold protection time actual value in machine by 19, and temperature zone 8 in both machines.
On the other hand, if we refer to Table 6, we can clearly see that all of the models do not need
a differencing order. In other words, we resort to using ARMA(p, q) models for all the EN machines.
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Furthermore, we can also clearly see from the tables that there are two particular models which
are purely AR(p) models, i.e. Oil temperature in machine by19 and heating energy actual value
last cycle in machine 2605. This is shown by the fact that they have d = 0 and q = 0. Hence, in
simple terms, these particular series can be modeled by an Autoregressive model of order p = 1
and p = 3, respectively.

5.1.2. Predictions

The following plots show some results from predictions made by a few of the models using 95%
confidence interval. For convenience, we will show one example for each machine and the remaining
plots will be shown in Appendix B.

Figure 11: Predictions made by the model for feature Temperature zone 8 for machine by20

Figure 11 and Figure 12 show the predictions made for Temperature zone 8 feature in machine
by20 and by19 respectively. Coincidentally, they both have the lowest MAPE compared to the
other features in the respective machines. Looking closely at Figure 11, we can clearly see that it
makes sense for this model to have a low MAPE since the prediction values do not deviate too
much from the actual values. In fact, they follow the actual values rather closely but then remain
on the predictions’ scale while the actual values go up. The MAPE for this model is 0.087% which
implies that the model correctly predicts ∼ 99.913% of the actual values and thus one can conclude
that this model generates pretty good predictions. On the other hand, we observe something
slightly different in Figure 12. In this plot, it can be clearly seen that the predictions seem to
have an increasing trend while the actual values do not seem to exhibit such behaviour. This
increasing trend in predictions can be inferred to as the model trying to capture the trend of the
series and the fact that, the data changes range to a completely different scale on certain time
periods. For instance, we can see within the period of 27/01/2020 - 28/01/2020 the values lie
within the range of ±4.56− 4.58 and then in a couple hours in 28/01/2020 where the range of
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Figure 12: Predictions made by the model for feature Temperature zone 8 for machine by19

Figure 13: Predictions made by the model for feature Injection pressure peak for machine 2406
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Figure 14: Predictions made by the model for feature Cycle time last value for machine 1622

Figure 15: Predictions made by the model for feature Mold protection time actual value for machine 1805
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Figure 16: Predictions made by the model for feature Heating energy actual value last cycle for machine
2605

values seem to change to be around ±4.59 or close to ∼ 4.6. Albeit the fact that this model also
has the lowest MAPE of 0.1823%, the predictions only allow us to deduce that within the next
two weeks, the values will keep increasing but they are not able to capture the behaviour of the data.

As for the other four machines, we can observe a similar behaviour from the predictions.
Figure 13 shows the predictions made for injection pressure peak for machine 2406. If we look
closely at this plot, we can see that there is a huge jump in the actual values which occur roughly
at 17/02/2020. However, the prediction values only have a slight increase in the values and they
become a kind of plateau. Similar to Figure 12, this increasing trend in the beginning could indicate
the model’s attempt to capture the huge change in the values’ range. Likewise, in Figure 14 we
can make the same conclusion except that this time the predictions have an opposing behaviour
as before. Instead of having a slight increase there is now a slight decrease. Nevertheless, their
MAPEs can still be considered low, i.e. 5.6% and 1.295% respectively. One can argue that although
the predictions do not seem to be good, their values still do not deviate much from the actual
values. Particularly at a time point where the huge jump or sudden change in range occurs, it can
be argued that the predictions are not that far from the actual values considering the fact that
these predictions are typically very generic and seem to be yielding values around the mean of the
series. Having said that, we can verify this by referring to Figure 15. Looking closely at the plot,
it can be clearly seen that in the actual values, not only can we observe them having a change
in scale, but it also generates some peaks as can be seen at time point 19/02/2020 and between
21/02/2020 - 22/02/2020. From a hindsight, one can argue that these peaks could have a high
probability of being an anomaly. However, this deduction might be inconclusive if we also take
into account the prediction values. Furthermore, the MAPE for this model is ∼ 27.53% and it is
arguably the highest MAPE compared to all the other models. One obvious reason for this is due
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to the fact that the model is not able to capture the huge change in ranges within the actual values
and the predictions consist of values that are about the mean of the data and most of the times
they are a bit off. Although, one can argue that the data exhibits some cyclic behaviour which can
be shown by the different patterns and scales in different time intervals. In other words, it can be
argued that every time the data changes scale, or makes a huge jump, this can be considered to be
a cycle. Moreover, it is also obvious from the plots that the different machines do not have the
same cycle time, even if they are from the same brand.

5.1.3. Performance

After generating the predictions as shown by the plots in the previous section, we now need to
evaluate the models’ performance by means of calculating the Mean Absolute Percentage Error
(MAPE).

(a) MAPE for BY machines. (b) MAPE for EN machines.

Figure 17: Overview of the models’ performances in terms of Mean Absolute Percentage Error (MAPE).

Figure 17a and Figure 17b show the MAPEs of each model for all machines. Looking closely at
Figure 17a, it can be clearly seen that on average the MAPEs are quite low. Even the model for
mold protection time actual value for machine by20 which has the highest MAPE of ∼ 1.55%
amongst the two BY machines, it can still be considered a good model since it correctly predicts
∼ 98.45% of the actual values. By contrast, the model for mold protection time actual value
for machine 1805 has the highest MAPE compared to all other five machines, due to the reason
mentioned before in which the predictions are somewhat off with respect to the scale of the actual
values. In this case, the model correctly predicts ∼ 72.47% of the actual values which is not so
great. Yet, the other models can still be considered good on average. Moreover, it can also be seen
that the MAPEs for machines 2406 and 1622 seem to be more or less the same or comparable,
in the sense that the lowest MAPE being ∼ 2.53% and ∼ 1.3% respectively, are given by the
model for cycle time last value. Whereas the highest MAPE being ∼ 17.75789% and ∼ 19.37126%
respectively are given by the model for heating energy actual value last cycle. Likewise, machines
1805 and 2605 do also seem to be comparable to each other but not to the other two machines.
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Actually, the next step would have been to generate threshold for each of these models in order
to detect the anomalies. Yet, if we do so, this would mean that there would be different thresholds
to detect, let us say, one anomaly in the data. This however, is not a very practical approach for
this particular project. Additionally, the inconsistencies of MAPE also leads us to conclude that if
a certain anomaly occurs in the data, it can not be pinpointed to only one specific feature as a
cause. Hence, we have to go about tackling this problem in a multivariate way.

5.2. Multivariate
In this approach, we first applied PCA to the data and check how many components we need
to explain as much cumulative variance as possible. The reason being, based on the results we
obtained from univariate analysis, we now assume that an anomaly that occurs in the data could
be caused by a combination of features. This also implies that we may be able to predict when
the data would generate some sudden peaks by means of using a multivariate model. Hence, we
hypothesize that these features can be expressed in a linear combination of each other whereby
each has its own weight given by the absolute value of the eigenvectors.

5.2.1. Models

Table 7: PCA components and cumulative explained variance

Machines Number of PCA components Cumulative explained variance
by20
2406
1622
by19
1805
2605

1
1
1
1
1
1

0.956
0.979
0.959
0.880
0.975
0.995

Table 8: ARIMA models for all machines

Machines Models
by20
2406
1622
by19
1805
2605

ARIMA(3, 1, 1)
ARIMA(3, 1, 3)
ARIMA(1, 1, 3)
ARIMA(3, 1, 1)
ARIMA(2, 1, 3)
ARIMA(3, 1, 2)

Table 7 shows the results after applying PCA to the training set. As can be clearly seen, we only
need one component to explain > 85% of the cumulative variance of the data. Since PCA yields,
essentially, a model with one component, or in other words, another univariate model, therefore we
can fit another ARIMA model to this PCA model. To put it simply, we can repeat the steps taken
for univariate approach to the resulting PCA models.

Table 8 shows the result of applying auto arima using KPSS test for stationary check, to the PCA
models. Looking closely at the table, it can be clearly seen that auto arima yields a set of models
that are much different than what we obtained for univariate models as shown in Table 5 and
Table 6. After training all models, we now can use it to make predictions based on the development
set.
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5.2.2. Predictions

Figure 18: Prediction for machine 2406

Figure 18 and Figure 19 show the results of predictions yielded by the models for machines 2406
and by20 respectively. Looking closely at Figure 18, we can see a slight increasing trend in the
predictions as shown by the orange line. On the other hand, in Figure 19, the predictions seem to
be slightly decreasing. Again, the same observation can be made as in the univariate approach
in which this slight increase or decrease in the predictions might be an indication of the sudden
change of value range in the actual values. Nonetheless, the fact that these two models have quite
low mean squared error (MSE) of 0.774 and 0.161 respectively, indicates that the models are able
to forecast future values that are still within the range of the actual data. Yet still, the prediction
values seem to still show little to no variance which do not seem to be able to fully capture the
nature of the original data.

5.2.3. Performance

For the multivariate approach, the performance of the models are measured by means of calculating
the mean squared error (MSE) instead of MAPE. This is because when we applied PCA to the
data and log transformation to render the data stationary, the range of values change to somewhere
rather close to 0 and therefore MAPE would not be a suitable measure for this case.

Figure 22 shows the summary of the calculated MSEs for all models. Looking closely at the
plot, one can clearly see that the model for machine 1805 yields the highest MSE of 2.73 whereas
the model for machine by19 yields the lowest MSE of 0.05071. As can be seen from Figure 20,
the actual values do not contain any sudden jumps or change of range and the model generates
a set of values which are completely within the bounds of the data, albeit with small variations.
In addition, we can see in Figure 21 that the data contains many jumps and the model was not



AI For Predictive Maintenance For Injection Moulding Machines 36

Figure 19: Prediction for machine by20

Figure 20: Prediction for machine by19
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Figure 21: Prediction for machine 1805

Figure 22: Mean Squared Error of the predictions for all machines
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able to capture such behaviour. As a result, it only generates values that are closer to the first
"cycle" and subsequently yields a rather high MSE. Going back to the MSEs, since on average the
models have relatively low MSEs, therefore we consider the models to be good and can be used to
generate the thresholds for the next step which is the anomaly detection.

5.2.4. Anomaly detection

As explained in section 4, we only apply this step to the multivariate approach. Hence, after having
made the predictions, we can then use the models as shown in Table 8 to generate the threshold
which would indicate whether a data point is an anomaly or not. This is decided by means of
checking if a certain point in the series is either above or below the threshold as mentioned in
subsection 4.4. Subsequently, to detect potential anomalies that are present in the data, we checked
if there are values in the series which are either below or above the threshold. If such values exist,
we labelled it as anomalies.

Figure 23: Detected anomalies for machine by19 for time series of flow number 1, hold pressure peak 1,
injection pressure peak 1, mold protection time actual value, oil temperature, temperature
zone 8, and clamp force from top to bottom panel, ordered by the eigenvectors, respectively.

Figure 23 and Figure 24 show the results of anomalies which occur in the data as detected
by the respective models. In this plot, we can see all the selected features sorted from highest to
lowest with respect to the eigenvectors. This means that Flow number has the highest weight or
more influence to causing the anomaly, whereas Clamp force has the lowest weight. Additionally, it
can also be seen from the labelled peak which indicates anomalies in the plot, that at around time
stamp 04/02/2020, we can observe the data to have a sudden peak particularly in parameters flow
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Figure 24: Detected anomalies for machine by20 for time series of flow number 1, mold protection time
actual value, injection pressure peak 1, oil temperature, temperature zone 8, clamp force and
hold pressure peak 1, from top to bottom panel, ordered by the eigenvectors, respectively.

number 1, hold pressure peak 1, injection pressure peak 1 and mold protection actual value. This
implies that such alert is most likely to be caused by a change in the set parameter(s) which affect
the aforementioned parameters. Hence, one can argue that, only taking the series into account, the
anomaly at that time point can be caused by several parameters of which four of them have more
influence.

Moving on to Figure 24, it can be clearly seen that the model for machine by20 seems to detect
more alerts compared to the previous case. However, the cause of an alert might not be too obvious
this time. If we look closely at the plot, even though we might be able to infer something from the
flow number parameter, our initial assumption that an anomaly might be caused by a combination
of parameters is not necessarily valid in this case since the other parameters do not really allow us
to draw any conclusion. To make it more concrete, if we take one of the points of the detected
anomaly, we can say that it might be a sudden peak in the flow number parameter but when we
look at the Oil temperature, we can not make the same observation. Because, all the detected
anomalies in the oil temperature parameter seem to lie on a rather stable series and are less likely
to be considered as such. On the same note, it could also be argued that the threshold value could
be causing this results. In Figure 19, we notice how the data slightly change scale in the middle.
Since the threshold was generated by taking into account the stable period in a given window size,
therefore it might be the case that it does not generalize well to the entire series. More specifically,
it might be able to detect anomalies rather well with respect to the beginning and/or end of the
series as they have arguably same scale, but with respect to the middle period. Furthermore, it
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is also important to note that even though this two machines come from the same brand and,
according to the domain expert, produce the same products and hence should be comparable, they
still exhibit somewhat dissimilar behaviour. One way to observe it by means of considering the
different order of parameters shown by these two plots. As mentioned previously, in Figure 23
flow number has the highest weight whereas clamp force has the lowest. On the other hand, even
though flow number also has the highest weight in Figure 24 but in this case hold pressure peak
has the lowest weight. Same statement can also be applied to the rest of the machines whose plots
are shown in appendix subsection C.2.

5.2.5. Held-out test data

Having completed phase one of the experiment, now we test if our approach would lead to the
same results as what we obtained previously. This means to train new models on held out test
data and predict or forecast completely new values in the future.

Table 9: PCA components and cumulative explained variance on held-out test data

Machines Number of PCA components Cumulative explained variance
by20
2406
1622
by19
1805
2605

1
1
1
1
1
1

0.798
0.800
0.652
0.988
0.982
0.833

Table 10: ARIMA models for all machines on held-out test data

Machines Models
by20
2406
1622
by19
1805
2605

ARIMA(2, 0, 2)
ARIMA(2, 0, 2)
ARIMA(3, 0, 3)
ARIMA(3, 0, 1)
ARIMA(3, 1, 3)
ARIMA(2, 0, 2)

Table 9 shows the result of applying PCA with one component to the held out test data. As
can be seen from the table, the explained cumulative variance is not as high as what we observe in
the training set shown in Table 7. In a way, this is to be expected since the data is obviously not
the same as the training data, nor are they likely to be comparable possibly. Similar to what is
done previously, we then fit ARIMA models to these resulting PCA models and the models are
shown in Table 10. Comparing these results to Table 8, it is clear that the models are different.
One vital observation that we can take from here is that the behaviour of the machines change
quite a lot. Not only can we see that from the sudden change in values, or what is presumed to be
a cycle, but we can also notice how in the training data, we need ARIMA models for all machines
whereas in the held out test data, we only need one ARIMA model for machine 1805 and the rest
are ARMA models. Nevertheless, now using the trained models, we can forecast a set of future
values and try to see of the models are able to give an indication if an alert will occur. By the same
token, since the number of measurements taken per day is never the same, therefore we made a
rough estimate of 5000 values (500 for machine 2605 since the data is very small) which is assumed
to be equivalent to predicting one day ahead.
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Figure 25: Forecast for machine by19

Figure 26: Forecast for machine 2406
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Figure 27: Forecast for machine 2605

Figure 25 shows the forecast made by the model for machine by19. Note that in the plot, we can
also see two dotted red lines which denote the threshold as lower and upper bounds. Looking
closely at the plot, we can see that the predictions show an increasing trend. And at the 5000th
value, it hits the upper bound. From here, it can be argued that if we set a larger number of
records, i.e. 5500 or 6000, we would expect some of the latter prediction values to exceed the
upper bound and hence it would give an alert that there will be anomalies. However, this model
can already be used as an indication to take such action. We can already give a warning at the
5000th value and say to check for the selected parameters for machine by19. Likewise, Figure 26
also shows the same behaviour but in the opposite order. Meaning that based on the predictions,
the model first recognizes that there will be anomalies since a couple of values lie below the lower
bound but then the values will go back to the acceptable, or expected, range. However, we still can
not really say that for sure because it could also be the case that the values below the threshold
may indicate the current cycle and when they go up, the machine starts a new cycle. Conversely,
Figure 70 show neither of the aforementioned observations. Looking closely at the prediction line,
we can see that it looks fairly stable and even arguably constant. This could either imply that the
model predicts there will not be any anomalies for the next day, or the model is not able to capture
the behaviour of the data to predict it. Even though the data looks fairly stationary, there are still
some sudden peaks that occur and we could expect the model to at least reflect this behaviour in
the predictions.
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6. Discussion
This thesis aims to answer the following research question:

To what extent do machines’ parameter settings influence the predictions of alerts?

Based on the results that we obtained from the experiment that we carried out, the discussion can
be done in terms of a couple point of interests that will be detailed in the following subsections.

6.1. Limitations

Unfortunately, we had no way of verifying these results since, one of the limitation of this project
was that, there is no ground truth. Thus, we could not actually count the number of false positives
or false negatives with respect to the ground truth. Although this might be considered a big
limitation in developing the models, it actually makes sense that there is no ground truth. This is
because the machines’ behaviour are always changing, sometimes perhaps even unexpectedly. One
example to prove this is by looking at the models generated using the training set and held out
test data for machines by19 and by20. The auto arima two sets of different models which would be
indicative of the fact that it is applied on different sets of data. Another insight to this is that
these machines have just recently been moved to a different factory so now there are new operators
which are working on them. Different circumstances could affect the way these machines behave
and this was one of the reasons why the data was different and the resulting models were also very
different. Hence, it makes sense that there is no ground truth to compare our models with because
there never was any particular good machine behaviour that occurs at certain time period. On top
of that, this is also the reason why first we had to find a stable period in the data while generating
the threshold such that we can treat it, in a way, as ground truth. Another impact of the changing
behaviour of the machines is also reflected in the inconsistencies of models’ performances, especially
in terms of the MAPEs.

Some other limitations include lack of background knowledge about the data and the nature of
the machines. For instance, if the machines have certain settings, why do they behave in a certain
way, and so on. And, in order to verify our results, we could consult our findings with the domain
expert or even the operators who work directly with the machines. However, due to the current
circumstances caused by the Coronavirus, there was no possibility of doing so since the government
enforces the "work-from-home" situation and hence we missed the opportunity of discussing our
results more thoroughly.

On a separate note, there are also certain limitations with regards to the methodology chosen
for this project. Even though ARIMA model is very commonly used mainly for univariate approach,
it has an advantage of doing the analysis only based on the historical time series data with respect
to the chosen input variable [18]. The forecasting process or generating the predictions using the
pre-trained models can be done simpler since ARIMA models generally ignore any additional input
variables. On this note, we can conclude that perhaps using ARIMA models fitted on PCA models
might not be a good approach to go about tackling this problem in a multivariate way. Conversely,
its disadvantage is that the fitted models do not necessarily allow us to infer any causal inferences
from the data. Specifically for this project, this means that even if the models were able to predict
a potential alert, we can not derive from the model what can be done to prevent it from happening.
And this will require a further dig deep into the project and could become very complex. Having
said that, we can deduce based on the results that we obtained, they might not be applicable in
practice. Probably, it can be used for some kind of offline analysis where we consider a batch of
products and analyze from the data if it could be considered a good or bad batch. It will be useful
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because then this will eliminate the time allocated to perform manual quality checking, however it
is not very useful for predictive maintenance.

6.2. Generated prediction values
We presented the results from univariate approach in subsection 5.1. Based on the results, we dis-
cover that the models were able to make predictions in which their values do not deviate a lot from
the actual values. This was indicated by the fact that, on average, the models have relatively low
MAPEs and hence can be considered as good. Similarly, the multivariate models also demonstrate
the same observations regarding the prediction values and their corresponding performance measure,
i.e. MSEs. Albeit the fact that models which have low MAPEs or MSEs are often considered to be
good representative of the data, these measures do not necessarily guarantee the models’ ability to
predict future values or capture the behaviour that the data exhibits, i.e. cyclic. This was shown
by the predictions that always seem to be constant or have little to no variations. In addition,
we also observed that there are inconsistencies in the MAPEs which could be an indication that
prediction of alerts based on only one feature or parameter is not necessarily a very practical
approach that resembles what usually happens in a production process. Hence, by assuming that
we can predict an alert by considering a combination of dissimilar parameters and assume that
these parameters can be represented by a linear combination as done in PCA, we obtained a
more insightful set of results which confirms our proposed assumption for the multivariate approach.

Furthermore, the results obtained from training new models using held-out test data show that
they might be useful in practice. Taking one example shown in Figure 25, the predictions seem
to be able to indicate that there could be a potential alert in the future since its last value just
reaches the upper bound of the threshold. However, as of its current state, there is no way of
finding out which parameters could cause the alert since we have no actual "x" values to compare
to as these are completely new sets of values. Although it might be able to be used in practice,
the models still have limitations in which the prediction values are indicative of potential alerts
due to its little variations which do not seem to represent the data, as well as lack of background
knowledge for this particular matter.

One solution to overcome the little variations in the prediction values is we can consider making
predictions with respect to a smaller time period in order to account for this cyclic behaviour. This
is because the results will most likely be more reliable if we consider more recent observations,
which is what we attempted to do in the second phase of the experiment.

6.3. Detected anomalies
Furthermore, taking into account the results of anomalies that occurred in the data which were
detected by the models, the two example plots that were shown depict contrasting insights whereby
one has very low amount of alerts whereas the other one has quite a lot of anomalies within the
span of two weeks. Based on a feedback from the domain expert, we should not look at the number
of alerts that the models yield. In Figure 23, it can be argued that the model could potentially
have a lot of false negatives which are the data points that should be alerts but were not detected
as such. By contrast, in Figure 24, the model might have generated a lot of false positives which
are the data points that are not supposed to be alerts but detected as such. We can look closely at
the plot and observe that in one of the parameters, some labelled data points appear to lie on a
rather stable series which may imply that they are quite unlikely to be considered as alerts. By
the same token, the chosen threshold value also appears to highly affect the detected anomalies.
Since it was generated by considering a rather stable period within a fixed window size, therefore
it might only work rather well if the data has uniform scale throughout, which is unfortunately not
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the case in our data sets. One possible solution to avoid having a lot of false negatives and false
positives is by decreasing or increasing the threshold value respectively. However, this has to be
chosen carefully as well as discussed closely with the domain experts.

6.4. Answer to research question
Based on the two approaches, multivariate seems to provide a more practical solution to the
problem at hand. We can see from the resulting detected anomalies in the development set that,
indeed if a data point turns out to be an anomaly in the data, where typically this is displayed by a
sudden peak, its cause could be from not just one specific parameter. Hence, to answer the research
question, the extent that machines’ parameters have on the influence of the predictions of alerts
can be observed by considering a combination of parameters and not only one specific parameter.
One can argue that a change in one or multiple different parameters could affect others and hence
could result in an unusual behaviour shown by the machines, which confirms our initial assumption
for the multivariate approach. Furthermore, this can also be verified by the nature of the data
that we observed during feature selection process in which there are many correlations between
features in the data. This phenomenon implies that there are many dependencies between features
for example there are several temperature parameters which are required to heat up the barrell so
as to ensure that it is heated up with a specific temperature. Or also another example was that
there were at least two pressure parameters (could be many more), in which their combination
is required to do the injection at the right pressure so as to not crush or potentially defect the
products.
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7. Conclusion
This thesis aims to develop models for time series predictions, specifically for anomaly detection. We
considered two approaches namely univariate and multivariate, where in the former we attempted
to predict the anomalies by using each of the selected features while the latter involves using
a combination of features to do so. We carried out an experiment which was divided into two
phases. The first phase concerns developing ARIMA models using the (preprocessed) training
data. This data was split into training and development sets where we used the former for feature
selection and model fitting while the latter was used to generate predictions and evaluate the
models’ performances by means of calculating MAPE, for univariate, and MSE, for multivariate.
The second phase concerns using held-out test data to train new models and generate predictions
using those. The reason being this data contains measurements for two weeks and were considered
to be more recent as opposed to training the models using 5 months worth of data.

Our results show that the univariate models seem to have good performances in the predictions
as denoted by their low MAPEs. However, it is not a very practical approach which resembles what
happens in the actual production environment. Thus, we moved on to the multivariate approach
where we observed that a combination of features seems to have more influence and provide more
insights to the predictions of alerts. Although again, the models could ordinarily be considered to
be good as denoted by their rather low MSEs, the resulting predictions generated by the models did
not appear to be very conclusive of detecting any potential alerts. This was shown by the predic-
tion values that seemed to have little to no variations and did not capture the behaviour of the data.

There are many limitations of this project which ranges from the choice of methodology,
particularly for the multivariate approach. The obtained results also did not seem to be quite useful
in practice and these also needed to be consulted with the domain expert and/or the operators of
the machine since we do not have any ground truth which we can use to compare our models with.
Another limitation was also in terms of the limited computational resources which could not allow
us to implement a more state-of-the-art method. Due to these reasons, we propose a couple of
things for future work which are, but not limited to, consider other methodology for multivariate
approach which is able to account for the somewhat cyclic behaviour in the data. And, among
others, since the results produced by the models that were trained using held-out test data seems
to be closer to what can be used in practice, therefore one can try to find a means of mapping
the forecasted values back to its original individual features’ scale. Because we might expect the
operators to not be too familiar with the concept of PCA or multivariate and they only want to
know which parameters they should tweak in order not to produce any alerts.
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A. Features

Table 11: Features names for BY machines

by20 and by19
Cycle time last value
Hold pressure peak 1
Injection pressure peak 1
Material consumption 1
Screw position 1
Flow number 1
Injection time 1
Switchover pressure 1
Melt cushion 1
Injection pressure peak value
Plasticizing position end - corrected
Clamp force
Mold protection time actual value
Oil temperature
Temperature zone 1
Temperature zone 2
Temperature zone 3
Temperature zone 4
Temperature zone 5
Temperature zone 7
Temperature zone 8
Temperature zone 9
Temperature zone 10
Injection pressure
Hydr. pressure at switch over
Switchover position actual value

Cycle time last value
Hold pressure peak 1
Injection pressure peak 1
Material consumption 1
Screw position 1
Flow number 1
Injection time 1
Switchover pressure 1
Melt cushion 1
Injection pressure peak value
Plasticizing position end - corrected
Clamp force
Mold protection time actual value
Oil temperature
Temperature zone 1
Temperature zone 2
Temperature zone 3
Temperature zone 4
Temperature zone 5
Temperature zone 7
Temperature zone 8
Temperature zone 9
Temperature zone 10
Injection pressure
Hydr. pressure at switch over
Switchover position actual value



AI For Predictive Maintenance For Injection Moulding Machines 50

Table 12: Features names for EN machines

2406 1622 1805 2605

Cycle time last value
Hold pressure peak 1
Injection pressure peak 1
Back pressure peak 1
Screw position 1
Flow number 1
Injection time 1
Plasticizing time 1
Switchover pressure 1
Melt cushion 1
Injection pressure peak value
Plasticizing position end - corrected
Clamp force
Mold protection time actual value
Oil temperature
Temperature zone 1
Temperature zone 2
Temperature zone 3
Temperature zone 4
Temperature zone 7
Temperature zone 8
Temperature zone 9
Temperature zone 10
Temperature zone 11
Temperature zone 12
Temperature zone 13
Temperature zone 14
Temperature zone 15
Temperature zone 16
Heating energy actual value last cycle
Heating energy consumption
Motor energy actual value last cycle
Motor energy consumption
Total energy actual value last cycle
Total energy consumption
Hold pressure peak 2
Injection pressure peak 2
Back pressure peak 2
Screw position 2
Flow number 2
Injection time 2
Plasticizing time 2
Switchover pressure 2
Melt cushion 2

Cycle time last value
Hold pressure peak 1
Injection pressure peak 1
Back pressure peak 1
Screw position 1
Flow number 1
Injection time 1
Plasticizing time 1
Switchover pressure 1
Melt cushion 1
Injection pressure peak value
Plasticizing position end - corrected
Clamp force
Mold protection time actual value
Oil temperature
Temperature zone 1
Temperature zone 2
Temperature zone 3
Temperature zone 4
Temperature zone 5
Temperature zone 6
Temperature zone 7
Temperature zone 8
Temperature zone 9
Temperature zone 10
Temperature zone 11
Temperature zone 12
Temperature zone 13
Temperature zone 14
Temperature zone 15
Temperature zone 16
Heating energy actual value last cycle
Heating energy consumption
Motor energy actual value last cycle
Motor energy consumption
Total energy actual value last cycle
Total energy consumption

Cycle time last value
Hold pressure peak 1
Injection pressure peak 1
Back pressure peak 1
Screw position 1
Flow number 1
Injection time 1
Plasticizing time 1
Switchover pressure 1
Melt cushion 1
Injection pressure peak value
Plasticizing position end - corrected
Clamp force
Mold protection time actual value
Oil temperature
Temperature zone 1
Temperature zone 2
Temperature zone 3
Temperature zone 4
Temperature zone 5
Temperature zone 7
Temperature zone 8
Temperature zone 9
Temperature zone 10
Temperature zone 11
Temperature zone 12
Temperature zone 13
Temperature zone 14
Temperature zone 15
Set temperature zone 1
Set temperature zone 2
Set temperature zone 3
Set temperature zone 4
Set temperature zone 5
Set temperature zone 8
Set temperature zone 9
Set temperature zone 10
Set temperature zone 11
Set temperature zone 12
Set temperature zone 13
Heating energy actual value last cycle
Heating energy consumption
Motor energy actual value last cycle
Motor energy consumption
Total energy actual value last cycle
Total energy consumption

Cycle time last value
Hold pressure peak 1
Injection pressure peak 1
Back pressure peak 1
Screw position 1
Flow number 1
Injection time 1
Plasticizing time 1
Switchover pressure 1
Injection pressure peak value
Plasticizing position end - corrected
Clamp force
Mold protection time actual value
Temperature zone 1
Temperature zone 2
Temperature zone 3
Temperature zone 4
Temperature zone 5
Temperature zone 7
Temperature zone 8
Temperature zone 9
Temperature zone 10
Temperature zone 11
Temperature zone 12
Temperature zone 13
Temperature zone 14
Temperature zone 15
Temperature zone 16
Heating energy actual value last cycle
Heating energy consumption
Motor energy actual value last cycle
Motor energy consumption
Total energy actual value last cycle
Total energy consumption
Hold pressure peak 2
Injection pressure peak 2
Back pressure peak 2
Screw position 2
Flow number 2
Injection time 2
Plasticizing time 2
Switchover pressure 2
Melt cushion 2
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Figure 28: Correlation matrix for machine 1622

Figure 29: Correlation matrix for machine 1805
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Figure 30: Correlation matrix for machine 2605

Figure 31: Correlation matrix for machine by20
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Figure 32: Boxplot for Clamp force feature of BY machines

Figure 33: Boxplot for Flow number feature of BY machines
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Figure 34: Boxplot for Hold pressure peak feature of BY machines

Figure 35: Boxplot for Injection pressure peak feature of BY machines
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Figure 36: Boxplot for Mold protection time actual value feature of BY machines

Figure 37: Boxplot for Oil temperature feature of BY machines
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Figure 38: Boxplot for Cycle time last value feature of EN machines

Figure 39: Boxplot for Heating energy actual value last cycle feature of EN machines
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Figure 40: Boxplot for Mold protection time actual value feature of EN machines
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B. Univariate Predictions
B.1. Machine by20

Figure 41: Predictions made by the model for feature Clamp force for machine by20

Figure 42: Predictions made by the model for feature Flow number 1 for machine by20
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Figure 43: Predictions made by the model for feature Hold pressure peak 1 for machine by20

Figure 44: Predictions made by the model for feature Injection pressure peak 1 for machine by20
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Figure 45: Predictions made by the model for feature Mold protection time actual value for machine
by20

Figure 46: Predictions made by the model for feature Oil temperature for machine by20
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B.2. Machine by19

Figure 47: Predictions made by the model for feature Clamp force for machine by19

Figure 48: Predictions made by the model for feature Flow number 1 for machine by19
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Figure 49: Predictions made by the model for feature Hold pressure peak 1 for machine by19

Figure 50: Predictions made by the model for feature Injection pressure peak 1 for machine by19
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Figure 51: Predictions made by the model for feature Mold protection time actual value for machine
by19

Figure 52: Predictions made by the model for feature Oil temperature for machine by19
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B.3. Machine 2406

Figure 53: Predictions made by the model for feature Heating energy actual value last cycle for machine
2406

Figure 54: Predictions made by the model for feature Cycle time last value for machine 2406
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Figure 55: Predictions made by the model for feature Mold protection time actual value for machine 2406

B.4. Machine 1622

Figure 56: Predictions made by the model for feature Heating energy actual value last cycle for machine
1622
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Figure 57: Predictions made by the model for feature Injection pressure peak 1 for machine 1622

Figure 58: Predictions made by the model for feature Mold protection time actual value for machine 1622
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B.5. Machine 1805

Figure 59: Predictions made by the model for feature Heating energy actual value last cycle for machine
1805

Figure 60: Predictions made by the model for feature Cycle time last value for machine 1805
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Figure 61: Predictions made by the model for feature Injection pressure peak 1 for machine 1805

B.6. Machine 2605

Figure 62: Predictions made by the model for feature Mold protection time actual value for machine 2605
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Figure 63: Predictions made by the model for feature Cycle time last value for machine 2605

Figure 64: Predictions made by the model for feature Injection pressure peak 1 for machine 2605
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C. Multivariate Results
C.1. Predictions

Figure 65: Prediction for machine 1622

Figure 66: Prediction for machine 2605
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C.2. Anomaly detection

Figure 67: Detected anomalies for machine 2406

Figure 68: Detected anomalies for machine 1622
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Figure 69: Detected anomalies for machine 1805

Figure 70: Detected anomalies for machine 2605
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C.3. Forecast on held out test data

Figure 71: Forecast for machine by20

Figure 72: Forecast for machine 1622
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Figure 73: Forecast for machine 1805
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