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ABSTRACT 
Introduction: The take-over process from autonomous to manual driving in semi-automated 

vehicles introduces a new critical moment for road safety. Although previous work has 

investigated extensively what factors affect the necessary time for a successful take-over by 

the driver, less is known about how specific stages within the take-over process are affected 

by those factors. 

Model: An interactive model was developed to investigate how specific factors as reported 

in the literature (e.g., alert modality, alert onset time) impact four distinct stages of the take-

over process. The model uses a database based on previous studies, which can be used to 

integrate findings across studies. Using an interactive visual interface, the end-user can 

systematically comb through the database and compare results for different settings of these 

factors. 

Testing: The model was used to study the effect of different factors on the transition of 

control, which provided valuable insight in the take-over process. For example, the model 

showed that visual-auditory bi-modal alerts resulted in a faster initial response to the alert 

than purely visual or purely auditory alerts, and that the timing of the alert has a significant 

impact on the occurrence of last-second take-overs. 

Discussion: The model can help to reveal how different factors affect specific stages of the 

take-over process. This can aid in the design and testing of new interventions and policies.  
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1 INTRODUCTION 

The continuous advancements in automated driving technology we currently see gradually 

shift the driver’s role from being fully in control of the vehicle towards more of a monitoring 

role. This allows the driver to increasingly allocate time to tasks other than driving. A 

framework commonly used to describe important steps within this shift is given by SAE 

International [87], which focusses on the amount of tasks allocated to either the vehicle or 

the driver. Here, the shift is divided into six distinct levels, ranging from level 0 (no 

automation) to level 5 (full automation). Currently, Alphabet’s Waymo [103] shows the 

highest level of automation, as it can navigate fully automated in a very restricted, predefined 

area, ranking it at level 4. However, until this or the highest level of automation become 

widely accessible, a number of legal, ethical and technical issues must be resolved first [32]. 

Given the current technological state, more realistic candidates for wider accessibility are the 

semi-automated, level 3 cars. Here, the car is capable of taking over the driving task for a 

prolonged period of time under specific conditions, but may require the driver to take back 

control of the vehicle at any time. For example, when the car encounters unfamiliar or difficult 

conditions.  

While semi-automated cars can reduce the time that the driver must allocate to the 

driving task itself, they are subject to the irony of automation [5]: The driver’s behavior may 

change in new and unforeseeable ways, potentially introducing new and unpredictable 

problems for road safety. Some behavior can be expected however, and can thus be 

anticipated. For instance, while the car is driving autonomously, the driver will likely engage 

in a secondary task using hand-held devices such as smartphones, as a significant number of 

drivers already do in non-automated cars [1,20]. This engagement with non-driving related 

tasks (NDRTs) can in turn increase the driver’s workload with tasks unrelated to the current 

traffic condition, thereby affecting their driving performance [59,117]. Level 3 automation 

gives the driver the possibility to allocate more time to the NDRT while automation is enabled. 

However, there still remains a critical moment when the car encounters a situation it is unable 

to navigate through safely and gives control back to the human driver – which will be referred 

to as transition of control in this thesis.  

With the safety-critical importance of a timely transition of control in semi-automated 

driving, research on the factors affecting the time required by the driver is plentiful. A wide 

range of factors have been investigated, including technical factors such as the modality of 

the alert [75,113], behavioral factors such as the type of NDRT performed [113], or cognitive 

factors such as the workload caused by the NDRT [44]. Given the vast amount of potential 

contributing factors, it is beneficial to have a better understanding about the specific effects 

these factors have on the transition of control, and how they interact with one another. For 

this thesis, a model was created that can help to test quantitative theories about the effects 

these factors have on the transition of control based on the vast amount of literature in the 

field. In addition to the overall time required for the transition of control, the model focusses 

on specific stages of the transition of control, and how those are affected by different factors.  
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In the following sections of this thesis, first the background concerning the stages of the 

transition of control and possible effects of influencing factors will be discussed. Afterwards, 

the model will be discussed in more detail, addressing its main components and how it 

simulates the transition of control process. Then, a number of tests will be discussed that 

have been performed using the model. Finally, implications of the results from these tests will 

be addressed in more detail. 

2 FRAMEWORK OF THE TRANSITION OF CONTROL 

Dividing transition of control into distinct stages allows for a more thorough investigation of 

the most critical aspects for driver safety. This can be used to pinpoint specific stages in 

research and can guide design choices for car manufacturers. A framework dividing the 

transition of control into such stages has been proposed by Janssen et al. [36]. This framework 

looks at the transition of control as an interruption process and builds on existing frameworks 

for interruption handling and attention interleaving (e.g. [3,10,11]) and translates it to the 

domain of transitions of control in semi-automated vehicles. While this framework gives a 

thorough account of the possible factors influencing the transition time between stages, it 

does not make quantitative predictions about those transitions. The model introduced in this 

thesis aims to bridge this gap in order to allow for a better understanding of not only what 

factors influence the transitions, but also how they influence the transitions and how those 

influences accumulate over the stages. 

The framework by Janssen et al. [36] divides the transition of control into eleven distinct 

stages, focusing on both transitions from working on the NDRT (stage 0) to driving manually 

(stage 6) (i.e., from automated driving to manual driving), and from driving manually back to 

working on the NDRT (stage 10) (i.e., from manual driving to automated driving). The first 

transition requires an adequate and timely action from the driver in order to avoid negative 

consequences for overall road safety, and is extensively studied within the field of (semi)-

automated driving [120]. The focus of the model presented in this thesis will thus be on the 

first transition from working on the NDRT (stage 0) to driving manually (stage 6) (Figure 1). In 

this section, first these stages will be explained. Afterwards, the factors that that are assumed 

to play a role in the onset of each stage will be discussed in more detail. 

2.1 Stages of the Transition of Control 

The framework by Janssen et al. [36] divides the transition from working on the NDRT to 

driving into six stages: Work on the NDRT (stage 0), presentation of external alert (stage 1), 

disengagement (stage 2), orient (stage 3), suspend the NDRT (stage 4), physical transfer of 

control (stage 5), and continue to drive (stage 6). 
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2.1.1 Stage 0: Work on Non-Driving Related Task 

The negative effect that working on NDRTs has on road safety during manual driving has been 

subject of many reviews (e.g. [20,115]). Despite these known effects, many drivers still report 

to engage in NDRTs [34], and a significant number of accidents occur due to such distractions 

[106]. NDRTs that drivers regularly engage in range from purely cognitive tasks (e.g. 

daydreaming), conversing or listening to music to more complex visual-manual tasks such as 

texting or searching objects in the car [34]. 

While automation is enabled in level 3 automated driving [87], drivers are expected to 

(occasionally) perform NDRTs as well. In fact, next to the safety benefits automation brings 

along, a major incentive for drivers to purchase (semi)-automated cars is to use their time 

during commute for tasks other than driving [108]. Since the driver can allocate more time 

and resources to the NDRTs, they can become more complex (e.g. writing formal e-mails) and 

time consuming (e.g. reading books, watching movies) than they are during manual driving. 

The type of NDRT performed during automation may have an effect on later stages of the 

transition of control. Potential effects will be discussed in more detail in section ‘Influencing 

Factors on Stage Onset Times’.  

While automation allows the driver to safely engage even in more complex NDRTs, a 

new potential risk moment arises when control is handed back to the driver. Since the 

disengagement from driving may have lasted longer, regaining sufficient situational 

awareness can require more time. Furthermore, with tasks becoming cognitively more 

demanding, the take-over time as well as the performance after driving may be negatively 

affected. However, engaging in a NDRT during automation can also have a positive effect on 

Figure 1: When a semi-automated vehicle encounters a situation that requires the input of the human driver, the 
driver must eventually transition from working on a non-driving related task (NDRT) (Stage 0) to driving manually 
(Stage 6). This transition is initiated by an external alert (Stage 1), and followed by a period of interleaving 
between those two tasks (Stages 2-5). The figure is based on the interruption framework by Janssen et al. [36], 
and adapted to highlight the transition from Stage 0 to Stage 6. 
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take-over performance, since it can prevent underload [4], which can have a negative effect 

on take-over performance as well. 

2.1.2 Stage 1: Presentation of the External Alert 

When a level 3 automated vehicle approaches a situation that requires assistance from the 

driver, it must signal the impending transition of control to the driver in an appropriate way.  

Choosing the proper external alert to initiate the transition of control plays a crucial role in 

the success of the transition of control. Two aspects of the alert are commonly discussed in 

the literature [120], and will be further investigated using the model: (1) The alert onset time, 

and (2) the alert modality. Both factors can have an effect on certain stages of the transition 

of control. These will be discussed in more detail in section ‘Influencing Factors on Stage 

Onset Times’. 

2.1.3 Stage 2: Disengage 

In the interruption framework [36], stage 2 describes the first disengagement from the NDRT 

after the alert is presented. In an experimental setting, this stage can for instance be indicated 

by tracking the first eye-gazes away from the NDRT using an eye-tracking device, or tracking 

interruptions of button presses during manual tasks. Depending on the alert onset time, the 

driver may go back to the NDRT after disengaging for the first time (or even after reaching a 

later stage). Thus, for the remainder of this thesis stage 2 refers only to the first 

disengagement from the NDRT. 

2.1.4 Stage 3: Orient 

After the first disengagement from the NDRT, drivers have to orient to the driving task in 

order to regain sufficient situational awareness (e.g., about the complexity of the traffic) for 

a safe take-over. In an experimental setting, the initiation of stage 3 can for instance be 

described by the first gaze towards the road/traffic. Similar to the disengagement in stage 2, 

the driver might go back to the NDRT after orienting to the driving task. Thus, stage 3 refers 

only to the first orientation during a transition of control.  

2.1.5 Stage 4: Suspend Non-Driving Related Task 

Before taking back control of the vehicle, the driver must suspend the NDRT. Initiation of this 

stage can objectively be measured using eye-tracking (e.g. measuring the last gaze away from 

the NDRT), or by measuring performance on the NDRT (e.g. last physical interaction with the 

device). As discussed in previous sections, the driver might go back and forth between the 

NDRT and preparing to drive during the transition of control. Thus, stage 4 defines the last 

suspension of the NDRT before control is taken back by the driver.  

2.1.6 Stage 5: Physical Transfer of Control 

The last stage of the transition of control investigated with the model is the physical transfer 

of control. This denotes the point in time at which the driver has switched off automation, for 

instance by deactivating automation manually (e.g. by pressing a button) or by interacting 

with the steering wheel and/or pedals, and is now in charge of lateral and longitudinal control 
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of the vehicle. Reaching stage 5 on time is critical for traffic safety during the transition of 

control. 

2.1.7 Stage 6: Continue to Drive 

After the transition of control is completed, the driver continues to drive in stage 6 until the 

traffic condition is back within the boundaries of the automation. The focus of the model 

discussed in this thesis is on the transition times between stages up to the physical transfer 

of control in stage 5. However, some factors can have a negative effect on driving 

performance after the transition of control is completed, such as cognitively more demanding 

tasks [88,92]. These negative effects on driving performance can last up to 40 seconds [60], 

and should also be taken into account when designing systems to facilitate the transition of 

control in semi-automated vehicles. 

2.2 Influencing Factors on Stage Onset Times 

The onset times for the stages of the framework [36] previously discussed can be affected by 

a multitude of factors. For the purpose of this thesis however, the focus lies on three factors: 

(1) Alert Onset Time, (2) Alert Modality, and (3) Non-Driving Related Task (NDRT)-type. These 

factors have been selected, because they are expected to have an influence on the stage 

onset times [36], and have been studied extensively [120]. In addition, they are commonly 

reported in the study designs of automated driving studies, even if they are not the main 

focus of the respective study. This allows the model to have access to an extended database 

to work with for each factor.  

2.2.1 Alert Onset Time 

Alert onset time refers to the moment when the alert occurs. Typically, it denotes the time 

budget available to the driver to physically take back control of the vehicle before reaching a 

critical event (e.g., an obstacle on the road) or the boundaries of the automated driving 

system (e.g., missing lane markers, system failure). Take-over time appears to be positively 

correlated with the alert onset time [120]. In the literature, alert onset times of 5 to 8 seconds 

are oftentimes considered to be the minimum time drivers need to take back control safely 

(e.g., [24,63]) and are regularly used in empirical studies [120]. However, while most studies 

report a mean take-over time of under 5 seconds [120], this mean take-over time does not 

take into account possible outliers (i.e. drivers that need significantly more time than 

average). Yet, those are the drivers that pose a significant risk to road safety, as they might 

not take back control in time to respond to the critical event appropriately. It is thus important 

to not only understand how the alert onset time affects the mean take-over times, but also 

how it affects the proportion of these outliers. 

Depending on the alert onset time, the driver has more or less time to take back control 

of the vehicle. This allows the driver to continue to work on the NDRT for an extended period 

of time, if presented with longer alert onset times. Furthermore, people tend to prefer to 

pause a task at natural breakpoints (i.e. the end of a sub-task, such as finishing to write a 

sentence in an e-mail) [35]. Longer alert onset times would allow the driver to finish more 
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time-consuming (sub)-tasks, or even to start a new one before taking back control of the 

vehicle. Alert onset times are thus expected to affect the suspension of the NDRT (stage 4), 

and consequently the subsequent physical transfer of control (stage 5).  

2.2.2 Alert Modality 

The alert modality refers to how the alert is presented to the driver. The most common 

modalities used for alerts in autonomous driving are auditory alerts, visual alerts, or a 

combination of both [120], but other alert formats such as haptic [58] have been studied as 

well. It should be noted that some alert modalities are more likely to be missed entirely by 

the driver than others. For instance, visual-only alerts are likely to be overseen when the alert 

is presented on a device other than the one used for the NDRT [113]. While such occurrences 

might influence the model indirectly (e.g., if trials with missed alerts are reported with longer 

take-over times), missed alerts are not simulated by the model directly.  

The modality with which an alert is presented can have an effect on the time needed to 

perceive that alert. For instance, tactile stimuli have been found to result in the shortest initial 

response times in a general human-machine interface, followed by auditory stimuli and finally 

visual stimuli [16]. A similar effect can be expected in an automated driving setting, thus 

influencing how long it takes for the driver to initially perceive and react (i.e., to first 

disengage in stage 2) to the alert. 

 Similarly, the alert modality could influence the time it takes the driver to initiate 

orientation (stage 3). For instance in [75], tactile alerts have resulted in the fastest eyes-on-

road times, closely followed by auditory alerts. Visual-only alerts showed significantly slower 

eyes-on-road time. This type of alert might require the driver to first look at the alert before 

looking towards the traffic if it is presented on a device other than the one used for the NDRT, 

thus prolonging the time needed until the eyes fixate on the road.  

Finally, the alert modality could affect the initiation of stage 4, depending on the 

perceived urgency that the alert is evoking. While the perceived urgency is mostly caused by 

the type of alert regardless of its modality (e.g. comparing different auditory [27,56], or tactile 

alerts [79]), some studies suggest that perceived urgency is affected differently by different 

alert modalities. Here, larger differences in perceived urgency are more commonly found in 

auditory and tactile alerts than in visual alerts [6,49]. With a higher perceived urgency, drivers 

may be less inclined to begin a new sub-task, thus accelerating the initiation of stage 4. 

Consequently, the physical transfer of control (stage 5) could be faster if the driver has 

suspended the NDRT earlier. 

2.2.3 NDRT task Modality 

The allocation of time and resources to Non-Driving Related Tasks (NDRTs) in (semi)-

automated driving plays an important role within the field, as many people see the possibility 

to work on a NDRT as a major reason to purchase (semi)-automated cars [108]. The types of 

NDRTs that are likely going to be performed in (semi)-automated vehicles are similar than 

those already performed as passengers during manual driving today, although some in a 

higher frequency [76]. A wide range of NDRTs is expected to be performed, including but not 
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limited to: listening to music, watching movies, or writing emails. In order to reduce the large 

variety of NDRTs, this thesis will focus on the modality required to perform the NDRT (i.e., 

‘reading a book’ and ‘watching a silent movie’ are both considered as ‘visual’ NDRTs).  

Depending on the modality of the NDRT performed while automation is enabled, 

disengagement (stage 2) may be delayed. Before disengaging from the NDRT, people may 

want to reach a natural breakpoint [35]. Depending on the NDRT modality, reaching a natural 

breakpoint may require more time. For instance, in a bi-modal visual-manual NDRT such as 

playing a video game, reaching a good moment to look away from the game might take longer 

than during an auditory task such as conversing with another passenger. In addition, reaching 

a natural breakpoint can take more time with cognitively demanding NDRTs, as there are less 

suitable sub-tasks for disengagement due to the higher task complexity. 

The NDRT modality can also have an indirect effect on orientation (stage 3). Depending 

on the modality of the NDRT, the driver may have elicited more or less monitoring behavior 

while automation was enabled. Higher monitoring behavior while working on the NDRT might 

in turn lead to a more accurate mental model of the environment, reducing the necessary 

time to gain sufficient situational awareness when orienting towards the road [116].  

Finally, the NDRT modality could have an effect on the suspension of the NDRT (stage 

4) as well. The driver could for instance be more tempted to begin a new sub-task if the NDRT 

is simple and rather monotonous (e.g., filling out a calendar) instead of cognitively more 

demanding (e.g., playing a game). Depending on the NDRT-modality, identifying a new sub-

task that can be completed in the remaining time can also be more or less difficult, thus 

affecting the driver’s incentive to do so. As was the case for the previously discussed factors, 

this can consequently affect the onset of the physical transfer of control (stage 5) as well. 

 

While the effect of these factors on overall take-over time has been extensively studied 

[120], less empirical findings about how they affect specific stages of the transition of control 

are available. Although some studies report onset times for several stages (e.g., [8,26,40]), it 

is not consistently done across studies. Furthermore, while there are some factors of the 

study design that are used more frequently than others (e.g., a bi-modal auditory-visual alert; 

an alert onset time of 5-8 seconds [120]), they are not used consistently throughout the 

literature. This divergence improves our understanding of the role these factors play in the 

transition of control. However, it makes it difficult to adequately compare research findings 

and to investigate the effects different factors have on take-over time over a wider range of 

studies. A better understanding of how those factors affect specific stages of the transition of 

control can help researchers and engineers to pinpoint moments in the take-over process 

that benefit most from a certain intervention. In order to facilitate the comparison of research 

findings, a model was created for the purpose of this thesis.  
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3 THE MODEL 

The goal of the model presented in this thesis is to provide a tool that can help to better 

understand the effect different factors have on the time needed by the driver to go through 

the stages of the transition of control [36] after an incentive to take back control was given. 

The model was designed to answer three questions related to the transition of control: 

(1) How does the driver go through the stages of the transition of control discussed by 

Janssen et al. [36]? The model calculates and visualizes how each stage of the 

transition of control process is affected by certain combinations of parameters 

representing specific factors (e.g., alert modality). Based on selected parameter 

choices, the model combs through its database to create a subset of studies matching 

the selection. Results from this subset are then combined and used to create a 

simulation of the transition of control, considering each stage of the process. This 

allows users to investigate how a specific factor, or a combination of factors, impacts 

each stage, as well as the transition of control as a whole. 

(2) Are the stages affected differently by some factors than by others? The model allows 

the user to create multiple simulations at the same time, each based on a different 

subset of data (i.e., based on different selected parameter choices). These simulations 

can conveniently be compared in order to test, how the difference in selected 

parameter choices affect the resulting simulations in each stage. The model also 

allows the user to add findings to the included database, making it possible to 

compare other results (e.g., from new studies) to a larger database of previous 

studies. 

(3) How likely is the transition of control going to succeed in time for the driver to react to 

a critical event, and how is the success rate affected by different factors? The model 

makes educated guesses about the rate of successful transitions in relation to the 

critical event onset for each stage, based on the selected parameter choices. For stage 

5 (i.e., the physical transfer of control) this functionality is particularly interesting, as 

it can help to estimate the proportion of drivers unable to take back control in time to 

react appropriately to a critical event. 

An important aspect of the model is that in these visualizations, comparisons, and predictions, 

it does not only focus on the mean or typical values that are expected. Instead, it provides an 

expected distribution of results. Therefore, it also allows identification of the extremes of 

performance, such as the fastest or slowest possible. This is in line with other modeling 

techniques more common in human-computer interaction (e.g., Card, Moran, and Newell’s 

focus on Fast-man, Middle-man and Slow-man [15]; or the focus on ‘bracketing’ of a 

performance range [42]). 
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The model (Figure 2) contains an extensive database, consisting of results from 265 

experimental groups from 67 level 3 automated driving studies. Based on the parameter 

choices selected by the user, the model filters through this database to create a subset 

containing experimental groups matching that selection. From this subset, summary statistics 

are calculated for each stage. These summary statistics are then used to estimate an 

underlying distribution of onset times for each stage, based on the selected parameter 

choices. Then, 10,000 transitions of control are simulated by randomly sampling values from 

the estimated distributions for each stage, resulting in the simulated distributions for each 

stage of the transition of control. The model visualizes the resulting distributions in numerous 

ways, allowing the user to investigate the effect of the parameter selections on the transition 

of control.  

The model was implemented using R Shiny (R version 3.6.1; Shiny version 1.3.2) and can 

be retrieved from the ‘Supplementary Materials’. In the following section, the functionality 

of the model is explained in more detail. First, the literature search that was conducted to 

obtain the model’s database will be discussed. Afterwards, the model’s user interface is 

explained in more detail, including the input the user can interact with and the output the 

model returns. Finally, the computations used to create the model’s simulations are 

discussed. 

Figure 2: The model works by simulating a number of transitions based on values retrieved from the literature. (a) Based 
on the input parameters selected by the user, the model filters its database to get a set of selected studies matching the 
input parameters. (b) From the selected studies, a pooled mean and standard deviation is calculated for each stage of the 
transition of control. (c) Based on these computed values, a number of transitions are simulated. (d) The resulting simulated 
data is used to create the model output. 



 
 

 10 

3.1 Literature search 

The model relies on findings from previous studies to simulate the transition of control 

process. In order to provide the model with an extensive database of research findings to 

work with, a systematic literature search was conducted. In the following section, the process 

of this literature search and the resulting database are discussed in more detail.  

3.1.1 Search strategy 

As an initial collection of literature, the meta-analysis by Zhang et al. [120] was used, as it 

offered an extensive and recent (as of 2019) review of studies investigating the transition of 

control in level 3 automated driving. Although the authors made their review publicly 

available, the included literature (129 studies from 119 records) was reexamined for this 

literature search to collect all data relevant for this project. Specifically, the purpose of Zhang 

et al. was to investigate overall take-over time, so they did not report information about 

stages 2-4. If a source was not available online (e.g., unpublished work) and could therefore 

not be examined, it was excluded from the literature search. This search strategy yielded only 

few results for stages 2, 3, and 4 (See section ‘Resulting Set of Studies’). Therefore, three 

studies known by the supervisors to discuss at least one of the earlier stages were added to 

the database. If the reaction times were only reported using plots, the corresponding values 

were extracted using the WebPlotDigitizer [84]. 

3.1.2 Eligibility Criteria 

Studies had to fulfill the following criteria to be included in the review: 

1. The study had to involve the transition of control from automated driving (or the 

simulation thereof, e.g. using ‘Wizard of Oz’ [64]) to the human driver (i.e., SAE Level 

3 or above). 

2. The participant had to be involved in a NDRT while automation was enabled in at least 

one of the conditions included in the study.  

3. The transition of control had to be initiated by an external take-over request (i.e., an 

alert) to which the subject had to react (i.e., no self-interruptions or driver-initiated 

transitions of control). 

4. The study had to report the mean and standard deviation (or another metric from 

which the standard deviation could be calculated) for at least one of the stages 2-5. 

5. The study had to be written in English, German, Dutch or French. 

After collecting all the data from each study matching those criteria, experimental groups 

were further removed if they did not match all criteria. For example, if a study had two 

experimental groups (‘with NDRT’ vs. ‘without NDRT’), only results for the ‘with NDRT’-group 

were kept in the database. 

3.1.3 Collected Information 

A number of variables were extracted from the studies (Table 1). These include information 

about the study design (e.g. ‘alert modality’, ‘number of participants’) as well as the results 

(‘mean’ and ‘standard deviation’ for each stage). In order to group similar NDRTs together,  
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the modalities required to perform the NDRT were collected rather than the specific task. To 

this end, a distinction was made between the input modalities and the output modalities, 

loosely based on the multiple resource theory [105]. The input modality refers to the 

modalities involved in processing the necessary sensory information to perform the NDRT 

(i.e., visual, auditory, tactile). The output modality refers to the modalities necessary to 

Variable Definition Example (with Source) 

Author The last names of all authors and the year of 
publication. 

Van der Meulen, Kun, Janssen 
(2016) ([61]) 

Title The title of the paper. Switching Back to Manual 
Driving: How Does it Compare 
to Simply Driving Away After 
Parking? ([61]) 

Number of 
Participants 

The number of participants in the corresponding 
experimental condition. If the number of subjects 
differed between stages (e.g. due to data collection 
issues), the smaller number was recorded. 

16 ([61]) 

Alert Onset Time The time budget (seconds) between alert onset and 
reaching the critical event. If an experimental group 
perceived a range of alert onset times, the mean alert 
onset time was recorded. If participants perceived 
multiple alerts in one trial (e.g., through pre-alerts), 
the first (pre)-alert onset was recorded. 

7 ([61]) 

Alert Modality The modality or modalities used for the alert. Visual-auditory ([61]) 

NDRT Modality 
(Input) 

The modality or modalities involved to process 
sensory information relevant for the NDRT. 

Visual ([61]) 

NDRT Modality 
(Output) 

The modality or modalities involved in executing the 
NDRT. 

None ([61]) 

For stages 2-5:   

    Stage mean Mean RT (milliseconds) from alert onset time to the 
stage. 

2556 (Stage 5) ([61]) 

    Stage SD The standard deviation (milliseconds) of the RT for 
the stage.  

1158 (Stage 5) ([61]) 

    Stage SE The standard error (milliseconds) of the RT for the 
stage. Only included if reported instead of the 
standard deviation. 

102 (Stage 5) ([53]) 

    Stage CI95 The 95% Confidence Interval of the RT for the stage. 
The reported value equals the difference between 
the upper and lower limit. Only included if reported 
instead of the standard deviation. 

750 (Stage 5) ([77]) 

    Stage definition How the stage was defined in the study. Gas/brake pedal input (Stage 
5) ([61]) 

Table 1: Variables retrieved from the studies during the literature search. For each experimental group the information 

for all variables was retrieved separately, if the information was available. 
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execute the NDRT (i.e. manual, cognitive, vocal). While ‘cognitive’ is not technically an output 

modality in the same sense than ‘manual’ or ‘vocal’, it was included here as it requires active 

participation by the participant. This distinction was included to allow for a more precise 

filtering of experimental conditions, for instance to analyze how interfering or contrasting 

alert and NDRT input modalities affect transition times differently. The categorization into 

specific input and output modalities was based on the description of the NDRT in the 

respective literature. If the NDRT was not explained in more detail, the descriptions from 

other studies using the same (or a similar) NDRT were considered. For a NDRT to be 

categorized as requiring a cognitive output modality (which – one could argue – any activity 

does to some degree), it had to be introduced explicitly as such in the study. The collected 

information was transcribed to an excel-table (See ‘Supplementary Materials’). Within the 

table, rows represent experimental groups and columns represent variables (i.e., columns 

were formed based on information as listed in Table 1). If a study did not report information 

for a variable, the corresponding cell reads ‘-Not Reported-’. 

3.1.4 Resulting Set of Studies 

The literature search resulted in a database of 265 experimental groups from 67 studies. In 

total, data from 2591 participants was retrieved. Out of these studies, 64 were found through 

the meta-analysis by Zhang et al. [120], and 3 were suggested by the supervisors [28,52,114]. 

Studies included in the database are highlighted with an Asterix (*) in the ‘REFERENCES’ and 

can be found in Appendix A. A detailed account of values retrieved for each variable, and a 

review of the information gathered for each stage can be found in Table 2 and Table 3, 

respectively. 

The majority of studies used an alert onset time between 5 and 7 seconds, followed by 

an alert onset time of 7 to 12 seconds. About two third of experimental groups were exposed 

to a bi-modal auditory-visual alert, and two third performed a NDRT with a visual input 

modality. The most commonly required NDRT output modality was manual, followed by 

cognitive-manual. Although each variable contains one clearly dominant value, at least some 

of the other values are reported sufficiently frequent to give the model enough data to 

adequately simulate the influence those values have on the transition of control. 

Table 3 shows that the amount of available results differs widely between the stages. 

While stage 5 (physical transfer of control) is discussed in all but one study, information for 

other stages is reported less frequently, especially for stage 2 (Disengage), and stage 4 

(Suspend NDRT). This discrepancy of reported stages can have several causes. For stages 2 

and 3, reporting information requires additional material (i.e., an eye-tracking device). 

Depending on the research question of a given study and the resources available, including 

results from an eye-tracker may not be relevant or impractical for the experimenter. 

Furthermore, a lot of studies including eye-tracking devices in their design were interested in 

other gaze behavior, such as the monitoring behavior during automation (e.g., [30]), or the 

proportion of gazes at mirrors after transition (e.g., [93]). While such results give valuable  

 



 
 

 13 

insights in the transition of control process as well, they are not usable for the model 

presented in this thesis. 

Studies about (semi)-automated driving often focus on the performance on the driving 

task rather than on the NDRT. Instead, the NDRT is seen as a distractor, whose effect on the 

driving task is of interest to the experimenter. Findings on the NDRT performance (including  

 
1 If a factor was reported as ‘mixed’, the reported results were averaged over multiple trials using different 
modalities for that factor. 
2 If a NDRT modality is reported as ‘none‘, a NDRT was still performed, but did not require either an input or an 
output modality (e.g., listening to music requires an auditory input modality, but no output modality). 

Variable Value N Studies N Groups 

Alert Onset Time    

 t  3 4 8 

 3 < t  5 11 31 

 5 < t  7 25 104 

 7 < t  12 19 70 

 12 < t 4 9 

 Not reported: 14 43 

Alert Modality    

 Auditory 16 41 

 Tactile 6 10 

 Visual 4 8 

 Auditory-Tactile 4 9 

 Auditory-Visual 49 173 

 Tactile-Visual 3 7 

 Auditory-Tactile-Visual 6 14 

 Mixed1 1 3 

NDRT-Modality (Input)    

 Auditory 11 26 

 Tactile 2 4 

 Visual 57 179 

 Visual-Auditory 11 33 

 Mixed1 5 21 

 None2 2 2 

NDRT-Modality (Output)    

 Cognitive 2 3 

 Manual 37 102 

 Vocal 6 15 

 Nap/Relax 2 2 

 Cognitive-Manual 13 48 

 Cognitive-Vocal 7 18 

 Mixed1 6 22 

 None2 17 55 

 

Table 2: Prevalence of reported values for each variable by studies and experimental groups. These values are available 
to the user in the model parameters for the respective variable. 
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the time until it is suspended) are thus often not relevant for a given study, and are therefore 

not frequently reported. Furthermore, it is difficult to measure suspension of some NDRTs 

(i.e., for purely cognitive or purely auditory tasks), limiting the data available for stage 4.  

The meta-review by Zhang et al. [120] - through which the majority of studies for this 

literature search were found – studied the overall take-over time (i.e., from alert onset in 

stage 1 to the physical transfer of control in stage 5) in particular. By default, the studies 

included in their meta-review reported information for stage 5, as they would have not been  

eligible for their review otherwise. Consequently, most studies considered for the current 

literature search had data available for stage 5. The only exception [28] was one of the studies 

suggested by the supervisors. 

The model creates a subset of results from this database depending on the input given 

by the user. This subset is then used to calculate the underlying distribution for each stage of 

the transition of control based on the users input, which is then visualized by the model in 

multiple ways. The user can interact with the model in the user interface. 

Stage   Definition N Studies N Groups 

Stage 2     

 Total:   5 17 

 Definitions: First gaze/saccade away from NDRT 4 14 

  First gaze through windshield 1 3 

Stage 3     

 Total:   15 62 

 Definitions:  First gaze/fixation on road (center) 14 60 

  First gaze at scenery 1 2 

Stage 4     

 Total:  6 24 

 Definitions:  First hand movement 3 12 

  Hands free 1 3 

  Last interaction with NDRT 2 9 

Stage 5     

 Total:   66 260 

 Definitions:  Disable automation through button/lever 6 19 

  Gas/brake pedal input 6 13 

  Hand on wheel 18 82 

  Input through steering wheel, pedals or 

button 

5 23 

  Steering wheel input 9 24 

  Steering wheel or pedal contact 3 13 

  Steering wheel or pedal input 17 76 

  Not reported: 3 10 

 

Table 3: Number of studies and experimental groups retrieved for each stage, including the prevalence of their definitions. 
If a study reported results matching multiple definitions for one stage, only the earlier was retrieved (i.e., if a study reported 
‘hand-on-wheel’ time and ‘steering wheel input’ time, the reported value for ‘hand-on-wheel’ time was selected for stage 
5). 
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3.2 User Interface 

The model’s UI consists of two main panels, which are visualized in Figure 3: The Input is 

presented on the left side, and the Output on the right side of the interface. 

3.2.1 Input 

With the input panel, the user can interact with the model by manipulating the subset of the 

data considered for the simulations, thereby allowing the user to investigate the desired 

configuration of factors. On the top of the input panel, the currently selected simulation is 

presented (Figure 3). At model initiation, one simulation considering the entire database is 

available. The user can add new simulations, or remove simulations (if at least two are 

available) using the corresponding buttons. If multiple simulations are present, the user can 

switch between them. The input and output presented by the model correspond to the 

currently selected simulation. The input panel can further be divided into two sections. (1) 

The Parameter section, which includes selectors that affect the currently chosen simulation 

only, and (2) the Settings section, which includes selectors that affect all simulations equally. 

3.2.1.1 Parameter 

The Parameter section contains selectors that the user can manipulate in order to filter 

through the database to create a subset of results that will be considered in the calculations 

for the simulation. Initially, the Parameter section contains four selectors representing the 

factors discussed in section ‘Influencing Factors on Stage Onset Times’.  

1. Alert Onset Time: The time between alert onset (i.e., stage 1) and critical event. The 

user can either select exact value (e.g., an alert onset time of 5 seconds), or a range 

of values (e.g., an alert onset time between 5 and 8 seconds). 

Figure 3: UI at model initiation. The input is presented on the left side of the window and the output on the right side. At 
initiation, the transition of control considering the entire database is presented. 
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2. Alert Modality: The modality or modalities with which the alert is presented (e.g., 

visual, auditory, tactile, or a combination of these). 

3. NDRT Modality (Input): The modality or modalities involved in receiving relevant 

information from the NDRT (e.g., visual, auditory, tactile, or a combination of these). 

4. NDRT Modality (Output): The modality or modalities required to interact with the 

NDRT (e.g., manual, cognitive, vocal, or a combination of these). 

For each selector, a number of choices are available. Those correspond to the values retrieved 

for each factor in the literature search (see section ‘Resulting Set of Studies’). The user can 

select multiple choices at once, allowing for an easy grouping of parameter choices. Based on 

the selected choices for each parameter, the model filters out entries in the database that do 

not match the selection. For instance, if the user selects 7 seconds for ‘Alert Onset Times’ and 

‘visual’ & ‘visual-auditory’ for ‘Alert Modality’, the model will only consider results from 

experimental groups for the simulation that were exposed to an alert onset time of 7 seconds, 

and were presented with either a visual or a visual-auditory alert. Next to the selectors, there 

are two additional options in the Parameter section: 

1. Change Set Name: Allows the user to rename the currently selected simulation. The 

new name will then appear at the top of the input panel, and in the model outputs. 

This functionality is especially useful when comparing multiple simulations. For 

instance, when comparing simulations considering visual, auditory, and tactile alert 

modalities, the simulations can be renamed as ‘Visual’, ‘Auditory’, and ‘Tactile’. 

These names will then appear in the plot legends, improving the interpretability of 

the plots. 

2.  Calculate RTs from stage to stage: In the literature, the stage onset times are 

typically reported in relation to the alert onset (stage 1) rather than to the preceding 

stage. By default, the model uses the values as reported in the literature to simulate 

each stage of the transition of control, thus simulating each stage independently. If 

this tick box is selected however, for each stage the model also takes into account 

the results from its preceding stage. For example, in order to simulate a value for 

stage 3, the model estimates a distribution representing the transition from stage 2 

to stage 3. Then, it randomly draws a value from that distribution, and adds it to a 

value randomly drawn from the distribution of stage 2. If no data is available for a 

certain stage with the selected parameter choices, that stage is skipped (i.e., if no 

data is available for stage 4, a distribution from stage 3 to stage 5 is estimated to 

simulate data for stage 5). This functionality can be useful to investigate in more 

detail how a certain factor affects the transition from one stage to another. 

However, when this functionality is enabled, the available data from the database 

is greatly reduced, as for each stage it can only take results from studies into account 

that also report its preceding stage. This functionality will be discussed in more 

detail in section ‘Transition from Stage to Stage’.  
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3.2.1.2 Settings 

The Settings section (Figure 4) contains options that affect the database or the model’s UI and 

thus affect all simulations equally. It consists of the following options: 

1. Add File: Allows the user to add an additional Excel-file containing more study results. 
For example, future researchers can add new research findings to the database in 
order to expand it, or to compare those findings to the included database. If a file is 
added, the available selector choices in the ‘parameter’ section are updated 
automatically. For instance, if results from a study using a novel type of visual alert 
named ‘experimental new visual alert’ are included in the new file, the selector ‘Alert 
Modality’ will have the ‘experimental new visual alert’ as available choice. After a new 
file was added to the database, the user can choose if the database should only 
contain the new data, the initial data, or both. The necessary format and content of 
an added file is discussed in more detail in the ‘Readme’-file (Supplementary 
Materials).    

2. Add Parameter: Allows the user to add new selectors to the Parameter section. Valid 
choices are any column names from the excel-table producing the database. New 
selectors have the same functionality than the initial ones. Adding parameters serves 
two purposes. First, the user can investigate new factors if they are included in a 
previously added file. Second, it can help to filter out data more precisely. For 
example, the user can add the parameter ‘Author’ in order to only include data from 
specific studies. 

3. Reset Model: Resets the model to its initial state. This removes newly added files, 
parameters and simulations, as well as the selected parameter choices. 

 
 
 

Figure 4: Continuation of the input panel with the ‘Settings’-section. The section is reached by scrolling down on the input 
panel. 
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3.2.2 Output 

On the right side of the UI (Figure 3), the model output is presented. Here, the simulations 

resulting from the user’s selection on the input are visualized in numerous ways, allowing the 

user to investigate the effects of different parameter configurations on the stages of the 

transition of control. The output consists of 5 panels: Transition of Control, Compare 

Simulations, Success Rate of Transitions, Summary, and Included Data. 

3.2.2.1 Transition of Control 

In this panel (Figure 5) the entire transition of control for the currently selected simulation is 

visualized, showing the estimated distribution for each stage in a different color. This panel is 

presented at model initiation. For each stage, absolute onset times are shown here (i.e., from 

alert onset in stage 1 to the respective stage). This plot gives the user an overview of the 

expected transition from stage to stage over time, considering the selected parameter 

choices of the current simulation. In order to account for large values caused by the skewness 

of the distribution, the x-axis is cut-off at the 99th percentile of the stage with the highest 

values. However, the user can adjust the x-axis manually if necessary. In the legend, the 

number of experimental groups from the database considered in the simulation for each 

stage can be found. If no data is available for a certain stage given the selected parameter 

choices, the stage is not visible in the plot. 

 

 

 

Figure 5: The ‘Transition of Control’ output panel of the model. This panel shows the distributions for each stage of the 
currently selected simulation. The simulation shown here considers the entire database and will be discussed in more 
detail in ‘Test 1 – General Patterns in the Distribution of Stage Onset Times’. 
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3.2.2.2 Compare Simulations 

The ‘Compare Simulations’ panel displays four plots, one for each of the stages 2, 3, 4, and 5 

(Figure 6). If multiple simulations have been created, all simulations can be plotted 

simultaneously in this panel. This allows the user to look at the different effects on stage onset 

times stemming from distinctive parameter combinations. The user can however choose to 

only display the currently selected simulation here as well. As for the ‘Transition of Control’-

panel, the x-axis is cut off at the 99th percentile, but can be adjusted manually if desired. 

The stage onset times can either be plotted in relation to the alert onset (stage 1), or in 

relation to the previous stage (See section ‘Transition from Stage to Stage’ for how this 

transition time is estimated). If stages are plotted in relation to the previous stage, in contrast 

to the ‘Calculate RTs from stage to stage’-option in the input panel, stages cannot be skipped 

if no data is available for them. For example, if data is only available for stage 2 and stage 4, 

the plot for stage 4 will stay empty, instead of plotting it in relation to stage 2. This was done 

to avoid a comparison between simulations with different stage transitions. For example, 

comparing stage onset times in relation to the previous stage for stage 4, if one simulation 

Figure 6: The ‘Compare Simulations’-Panel. Each stage is plotted individually, either by absolute times (i.e. form alert onset 
in stage 1), or from the previous stage. If multiple datasets are currently used, the user can choose to plot them 
simultaneously here. 
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has data available for stage 2 and stage 4, while the other simulation has data available for 

stage 3 and stage 4.  

3.2.2.3 Success Rate of Transitions 

The ‘Success Rate of Transitions’ panel (Figure 7) displays information about the rate of 

successful takeovers in relation to the critical event. At the top of the panel, a cumulative plot 

is displayed, including each stage of the currently selected simulation, along with a vertical 

line displaying the critical event. The user can adjust the time of the critical event, as well as 

the cut-off point of the x-axis. At the bottom, two tables are shown, one showing the time 

needed for a certain proportion of simulated trials to reach each stage (left), and one showing 

how many simulated trials have reached each stage at a certain time in relation to the critical 

event (right). For both tables, the user can add and/or remove rows. This panel gives the user 

a clearer picture about the rate of successful transitions of control in relation to the time of 

the critical event. This gives the user valuable insights on the proportion of drivers that are 

expected to fail to take back control in time in order react appropriately to the critical event. 

Figure 7: ‘Success Rate of Transitions’-Panel. The panel at the top shows a cumulative plot for each stage in relation to the 
critical event (vertical line). At the bottom, two tables are shown, one showing the times needed for each stage to reach a 
certain percentage of successful transitions (left), and one showing the percentage of successful transitions by time in 
relation to the critical event (right). 
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3.2.2.4 Summary 

The summary panel (Figure 8) presents a table with summary statistics for each stage included 

in the simulation. The table displays the smallest and largest values, the mean, the median, 

and the standard deviation from the simulated distribution for each stage. In addition, it 

shows from how many experimental groups the results are considered for the simulation and 

from how many different studies those experimental groups come from.  

The user can either choose to show the summary statistics for the currently selected 

simulation only, or to compare all available simulations by stage. Overall, this panel is 

designed as a qualitative addition to the previously discussed panels, providing the user with 

concrete values related to the visualized data in other panels. 

3.2.2.5 Included Data  

The final panel (Figure 9) shows the subset of the database that has been taken into 

consideration for the currently selected simulation. By default, the table shows the authors, 

the value from the initial parameters (see section ‘Parameter’), and the reported mean values 

for each stage of the experimental groups included in the subset. The user can however add 

or remove columns as desired. Valid columns are equivalent to the columns included in the 

excel-table from the literature search (see section ‘Resulting Set of Studies’). The main 

purpose of this panel is to give the user an overview of the experimental groups considered 

in the simulation, thus helping to find common traits and discrepancies between the groups 

in order to look for new potentially interesting parameter combinations that may be 

interesting to inspect further. In addition, it can help to quickly find the source of specific 

results, if the user wishes to look at the corresponding study in more detail. 

Figure 8: ‘Summary’-Panel. Presents several summary statistics for each stage. The user can either choose to get the 
summary statistics from the currently selected simulation only, or to compare all simulations per stage. 
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3.3 Computation 

A number of calculations have to be made in order to obtain the outputs discussed in the 

previous section from the data in the set of studies. These are discussed in more detail in this 

section. 

3.3.1 Retrieve Standard Deviation from Reported Results 

In some studies, the standard error of the mean was reported rather than the standard 

deviation. If this was the case, the standard deviation was calculated using following formula 

taken from [31]: 

 = 𝑆𝐸 ×  √𝑁  

 

With standard deviation , standard error SE, and number of participants N. 

In some other cases, the 95% confidence interval was reported instead of the standard 

deviation. In this case, the standard deviation was calculated using the formula [31]: 

 

 = √𝑁 ×
(𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 − 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡)

2 × 𝑡 𝑣𝑎𝑙𝑢𝑒
 

 

Figure 9: ‘Included Data’-panel. Gives the user an overview of the experimental groups considered for the currently 
selected simulation. The panel contains a search-bar and allows to sort the data in different ways, in order to improve 
usability. 



 
 

 23 

With standard deviation  and number of participants N. The t-value was retrieved from a t-

value table commonly reported in statistical books (e.g. [2]), using a degree of freedom equal 

to the number of participants minus 1. 

3.3.2 Combined Mean and Standard Deviation per Stage 

With the means and standard deviations retrieved from each study in the current dataset, a 

combined mean and standard deviation is calculated for each available stage in order to 

approximate the underlying distribution. The combined mean 
𝑡
 is calculated using the 

formula [31]:  

 


𝑡
=  
𝑁11 +𝑁22 +⋯+𝑁𝑘𝑘

𝑁1 + 𝑁2…+𝑁𝑘
 

 

With mean , number of participants N, and number of experimental groups k. The combined 

standard deviation 𝑡 is calculated using the formula [31]: 

 

𝑡 = 
√
(𝑁1 − 1)1

2 + (𝑁2 − 1)2
2 +

𝑁1𝑁2
𝑁1 + 𝑁2

(
1
2 + 

2
2 − 2

1

2
)

𝑁1 + 𝑁2 − 1
 

 

With standard deviation , number of participants N, and mean . If more than two 

experimental groups were included, this formula was applied sequentially (i.e. first combining 

‘Study 1’ with ‘Study 2’, then ‘Study 1 & Study 2’ with ‘Study 3’, and so on). 

3.3.3 Transition from Stage to Stage 

In the literature discussing the transition of control in level 3 automated driving, the mean 

reaction times and standard deviations for each stage are commonly reported in relation to 

the alert onset (Stage 1), rather than from the preceding stage. However, investigating how 

certain combinations of parameters may affect the transition between specific stages can 

potentially display interesting patterns. In order to allow the user to do so, the mean and 

standard deviation from stage to stage have to be estimated based on the existing 

information for each study.  

The mean between stages b is calculated as the difference between the means 

 


𝑏
= 

2
− 

1
 

 

With mean 1 being from the stage preceding the stage with mean 2. 

The standard deviation between stages b is calculated as 
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𝑏 =  √
(
1
2 + µ1

2) + (2
2 + µ2

2)

2
− (
µ1 + µ2
2

)
2

  

The derivation of this formula can be found in Appendix B. 

With the estimations for b and b for each available study, the combined mean and standard 

deviation are then calculated as discussed in section ‘Combined Mean and Standard Deviation 

per Stage’. 

3.3.4 Shape of the Distribution 

Although it is difficult to make a precise estimation of the underlying distribution for each 

stage of the transition of control using only the means and standard deviations generally 

reported in the literature, two assumptions about the shape of the distribution can be made 

that are common in reaction time data: (1) The distribution is positively skewed, and (2) there 

are no negative reaction times. 

(1) Positive skewness is described by a longer tail of the distribution towards higher 

values on the x-axis and is common in reaction time data [82]. This tail occurs when 

a small but significant portion of the reaction times are much larger than the 

average, while very few, if any, are much shorter than average. In the transition of 

control, this translates to most drivers having similar, relatively short take-over 

times, while a small number requires much more time to successfully take over 

control. Although small in numbers, these outliers pose a significant risk to road 

safety, as they might not take back control in time to avoid the critical event. 

Considering them in the model is thus especially important, as they play a major 

role in the success of the alert. 

(2) No negative reaction times are expected to occur, as they would suggest that the 

take-over process was initiated by the driver before the alert onset. While this can 

happen in practice if the take-over is self-initiated by the driver, the model discussed 

in this thesis focusses explicitly on the transition of control initiated by an external 

alert. 

Both assumptions are made for the reaction times as reported in the literature (i.e. for each 

stage in relation to the alert onset), as well as for the transition times between stages as 

discussed in section ‘Transition from Stage to Stage’. For the transition between stages, an 

additional assumption has to be made to exclude negative values, namely that the stages of 

the transition of control always occur in the same order. While this is inevitably true between 

some stages (i.e. the driver cannot orient towards the road (Stage 3) before first disengaging 

from the NDRT (Stage2)), exceptions to this rule can still occur. For example, in [75] the 

participants took back control of the vehicle (Stage 5) on average 30ms before orienting 

towards the road (Stage 3). Such results are however a rare exception.  

In order to simulate data that matches the assumptions of (1) positive skewness and (2) 

no negative reaction times, a log-normal distribution is used as the underlying distribution. 

Out of the possible distributions adequate to model reaction time data (see [51] for an 

interactive overview), the log-normal distribution was chosen for a combination of practical 
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and accuracy reasons. A log-normal distribution matches the assumptions (1) and (2), 

allowing for the simulated data to later match those as well. While other distributions like the 

ex-Gaussian are generally said to have the best fit for reaction time data [71], estimating 

adequate values for its parameters requires a lot of information about the data (i.e., raw data 

is necessary), making it impractical for this model. The parameter values for the log-normal 

distribution can however be estimated using the sample’s mean and standard deviation, 

which are the most commonly (and oftentimes only) reported statistical results reported in 

level 3 automated driving studies [120]. The log-normal distribution can be estimated using 

the expected value ̂ and the standard deviation of the natural logarithm ̂, both of which 

can be calculated using the mean 
𝑡
 and the standard deviation 𝑡 of the set of studies, as 

computed in Section ‘Combined Mean and Standard Deviation per Stage’.  

The factor ̂ is calculated using the formula (e.g. [94]): 

̂  = log 

(

 

𝑡
2

√𝑡
2 + 𝑡

2

)

  

 

The factor ̂ is calculated using the formula (e.g. [94]): 

 

̂  = √log(1 +
𝑡
2


𝑡
2
)  

4 TESTING 

Next, the functionality of the model was tested. For the scope of this thesis, testing had two 

main purposes: (1) to test the functionality of the model, and (2) to reveal interesting patterns 

in the literature that emerge when combining results that cover different stages of the 

interruption framework [36], and which can improve our understanding of the effects that 

different factors have on the transition of control from automated to manual driving. 

To do so, 5 tests were performed with the model. First, a simulation was created using 

the entire database, in order to test some of the model’s functionalities and to give a picture 

of general patterns that describe the literature findings. Second, the effect of a visual-auditory 

bi-modal alert on the stages of the transition of control is investigated and compared to its 

uni-modal visual- and auditory counterparts. Third, commonly used non-driving related tasks 

(NDRTs) are compared by their output modalities to study how they affect the stages of the 

transition of control. Fourth, a number of simulations are conducted to study how alerts and 

NDRTs interact with one another if they involve similar or dissimilar modalities. Finally, 

simulations based on the most commonly reported alert onset times are compared to see 

how they affect the occurrence of safety-critical last moment transitions of control. 

If not stated otherwise, the values for each stage were simulated independently from 

one another, using the results as reported in the literature as a baseline for the calculations 
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(i.e. from alert onset to the respective stage). This was done because calculating the values 

from stage to stage greatly reduces the number of observations from the database included 

in the calculation, as it can only consider observations that discuss both the current stage and 

its preceding stage (See section ‘Transition from Stage to Stage’).  

Due to the expected asymmetry of the distribution resulting from its skewness, the 

standard deviation was not considered a good measure of spread in the data. Instead, the 

quartile deviation (QD) [45] was calculated using the formula: 

𝑄𝐷 =
(𝑄3 − 𝑄1)

2
 

where 𝑄3 is the simulation 75th percentile and 𝑄1  the simulation 25th percentile. A 

higher QD suggests a larger spread of the distribution.  

4.1 Test 1 – General Patterns in the Distribution of Stage Onset Times  

The goal of the first test was to uncover general patterns in the distribution of stage onset 

times during the transition of control. In order to do this, a simulation was run with the model 

considering the entire database for calculations. 

4.1.1  Model Performance 

The data resulting from this simulation is plotted in Figure 10. The simulation resulted in 

distinct stage onset time distributions for stage 2 (M = 0.50, QD = 0.13), stage 3 (M = 1.23, QD 

= 0.47), stage 4 (M = 3.84, QD = 1.67), and stage 5 (M = 2.56, QD = 0.90). With regard to the 

alert onset times of 5 to 8 seconds oftentimes considered the minimum time required for the 

driver to take back control safely (e.g., [24,63]), a significant proportion of transitions failed 

to succeed (i.e., failed to reach stage 5) in time. 7.86% of transitions have not been successful 

5 seconds after the onset of the alert. After 8 seconds, still 1.37% of transitions have not yet 

been terminated. It should be noted however, that some experimental groups considered for 

this simulation were exposed to longer alert onset times, and may thus distort this result. The 

Figure 10: Distribution of the simulated data when taking the entire database into account. For each stage, the simulation is 
done independently, considering data from all experimental groups for which results for the respective stage was reported. 
The numbers of experimental groups included for each stage are listed in brackets in the legend. 
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effect of specific alert onset times on the rate of failed transitions will be investigated in ‘Test 

5 - Rate of Successful Take-Overs Based on Alert Onset Time’. 

4.1.2 Discussion 

The long tails in the distribution of stage 5 elicited by the model suggest that a significant 

portion of transitions may result in an unsuccessful take-over with regard to the commonly 

reported alert onset times used in the literature. After 8 seconds, 1.37% percent of simulated 

transitions have not been accomplished. This corresponds to 1 in every 73 drivers failing to 

take back control in time, if they had 8 seconds to react to a critical event. Considering the 

negative consequences of a failed take-over, this rate can arguably be considered too high. 

Thus, while an alert being presented on such short notice might suffice in most cases, the 

model suggests that it is not sufficient to ensure overall road safety. 

Overall, the distributions of the stages resulting from this simulation elicit a specific 

pattern. Stage 2 shows the shortest mean stage onset time and the smallest spread in the 

data. The mean and spread of the stages consistently increase through stage 3 and stage 5. 

This pattern suggests that the stages of the transition of control generally follow the 

framework by Janssen et al. [36]: Initial stages are handled quickly and consistently, whereas 

the variation in how quickly a stage is handled increases over time. However, stage 4 does 

not follow the pattern as clearly as other stages, having a larger mean and spread than stage 

5, thus resulting in the highest values overall. A closer look at the database reveals an 

explanation for the unexpected pattern.  

5 of the 24 experimental groups with reported results for stage 4 come from one study 

that used an alert onset time of 21 seconds (in the form of a pre-alert) [28], all of which 

eliciting a stage onset time for stage 4 above 8 seconds. This study only reported values for 

stage 4, thus not equally affecting the simulation of other stages (a comparatively large stage 

onset time could have been expected at least for stage 5 in this study). By excluding the results 

of this study for the simulation, another pattern - unexpected in its own way – emerges 

(Figure 11). The distribution now peaks shortly before stage 3, but elicits a longer tail. Based 

Figure 11: Distribution of the simulated data considering the entire database except for the study contributing to stage 
4 with exceptionally large stage onset times. By excluding results from this study, the distribution of stage 4 now 
resembles the distribution of stage 3. Other stages remain unaffected by the removal. 
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on the mean and quartile deviation, stage 4 (M = 1.43, QD = 0.62) is now located between 

stage 3 (M = 1.23, QD = 0.47) and stage 5 (M = 2.56, QD = 0.90), however being much closer 

to stage 3. This pattern now suggests that the onset of stage 4 occurs almost in parallel to the 

onset of stage 3. This may be due to the generally short alert onset times used in the literature 

comprising the database (see Table 2). Given the limited time participants had to take back 

control of the vehicle in most of the experimental groups, they may not strive to reach a 

natural breakpoint in the non-driving task before suspending it. Instead, they might suspend 

it as soon as the alert was perceived in order to react in time for the critical event. The effect 

that the results from [28] had on the model’s simulation for stage 4 shows however, that an 

extended alert onset time can have a significant effect on the shape of the transition of 

control. More research is needed to better understand how these longer alert onset times 

affect the stages of the transition of control.  

This finding has a significant implication for the model’s optional functionality to 

calculate stage onset times in relation to their preceding stage (see section ‘Transition from 

Stage to Stage’), as it is implemented with the assumption that drivers go through the stages 

consecutively (i.e., the model does not simulate negative stage transitions). Considering that 

stage 3 and stage 4 seem to occur almost in parallel in Figure 11, it can be expected that stage 

4 is reached earlier in time than stage 3 in some transitions. A closer look at the experimental 

groups of the database shows that this has indeed been observed in multiple experimental 

groups [8,40]. The estimated distributions from stage to stage may have been oversimplified 

in the model. These distributions could elicit unique shapes that need to be taken into account 

for the simulation. However, given the limited data for some stages, and the limited 

accessibility to raw data, studying the stage transitions in depth was difficult in the scope of 

this project. The calculation from stage to stage should thus be used with caution, and with 

proper consideration of the subset of the database considered for the calculations. Users are 

advised to use the model’s default simulation (i.e., simulating each stage in relation to the 

alert onset), as will be done in the remainder of this thesis. For a clearer view on the stage 

distributions from this section, Figure 10 and Figure 11 are plotted per stage in Appendix C. 

4.2 Test 2 – Effect of Different Alert Modalities on the Transition of Control 

Next, the effect of alert modality on the take-over process was investigated using the model. 

In the literature, by far the most commonly used alert is a bi-modal visual-auditory alert with 

173 experimental groups in the database (reported in 49 papers) being exposed to it, followed 

by purely auditory alerts with 41 occurrences (16 papers) in the database. For the purpose of 

this test, the focus will thus be on the visual-auditory bi-modal alert, and how the distributions 

of timings for the different stages compare to those for purely visual or purely auditory alerts. 

4.2.1 Model Performance 

The data resulting from these simulations is plotted per stage in Figure 12. According to the 

model, alert modality had little effect on overall transition time (i.e., from alert onset to the 

physical transfer of control in stage 5. Figure 12, bottom right), with all simulations resulting 

in mostly overlapping distributions. For intermediate stages however, the model resulted in 
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a significant difference in stage onset times between the selected alert modalities. A visual-

auditory alert led to the earliest distribution peaks in stage 2 (disengagement), stage 3 

(orientation), and stage 4 (suspension of the NDRT), and showed the least spread in data 

compared to most other distributions in these stages. Only in stage 3 (Orientation) did the 

visual-auditory alert have a larger spread (QD = 0.42) than the auditory-only alert (QD = 0.36), 

although not as large as the visual-only alert (QD = 0.68). The largest discrepancy in 

distributions can be seen in stage 4 (suspension of the NDRT) between visual-auditory alert 

(M = 0.94, QD = 0.62) and auditory-only alert (M = 10.58, QD = 3.03). It should be noted 

however, that the experimental groups considered for the auditory-only alert condition in 

this stage all came from [28], whose impact on stage 4 has been discussed extensively in ‘Test 

1 – General Patterns in the Distribution of Stage Onset Times’. 

 

Figure 12: Distribution of the simulated data considering different alert modalities. Overall, the visual-auditory alert (red) 
resulted in the shortest stage onset times, compared to visual (blue) and auditory (green) alerts. This effect was most 
prevalent in earlier stages and dissipated in the final stage of the transition of control. 
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4.2.2 Discussion 

The data simulated in this test showed an interesting effect of alert modality on the transition 

of control. While the modality of the alert had a visible effect on earlier stages of the 

transition, with the fastest stage onset times occurring with a bi-modal visual-auditory alert, 

this effect dissipates in the last stage of the transition. The minimal effect of alert modality 

on overall takeover time has also been determined in the meta-review [120] from which most 

studies comprising the model’s database have been gathered. However, incorporating the 

stages of the interruption framework [36] revealed that the alert modality has an effect on 

the intermediate stages of the transition, suggesting that drivers take more time to perceive 

and initially react to uni-modal alerts as compared to bi-modal visual-auditory alerts. The 

modality used to alert the driver should thus especially be taken into consideration when a 

quick initial reaction from the driver is desired, for example to provide the driver with 

information about the current traffic situation in order to prepare them for an upcoming 

takeover request.  

4.3 Test 3 - Effect of NDRT Output Modalities on the Transition of Control  

Next, a comparison of the effects of manual and cognitive non-driving related task (NDRT) 

output modality on stage onset times was conducted. Three simulations were performed with 

the model: 

- (1) Cognitive: The first simulation uses results from experimental groups being 

exposed to a NDRT that required cognitive engagement from the participants for the 

calculations. Purely cognitive NDRTs were included here as well as NDRTs requiring 

cognitive modality in combination with another modality (i.e., ‘cognitive-vocal’, 

‘cognitive-manual‘). A task was said to require cognitive output if it was discussed as 

such in the respective study (See section ‘Collected Information’). 

- (2) Manual: The second simulation uses results from experimental groups being 

exposed to a manual NDRT for the calculations. As for simulation (1), purely manual 

NDRTs were included as well as NDRTs requiring manual output in combination with 

another modality (i.e., ‘manual-cognitive’). Note that there is overlap between (1) and 

(2), as some groups had a cognitive-manual NDRT. 

- (3) Other: The last simulation used results from experimental groups being exposed to 

a NDRT that required neither a cognitive nor a manual output from the participant for 

the calculations. Here, NDRT requiring vocal output were included, as well as NDRT 

requiring no output from the participant. 
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4.3.1 Model Performance 

The data resulting from these simulations is plotted in Figure 13. While NDRTs requiring a 

cognitive modality (M = 2.10s, QD = 0.81) elicited similar overall take-over times than other 

NDRTs (M = 2.10, QD = 0.81), a slightly different pattern resulted from manual NDRTs (M = 

2.20s, QD = 0.94) with a more spread out distribution. This resulted in a larger failure rate 8 

seconds after onset of the alert for manual (1.94%) compared to cognitive (0.66%) and other 

(0.82%) NDRTs. 

A similar trend was elicited in stage 3, with slightly later stage onset times with manual 

NDRTs (M = 1.01s, QD = 0.46) compared to other NDRTs (M = 0.98, QD = 0.43). However, the 

difference was much smaller here, and is barely noticeable in the visualization of the results. 

In stage 2 and stage 4, manual NDRTs resulted in visibly shorter peaks and spread of the 

distribution than other NDRTs. Here, a comparison should be made with caution though, 

Figure 13: Distribution of the simulated data based on non-driving related task (NDRT) output modality. 
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considering that for other NDRTs, the model only considered 1 and 2 experimental groups for 

stage 2 and stage 4, respectively. 

4.3.2 Discussion 

Results from this test suggest that the (output)-modality of the NDRT being performed while 

automation is enabled has the largest effect on the tail of the distribution in stage 5 (physical 

transfer of control). Specifically, NDRTs requiring some sort of manual response from the 

driver resulted in two to three times as many unsuccessful transitions 8 seconds after the 

alert onset than did cognitive and other NDRTs. The effect of manual NDRTs on stage onset 

time was not as evident in stage 3 (orientation), suggesting that manual NDRTs affect overall 

transition time more than the initial reaction to the alert. While results for stage 2 

(disengagement) and stage 4 (suspension of the NDRT) suggest an effect in these stages as 

well, more data is necessary here to ensure that this effect is not caused by secondary factors 

in the design of the studies considered in the simulation of the other NDRT modality. 

Interestingly, a cognitive NDRT modality did not result in a difference in overall take-

over times (i.e., stage 5), compared to other NDRTs. Yet, possible effects in the intermediate 

stages could not be revealed due to a lack of available study results in these stages. However, 

although the model suggests that cognitively demanding NDRTs do not affect the take-over 

time itself, previous studies suggest that cognitively demanding NDRTs can affect driving 

performance [88,92] in general. This should be taken into consideration by future researchers 

and engineers, as these NDRTs might reduce the quality of driving for some time after the 

transition of control, even if the take-over time is unaffected. 

4.4 Test 4 – Interaction of Alert Modality and NDRT Input Modality 

In order to test how the model performs when multiple parameters are manipulated 

simultaneously, the effect of alert modality combined with different NDRTs for each stage 

was investigated. Specifically, the focus of this test was to see how stage onset times are 

affected differently when alert and NDRT modalities are identical, or different. In order to do 

so, nine simulations were performed, one for each combination of alert modality (visual, 

auditory, visual-auditory) and NDRT input modality (visual, auditory, visual-auditory). 

4.4.1 Model Performance 

Figure 14 shows a comparison of the simulated data per stage. In stage 2 (disengagement) 

and stage 4 (suspension of the NDRT), the visual-auditory bi-modal alert resulted in an earlier 

peak and less spread in the distribution compared to the auditory alert when a visual NDRT 

was performed (Figure 14, a, g). In stage 3 (orientation), the visual alert resulted in the latest 

peak and largest spread in combination with a visual NDRT (Figure 14, d) and a bi-modal NDRT  

 (Figure 14, f). In both cases, the bi-modal alert resulted in the earliest peak. In combination 

with the visual NDRT, the bi-modal alert resulted in a longer tail than the auditory alert, 

however. In stage 5 (physical transfer of control), different patterns emerged. In combination 

with a visual NDRT (Figure 14, j), the bi-modal alert resulted in the earliest peak, while the 

auditory alert resulted in the latest peak. The visual alert however resulted in the most distinct  
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tail. In combination with an auditory NDRT (Figure 14, k), the visual alert resulted in the latest 

peak and largest spread. Here, the bi-modal alert resulted in an earlier peak than the auditory 

alert, but had a larger spread in the distribution and a more distinct tail. In combination with 

a visual-auditory bi-modal NDRT (Figure 14, l), the auditory alert resulted in the earliest peak, 

and the bi-modal alert resulted in the largest spread in the distribution.  

Table 4 shows how much time passed until 99.5% of simulated trials transitioned to 

stage 5 (physical transfer of control) with each parameter combination. This was done in 

order to see how NDRT and alert modality affect the time required for the majority of drivers 

to take back control in time. Overall, the longest times resulted from the simulation with a 

visual alert and visual NDRT modality (13.51s), while the shortest times resulted from the 

simulation with an auditory alert and auditory NDRT modality (4.73s). The alert modality 

resulting in the longest times regardless of NDRT modality was visual (11.65s), followed by 

visual-auditory (11.06s), and auditory (8.44s). For the NDRT modality, the longest times 

regardless of alert modality were caused by visual-auditory (10.86s), followed by visual 

(10.76s), and auditory (7.07s). 

 

 

Alert Modality NDRT modality  

 Visual Auditory Visual-Auditory Total 

Visual 13.51s 6.65s 4.83s 11.65s 

Auditory 9.13s 4.73s 5.69s 8.44s 

Visual-Auditory 10.94s 8.90s 11.68s 11.06s 

Total 10.76s 7.07s 10.86s 10.02s 

Table 4: Time passed (in seconds) until 99.5% of simulated trials reached stage 5 (physical transfer of control) for each 
simulation. The ‘total’ values are added for reference and were retrieved from simulations created by manipulating the 
corresponding parameter only (e.g., the threshold was reached after 11.65s in a simulation using a visual alert and ignoring 
the NDRT input modality).The threshold of 99.5% was chosen to avoid large variations of values caused by the highest 
transition times reported by the model. 



 
 

 34 

 

 

 Non-Driving Related Task Input Modality 

 Visual Auditory Visual-Auditory 
St

ag
e 

2:
 

D
is

en
ga

ge
m

en
t 

 

 

 

 

 

No Data Available 

 

 

 

 

No Data Available 

St
ag

e 
3:

 

O
ri

en
ta

ti
o

n
 

   

St
ag

e 
4:

 

Su
sp

en
d

 N
D

R
T 

 

 

 

 

 

No Data Available 

 

   
   

  S
ta

ge
 5

: 

P
h

ys
ic

al
 T

ra
n

sf
er

 o
f 

C
o

n
tr

o
l 

   

Figure 14: Simulated data per stage for visual (left), auditory (center), and visual-auditory (right) NDRT input-modalities. Each 

plot contains the distribution from simulations using visual (V), auditory (A), and visual-auditory (VA) alert modalities. 
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4.4.2 Discussion 

The results from this test presented in Figure 14 suggest that the visual-auditory bi-modal 

alert resulted in the fastest stage onset times in combination with most NDRT input modalities 

in earlier stages. Drivers appear to react faster to bi-modal alerts compared to purely visual, 

or purely auditory alerts. The faster response to bi-modal alerts may be caused by a higher 

probability to perceive the alert initially. While purely visual or purely auditory alerts are more 

likely to remain unnoticed, especially if the currently performed NDRT presents information 

in the same modality, bi-modal alerts might overcome this issue by allowing the driver to 

perceive the alert in different ways. A preference for the bi-modal alert is also prevalent in 

the literature. In the model’s database, 173 out of 265 experimental groups were presented 

with a bi-modal visual-auditory alert. For the overall transition of control, this advantage 

seems to dissipate, however. 

Looking at the onset times for stage 5 (physical transfer of control), the longest overall 

transition times appear to result from simulations where alert and NDRT modalities are 

identical. This was the case for both purely visual (Figure 14, j) and bi-modal visual-auditory 

(Figure 14, l) modalities. For the bi-modal modality this pattern is surprising, considering that 

purely visual or purely auditory alerts overlap with the modalities of a bi-modal NDRT as well. 

Interestingly, the opposite was the case for the auditory modality (Figure 14, k), where the 

auditory alert led to the shortest overall transition times when presented during an auditory 

NDRT.  

The results from this test suggest that the interaction between alert- and NDRT-

modality are more complex, and that there is no clearly advantageous alert modality for all 

take-over requests. Other aspects of the alert that have not been taken into consideration 

here might play a significant role as well. For instance, regardless of the modality used, the 

perceived urgency of the alert might affect the duration of the transition [27,56]. 

Furthermore, the alert can be more or less disrupting depending on how it presented to the 

driver (i.e., was the visual alert presented on the same device used for the NDRT? Was the 

volume of the auditory NDRT turned down when the auditory alert was presented?). It is 

possible that more disruptive alerts result in different patterns in the transition of control. 

Due to the more selective inputs used in this test (i.e., experimental groups had to match two 

factors – alert modality and NDRT input-modality – for their results to be considered for the 

simulations), most simulations only had limited data available for calculating the underlying 

distributions. Consequently, these other aspects of the alert presentation (or other 

differences in the study design) may have affected some of the resulting distributions more 

than others. Future users of the model can take other alert properties such as perceived 

urgency or disruptiveness into account to study their effect of the transition of control. 

4.5 Test 5 - Rate of Successful Take-Overs Based on Alert Onset Time 

For the final test, the model was used to investigate the effect of alert onset time on the rate 

of successful take-overs. Therefore, a simulation was run for each of the four most commonly 

used alert onset times: 3.5 seconds (13 experimental groups; 3 studies), 6 seconds (30  
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experimental groups; 9 studies), 7 seconds (69 experimental groups; 13 studies), and 10 

seconds (42 experimental groups; 10 studies). The model’s ‘Success Rate of Transitions’-panel 

will be the main focus of this test. Here, the critical event onset will be adjusted to the alert 

onset time of the respective simulation (i.e., for the alert onset time of 6 seconds, the critical 

event will be set to 6 seconds in the model).  

4.5.1 Model performance 

For alert onset times of 6, 7, and 10 seconds, the majority of simulated take-overs led to a 

successful transition, with over 99% of simulated trials having reached stage 5 (physical 

transfer of control) at the time of critical event occurrence (Table 5). The highest percentage 

was yielded using an alert onset time of 7 seconds, with 99.95% of successful take-overs at 

the time of critical event onset (Figure 15). For the shortest alert onset time (3.5 seconds) 

however, only 85.16% have reached stage 5 at critical event onset. While almost all simulated 

trials have reached stage 5 at the critical alert onset with an alert onset time of 6 seconds, 5% 

have not reached it yet 2 seconds before the critical event onset, suggesting that 1 in 20 take-

overs were completed at the last moment. 

4.5.2 Discussion 

The model’s results suggest that alert onset times of 6 seconds and more give most drivers 

sufficient time to take back control of the vehicle on time to react to a critical event, although 

an alert onset time of at least 7 seconds is required to avoid last-moment take-overs. These 

findings correlate well with mean take-over times commonly reported in the literature, which 

rarely surpass 6 to 7 seconds [120]. The model’s results suggest however, that a small but 

critical fraction of transitions fails to succeed in time to respond to the critical event. This 

becomes even more apparent when looking at the rate of uncompleted transitions 2 seconds 

before the critical event, especially for the shorter alert onset times. Here, a little over 5% 

have not yet taken back control with an alert onset time of 6 seconds. With an alert onset 

time of 3.5 seconds, the rate of uncompleted transitions even rises to approx. 44%. Avoiding 

last-moment transitions can be crucial for traffic safety, as it gives the driver more time to 

react appropriately by steering and/or braking if the critical event requires a change in lateral 

or longitudinal trajectory.  

The success rates reported here refer to driver-readiness (i.e., hands on the steering 

wheel) and do not necessarily translate to adequate driving performance after take-over, 

which has been found to be impaired for an extended time after take-over [60]. Furthermore, 

the database only contains transitions tested in an experimental setting. With longer periods 

 3.5 Seconds 6 Seconds 7 Seconds 10 Seconds 

2s before critical 

event 

55.82% 94.97% 99.24% 98.25% 

1s before critical 

event 

75.66% 98.24% 99.79% 99.01% 

Critical Event 85.16% 99.34% 99.95% 99.45% 

Table 5: Percentage of simulated trials having reached stage 5 (physical transfer of control) by alert onset time,  in relation 

to the critical event onset. 
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of disengagement from the driving task, drivers may become more fatigued [37], and 

familiarization with the automation over time can lead to a decrease in monitoring behavior 

during periods of automation [47]. In a real-life scenario, take-over times can thus be quite 

different, considering that take-over requests may occur less frequently and more 

unexpected. Considering that the rate of failed transitions may thus be higher in a real-life 

scenario than in an experimental setting, it is even more important to study not only the 

average time drivers need to take back control of the vehicle, but to also study the number 

of drivers that would fail to do so in time. As was done in this test, the model helps to reveal 

how the rate of successful transitions is affected by certain factors. 

5 GENERAL DISCUSSION 

The goal of the model presented in this thesis was to create an interactive tool that can help 

researchers and engineers to study the effects different factors have on the transition of 

control in semi-automated driving, and how specific stages of that transition, as discussed by 

Janssen et al. [36], are affected differently by those factors. The model does so by quantifying 

over results from an extensive database of level 3 automated driving studies in order to 

determine the underlying distributions of stage onset times based on the parameter 

selections made by the user of the model. Based on these distributions, the model simulates 

the transition of control process, and visualizes the simulated data in multiple ways. The 

model was designed to investigate three questions concerning the transition of control 

process: (1) How does the driver go through the stages of the transition of control discussed 

by Janssen et al. [36]? (2) Are these stages affected differently by some factors than by others? 

(3) How likely is the transition of control going to succeed in time for the driver to react to a 

critical event, and how is the success rate affected by different factors? 

With the model, a number of tests have been conducted for the purpose of this thesis. 

These have given valuable insights on the effects of alert onset time, alert modality, and non-

Figure 15: Cumulative plot of successful transitions to each stage for a simulation using an alert onset time of 7 seconds. The 
vertical line represents the occurrence of the critical event. 



 
 

 38 

driving related task (NDRT)-modality on the overall take-over process, and on the 

intermediate stages of the transition of control. However, the tests discussed here only 

represent a few examples of possible parameter combinations that can be studied with the 

model. Furthermore, due to the interactive design of the model, its functionality can easily 

be expanded by adding more data to its database, and by including new parameters that 

represent factors that have not been discussed in this thesis. Readers of this thesis are 

encouraged to use the model in ways that have not been discussed here, in order to reveal 

unexpected patterns in the simulated data that can help to improve our understanding of the 

transition of control in semi-automated driving. In the remainder of this section, first the 

implications of the findings from the testing section of this thesis will be discussed. 

Afterwards, some limitations and future work will be addressed.  

5.1 The Transition of Control Model: Findings and Implications 

The model results discussed in this thesis gave valuable insights on the transition of control 

process in semi-automated driving. Overall, the model elicited distinct patterns in the stages 

discussed by Janssen et al. [36]. By comparing simulations resulting from different parameter 

combinations, the model gave insight on how certain factors affect different moments of the 

take-over process differently than others. This insight can help future researchers and 

engineers to target specific moments of the transition process through deliberate design 

choices, in order to optimize overall take-over time and quality. By simulating not only mean 

stage onset times, but a distribution of stage onset times instead, the model also shed light 

on the occurrence of the less frequent - but critical - failed transitions. The findings discussed 

in this thesis relate to the three aspects of the transition of control the model was designed 

to shed light on: (1) How does the driver go through the stages of the transition of control 

discussed by Janssen et al. [36]? (2) Are these stages affected differently by some factors than 

by others? (3) How likely is the transition of control going to succeed in time for the driver to 

react to a critical event, and how is the success rate affected by different factors? The insights 

for each of these aspects gained with the help of the model, and their implications for our 

understanding of the transition of control and traffic safety overall will be discussed in more 

detail now. 

With regard to aspect (1), the model’s performance in ‘Test 1 – General Patterns in the 

Distribution of Stage Onset Times’ suggested that drivers go through the initial stages of the 

transition of control quickly and more consistently, but that stage onset times become 

increasingly spread out throughout the subsequent stages. The model highlights the 

transition from stage to stage nicely, by illustrating how similar and/or distinct the 

distributions of stage onset times are overall. Here, an interesting pattern emerged with the 

suspension of the NDRT in stage 4. In some simulations, stage 4 elicited a significant overlap 

with stage 2 (disengagement) and stage 3 (orientation), which becomes particularly apparent 

in Figure 11 and Figure 15. In their original discussion of the stages of the transition of control, 

Janssen et al. [36] argued that such fast or overlapping transitions might occur, for example 

when the driver self-interrupts to take back control. The model suggests however, that such 
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transitions occur frequently when the transition is initiated by an external take-over request 

as well. This prevalent overlap might be an artifact of the database. In the literature included 

in the database, the average alert onset time was 7.8 seconds. On such short notice, drivers 

may not have sufficient time to go back to the NDRT after the first disengagement or 

orientation. Considering that people generally need some time to resume a task after an 

interruption [65], they might just suspend the NDRT right away after an external alert was 

presented to them instead. Longer alert onset times, for example through pre-alerts as 

discussed in [28], can result in a different pattern here. The distributions in Figure 12 and 

Figure 14 (g) highlight this, where the longer alert onset time of 21 seconds used in [28] 

resulted in a distinctively later peak and larger spread in the distribution of stage 4 compared 

to other distributions. This shows the need to study longer alert onset times in general, as 

those appear to have a significant impact on the driver’s willingness to resume the NDRT after 

first disengaging from it. More research is needed to understand how take-over time and 

quality are affected if drivers have sufficient time to reach a natural breakpoint [35] in their 

NDRT before taking back control of the vehicle.  

Regarding aspect (2), the model showed clear differences in the effect of some factors 

on the onset times for the stages of the transition of control. For example, ‘Test 2 – Effect of 

Different Alert Modalities on the Transition of Control’ revealed that alert modality had little 

effect on the overall take-over time (i.e., physical transfer of control in stage 5), but affected 

the initial response to the alert in stage 2 (disengagement) and stage 3 (orientation), with the 

bi-modal visual-auditory alert resulting in faster stage onset times than purely visual or purely 

auditory alerts. The minor impact of alert modality is in line with findings from the meta-

review by Zhang et al. [120]. Their review did not reveal the alert modalities effect on earlier 

stages, however. Changes in response time due to alert modality as suggested by the model 

are in line with findings on general human-machine-interfaces (HMI) [16], suggesting that 

some connections between alert presentation in semi-automated driving and HMIs can be 

made. However, while alert modality did not show an effect on stage 5 onset when studied 

independently, an interactive effect between similar and dissimilar alert- and NDRT-input 

modalities have been found in ‘Test 4 – Interaction of Alert Modality and NDRT Input 

Modality’. This implies that some aspects affecting the transition of control cannot be studied 

by looking at isolated factors. The model can help future users here, as it can be used to easily 

combine different factors in order to uncover their cumulative effects on the take-over 

process. In contrast to the alert modality, NDRT-output modality appeared to have a larger 

effect on stage 5 than on stage 3, as was discussed in ‘Test 3 - Effect of NDRT Output 

Modalities on the Transition of Control’. Interestingly, cognitive tasks resulted in a similar 

distribution in stage 5 than other tasks did, while manual tasks showed a slightly more shifted 

distribution, resulting in a larger proportion of late transitions. This result was unexpected, 

considering that cognitively demanding tasks have been found to affect the driver’s 

performance in semi-automated driving in general [88,92]. However, while such tasks may 

not have an effect on the take-over time, they could still affect the quality of driving after 

control was successfully taken back by the driver. Overall, the model’s results discussed here 
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imply that the duration of the take-over process can be optimized by targeting certain 

moments of the transition of control with specific interventions. For example, the choice of 

modality with which the alert is presented to the driver can accelerate the perception of the 

alert, while guidelines on NDRTs that the driver can perform while automation is enabled can 

affect the time needed by the driver to physically take back control of the vehicle. Researchers 

and engineers can thus benefit from the model, as it can help to reveal the stages of the 

transition that certain interventions affect most. 

Finally, for aspect (3) the model gave valuable insight on the occurrence of longer 

transition times in semi-automated driving. In most simulations, the majority of transitions 

succeeded well within the commonly reported alert onset times of 5 to 8 seconds considered 

to be the minimum time drivers need to take back control safely (e.g., [24,63]) and regularly 

used in empirical studies [120]. However, most simulations showed a distinct tail in the 

distribution of take-over times, suggesting that a small but significant number of transitions 

can take much longer than expected to succeed. Those outliers are critical for traffic safety, 

since potentially hazardous situations are more likely to be caused by them rather than by 

the average take-over [33]. The results discussed in ‘Test 5 - Rate of Successful Take-Overs 

Based on Alert Onset Time’ show how the alert onset time can affect the occurrence of these 

outliers. Simulations using an alert onset time above 5 seconds resulted in less than 1% of 

failed transitions at critical event onset. However, 2 seconds before the critical event onset, 

the proportion of not (yet) successful take-overs rose to 5% in the simulation using a 6 second 

alert onset time. Avoiding last moment take-overs may be beneficial, considering that some 

situations can require the driver to directly steer or brake in order to avoid a collision. This 

initial response after take-over can take additional time and should be taken into account 

when studying the transition of control as well. The ratio of late take-overs can also be 

affected by certain factors. For example, in ‘Test 3 - Effect of NDRT Output Modalities on the 

Transition of Control’ a more distinct tail (i.e., more late take-overs) resulted from simulating 

a manual NDRT compared to other NDRTs. While those differences may be small in an 

experimental setting, their effect could be more severe in real-life scenarios. When taking 

part in an automated driving study, participants might anticipate that a critical event is going 

to occur at any time, increasing their readiness to react accordingly (analogous to demand 

characteristics [70] in psychology studies, where participants can alter their behavior simply 

because they are currently taking part in a study). By taking into account the occurrence of 

late take-overs, the model can thus help to reveal what factors can increase the tendency of 

drivers to take more time for the transition of control. A better understanding of these 

processes is a valuable insight that can help to improve traffic safety overall by reducing the 

risk of safety critical situations due to a delayed take-over. 

The findings discussed in this thesis only represent a small fraction of possible influences 

on the take-over time in the transition of control than can be studied using the model. Various 

other influencing factors have been discussed in the literature, including cognitive load 

induced by the NDRT [117], fatigue [97], the traffic situation [81], or the monitoring behavior 
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of the driver [109]. Future users are encouraged to study how the transition of control is 

affected by those factors individually, or in combination with other factors using the model. 

5.2 Limitations and Future Work 

The model is able to give valuable insight on the effects different factors have on the 

transition of control process in automated driving. However, there are some limitations to 

the functionality of the model. These limitations, and how they can be addressed in the future 

will be discussed here.  

In some cases, the model was unable to simulate certain stages of the transition of 

control, especially for stage 2 (disengagement) and stage 4 (suspension of the NDRT). This 

becomes particularly apparent when combining multiple parameters, thus limiting the 

number of study results the model can consider for its simulation, as can be seen in Figure 

14. This limitation can be overcome in the future however, by extending the model’s database 

with results from additional studies. Here, the model would greatly benefit if information 

concerning the intermediate stages (i.e., stages 2, 3, and 4) would be reported more 

frequently in the literature in general. Another possibility to counteract the limited data 

available for the intermediate stages could be to add results from other fields that may share 

certain traits with the transition of control. For example, response times to different alert 

modalities outside of semi-automated driving (e.g., [16,22]) could be added to the model’s 

database in order to see how they compare to the initial response to the alert (i.e., stage 2 or 

stage 3) in semi-automated driving.  

The model focusses on the effects different factors have on transition times during the 

take-over process. However, the quality of driving can be reduced for an extended period of 

time after control was taken back by the driver [60]. For example, cognitively demanding tasks 

have been found to impact driving performance in general [88,92]. Such tasks could put a 

constraint on the driver even after manually suspending the task. The model should thus not 

be considered as a complete account of possible effects on take-over performance stemming 

from different external and internal influences. Instead, it should be used as one tool out of 

many in order to better understand the complex take-over process from automated to 

manual driving in level 3 automated vehicles. 

The model optionally allows the user to calculate the stage onset times in relation to its 

preceding stage, rather than to the alert onset. This functionality was implemented with the 

expectation that drivers go through each stage of the transition of control consecutively (see 

section ‘Shape of the Distribution’). Testing showed however, that this is not necessarily the 

case for all stages, considering that the onset time for stage 4 (suspension of the NDRT) 

occasionally preceded that of stage 3 (orientation). More work is needed to refine the 

expected shape of the distribution between different stages. This functionality of the model 

should thus be used with caution by future users. 

Finally, in the estimation of the underlying distributions for the stages, the assumption 

was made that stage onset times show similar patterns than reaction times in general [82]. A 

log-normal distribution was thus used to approximate that pattern (see section ‘Shape of the 
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Distribution’). With increasing alert onset times, the true underlying distributions might 

however evoke more complex shapes, since drivers may base their decision to transition from 

the NDRT to the driving task on a multitude of internal and external factors. Given the limited 

data available for longer alert onset times, the model’s simulation of longer alert onset times 

was difficult to study in more detail for this thesis, making it difficult to adjust the underlying 

distributions accordingly. The model would benefit if more data would be available from 

research studying transitions of control with longer alert onset times. 

6 CONCLUSION 

The transition of control model presented in this thesis gave valuable insight on the influence 

different factors such as alert onset time, alert modality, and the non-driving related task 

have on the transition of control process in semi-automated driving. Not only does the model 

help to study the overall take-over time, but it also sheds light on intermediate stages of that 

process, and accounts for transitions with longer take-over times. Future users can easily 

extend the database of the model, thereby further increasing the variety of simulations the 

model can perform and the influencing factors that can be studied with it. This makes it a 

valuable tool for future researchers and engineers to improve our understanding of the 

transition of control process in semi-automated driving. Readers of this thesis are encouraged 

to test the model themselves in order to investigate the multitude of simulations the model 

can perform. 
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Appendix B - Standard Deviation for Distribution Between Two Means 

 
Let A be a distribution with mean µ𝐴, standard deviation 𝐴 and weight p, and B a distribution 
with mean µ𝐵, standard deviation 𝐵 and weight q.  
 

𝐴~𝑁(µ𝐴,𝐴) ;  𝐵~𝑁(µ𝐵,𝐵) ;   
 
Here, 0  p  1 and q = 1 – p. 
The average value of the mixture of AB is: 
 

µ𝐴𝐵 = (𝑝 × µ𝐴) + (𝑞 × µ𝐵) 
 
In general, the probability density function (PDF) of the mixture between PDFs can be 
expressed as:  

𝑓(𝑥) =  ∑𝑝𝑖𝑓𝑖(𝑥)

𝑖

 

With weight p and PDF f of distribution x. 
 
The first moment of the mixture can be also expressed as: 
 

µ𝐴𝐵 =  𝔼𝑓[𝑥] =  ∑𝑝𝑖µ𝑖
𝑖

 

The second moment can be expressed as:  

𝐴𝐵
2 =  𝔼[𝑥2] − (𝔼[𝑥])2 =  ∑𝑝𝑖µ𝑖

(2) − (∑𝑝𝑖µ𝑖
(1)

𝑖

)

2

𝑖

 

 
The variance can be expressed as: 

𝑉𝑎𝑟(𝑓) =  ∑𝑝𝑖𝑖
2 +∑𝑝𝑖(µ𝑖

(1)
)2

𝑖

 − (∑𝑝𝑖µ𝑖
(1)

𝑖

)

2

𝑖

  

 
The variance of 𝑓𝐴𝐵 can be written as:  
 

𝐴𝐵
2 = 𝑝𝐴

2 + 𝑞
𝐵
2 + 𝑝µ𝐴

2 + 𝑞µ𝐵
2 − µ𝐴𝐵

2  

 
We assume that the p = q = ½, because A and B come from the same population. Therefore, 
µ𝐴𝐵 is: 

µ𝐴𝐵 = 
µ𝐴 + µ𝐵
2

 

 
Hence, the variance of the mixture 𝑓𝐴𝐵 is: 

 

𝐴𝐵
2 =  

(
𝐴
2 + µ𝐴

2) + (𝐵
2 + µ𝐵

2 )

2
− (
µ𝐴 + µ𝐵
2

)
2

 

 
From there follows that the standard deviation between A and B is thus: 
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𝐴𝐵 =  √
(
𝐴
2 + µ𝐴

2) + (𝐵
2 + µ𝐵

2 )

2
− (
µ𝐴 + µ𝐵
2

)
2
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Appendix C - Distribution from Test 1 per Stage 

 

 Entire Database (Figure 10) Entire Database except [28] (Figure 11) 
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