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A B S T R A C T

Elderly people are the fastest-growing segment of the population in
the Netherlands and the world. According to the World Health Orga-
nization (WHO), falls - after road accidents- are the second leading
cause of unintentional injury deaths worldwide.

This work presents a fall detection system, based on egocentric cam-
eras, to assist the living of the elderly both in indoor and outdoor
environments. During this research, a dataset containing 1459 pre-
recorded video sequences of falls and non-fall activities was used. The
videos were recorded using one camera mounted on the waist and one
on the neck. Several methods to detect falls were proposed, namely
LBP, HOG, video rotation and camera motion derived from optical
flow and Random Forests algorithm is used for classification. Each
of the proposed methods was tested and evaluated both separately
and together with the other methods. To determine the most suited
system for a fall detection which can be employed in real-time to assist
the living of the elderly, a comparison is made in terms of reliability
and efficiency. The best results in terms of reliability were achieved
by combining rotation, LBP and motion with 98.3% mean AUC and
92.6% mean accuracy during cross-validation, 98.8% AUC and 91.8%
accuracy on the test set for binary classification, 95.1% micro AUC
and 94.7% macro AUC during cross-validation and 95.2% micro AUC
and 94.9% macro AUC on the test set. However, considering efficiency
LBP is slow, therefore our suggestion is to utilise the model that uses
video rotation and camera motion, which is slightly less reliable with
98.1% AUC and 92.4% accuracy during cross-validation and 98.7%
AUC and 91.5% accuracy, but considerably faster. The results obtained
during this thesis work have shown that the best placement for the
camera is the waist. The outcome of the work is promising, not just
for fall detection in particular but also for human action recognition
in general.
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1
I N T R O D U C T I O N

1.1 introduction

There is an increase in the population of the elderly in the Netherlands
and the world due to advancement in medical care and other factors.
Therefore, it is important to pay more attention to the problems facing
this category of the population. One of the biggest dangers among
the elderly population is falling, and it is one of the major causes
of morbidity and mortality. It is considered as the second cause of
unintentional deaths after road traffic accidents. Most falls happen in
medical health care centres, hospitals and houses, with approximately
30% of falls causing injury which can suddenly degrade the quality
of life and the general wellbeing of elderly people. Most people who
experience falls need special care in a rehabilitation centre, at home or
in the hospital.

The World Health Organisation [1] has defined fall as an event which
results in a person coming to rest unintentionally on the ground or
floor or other lower level. Fall-related injuries may be fatal or non-fatal.

Figure 1.1: Age composition of the Netherlands in 2020, taken from CBS [2]

The current population of the elderly in the Netherlands above 65

years is 3.3 million according to the CBS (Centraal Bureau voor de
Statistiek) [3]. Of the whole Dutch population, 19,2% were above the
age of 65 in 2019. The number of people that suffer from falling every
year is over 15 thousand. Falls cause major injuries, the most common
injuries are hip fractures (15%), mild brain damage (11%) and wrist
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2 introduction

(9%). More than three-quarters of them are 75 years or older. After
falling 40% of elderly cannot return to their homes and need to go to
an elderly care facility. Only one-quarter of elderly are open to take
advice on how to take measurements to prevent falling. [4]

VeiligheidNL, an organisation specialised in monitoring and reduc-
ing the number of accidents in the Netherlands, does research on a
regular basis concerning fall prevention within elderly people. In the
most recent report from 2018, it is mentioned that every 5 minutes
an elderly end up in the emergency room after a fall, which amounts
to 108 thousands of treatments a year. Of these cases, 74.900 patients
require additional diagnoses due to i.e. fractures and brain injury. The
death-rate caused by falling among the elderly is 12 people every
day, this amounts to 4.396 deaths on a yearly basis. Besides this, it
is estimated that there has been an increase of 6% of serious injury
between 2009 and 2018.

In view of the ageing population, these numbers will only increase
in the coming years. The prognosis is that the number of first-aid
visits after a fall accident will increase by 47% until 2050. The injury
sustained by a fall accident has a major impact on the self-reliance of
the elderly, the ability to live at home longer, and the quality of life
[5].

The Dutch ministry of health, welfare and Sport has recently issued
a new ‘National Memorandum on Health Policy 2020-2024’ which
has the ambition to do more on local level to prevent falling. In this
Memorandum, the central government encourages municipalities to
find new ways to ensure less elderly people ending up in the ER [6].

Falls among the elderly also have an economic impact. In 2017 the
medical cost for treating elderly patients in the ER or admittance in
the hospital due to falling was e837 million. Most of these costs were
caused by falling of the elderly above 75 years (85%, e749 million) [6].
A reduction of fall incidents with 5% will save the health care sector
in The Netherlands around 40 million a year. On top of this, there is
a program, approved by RIVM (Rijksinstituut voor Volksgezondheid
en Milieu -Centre for Healthy living), that has already been set in a
place called ‘In Balans’. This course aims to teach elderly people the
skills they need to prevent themselves from falling. Among elderly
who participated in this training, there has been found that accidents
due to falling have decreased by 61% and the fear of falling has been
reduced by 37% [7].

Most elderly people spend a lot of time at home, however, there
are studies in which researchers have found that more than 50% of
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falls occur when elderly interact outside their homes. The health condi-
tion difference between elderly is that the ones which fall in the home,
are more fragile and might already suffer from underlying conditions.
The elderly that fall outside the homes are often very active. Most
studies combine the numbers and do not differentiate between falling
inside and outside of the home environment. [8]

1.2 research challenges

Fall detection is a very important and popular research topic. However,
there are many challenges when it comes to developing a fall detection
system. One of the main challenges is that there are many human
actions in the daily life that are very similar to falling, which results in
many false positives in the existing systems. Thus, the challenges are:

Reliability: the main challenge is to build an appropriate system that
is not only able to detect true positive falls, but also able to correctly
separate between the non falls similar to falls and the actual falls
which will reduce the number of false alarms. This system will be
using only videos taken from wearable egocentric cameras.

Efficiency: for the fall detection system to usable in real time it has to
be effective, which means finding an efficient algorithm that gives the
ability to detect falls in real time is very important.

Elderly privacy is another challenge specially with vision-based fall
detection system. However, using egocentric cameras mitigate the
privacy issue, because as opposed to ambient cameras that watch the
subject himself.

Lack of public datasets which makes it difficult to compare our work
with previous works since papers use their own simulated falls dataset,
The size of the collected dataset is also small, and has limited variation
in the types of activities of daily life.

1.3 aims and objectives

Our research is mainly focused on developing an autonomous system
which detects human falls through egocentric camera video input data.
In this research, it is important that we develop an efficient algorithm
that can be implemented in real time, while at the same time it can
distinguish between falls and other ADL activities.

To be able to achieve our objective we will:

• Conduct extensive research in the literature to get a general view
on existing techniques used for fall detection in particular and
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video action classification in general.
Over the last years there have been many researches conducted
in the area of fall detection. Our goal is to first research and
compare existing methods used for fall detection, identify their
strengths and weaknesses, understand their limitations, and
compare the results they obtained to get informed about the
state-of-art techniques used for fall detection.

• Pre-process the data obtained by volunteers

• Implement different methods for fall detection that can advance
the state-of-art limitations. This is done by using traditional
methods.

1.4 scope and major contributions of the thesis

The scope of this study consists of designing a fall detection algo-
rithm which employs different methods namely local binary patterns
(LBP), histogram of oriented gradients (HOG), camera motion derived
from Gunnar Farneback optical flow, and video rotation obtained
from Lucas Kanade optical flow. Since there are no available public
datasets, we use the dataset we collected. After implementing the
aforementioned methods, we evaluate the performance of each one
on fall detection in terms of reliability and efficiency to determine
the best single method or combination of methods for fall detection,
in terms of reliability and efficiency. Furthermore, we also conduct a
non-binary classification to evaluate the performance of the chosen
methods on different activities of daily living (ADLs). Finally, we com-
pare the performance of each camera separately i.e., neck mounted
camera versus waist mounted-camera to find the ideal mounting point
of the camera. This study does not provide a solution to the privacy
issue mentioned in Section 1.2.

1.5 thesis outline :

This thesis consists of the chapters that are summarised as follows:
Chapter 2: Background and Literature Review. This chapter gives a
review of the relevant literature in the field of Assisted Living (AL)
technologies which are used in human activity recognition and fall
detection domains. These technologies can be classified into wear-
able sensor-based methods, ambient sensor-based method and vision-
based methods. In particular, the literature review focus on the use
of threshold-based methods and machine learning methods for fall
detection of older adults to support them to live independently in
their own homes.

Chapter 3: Methodology. This chapter goes in details describing the



1.5 thesis outline : 5

Dataset used in this project, then gives a detailed view about the
theory behind the used methods namely local binary patterns, his-
togram of oriented gradients, camera motion obtained from Gunnar
Farneback optical flow method, and finally rotation obtained from
video trajectories using the pyramidal Lucas-Kanade method. Finally,
we describe the Random Forest algorithm.

Chapter 4: Experiments and results, The chapter contains our con-
ducted experiments, and presents the results obtained from each
experiment, and concludes with a comparison between the methods
derived from the obtained results to determine which methods are
best suited for fall detection.

Chapter 5: Conclusion. This chapter summarises the research as a
whole, restating the problem definition and the answer to the research
question, challenge and limitation of the research, and suggestion for
future improvement.





2
B A C K G R O U N D A N D L I T E R AT U R E R E V I E W

2.1 introduction

This chapter is structured as follows: first we explore the different
types of falls and the major risks of falling, and we emphasise the
need for a fall detection system that can monitor the elderly both
indoors and outdoors in Section 2.2. Secondly a general review of
fall detection literature is given in Section 2.3. Thirdly we investigate
previous researches in the fall detection domain and highlight the
techniques and algorithms used to solve the problem of fall detection.
Finally, we explore the problems they have encountered and how
they manage to overcome those problems, and we give an overview
about the state-of-art classification methods used for detecting and
classifying human actions.

2.2 background

To fully understand the problem of falling among the elderly, we
study different fall types, the factors surrounding it and the risks
which result in falling.

2.2.1 Fall types:

The most common fall types depending on orientation, amplitude and
initial position are: [9]

2.2.2 Fall types according to the orientation of the fall:

• Frontal fall: An elderly falls forwards in which case the face hits
the surface.

• Backward fall: An elderly falls backwards; in most cases the
back of the head hits the surface.

• Side fall: An elderly falls sideways either left or right.

7



8 background and literature review

2.2.3 Fall types according to the amplitude

• Fast fall: An elderly falls fast, causing a high amplitude of the
body movement; this type of fall lasts from one to two seconds.

• Slow fall: An elderly falls slowly, the amplitude of the body
movement is comparatively small and the duration is compara-
tively long.

2.2.4 Fall types based on the initial position

• Fall from standing: This type of fall starts from a standing or
walking posture, it occurs when an elderly slip or get uncon-
scious. Both the head and centre of gravity move towards one
direction and their height reduce (normally to the plane of the
ground). Typically, this type of fall is considered a fast fall with
large movement amplitude.

• Fall from sitting: This type of fall starts sitting position, it occurs
when an elderly person slips from a chair due to unconscious-
ness. Similar to the fall from standing, the head and centre of
gravity move towards one direction with reduced height. Com-
pared with the fall from standing, this type of fall has smaller
movement amplitude.

• Fall from lying: This type of fall starts from a lying position.
This type of falls means that an elderly person rolls to the floor
from the bed during sleep. The person is initially on the bed
when a fall happens and the body reduces its height from the
bed to the floor plane, with the final body position being near the
bed. This type of fall usually happens when an elderly person
sleeps and his/her body rolls out of the bed while the person
remains unconscious.

• Falling from other positions: A person falls from an initial bend-
ing or crouching or other posture. This type of fall happens for
example when the elderly tie their shoelaces or become suddenly
unconscious while doing other activities.

2.2.5 Risk factors of falling

The main risk factors of falling among the elderly are divided into
three categories:

2.2.5.1 Intrinsic factors:

The intrinsic factors are related to individual strength and perfor-
mance levels like age, muscle weakness, heart conditions etc. and
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age-related medical conditions like Parkinson’s, Alzheimer’s, sudden
blood pressure drops, chronic and acute disorders. The risk of falling
also increases with the number of drugs taken. [10] [11]

2.2.5.2 Extrinsic factors:

The extrinsic factors are environmental factors. Extrinsic actors can be
improved to lower fall incidents. Fall risk becomes higher when the
elderly needs greater postural control, this includes poor lightening,
slippery floors etc. [10] [11].

2.2.5.3 Situational factors:

Such factors refer to activities and situations that increase the chances
of falling such as going to the bathroom at night, rushing to open the
door, multitasking etc. [10]

Types of fall
Indoors Outdoors

Falls Fractures Falls Fractures

Slipping 94 12 428 27

Tripping 279 23 203 5

Other extrinsic 89 10 110 4

Intrinsic 762 39 207 12

On stairs 38 6 41 5

From an upper level 248 12 31 3

Non defined 212 18 20 2

Total 1722 120 1040 58

Table 2.1: Falls and fractures according to place and type of fall in home
dwelling elderly. [12]

The study made by Luukinen et al. [12] in which they have recorded
all falls and non-falls related fractures of 980 home dwelling elderly
people (70 years and above) over 7 years, has shown that extrinsic
causes are falls such as tripping, slipping and falling on stairs, falls
occurring from an upper level are stronger than intrinsic falls, which
expose the subject to fracture. Another finding made by the study as
shown in Table 2.1 that intrinsic factors related falls are more common
indoors than outdoors.

2.3 literature review

This section gives a review of the existing literature, we discuss state-
of-art systems used for human action recognition in general and
fall detection in particular, and we provide an overview of the most
popular classification methods used in fall detection.
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2.3.1 Technologies used in fall detection

We can divide the fall detection systems into three major categories:
1) environmental sensing-based systems, 2) wearable sensor-based
systems, 3) vision-based systems.

2.3.1.1 Environmental sensing-based systems

Environmental sensing systems, also called ambient devices, use event
sensing through the examination of the environment to monitor the
elderly person’s movement. The sensors are usually external and
attached to the environment. Ambient devices have an advantage
compared to other devices as they are not intrusive and maintain the
privacy of elderly people. However, they have many disadvantages
including coverage; they can only work indoors and suffer from blind
spots and they are affected by the environment such as background
noise and ambient noise. Ambient sensors can be divided according
to the sensor type: acoustic sensor, vibration sensors and pressure
sensors. [13]

Taramasco et al. [14] proposed a non-intrusive fall detection system
for controlled environments. Their system measures the ambient tem-
perature through low-resolution thermal sensors. The sensors detect
the body-heat of the subject of interest without having to be worn.
The sensors can detect the body-heat from a maximum distance of 4

meters.

Wang et al. [15] use existing wireless infrastructure for detecting
falls by using the channel state information (CSI) in a given area
from the WiFi deployments. The major advantage of this system is its
non-intrusiveness since it does not expect the subject of interest to be
wearing or carrying any device. However, it has the disadvantage of
having false positives because of the impact of other ambient parame-
ters like heat.

Litvak et al. [16] combined microphone measurements with the ex-
tracted features from the floor accelerometer.

Device-free fall detection has been the focus of many studies. However,
it has many shortcomings, such as the need to install a lot of sensors
on the wall or house, and it is limited to indoors. [17]

2.3.1.2 Wearable sensor-based systems

Wearable devices contain a wide range of sensors such as accelerom-
eters and gyroscopes. Such sensors are employed to capture human
movement and detect potential falls. In this sub-section, we will dis-
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cuss the literature of systems that are based on such wearable sensors.

In their paper Abbate et al. [18] proposed a system that uses accelerom-
eters found in smartphones, where they measure the orientation based
on the accelerometer x- and y-axis. They have demonstrated that the
recognition of fall-like activities of activity daily living (ADL) on the
daily basis can significantly reduce the number of false fall alarms.

Crispim-Junior et al. [19] suggested combining a video camera with
an accelerometer device for fall detection. the system combines the
elderly’s acceleration with visual information. Compared to the same
system using just video data combining the video data with the ac-
celerometer data has improved the event detection performance of fall
detection.

Shi et al. [20] developed a system based on inertial Micro electro-
mechanical systems (MEMS) which can detect falls in real-time. This
system can be used as a wearable device and it contains three decision
algorithms, in which J48 decision tree algorithm are used. Through
training and evaluating the classifier, the results showed that the best
location for detecting the fall events was the waist where the sensitiv-
ity was 95.5%, the specificity 98.8% and the overall accuracy 97.792%.
However, combining the waist and feet to perform the classification
gives better performance.

Lee et al. [21] applied a two thresholding method to analyse the
data acquired from a smartphone and an accelerometer, to identify
the movements and the different simulated falls. The technique of
thresholding has some limitations; mainly because it generates many
false alarms since it is not able to accurately distinguish between the
fall and ADL movements.

2.3.1.3 Vision-based systems

The computer vision-based methods use camera as input. The cameras
can be either from a third-person perspective or from an egocentric
perspective. The input can be either from a single camera or multiple
cameras, or using depth cameras like Microsoft Kinect cameras. [22]
In this section we discuss techniques used for video classification in
general and fall detection in particular. These techniques are com-
monly used on video action recognition. The third-person perspective
cameras focus on the body shape to detect falls, while the egocentric
cameras focus on the change in scenery to detect falls.

Vision-based action recognition uses many techniques to extract im-
portant features from the raw videos. We can summarise the most
popular techniques into three main categories:
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2.3.1.3.1 Human body model based methods

Action recognition is based on the extraction of 2D or 3D information
on human body parts, such as body part configuration, body part
positions, and movements.

The idea of recognising Human action using the body motion goes
back to the experiment of Gunnar Johansson [23], his experiment
shows that humans can recognise actions merely from the motion of a
few moving light displays (MLDs) attached to the subject’s body. The
collection of MLDs spots carry only 2D information and no structural
information. As they are not connected to each other, their relative
movement creates an impression of the person activity walking.

Chen et al. [24] proposed an approach for recognising falls based
on the symmetry principle. Their system first extracts the skeleton
information of the human body using OpenPose algorithm. Then it
identifies the fall through three critical parameters: first the speed of
descent at the centre of the hip joint, second the centre-line angle of
the body with the ground and third the width-to-height ratio of the
human body external rectangular.

2.3.1.3.2 Holistic methods

Human action recognition needs the extraction of information on
people localisation in videos, and a global representation of human
body structure, shape and movements is used for action recognition.
Holistic techniques do not use information on human body parts.
Holistic approaches can be divided into two main categories; 1) Based
on shape masks or silhouette information, using background subtrac-
tion or difference images, to represent actions.2) Based on shape and
optical flow information.

Weinland et al. [25] introduced a time-invariant representation for
action recognition by using a set of silhouette exemplar-based embed-
ding, The embedding represents a sequence via its minimum distances
to a set of prototypes, and the action sequences are represented as
vectors of minimum distance between silhouettes. The classification
is done using Naive Bayes classifier with Gaussians to model action
classes.

Abobakr et al. [26] proposed a vision-based skeleton-free fall de-
tection system using Kinect-like sensor, the input depth frames goes
through several processing modules. First, foreground segmentation is
performed to subtract the background. After an RDF which is trained
and evaluated using synthetic datasets is used to identify the current
articulated posture in the frame. Finally, SVM is used to detect falls.
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Holistic approaches have proven to be suitable for action recogni-
tion. However, holistic representations are in general not invariant to
the camera point of view, to take different camera angles into account
larger amount of training data will be needed.

2.3.1.3.3 Local feature methods

Action recognition based on local features is one of the most active
research topics. Local features based methods have an advantage
since no information on human body model or detection of people is
required. We will focus in this section on the main local features meth-
ods. The pipeline of local features methods has the following steps: 1)
interest point detection 2) local descriptor extraction 3) aggregation of
local descriptors. [27]

2.3.1.3.4 Local feature detectors

We can divide local feature detectors into two categories: spatio-
temporal interest point detectors and trajectory detectors.

2.3.1.3.5 Spatio temporal (detector) interest points

Proposed by Laptev et al. [28] it was developed by extending the
notion of spatial interest points into spatio-temporal domain, built
on the idea of Harris and Forstner interest points operators through
detecting significant local variations in both space and time. The Har-
ris 3D interest points are detected as local positive spatio-temporal
maxima. Moreover, the detected points have to be normalised using
spatio-temporal Laplace operator.

Dollar et al. [29] proposed a new spatio-temporal interest point detec-
tor. Their detector showed how the use of cuboid prototypes paved
the way to an efficient and robust behaviour descriptor.

Instead of detecting interest points over the entire volume, Wong
et al. [30] used a new method for extracting spatio-temporal features
using global information. Their method is based on the extraction of
dynamic textures. The extracted locations are sparse and detect salient
motion patterns, only a sparse set of features is needed for action
recognition. However, all input videos need to be pre-processed into
samples containing one iteration of the action each.

Willems et al. [31] introduced Hessian3D interest point detector as
spatio-temporal extension of the Hessian saliency measure using the
determinant of the 3D Hessian matrix. They have combined point
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localisation and scale-selection in a direct way. The authors aimed to
use a dense and scale-invariant interest point detector.

2.3.1.3.6 Trajectory detectors:

Trajectory detectors employ the motion information of trajectories. It
is obtained by either tracking techniques based on the KLT tracker
(Lucas and Kanade 1981) or using a SIFT descriptor between consecu-
tive frames, or by combining both approaches. [32]

Matikainen et al. [33] introduced spatio-temporal interest points that
are both scale-invariant spatially and temporally, and densely cover
the video content which allows for efficient computing of features,
applying scale-space theory using the determinant of the Hessian as
the saliency measure. Computations are made faster through the use
of approximative box-filter operations on an integral video structure.

Messing et al.[34] proposed a feature based on velocity history of
tracked keypoints. Using a generative mixture model (GMM) for
video sequences. Using this feature, the proposed feature performs
comparably to local spatio-temporal features on the KTH activity
recognition dataset.

Another way to extract trajectories is to use Dense Trajectories pro-
posed by [35] which is an approach to model videos by combining
dense sampling with feature tracking. This approach is more robust
than other descriptors as its ability to capture the motion information
in the videos efficiently. It also helps in removing camera motion by
computing the motion boundaries descriptors along the dense trajec-
tories.

2.3.1.3.7 Bag of features

The bag-of-features is a popular representation based on local features,
it was mostly used in Natural Language Processing and was origi-
nally proposed for document retrieval, where text is represented as
a bag-of-words, it encodes global statistics of local features through
computing a spatial histogram of local feature that occurs in a video
sequence. [36] However recent approaches try to retain more infor-
mation about the local features either by having features represented
as a combination of visual words or by representing the differences
between features as visual words.

Fisher vector encoding [37], [38]. The Fisher Kernel is a generic frame-
work which uses generative and discriminative approaches, it extends
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the bag of visual-words beyond count statistics [39]. In the context
of image classification, Fisher Encoding represents differences be-
tween features and visual words; this is done by creating a vocabulary
through clustering local features. The clustering is done using Gaus-
sian Mixture Model and after this, it captures the first and second-
order differences between local features and visual vocabulary. [36]

A variant of Fisher encoding is Super-vector encoding introduced
by Zhou et al. [40]. Super-vector encoding uses local visual descrip-
tors. The pipeline has three steps: First, perform a nonlinear feature
transformation on descriptors, secondly aggregate the results together
to form image-level representations and finally apply a classification
model. There are two variants of the support vector encoding when
it comes to assigning the local features to the visual words; first as-
signment of local features to the nearest visual word and second soft
assignment of local features to several nearest visual words. [41]

Rodriguez et al. [42] propose an approach using a template-based
method or recognising human actions through flow features called
Maximum Average Correlation Height (MARCH). In which filter
spatio-temporal regularity flow information is used as feature type.
They claim that regularity flows is an improvement over optical flow,
because it globally minimises the overall sum of gradients in the se-
quence. The cuboid templates are learned through aligning training
samples using correlation. Then test sequences get correlated with
the learned template via generalized Fourier transform that allows
for vectorial values. Results are demonstrated on the KTH dataset, for
facial expressions, as well as on custom movie and sports actions.

Shieh et al. [43] have proposed a human-shape based fall detection
algorithm from multiple cameras, the algorithm uses different angles
to fetch the images then uses a falling pattern-recognition based on the
body posture to determine if it was a fall or not, their multi-threaded
pipeline contains: image fetching, image processing, human-shape
generation and pattern recognition, they have reached the precision
rate of 92.3% on their dataset.

A powerful tool for texture description is Local Binary Pattern (LBP)
operator [44]. LBP operator has powerful discrimination while being
computationally simple. LBP works originally using 3x3 pixel blocks.
However, it can be extended to neighbour pixels hood with different
sizes. [44]

Mattivi and Shao. [45] have proposed using Local Binary Pattern on
Three Orthogonal Planes, where each video is described as a collection
of spatial-temporal words, their method has shown that (LBP-TOP) is
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a promising descriptor for human action recognition.

Similarly, Bulbul et al. [46] system uses a feature extracting scheme
which they called for the real-time human recognition first by forming
three Depth Motion Maps (DMMs) from the depth video, After they
calculate the local binary patterns within the overlapping blocks to
capture the texture information, third they use Edge orientation his-
tograms on the non-overlapping blocks.

Suad et al. [47] used an efficient approach for fall detection. Their
approach is based on a combination of timed motion and change in
human shape, which offers crucial information about the activity of
the person in the video. By implementing timed motion history image
(tMHI) which is a technique to extract motion from a video sequence.

2.3.1.3.8 Egocentric cameras systems

There are few vision-based methods that utilised egocentric cameras
in which the subject of interest wears a camera around a chosen part
of his body. The benefit of such methods that unlike fixed cameras
methods where the fall or activity detection is limited to the field of
view of camera, egocentric cameras tracks the activity of the subject of
interest everywhere. In addition, the egocentric camera does not film
the subject which provides more privacy.

Mauricio et al. [48] were the first to have built a system for detecting
falls by a wearable embedded smart camera, their system could work
with limited memory and processing power. The detection method
uses modified HOG where they build separate histograms for gradi-
ent orientations and gradient strengths, and to detect falls they use a
manual threshold.

Ozcan et al. [49] introduced a threshold-based system using ego-
centric cameras that is mounted on the waist. Besides detecting falls,
their system is able to detect other activities such as laying down and
sitting. In their system, they make use of a modified version of the
histogram of oriented gradients algorithm that was first proposed by
[50]. The main idea behind their algorithm is based on the observation
that edge orientations in a frame vary drastically and extremely fast
during falls, which makes subsequent frames blurry. They calculated
dissimilarity distance between consecutive frames and if the dissimi-
larity is greater than a predefined threshold a fall is detected.

In a later study Ozcan et al. [51] proposed a new way of detect-
ing falls through two stages; first detecting the event, then decide
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whether the detected event is a fall or not. This is done by introducing
Gradient local binary patterns GLBP, compared to HOG that uses
only 4 neighbours, GLBP uses eight neighbours, another benefit of
using GLBP that it uses only uniform. The authors also make use of
Edge orientation. and Edge strength. Their obtained result showed the
superiority of their method to HOG and GLBP based methods.

Another egocentric camera based fall detection is the work of Boudouane
et al. [52] their system employ the original HOG version combined
with the optical flow by calculating ∆X/∆Y which is derived from
the average flow of pixels along the x-axis and the y-axis to improve
the performance. The fall is detected if both the dissimilarity distance
of two consecutive HOG histograms together with ratio (∆Y/∆X)

remains above a certain threshold.

2.3.2 Classification methods:

2.3.2.1 Threshold-based methods:

One of the simple methods to classify falls and videos in general is
using a threshold, threshold-based fall detection systems are widely
used and are typically designed to minimise computational overhead.
Threshold-based systems accuracy, however, may heavily depend on
the placement of the sensors or camera [53]. Many studies applied
threshold to detect falls. Bashir et al. [54] proposed a simple threshold-
based fall detection system that uses wireless body area network. Their
system can distinguish between three activities; fall, ADL, and sleep
through calculating the posture angle, angular velocity, and accelera-
tion to determine if a fall has occurred or not.

Anania et al. [55] proposed a threshold-based fall detection algorithm
based on 3D acceleration. A Kalman filter was used to separate the
signal component due to gravity from acceleration data, and then the
trunk inclination angle was computed. The system uses predefined
two thresholds; one for the subject’s tilt angle and the second for the
rate of change of tilt angle. If the tilt angle is greater than the first
threshold and the change in the tilt angle over a short period is greater
than the second threshold a fall is detected, since the thresholds are
set manually the algorithm does not generalise well for unseen sub-
jects. Another drawback of the system that it only two postures are
considered as corresponding to falls.
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2.3.2.2 Machine learning based methods:

2.3.2.2.1 Support Vector Machines:

Support Vector Machines (SVMs) is a supervised classier derived from
statistical learning theory and was introduced by Vapnik [56]. SVMs
need both positive and negative training set, the sets are needed to
seek for the decision surface that best separates the positive from the
negative data by finding the linear separation which maximises the
margins between the positive and negative data in the n-dimensional
space (hyperplane).

SVMs advantages can be summarized into the following: First, it
is based on a well-established theory. Second, it desires only tens
of training specimens, and it performs well non-linear relationship
between the input and output features exists, [57]. However, SVMs are
time-consuming and use high memory compared to other classifiers
such as logistic regression because of more parameters, demands more
computation.

2.3.2.2.2 Random Forests

Random forests (RF) were introduced by Breiman in 2001 [58]. RF
make use of an ensemble of classifiers such as binary decision trees
(DT) which are learned in a supervised way through randomly picking
several descriptor dimensions at each node, choosing the node with
the highest entropy gain. RF has low bias and variance performances.
which makes make use of DT advantages but at the same time, avoid-
ing their disadvantages such as their sensitivity for noise. RF does not
have very high computational cost and work with limited resources.
RF are generally popular for solving classification and regression prob-
lems. RF have proved to be very accurate but at the same time simple
and fast, when compared to other machine learning techniques [59]
[60] [61].

In their paper Kim et al. [61] used two different types of features
extracted from 3-axis accelerometer and depth sensors, To efficiently
detect falls they integrated the sensor information in the framework of
random forest classifier to detect falls. the input features in the training
phase were randomly selected repeatedly to learn each decision tree
and multiple (200) decision trees were combined together, each tree
had 25 depth.
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2.3.2.2.3 K nearest neighbours

k Nearest Neighbor classification (kNN) is a supervised machine learn-
ing algorithm which can be seen as a direct classification method. It is
based on localising a group of k objects in a training case that has the
closest proximity (distance) to the new test object we want to classify.
After, the new observation will be assigned to the most common class
through a majority vote of its k nearest neighbours. [62] [63]

KNN was first used by Foerster et al. to classify 9 different human
activities by using time-domain features obtained from three uni-axial
accelerometers. Foerster et al. have combined kNN with a hierarchical
decision approach. It has shown to be more efficient, in terms of clas-
sification accuracy, it also has demonstrated a high level of accuracy
and satisfactory segmentation results [64].

Sani et al. [65] presented an analysis of different feature representation
approaches for recognising human activity using kNN. they have
used three categories of feature representations, namely: handcrafted,
frequency transform and deep features. Their evaluation shows kNN
to be very effective at using deep features, even when a minimum
amount of time spent in training these deep features.

2.3.2.2.4 Artificial Neural Networks

Artificial Neural Networks (ANNs) emerged as a powerful technique
for modeling general relationships. They have been used in many
areas and have proven to be effective in classification problems [66].
ANNs consist of three types of layers: 1) input layer with input units
which receive information to be processed, 2) output layer with output
units which give the result of the algorithm, 3) hidden layers with
hidden units which process the data.

Harrou et al. [67] proposed a statistical approach to detect human
falls based on both video data and acceleration data. Video data were
collected via camera and accelerometer named X-IMU inertial sensor
proposed a statistical approach to detect human falls based on both
video data and acceleration data. A Shewhart control chart is used to
detect a fall by using the accelerometer data. Features are extracted
from images which contain a human body silhouette. The silhouette
is divided into five areas. The set of ratios that are computed for each
frame are then computed to form the feature vector. The features
are used as input data to Neural Network. The experiments were
conducted on UR Fall Detection dataset. Their system achieves an
accuracy of 96.67%, sensitivity of 100% and specificity of 93.4%.
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2.3.2.2.5 Deep learning Methods

The recent advancements in deep learning have changed the landscape
of computer vision, it has improved the results in many tasks, such
as object recognition, segmentation, and image captioning. [68] The
most popular neural network architectures are CNNs. CNNs are nets
inspired by human visual perception and mainly applied for image
processing.[69]

Kong et al. [70] used three-stream CNN as an event classifier. where
they used the Silhouettes motion history images as input for the first
two streams, and dynamic images are used as input for the third
stream. The final classification uses voting on the results of event
classification to perform multi-camera fall detection.

Espinosa et al. [71] proposed a fall detection system based on a 2D
CNN inference method and multiple cameras. Their approach anal-
yses images in fixed time windows and extracts features using an
optical flow method that obtains information on the relative motion
between two consecutive images.

Martinez et al. [69] proposed a multi-modal fall detection system
based on wearable sensors, and combined long short-term memory
networks (LSTMs) and convolutional neural networks (CNN). The
authors concluded that they were able to extract features from raw
data, and the suggested method is suited for real-time detection. The
results represented an improvement in precision, recall and F1 score
over using only LSTM or CNN networks for fall detection.



3
M E T H O D O L O G Y

In this chapter, we describe the dataset in Section 3.1 and we discuss
the methods of designing and implementing the fall detection system.
In Section Section 3.1, we give an overview of the dataset; we give its
size and discuss the way it was processed. In Section 3.2, we discuss
in details the algorithms that are used for feature extraction from the
videos in Section 3.2, then we finally discuss the classification method
used to detect falls in Section 3.3.

3.1 dataset description

The Dataset is obtained from a volunteer who wears two cameras as
shown in Figure 3.1 :
A camera fixed on the neck; the volunteer wears this camera on her
neck, and another camera is fixed around the volunteer’s waist. The
videos collected from the neck camera are expected to have more
movement than the videos collected from the waist camera since
anatomically the waist is a more stable part of the body.

Figure 3.1: Camera placement

After obtaining the videos from the volunteer, a segmentation for the
videos is needed since one video contains multiple activities. To ensure
the quality of the dataset, we have decided to segment the videos
manually by first splitting the video into several video segments. Each
video segment contains a single daily activity. Afterwards, we needed
to trim the videos to shorten the duration and to remove segments
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when there is a high luminosity or when there is a hand in front of
the camera. We then stored the videos in a database containing the
following information: file path, file name, camera, place, number of
frames, action type, action. In the end, we have collected 1459 videos.
The daily activities collected are divided into the following:

3.1.0.1 types of Falls:

• Back left Back let falls happen when the subject falls towards
the back and ends up on the left side of the body. This fall action
takes from 2 to 4 seconds.

• Back right similar to back left falls but the end of fall happens
on the right side.

• Back lying This action happens when the subject falls towards
the back and ends up lying on his/her back. this type of action
takes from 2 to 4 seconds.

• Down syncope The Down Syncope falls are falls that happen
from standing. This type of fall action takes from 3 to 5 seconds.

• Down Syncope Wall Those falls happen when a person falls
from standing, but he or she touches the wall while falling. This
fall action takes from 3 to 5 seconds.

• Front falls This action happens when the subject falls from
standing posture directly towards the floor. this action takes
from 3 to 5 seconds.

• Front knees falls This type of falls is when the subject falls
forward on his knees to the floor.

• Front left This type of falls happens when the subject falls on
the left side from a standing position. The action takes from 3 to
5 seconds.

• Front right this action is similar to ’Front left falls’ the only
difference is that the subject falls on the right side.

• Lateral Right side this type of falls happens when the subject
falls on the right side from a standing posture, but there is more
movement involved in this type of fall. It takes from 2 to 3

seconds.

• Lateral left side Similar to ’Lateral Right side falls’ with the only
difference that the fall happens towards the left side.

We have also collected Non-falls that are similar to falls to avoid false
positives, in case the fall detection system is applied in real life.
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3.1.0.2 Types of Non-Falls:

• Bending This type of action is when the subject bends his knees
and looks towards the floor, usually to pick up something. The
action takes from 2 to 3 seconds.

• Lying in bed This action is when a person goes from standing
to lying in bed, these actions are very similar to falls. The action
takes from 3 to 5 seconds.

• Rising from bed: This action is when a person goes from the
position of lying in bed to the position of standing up. This type
of actions takes from 3 to 6 seconds.

• Limping Limping is defined as the action of walking with dif-
ficulty, typically because of a damaged or stiff leg or foot. This
action can be continuous.

• Sitting: This action is when the subject goes from standing
posture to sitting posture. This type of actions takes between 1

and 3 seconds.

• Sitting on chair: This action happens when the person goes
from the standing position to a sitting position. The action takes
from 1 to 3 seconds.

• Squatting down: this happens when the subject lowers himself
to the ground while balancing on his feet with the legs bent.
This action takes between 2 and 4 seconds.

• Stumble: This action happens when the subject trips or momen-
tarily loses balance when walking and tripping over something.
This action takes between 1 and 2 seconds.

• Walking: walking is moving at a regular pace by lifting and
setting down each foot in turn. This action is continuous.

Figure 3.2: Histogram of the number of frames per video of falls and non-falls
videos
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While segmenting the videos, we also made sure that the number of
frames is equally distributed between falls and non-falls as shown in
Figure 3.2.

Figure 3.3: Histogram of the number of frames per video by each action type

We also ensured that the number of frames is equally distributed
for the action types i.e.: falls, non-falls similar to falls, and regular
activities as shown in Figure 3.2. The number of frames range from
short videos ≥ 40 frames to long videos ≤ 460 frames. The frame rate
of the videos is 30 frames per second.
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Action Action type Number of files

Fall
Back left 30

Back lying 36

Back right 45

Down-syncope 39

Down-syncope-wall 59

Front falls 78

Front knees falls 68

Front left 76

Front right 81

Lateral-Right-side 65

Lateral-left-side 66

Total Falls 643

Non-Fall
Bending 82

Limp 80

Lying-bed 84

Rising-bed 39

Sitting 313

Sitting-chair 78

Squatting-down 75

Stumble 29

Walking 36

Total Non-Falls 816

Total 1459

Table 3.1: Falls and non-falls actions distribution

Table 3.1 Shows a detailed view of the number of actions (falls vs
non-falls). The number of falls videos is 643 which is 44% of the
whole dataset. Most of the fall types are equally distributed with small
differences, however, the number of ’Sitting videos’ is much larger
than the other action types 21% of the full dataset.
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Figure 3.4: Example images sequence from a fall video

Figure 3.4 shows an example of frames captured from a video
containing a fall event. In the sequence we can see that the video
starts by a frame that indicates that subject of interest is in an upright
position and the buildings are oriented in a normal angle. When the
fall starts (frame 2 and 3), there is a significant change in the scene,
in which we see the grass instead of the buildings. In frame 4 we can
see the hand of the person on the grass; the frame is rotated almost
90 degrees compared to the frame captured at the start of the video.
It also shows that in typical outdoor falls, the sky takes a significant
part of the frame.

3.2 methods

In this section we go in details about the theory of the methods used
to extract features from the videos in our fall detection system, we first
talk about the cosine similarity used as a similarity distance measure
during our work, then we talk about HOG in details, then LPB then
pyramidal Lucas-Kanade descriptor.

3.2.1 Cosine Similarity

We use cosine similarity for comparing the two vectors,
Cosine similarity measures the cosine of the angle between two vectors
in a multi-dimensional space. In this context, the two vectors are the
normalised histograms.

cos(θ) =
~a.~b
‖~a‖‖~b‖

=
∑n

i=1 aibi√
∑n

i=1 (ai)2
√

∑n
i=1 (bi)2

(3.1)
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Equation 3.1 shows how the cosine similarity is calculated between
two vectors~a and~b Where~a.~b = ∑n

i=1 aibi = a1b1 + a2b2 + ... + anbn

is the dot product of two vectors a and b. The resulting similarity
ranges from 1 denoting the two vectors are opposite, to 1 meaning
exactly the same.

3.2.2 Local descriptors

3.2.2.1 Histogram of oriented gradients

The HOG descriptor algorithm for each frame has the following steps:

1. Divide image into small connected cells

2. For each cell compute the histogram of edge orientations for the
pixels within the cell as shown in Figure 3.5 and Equation 3.2

3. Each cell gets discretized into angular bins according to the
gradient orientation.

4. The cell’s pixel contributes with the weighted gradient to the
corresponding angular bin.

5. Each group of adjacent cells is considered as spatial regions. The
grouping of the cells into a block is the basis for grouping and
normalisation of histograms.

6. Normalise the group of histograms represents the block his-
togram. The set of these block histograms represents the descrip-
tor. [72]

Figure 3.5: HOG calculation

X direction = |40− 70| = 30

Y direction = |20− 70| = 50

Gradient Magnitude =
√

302 + 502 = 58

Gradient Direction = tan−1(
30
50

) = 30 ◦

(3.2)
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Figure 3.6: HOG histograms of two consecutive frames

After obtaining the histogram of each frame, we compare it to the
previous frame histogram. Figure 3.6 shows the HOG histogram of
two consecutive frames where the number of bins is 16. We can see
that the two histograms do not overlap perfectly. We compute the
cosine dissimilarity of the two frames using the equation Equation 3.1
and save it into a one-dimensional array till there are no more frames
to process. The result will be a vector of length n f rames− 1.

Figure 3.7: HOG graph

Figure 3.7 shows a plot of three hog vectors obtained from three dif-
ferent daily activities videos, namely: front fall, bending and walking.
We can see that the cosine distance magnitude of the falling is much
higher than the magnitude of the other two daily activities.

3.2.3 Local Binary Pattern

The LBP operator was originally developed by Ojala et al. [73]. The
main idea for developing the LBP operator is to describe two-dimensional
surface textures by using two complementary measures: local spatial
patterns and gray scale contrast.
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Figure 3.8: LBP calculation example
‘

LBPp,r =
i=0

∑
p−1

S(gi− gc)2i, S(x) =

{
1 i f x ≥ 0,

0 otherwise
(3.3)

Figure 3.8 shows an example on how LBP values are calculated in a
3 by 3 block.

• Step one: calculating threshold: for calculating the threshold we
compare each neighbouring pixel with the centre pixel grayscale
value. If the value of the neighbouring pixel gi is greater or
equal to the center pixel value gc of the neighbouring pixel the
threshold value of the pixel gi will be 1; otherwise its 0.

• Step two: multiplying the threshold with weights

• Step three: summing up the convolved values.

Figure 3.9: Circular multiscale LBP
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The multi-scale version of the LBP operator extends the original one.
It uses neighbourhoods of different sizes to be able to deal with large-
scale structures that might capture more features of some the texture.
[74].

There are two variations of multi-scale LBP when it comes to choosing
the neighbour pixels; circular and square. Figure 3.9 gives an example
of different neighbourhood sizes and different radius values in a cir-
cular multi-scale LBP where P represents the number of pixels in the
neighbourhood and R represents the radius of the neighbourhood.

After obtaining the histogram of each frame we compare it to the
previous frame histogram Figure 3.10 shows the LBP histogram of two
consecutive frames where the number of bins is 56. We can see that
the two histograms do not overlap perfectly. We compute the cosine
dissimilarity of the two frames using the equation Equation 3.1 till
there are no more frames to process.

Figure 3.10: LBP histograms of two consecutive frames

Figure 3.11: LBP graph of three different videos

In Figure 3.11 we see an example plot of the obtained LBP graphs of
three different daily activities namely: front fall, bending and walking.
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We can see that the cosine distance magnitude of the falling is much
higher than the magnitude of the other two daily activities.

3.2.4 Optical flow estimation

The algorithms of optical flow estimate the deformations between two
images. It tracks image pixels from an image to another as shown in
Figure 3.12. The optical flow calculation works on the assumption that
pixel intensity is conserved, which means that the intensity or colour
of the objects has not changed significantly between the two images.
Based on this idea, we have the following assumption:

• Spatial coherence: Nearby points in the frame plane move in a
similar manner all the time (velocity smoothness constraint).

• Brightness constancy: projection of the same point looks the
same in every frame.

• Small motion: points do not move very far in the next frame, in
other words the vector [u, v] is very small.

Figure 3.12: Pixel displacement between two consecutive images

I(x, y, t) = I(x + δx, y + δy, t + 1) (3.4)

Where ~V = (δx, δy) is the vector of velocity. Then, by derivation, we
obtain the well known optical flow constraint equation

~∇I.~V +
∂I
∂t

= 0 (3.5)

Where ~∇I = ( ∂I
∂x , ∂I

∂y ) is the gradient of the image.
However, the optical flow Equation 3.5 contains two unknown vari-
ables, namely Vx and Vy and cannot be solved by having only one
constraint equation. Therefore, we cannot observe the optical flow
using only one observation. This is known as the aperture problem of
the optical flow as shown in Figure 3.13 which shows that the change
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in the perceived texture in the aperture where all the motions a,b and
c can be possible motions.

Figure 3.13: Illustration of aperture problem

To be able to solve the equation, additional constraints must be added.
One of the most popular methods to solve the aperture problem is the
Lucas Kanade-method.

3.2.4.1 Lucas-Kanade Method

Lucas-Kanade algorithm can be applied to sparse scenes (sparse
optical-flow), it relies on some small windows around our point of
interest. The approach of Lucas-kanade method of solving the op-
tical flow equation is based on estimating the displacement at one
pixel using only on the information around that specific pixel (in-
side the window). The Lucas-Kanade algorithm makes the following
assumptions:

• The time separating the two is small and increment by ∆t. There-
fore, the algorithm works best when objects are slow moving.

• The images depict a natural scene containing textured objects
exhibiting different gradient values which change smoothly [75].

The equation Equation 3.5 is solved for a pixel x 2 A based on the
assumption that the motion field is constant in the neighbourhood
N(x) of x, in other words the field is moving in a similar manner
around x. An over determined system of equations is obtained and
the flow can be computed by minimising the least-squared errors by
solving equation Equation 3.8. Note that the equation is solvable only
if AT A is invertible and also not too small.

A =


Ix(p1) Iy(p1)

Ix(p2) Iy(p2)
...

...

Ix(pn) Iy(pn)

 v =

[
Vx

Vy

]
b =


−It(p1)

−It(p2)
...

−It(pn)

 (3.6)
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A =

[
∑ Ix Ix ∑ Ix Iy

∑ Ix Iy ∑ Iy Iy

] [
u

v

]
= −

[
∑ Ix It

∑ Iy It

]
AT A ATb

(3.7)

AT Av = ATb or v = (AT A)−1ATb (3.8)

Algorithm 1 Pseudocode of Lucas Kanade [76]

1: t← 0
2: for i← 0, maxX do
3: for j← 0, maxY do
4: Ix(i, j, t)← CalculateGradientX(j, j, t)
5: Iy(i, j, t)← CalculateGradientY(j, j, t)
6: It(i, j, t)← CalculateGradientT(j, j, t)

7: S← CreateMatrix(25, 2)
8: S← CreateMatrix(25, 2)
9: S← CreateMatrix(25, 2)

10: for i← 0, maxX do
11: for j← 0, maxY do
12: for n← 1, 5 do
13: for m← 1, 5 do
14: S((n− 1) ∗ 5 + m, 1)← Ix(i + (n− 3), j + (m− 3), t)
15: S((n− 1) ∗ 5 + m, 2)← Iy(i + (n− 3), j + (m− 3), t)
16: T((n− 1) ∗ 5 + m, 1)← It(i + (n− 3), j + (m− 3), t)

17: ~u← (STS)−1ST(−T)
18: print(”X− vector on”, i, j, ”is”,~u(1, 1))
19: print(”Y− vector on”, i, j, ”is”,~u(2, 1))

Pseudocode 1 shows the steps taken to calculate the Lucas Kanade
optical flow, the algorithms uses two consecutive frames where maxX
is the width of the frame and maxY, the height, and t is the time.

3.2.4.2 Pyramid representation of images

The pyramid representation of a an image I of size nwnh. Having the
original image level I0 = I this image has the highest resolution. The
image width and height at that level are defined as n0

w = nw and
n0

h = nh. The rest of the pyramidal representation of the image are
calculated recursively, and each image will have ni

w = ni−1
w /2 and

ni
h = ni−1

h /2 [77].
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Figure 3.14: Lucas-Kanade optical flow pyramid

3.2.4.3 Pyramidal Lucas-Kanade

As mentioned in Section 3.2.4.1 one of the limitations of Lucas-Kanade
is that it cannot track pixels with large motion amplitude because they
end outside the local window. This problem led to the development
of the pyramidal LK algorithm.
The pyramid optical-flow tracking procedure is shown in Figure 3.14

demonstrates three-level pyramids of two frames. For a given feature
point u on frame t, its corresponding location v = u + d is found
on frame t + 1, where d = [dx dy] is the displacement from u to v.
The local affine transformation matrix between frame t and frame
t + 1 is then created from the vicinity of u and v, respectively. Let
L be the level of pyramid image. For m levels, L = 0, ..., Lm, define
uL = [ux

L uy
L], and then the corresponding coordinates of the point u

on the pyramidal image IL is computed as [77]:
uL = u

2L

Algorithm 2 Pseudocode of Pyramidal Lucas-Kanade algorithm [78]

Input: img1,img2, pyramid level L.
Output: Optical flow field of.

1: Generate Gaussian pyramids for img1 and img2
2: for i = L→ 2 do
3: Compute the optical flow fi on pyramid level i using

iterative Lucas− Kanade method with an initial guess = f
4: 2X bilinear interpolate fi in both height and width

and store the result in f

5: iterative Lucas− Kanade method with an initial
6: f = f1

3.2.4.4 Motion model

Under the assumption that the motions between video frames follow
the similarity model,where the similarity transformation includes a
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combination of translation, rotation, and isotropic scaling. The scal-
ing is parameterized by the factor s and the rotation The rotation is
parameterized by the angle θ [79].x′

y′

1

 =

s cos(θ) −s sin(θ) dx

s sin(θ) s cos(θ) dy

0 0 1

 =

x

y

1



Figure 3.15: Rotation plot

Figure 3.15 shows the unsigned rotation in radiant of three different
videos: front fall, bending and walking, the rotation angle magnitude
gets bigger when the fall happens, while in the walking and bending
the rotation angle magnitude does not go very high.

3.2.4.5 Motion estimation with optical Gunnar Farneback optical flow

To estimate the camera motion we have used the method proposed by
Gunnar Farneback in his paper [80]. The Gunnar Farneback optical
flow is an effective technique to estimate the motion of interesting
features by comparing two consecutive frames based on polynomial
expansions to estimate the optical flow at every pixel location i.e.
dense optical flow.

Instead of solving the optical flow equation, Farneback approximates
the intensity information of a neighbourhood of both frames at time
t1 and t2 with a quadratic polynomial through polynomial expansion
transform:

f1(x) = xT A1x + bT
1 x + c1

where x is the pixel coordinate vector in a local coordinate system, A1

is a symmetric matrix, b1 is a vector and c1 is a scalar.
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After a global shift d, we construct a new signal f2 to obtain the shifted
neighbourhood as depicted in Equation 3.9.

f2(x) = xT A2x + bT
2 x + c2

= f 1(x− d)

= (x− d)T A(x− d) + bT
1 (x− d) + c1

= xT A1x + (b1− 2A1d)Tx + dT A1d− bT
1 d + c1

(3.9)

by equating the coefficients of x the shift can be solved: A2 = A1,
b2 = b1 − 2A1 d and d = − 1

2 A−1
1 (b1 − b2)

Next step is to replace the global polynomial in Equation 3.9 with
local polynomial approximations.

A(x) =
A1(x) + A2(x)

2
(3.10)

and introducing

∆ b(x) = −1
2
(b2(x)− b1(x)) (3.11)

to obtain

A(x)d(x) = ∆b(x) (3.12)

Because solving Equation 3.12 pointwise is too noisy, Farneback made
the assumption that the displacement is slow-varying and satisfy a
neighbourhood W of x and try to find d(x) satisfying Equation 3.12 as
accurate as possible over a neighborhood I of x through the equation
Equation 3.13.

∑
∆x∈N

w(∆x)||A(x + ∆x)d(x)− ∆b(x + ∆x)||2 (3.13)

where w∆(x) is the weight function for the points in the neighbour-
hood. After obtaining the Farneback optical flow, we calculate the
translations for which the length of the vector representing the dis-
placement of each pixel is calculated. However, in practice and to
speed up the calculation of the translations we did not use all the
frame pixels but every 8th pixel.
To make the motion more accurate and robust, we have removed the
outliers before calculating the mean of the translations.
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Figure 3.16: Camera motion plot

Figure 3.16 shows the resulting motion graph of three different
activities.

3.2.5 Resampling and aggregating features

Since the videos have different lengths, we had to resample the length
of the extracted features to have the same length for all the extracted
features. We have used two ways of resampling the features: 1) by
interpolating a new graph of the desired length n from the old array,
Figure 3.17 shows an example of resampling a rotation graph to a
new graph of length 50 , 2) by taking a sub-array of length n from
the original array, to make sure the action is included we take the
maximum value of the array as the centre of the new array, Figure 3.18

shows an example of sub-sampling where the new graph will be the
graph highlighted in red.

Figure 3.17: Resampling of rotation graph using interpolation
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Figure 3.18: Resampling of rotation graph using sub-sampling

Figure 3.19: Feature extraction, resampling and aggregation

In the case of combining methods, the features will be aggregated,
Figure 3.19 shows the steps involved in features extraction and aggre-
gation.
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3.3 classification method

In this section we give a brief explanation of the theory behind the used
classification algorithm which is Random Forests. Random Forests
were developed by Leo Breiman [58] and they combine the idea of
bagging [81] together with a random feature selection. RF combines
several individual classification trees like shown in the pseudo-code
of the algorithm 3

Algorithm 3 Pseudocode of random Forest algorithm [82]

1: Generate c classifiers:
2: for i = 1→ c do
3: Randomly sample training data D with replacement to

produce Di
4: Create a root node, Ni containing Di
5: BuildTree(Ni)

6: BuildTree(N) :
7: if N contains instances of only one class then
8: return
9: else

10: Randomly select x% of the possible splitting features in N
11: Select the feature F with the highest information gain to split

on
12: Create f child nodes of N, N1, ..., N f where F has possible values

(F1, F2..., Ff )

13: for i = 1→ f do
14: Set the contents of Ni to Di, where Di is all instances in N

that matche Fi
15: BuildTree(Ni)

Random Forest has a high classification accuracy and can deal with
large data sets for multiple classes with outstanding time efficiency.





4
E X P E R I M E N T S A N D R E S U LT S

4.1 introduction

In this chapter, we describe the evaluation measures used for the exper-
iments in Section 4.2. In section Section 4.3 we discuss the conducted
experiments and their results. We have conducted the following exper-
iments:

Experiment 1: Comparing the performance of the different meth-
ods on the binary classification: fall versus non-fall.
Experiment 2: Evaluating the performance of the proposed methods
on the multi-class classification of the different daily activities.
Experiment 3: Determining which camera placement has better perfor-
mance; we compared the results of the methods on binary classification
using data collected from the neck camera versus data collected from
the waist camera.
Experiment 4: Measuring the computation time of each method.
Experiment 5: Investigating the effect of down-scaling videos on the
performance of the suggested methods.

4.2 performance evaluation methods

For evaluating the conducted experiments we used the following mea-
sures:

4.2.1 Sensitivity and specificity

Sensitivity: also called true positive rate (TPR) is the portion of falls
that are detected correctly as falls with the algorithm under evaluation.
Specificity: also called false positive rate (FPR) is the portion of the non-
falls that are classified as non-falls in the algorithm under evaluation.
Sensitivity and specificity are calculated using Equation 4.1:

Sensitivity =
TP

TP + FN
Speci f icity =

TN
TN + FP

(4.1)

• TP: true positive: the algorithm classifies a fall activity correctly
as a fall.

• FP: false positive: the algorithm classifies a non-fall activity
falsely as a fall.

41
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• TN: true negative: the algorithm classifies a non-fall activity
correctly as a non-fall.

• FN: false negative: the algorithm classifies a non-fall activity
correctly as a non-fall

Sensitivity and specificity are inversely proportional, which means
that when the sensitivity increases, the specificity decreases and vice
versa.

4.2.2 ROC-curve

ROC-curve stands for Receiver Operating Characteristic; it is used to
measure classification problems at various thresholds settings and it
is calculated following Equation 4.2. The area under the ROC curve
(AUC) measures the whole two-dimensional area underneath the ROC
curve. AUC is used as the measure of a diagnostic test’s discriminatory
power [83]. It shows the model’s capability to distinguish between
classes. The higher the AUC, the better the model. AUC is one of the
most commonly used metrics to evaluate model performance for the
following two reasons:

• AUC is scale-invariant; it measures how well predictions are
ranked, rather than their absolute values.

• AUC is classification-threshold-invariant; it measures the qual-
ity of the model’s predictions regardless of what classification
threshold is chosen.

AUC =
∫ 0

1
TPR(FPR)d(FPR) (4.2)

where FPR is true Positive rate and FPR is false positive rate.

4.2.3 Cross-validation

Cross-validation is defined as the process for creating a distribution
of pairs of training and test sets out of a single dataset [84], there are
various methods used for cross-validation. Commonly used methods
are listed below.

• Holdout cross-validation: In this method, test data is held out
during the training phase, therefore, there will be no overlapping
between the training and testing datasets. In this method the
validation data is not used during the training phase and the
system performance is dependent on the choice of the training
and testing subsets.
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• K-Fold cross-validation: The dataset in this method is divided
into k equally sized subsets. The training and validation are
performed in k iterations. During each iteration, one model is
trained on k− 1 subsets. The left-out subset is used to test the
model. The advantage of K-Fold cross-validation is that all data
samples are used for both training and testing.

• Leave one-out cross-validation: In this method all data samples
except one observation are used for training and one instance
of data is used for testing. It is a special case of K-fold cross-
validation [84] [85].

• Repeated K-fold cross-validation: the K-fold cross-validation is
executed many times [85].

In the learning process, our data is split into two subsets: training and
testing data. The training data is 90% of the full data and the hold out
data is 10%. The training data is used for 10-fold cross-validation. The
training data set is divided into 10 subsets, and the holdout method is
repeated 10 times. Each time, one of the subsets is used as the test set
and the other subsets are put together to form a training set. Then the
average AUC is computed across all 10 trials.

The advantage of using cross-validation is that the model does not
get effected much by the way the dataset is divided. Every file in
the dataset will be in the test once, and gets to be in a training set
k− 1 times. The variance of the resulting estimate is reduced as k is
increased.

Figure 4.1: 10 folds cross-validation with holdout

4.3 performance evaluation

In this section, we compare the performance of the feature extrac-
tion algorithms on the binary classification (falls versus non-falls).
To evaluate our work, we first test each feature extraction algorithm
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performance alone. After, we combine algorithms to evaluate the per-
formance when the algorithms are combined.

For evaluation we applied cross-validation explained in Section 4.2.3
then we evaluate the algorithm on the test set. The measures used
to evaluate this work are ROC curves, AUC, accuracy, precision and
recall curves.

4.3.1 Binary classification

We first evaluate the methods on binary classification, i.e. fall versus
non-fall classification. We test the performance every method sepa-
rately, then we test the performance of the possible combination of the
methods.

Figure 4.2: Binary classification AUC results
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Validation data Test data

Method AUC Accuracy AUC Accuracy

HOG 0.925 0.839 0.942 0.884

LBP 0.953 0.877 0.940 0.884

Motion 0.939 0.855 0.934 0.856

Rotation 0.971 0.910 0.976 0.911

LBP + HOG 0.956 0.896 0.950 0.884

Motion + HOG 0.952 0.880 0.953 0.870

Motion + LBP 0.968 0.906 0.964 0.897

Rotation + HOG 0.975 0.915 0.982 0.911

Rotation + LBP 0.980 0.928 0.982 0.918

Rotation + Motion 0.981 0.924 0.987 0.915

Rotation + LBP + HOG 0.980 0.921 0.982 0.918

Rotation + Motion + HOG 0.980 0.918 0.988 0.918

Rotation + LBP + Motion 0.983 0.926 0.988 0.918

Combined 0.982 0.922 0.987 0.925

Table 4.1: Methods evaluation on binary classification

Figure 4.2 and Table 4.1 presents the performance results for the differ-
ent methods (HOG, LBP, Rotation, Motion). We give results obtained
with each method separately, but also for all possible combinations.

From the results, we can observe that HOG method has the lowest
performance with only 0.925 average AUC and 0, 839 average accuracy
during cross-validation, 0.942 AUC and 0.884 accuracy on the test set.
Rotation alone has a better performance than LBP, Motion and HOG (
0.971 AUC, 0.910 accuracy) during cross-validation, 0.976 AUC and
0.911 accuracy on the test set.

The best performance was by combining rotation, LBP and motion, re-
sulting in an AUC of 0.983 and accuracy 0.926 during cross-validation,
0.988 AUC and 0.918 accuracy on the test set.

4.3.2 Multiclass classification

To test the performance of our method for multiclass classification we
have done two experiments:

1. Testing the methods on all the 20 action types presented in
Table 3.1,
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2. Grouping all the fall action sub-types into one fall action type,
resulting in 10 action types in total.

The obtained results for 20 classes classification are presented in table
Table 4.2; the method used to obtain the results is Rotation + Motion +
LBP, and we have applied resampling. We notice that the algorithm
has a good performance on the non-fall ADLs such as Rising-bed,
Limp, Walking, Sitting. However, the algorithm has difficulty classi-
fying fall types such as Front fall with average AUC value of 0.672 on
cross-validation, and 0.722 on the test set and Front-knees fall with
0.68 average AUC on cross-validation and 0.547 on test set.

After further investigation, we found that the algorithm falsely classify
falls that are similar, like Front-knee fall and Front-fall. The overall
performance can be seen from the AUC with 0.852 micro, 0.826 macro
on average validation and 0.826 micro, 0.790 on the test set.
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Action type Validation Test

Back left fall 0.685 0.782

Back right fall 0.707 0.696

Back lying fall 0.797 0.637

Bending fall 0.891 0.948

Down-syncope fall 0.770 0.467

Down-syncope-wall fall 0.774 0.665

Front fall 0.672 0.722

Front knees fall 0.680 0.547

Front left fall 0.684 0.478

Front right fall 0.729 0.786

Lateral-Right-side fall 0.833 0.733

Lateral-left-side fall 0.707 0.718

Limp 0.913 0.921

Lying-bed 0.922 0.846

Rising-bed 0.950 0.965

Sitting 0.990 0.999

Sitting-chair 0.895 0.954

Squatting-down 0.960 0.899

Stumble 0.974 0.967

Walking 0.982 0.986

Micro 0.852 0.821

Macro 0.826 0.790

Table 4.2: AUC of multiclass classification of 20 action types using rotation,
motion and LBP methods

To improve the results of fall types, we have grouped all the fall
types as one action type (fall). Figure 4.3 and Table 4.3 presents the
obtained results; we can notice that the fall results when grouped has
improved; the mean AUC during cross validation is 0.94 and 0.957.
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Figure 4.3: Binary classification AUC results

Action type validation test

Fall 0.946 0.957

Bending 0.891 0.948

Limp 0.913 0.921

Lying-bed 0.922 0.846

Rising-bed 0.950 0.965

Sitting 0.990 0.999

Sitting-chair 0.895 0.954

Squatting-down 0.960 0.899

Stumble 0.974 0.967

Walking 0.982 0.986

micro 0.951 0.952

macro 0.947 0.949

Table 4.3: Multiclass AUC of 10 action types using rotation, motion and LBP
method

4.4 camera location comparison

To test which camera placement is best, we had to test the algorithms
using data only from one type of camera. The dataset size becomes
half the size but it is good to find out which camera placement is best
for fall detection. Results as shown in Figure 4.4 and Figure 4.5 suggest
that the performance of the camera fixed on the waist is often superior
to the camera fixed on the neck, both during cross-validation and test.
Investigating results in Table 4.5 and Table 4.4 we can observe that
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the combined features ( Rotation + LBP + Motion) gave the best result
with average 0.982 AUC and 0.933 accuracy during cross-validation
and 1 AUC and 0.986 accuracy on test data. The best results for the
neck camera is obtained from combining all the methods, which gave
0.980 AUC and 0.937 accuracy average of cross-validation and 0.984
AUC 0.945 accuracy on test data.

Figure 4.4: Binary classification cross-validation mean AUC of waist camera
versus neck camera

Figure 4.5: Binary classification test AUC of waist versus waist versus neck
camera
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Validation data Test data

Method AUC Accuracy AUC Accuracy

HOG 0.890 0.808 0.957 0.932

LBP 0.958 0.909 0.992 0.946

Motion 0.889 0.800 0.953 0.865

Rotation 0.972 0.918 0.992 0.946

LBP + HOG 0.959 0.911 0.995 0.959

Motion + HOG 0.909 0.837 0.962 0.878

Motion + LBP 0.965 0.917 0.995 0.959

Rotation + HOG 0.977 0.924 0.996 0.959

Rotation + LBP 0.981 0.929 1.000 1.000

Rotation + Motion 0.976 0.918 0.994 0.932

Rotation + LBP + HOG 0.982 0.932 1.000 1.000

Rotation + Motion + HOG 0.979 0.923 0.997 0.946

Rotation + LBP + Motion 0.982 0.933 1.000 0.986

Combined 0.982 0.927 1.000 0.986

Table 4.4: Data using only waist camera

Validation data Test data

Method AUC Accuracy AUC Accuracy

HOG 0.877 0.791 0.875 0.822

LBP 0.917 0.837 0.916 0.808

Motion 0.870 0.791 0.864 0.808

Rotation 0.971 0.908 0.964 0.863

LBP + HOG 0.929 0.862 0.932 0.822

Motion + HOG 0.909 0.822 0.898 0.849

Motion + LBP 0.949 0.883 0.930 0.849

Rotation + HOG 0.980 0.929 0.981 0.904

Rotation + LBP 0.980 0.937 0.983 0.932

Rotation + Motion 0.975 0.920 0.966 0.863

Rotation + LBP + HOG 0.981 0.934 0.981 0.945

Rotation + Motion + HOG 0.980 0.926 0.978 0.863

Rotation + LBP + Motion 0.979 0.929 0.976 0.904

Combined 0.980 0.937 0.984 0.945

Table 4.5: Data using only neck camera
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4.4.1 Computation time

The computation time test was conducted using Intel Core i5-4690

CPU @ 3.5GHz with 16 GB RAM and NVIDIA GeForce GTX970. The
test was done on 10 videos of 10 seconds length (300 frames), which
amounted in 100 seconds and 3000 frames. The speed results are
presented in Table 4.6:

Method Speed in seconds Frames per second

HOG 19.44 154.32

Rotation 23.44 127.98

Motion 323.03 9.28

LBP 1098.16 2.73

Table 4.6: Computation time results on 600x400 pixels resolution

From the results we can see that LBP has the longest time, 1098.16
sec., because LBP computation uses the multi-scale method -which
calculates 56 neighbouring points for each pixel- which makes it time
costly. Motion takes 323.09 sec. Rotation takes 23.44 sec. and HOG
19.44 sec.

Method Speed in seconds Frames per second

HOG 6.04 496.68

Rotation 6.23 481.54

Motion 60.06 49.95

LBP 269.29 11.14

Table 4.7: Computation time results on 300x200 pixels resolution

After resizing the videos to 300x200 pixels resolution the computa-
tion time has dropped considerably

4.4.2 Down-scaling videos

We evaluate the performance of the suggested methods on smaller
video size, by down-scaling the videos from 600x400 to 300x200.

Figure 4.6 and Figure 4.7 provide a comparison of AUC values be-
tween the down-scaled videos and the 600x400 pixels videos during
cross-validation and testing. From the results we can see that the
down-scaled videos results are inferior. However, the difference is not
big. The values of down-scaled AUC values are depicted in Table 4.8,
the best AUC was obtained by combining all methods with AUC of
0.980 during cross-validation and 0.984 during testing.
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Figure 4.6: Comparing AUC results after down-scaling from 600x400 pixels
resolution to 300x200 pixels

Figure 4.7: Binary classification test AUC of neck versus waist camera
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Validation data Test data

Method AUC Accuracy AUC Accuracy

HOG 0.877 0.791 0.875 0.822

LBP 0.917 0.837 0.916 0.808

Motion 0.870 0.791 0.864 0.808

Rotation 0.971 0.908 0.964 0.863

LBP + HOG 0.929 0.862 0.932 0.822

Motion + HOG 0.909 0.822 0.898 0.849

Motion + LBP 0.949 0.883 0.930 0.849

Rotation + HOG 0.980 0.929 0.981 0.904

Rotation + LBP 0.980 0.937 0.983 0.932

Rotation + Motion 0.975 0.920 0.966 0.863

Rotation + LBP + HOG 0.981 0.934 0.981 0.945

Rotation + Motion + HOG 0.980 0.926 0.978 0.863

Rotation + LBP + Motion 0.979 0.929 0.976 0.904

Combined 0.980 0.937 0.984 0.945

Table 4.8: Binary classification AUC and accuracy results on 300x200 pixels
videos

4.5 discussion

As discussed in the previous chapters, the videos were down-scaled
to a resolution of 600x400 pixels to speed up the processing. For the
classification algorithms, we have tested various algorithms and se-
lected RandomForests as the best algorithm for both classifications.

The first experiment Section 4.3.1. The results of using different com-
binations of features are given in Table 4.1. The best results for the
binary classification were obtained by combining rotation, LBP and
motion with an average of 98.3% AUC, and 92, 6% accuracy during
cross-validation. The AUC on test data was 98, 8% AUC and the ac-
curacy was 91, 8%. However, if we consider speed performance in
Table 4.6 we can see that calculating LBP is costly. This introduces
a speed versus accuracy trade-off, which makes us consider other
models that do not include LBP and have slightly worse results. The
best result that does not include LBP method is obtained by combin-
ing Rotation with motion which have an average AUC of 98.1%, and
average accuracy of 92, 4% during cross-validation and 98.7% AUC
and 91.5% accuracy during test.

The second experiment Section 4.3.2 was to check if our models can
classify different ADLs. We first used all the Daily ADLs including the
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different types of falls without considering all the sub-types of falls
as one ADL. The results in Table 4.2 have demonstrated that while
performing well on the non-fall ADLs, the model performance on the
different types of falls was not as good. This is because most falls
share many similarities. After grouping all the falls sub-types into
one fall class, the results obtained in Table 4.3 show that the model
performance on the fall class has improved.

The third experiment was to investigate camera placement effect on
the models’ performance, the results have suggested fixing the camera
on the waist of the elderly gives better results.

The fourth experiment aimed at comparing the methods performance
in terms of speed. The first finding was the results showing that LBP
is slow especially on the 600x400 pixels resolution. The second finding
was that down-scaling the videos has a significant speeding of the
algorithms; 3 times for HOG and rotation, 5 times for motion and 4

times for LBP.

The fifth experiment was to test the effect of down-scaling the videos
to 300x200 pixels on the performance of the methods. The results
showed that the methods still perform well after the down-scaling,
with only slight inferior results, which suggests that down-scaling
videos is an option to take into consideration, especially because the
speed of the algorithms is considerably improved.

Comparing the overall results of the algorithms in the first experiment,
it can be seen that the majority of the chosen algorithms showed good
performance both in the cross-validation and the testing phase. When
using a single method to detect falls, video rotation is the best choice
since it is the most accurate single method in both binary classifica-
tion and multi-class classification. It is fast enough to be applied in
real-time and can be made faster through down-scaling the videos
while maintaining the accuracy. Combining methods showed that the
model that combines video rotation, LBP and camera motion, gives
the best AUC. However, it has a drawback when it comes to speed
since it uses LBP. We therefore suggest to consider models that do not
include LBP, such as video rotation and camera motion.



5
C O N C L U S I O N A N D F U T U R E W O R K

This chapter presents a summary of the thesis work and the conclu-
sions drawn from it. In this project, an efficient egocentric camera-
based fall detection system has been developed. Firstly, a conclusion
of our work in which we summarise our findings and key contribu-
tions is given in Section 5.1. Secondly, the limitations of our work are
discussed in Section 5.2. Finally, possible future research directions
that could be pursued to improve and extend this work is pointed out
in Section 5.3.

5.1 conclusion

The thesis project aimed at designing a fall detection system that can
be both accurate and fast. During this work, we have implemented
and evaluated several methods, for fall detection in particular and
action recognition in general. We conclude our work pointing out the
key contributions and limitations.

5.1.1 Key contributions

During this thesis work, we contributed to fall-detection of the elderly
in particular and human action recognition in general in the following
directions:

Manual preprocessing of the collected data; we segmented the videos
so that each video contains one action, and trimmed the segmented
videos with the purpose of obtaining a homogeneous dataset.

Reviewing and analysing popular methods used for fall-detection
in particular and vision-based action recognition in general and point-
ing out the strengths and weaknesses of each method.

Implementing different methods and presenting a comprehensive
evaluation of each method on both binary and multiclass classification.
Moreover, we used a machine learning-based algorithm to classify
falls and non-falls. Unlike other studies that used dissimilarity dis-
tance between the consecutive frames LBP and HOG histograms, we
used the cosine distance since it provides better classification than the
dissimilarity distance.

Furthermore, we have investigated the effect of camera placement

55



56 conclusion and future work

on the performance of fall-detection and concluded based on the re-
sults that the best placement of the camera is the waist.

Finally, we have evaluated the speed of each method to show which
methods are more suited for real-time fall detection.

5.2 limitations

The limitations of our work can be summarised as follows:

Due to the lack of available egocentric camera fall detection datasets,
we had to make use of data collected from a healthy young volunteer
and not from elderly people. One of the drawbacks of having a sim-
ulated dataset, is that elderly falls might differ from the simulated
falls. Another limitation is the small size of the dataset and the limited
types of ADLs contained in it. The developed system was not tested
on elderly people, but only tested on volunteer data.

5.3 future work

In this section, directions for potential future work that can be carried
from this thesis are presented, with the aim to improve the perfor-
mance of egocentric camera-based fall detection.

• Dataset improvement: as mentioned in the limitations, the dataset
used in this thesis is relatively small, therefore, enriching the
dataset by both increasing the dataset size and including more
types of daily activities is recommended. We believe by increas-
ing the dataset size better results could be obtained.

• Develop a classification model that cannot only detect falls but
also detect the type of the fall. The type of the fall and the
circumstances that led to it, can also help in developing fall-
prevention strategies.

• Implementing deep learning methods many studies have shown
that deep learning techniques have further advanced the domain
of computer vision and action recognition in general. Thus, we
believe that implementing deep learning-based methods will
provide better results, especially when it comes to ADLs classifi-
cation.

• Finally, the models could be tested in real life on elderly people,
to measure its performance in real-life circumstances.
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(a) ROC curve. (b) Precision-recall curve.

Figure A.1: ROC and precision-recall curves using HOG.

(a) ROC curve. (b) Precision-recall curve.

Figure A.2: ROC and precision-recall curves using LBP.

(a) ROC curve. (b) Precision-recall curve.

Figure A.3: ROC and precision-recall curves using camera motion.

59



60 appendix

(a) ROC curve. (b) Precision-recall curve.

Figure A.4: ROC and precision-recall curves using video rotation.

(a) ROC curve. (b) Precision-recall curve.

Figure A.5: ROC and precision-recall curves using Rotation, LBP and HOG.

(a) ROC curve. (b) Precision-recall curve.

Figure A.6: ROC and precision-recall curves using motion and HOG.
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(a) ROC curve. (b) Precision-recall curve.

Figure A.7: ROC and precision-recall curves using motion and LBP.

(a) ROC curve. (b) Precision-recall curve.

Figure A.8: ROC and precision-recall curves using rotation and HOG.

(a) ROC curve. (b) Precision-recall curve.

Figure A.9: ROC and precision-recall curves using Rotation and LBP.
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(a) ROC curve. (b) Precision-recall curve.

Figure A.10: ROC and precision-recall curves using rotation and motion.

(a) ROC curve. (b) Precision-recall curve.

Figure A.11: ROC and precision-recall curves using rotation, LBP and HOG.

(a) ROC curve. (b) Precision-recall curve.

Figure A.12: ROC and precision-recall curves using rotation, motion and
HOG.
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(a) ROC curve. (b) Precision-recall curve.

Figure A.13: ROC and precision-recall curves using rotation, motion and
LBP.

(a) ROC curve. (b) Precision-recall curve.

Figure A.14: ROC and precision-recall curves of all methods combined.
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