
faculty of science
and engineering

mathematics and
applied mathematics

Observations on
Almost OU Tangles

Bachelor’s Project Mathematics

September 2020

Student: Albert Silvans

First supervisor: Dr. Roland van der Veen

Second assessor: Dr. Alef Sterk

CONTENTS

Contents

1 Introduction 4

2 Tangles 5
2.1 Tangle diagrams . 6
2.2 Reidermeister moves . 7
2.3 Oriented Gauss notation . 7

3 Reiteration: OU tangle diagrams 8
3.1 Why the OU form matters . 10
3.2 The Glide move . 10
3.3 Acyclic Diagrams . 11
3.4 OU Algorithm . 11
3.5 Issues arising with the approach . 12

4 The “Scanning” tangle Drawing Algorithm 13

5 Incidence matrices 14

6 Conclusions and Further work 19
6.1 What we did . 19
6.2 Other things to consider . 19
6.3 Convergence . 19
6.4 Code and accumulated data . 19

3

1 Introduction

In the article [Bar-Natan et al., 2020] we are introduced with some Knot Theoretic
structures including tangles, tangle diagrams, braids, most importantly the Over
then Under form of a tangle, or OU form for short, followed by a proposed algorithm
for bringing a tangle diagram into an OU form, and some results relating to this
form.

Although the results presented in the previously mentioned article are quite
broad and general, in our article for the sake of simplicity we restrict ourselves to
the special case of a tangle with a single strand, and focus on what properties or
patterns we can discover by examining 1-tangles under the process of the OU form
algorithm. In short: does the OU algorithm produce recognisable patterns,
and if so what do they mean? We shall see that our choice of tangles to study
will prove to be erroneous, and that we will encounter a level of complexity that
we did not bargain for. Specifically, the only tangle diagrams that behave nicely
under the algorithm are trivial, and even then there is a set of trivial diagrams which
do not behave nicely. Furthermore the algorithm in the case of misbehavior never
terminates, and the diagrams that are produced at each iteration slowly tend to the
realm of the wild.

How to read this article:

1. If the reader is unfamiliar with the basics of Knot Theory, then Section 2 is
highly recommended, otherwise it may be skipped. For more Knot Theory we
recommend [Adams, 1994] and [Lickorish, 1997].

2. If the original article [Bar-Natan et al., 2020] has been read, then most of
section 3 may be skipped with the exception of sections 3.4 and 3.5, since they
outline differences in approach.

3. The rest of the article in order.

We set out in this article to probe the growing complexity of a sequence of
tangle diagrams under a simple algorithm. We do this by drawing them, and by
devising methods to symbolically represent them. The work falls short of making
any concrete results or statements but possibly asks enough questions to catch the
interest of the reader. The tangle diagrams do become increasingly complex, their
corresponding incidence matrices have interesting repeating and nearly symmetric
structures, and some tangle diagrams behave differently and some oddly similarly.
A sizable amount of visual data has been accumulated and is freely available at
[Silvans, 2020] for further discussions.

4

2 Tangles

Our main focus is on tangle diagrams, so we should define what they are sooner than
later. The path to do so is rather winding: what tangle diagrams represent is best
expressed first in 3 dimensions, as a construction in R3, but then projected in a nice
way into the plane R2. Knot theory and its subdiscipline of studying properties of
tangles is (considered by many) a topological question, though we will barely touch
on any topological concepts besides the following few definitions. We will mainly
view our diagrams as “beautified” graphs: points of connection, like vertices, and
strands, like edges, except that we deeply care about the position and orientation
of the vertices and edges.

Definition 1. (n-Tangle) Consider the closed unit ball B3 in Euclidean 3-space,
and its boundary the unit sphere S2. Take n ∈ N and for 1 ≤ i ≤ n take pairs of
points ai, bi ∈ S2 such that ai 6= bi for all 1 ≤ i, j ≤ n.

For each 1 ≤ i ≤ n we have a map φi : [0, 1]→ B3 with the following properties:

1. φi(0) = ai and φi(1) = bi,

2. φi((0, 1)) ⊂ B3\S3, i.e. the image of (0, 1) is fully contained in the interior of
B3,

3. and for any other 1 ≤ j ≤ n, j 6= i, we have φi([0, 1]) ∩ φj([0, 1]) = ∅.

The closed ball, the pairs of points, and the maps connecting the points together
form what we call an n-tangle.

We call the maps φi the strands of the tangle, and the pairs of points we call the
tips of the strands. Each tangle inherits an orientation from the strands, specifically,
from the parametrization φi, so φi(0) is the starting tip, and φi(1) is the ending tip
of the i-th strand.

With this definition we have created a large collection of structures, however not
all of these structures are notably different. Just like we know that a jumbled mass
of cables, or perhaps, headphones by some pulling and repositioning is equivalent
to untangled headphones, so here with n-tangles we have a similar notion of equiv-
alence. We can sort these n-tangles into equivalent sets. We do this by Isotopy or
ambient homeomorphisms.

Definition 2. (Isotopy/Ambient homeomorphisms) Two n-tangle diagrams
T1, T2 are equivalent, if there exists a homeomorphism h : B3 → B3 with h(T1) = T2
for which we can find a continuous family ht : B3 × [0, 1] → B3 with h0 = id, the
identity homeomorphism, and h1 = h.

The main difference of the intuitive example of the headphones, and this defini-
tion is that isotopy does not simply move the strands of the n-tangle, it also moves
the rest of the closed ball B3 with the strands. This process avoids contracting all
the features of a tangle to a single point, and other anomalies of a similar nature.
If we “pull” at the tips of the tangle, the lack of thickness of the strands allows for
kinks and loops to vanish under regular homeomorphisms; something that is not
possible with headphones, since they indeed have thickness (surely this would be
the holy grail for any audiophile otherwise).

5

2.1 Tangle diagrams

Finally, we need to address the question of the behaviour of tangles. Definition 1
does not rule out that one of the strands could be specified by a map like the
topologist’s sine curve, i.e. some pathological, misbehaving curve that makes all
discussions difficult or at least tedious. We hence define Tame tangles and Wild
tangles.

Definition 3. (Tame and Wild tangles) We call a tangle tame, if it is isotopic
to a tangle the strands of which are finite polygonal chains, i.e. are piecewise linear
with finitely many pieces. A tangle that is not tame we call wild.

This condition is not given in Definition 1 immediately for the sake of generality,
although hard to study wild tangles pop up naturally in discussions, including our
discussions later. However we never explicitly work with wild tangles.

2.1 Tangle diagrams

As humans we understand tangles quite well as a construction in R3, however it
is often quite hard to work with such notions, in recent years there have been
developments in AR (Augmented reality) devices which help model and visualise
3 dimensional structures, however for most of Math. history we have been limited
with pencil and paper. Hence we draw tangle diagrams.

Intuitively a tangle diagram is just that: a diagram. One finds a clear area on
their paper, draws some lines with some over and under strands in mind. Typically
an under strand is denoted by a break in the strand where the crossing should be, we
see an example of a tangle diagram in Figure 1. We may contruct a tangle diagram
from a particularly nice tangle.

Definition 4. (Tangle diagrams) Let T be a tangle with all tips of the strands
on the same great circle of S2, and proceed as follows:

1. orient the great circle parallel to a plane,

2. project the strands and great circle of the tangle orthogonally to the plane,

3. if necessary apply isotopies to T so that in the projection no more than two
strands intersect at a point, and one strand self intersects at most once at a
point.

4. Finally, indicate in the projection at each crossing which strand was over and
which was under.

We refer to this construction as the diagram D of the tangle T .

We consider further primarily tame tangles, and tangles of a single strand. As
well we focus on tangle diagram and mostly take for granted the topological consid-
erations used to define tangles. We will refer to tame 1-tangle diagrams simply as
tangle diagrams.

6

2.2 Reidermeister moves

Figure 1: Example of a tangle diagram with 8 labeled points on the boundary (grey),
each crossing (red). The orientation of a strand is indicated by an arrow.

2.2 Reidermeister moves

An exceedingly useful theorem that aids discussing tangle diagrams is the Reider-
meister moves theorem. The theorem relates isotopy of tangles to equivalent changes
in a tangle diagram. With this tool we may abstract even further, and really only
worry about the number and position of crossings in a diagram.

Definition 5. (Reidermeister moves/ Isotopies) Two tangle diagrams are equiv-
alent, if there exists a finite sequence of moves as in Figure 2 that brings one diagram
into the shape of the other.

(a) The first move (b) The second move (c) The third move

Figure 2: The 3 basic Reidermeister moves

2.3 Oriented Gauss notation

As mentioned before we focus on the combinatorial information of a tangle diagram,
so we ignore the parametrizations of each strand, and only care about the crossings
and how they appear on the strands. We may abstract our diagrams to hold only
this information, to do so we chose the Oriented Gauss notation or Oriented Gauss
code. To produce the Oriented Gauss code we follow the steps:

1. Prescribe an order to the strands

7

2. For each strand prescribe an orientation, this is typically given by the map φi

associated to the strand in question,

3. For each crossing assign a name, typically a unique integer, and a sign either +
or − taking into account the orientations of the strands as shown in Figure 3,

4. For each strand associate a string of symbols by following from the start point
to the end point and for each crossing we encounter we record either the symbol
Os

i or U s
i where O for over if our current strand is over, U for under, s for the

sign of the crossing, and i the name of the crossing encountered.

5. The ordered set of the previously recorded strings is called the Oriented Gauss
code.

(a) This crossing
is assigned +

(b) This crossing
is assigned -

Figure 3: Types of crossings by orientation.

From any tangle diagram we can produce a Gauss code, however we do not get
a proper tangle diagram from any Gauss code. We provide some (non) examples of
tangles and their Oriented Gauss codes in Figure 4

3 Reiteration: OU tangle diagrams

Now we recall a few important concepts from the article [Bar-Natan et al., 2020],
on which we base our approach. We define an operation on tangle diagrams, an
algorithm, and mention that for the set of diagrams we consider the algorithm does
not produce a final result. Instead the algorithm approaches wild tangles.

Using the Oriented Gauss code we define an OU tangle diagram.

Definition 6. An OU tangle diagram is a tangle diagram with an Oriented Gauss
code, the strings of which can be split in two substrings where the first consists of
all Os and the second consists of Us

We find an example of an OU tangle diagram in Figure 4b, the first string can
be split into the substrings O+

1 O
+
2 and U+

3 U
+
1 , the second string can be split into

substrings O+
3 and U+

2 , hence the diagram is indeed OU. Likewise Figure 4a is also
an OU tangle diagram, however Figure 4c is not, since the Os and Us are mixed
together.

In generality for tangles with more than 1 strand, we need more tools to prove
anything useful. However for 1-tangles, we can already make a straight forward
observation.

8

(a) O+
1 U

+
1

(b) O+
1 O

+
2 U

+
3 U+

1 , O+
3 U

+
2 where the left

strand is first

(c) O+
1 U

+
2 O+

3 U
+
1 O+

2 U
+
3 (d) O+

1 O
+
3 U

+
2 U+

1 O+
2 U

+
3

Figure 4: Some (non) examples of Oriented Gauss codes

Theorem 1. All OU tangle diagrams of 1 strand are equivalent by Reidermeister
moves to the trivial tangle diagram.

Proof. Consider an OU tangle diagram of 1 strand. Since it is OU, we can split
the strand into two parts, one which consists of all over strands, and one with all
under strands. Having split the strand into two parts, we notice that the parts are
independent of one another, i.e. since the pieces are either all over or all under, they
have no interconnections or flips due to crossings. Finally, we can reshape each piece
independently to form a straight line, and in the process remove all the crossings.
Hence we have a trivial tangle. �

The question is then why do we work with 1-tangles, if they behave so poorly
with regard to the OU property? We will shortly see that only a very specific subset
of diagrams behave well.

9

3.1 Why the OU form matters

3.1 Why the OU form matters

The initial goal of the OU form was to completely classify tangle diagrams. In fact
the first assumption was that the OU form always existed and was unique. This
certainly makes research more systematic because such a form would be canonical,
i.e. a regular form for any diagram, one with which we could discern any two
diagrams immediately simply by inspection.

This would in a way “solve” tangle diagrams since we would have a systematic
approach to their study. However this was too ambitious, and the OU form does
not always exist. In fact the set of diagrams of OU form is in correspondence
with the subset of diagrams that are braids, of which there is extensive study and
understanding.

So what about the tangles that do not fit into this picture? Here we try to find
some patterns or structures arising from the Glide move and the OU algorithm in
the tangles that do not behave well. We choose to work with 1-tangles, since they
are the simplest (the least number of strands), so that we have less to take into
account.

3.2 The Glide move

The Glide move as defined in [Bar-Natan et al., 2020] is simply an alias for the
composition of an R2 and R3 move. We illustrate the Glide move in Figure 5.

Figure 5: The Glide move is equivalent to an application of R2 and R3.

The goal of the Glide move is to swap positions of over strands and under strands,
i.e. if the Gauss code of a tangle diagram contains U s

i O
t
j then by a glide move we

can swap those symbols to produce a Gauss code with Ot
iU

s
j . However this is not the

only change the Glide move introduces, other parts of the code are changed since we
introduce two new crossings. We can translate the Glide move into an operation on
the Oriented Gauss code. This makes it humanly possible to follow the evolution of
the diagram upon Gliding. For a tangle diagram with crossings a, b we distinguish
4 cases:

U+
a O

−
b , O

+
a , U

−
b 7→ O−

a U
+
b , O

−
c O

+
b O

−
d , U

−
c U

−
a U

+
d

U+
a O

+
b , O

+
a , U

+
b 7→ O+

a U
+
b , O

+
c O

+
b O

+
d , U

−
d U

+
a U

+
c

U−
a O

−
b , O

−
a , U

−
b 7→ O−

a U
−
b , O

+
d O

−
b O

+
c , U

+
c U

−
a U

+
d

U−
a O

+
b , O

−
a , U

+
b 7→ O+

a U
−
b , O

+
d O

−
b O

−
c , U

+
d U

+
a U

−
c ,

10

3.3 Acyclic Diagrams

i.e. we replace the substrings of the current Gauss code on the left with their
corresponding substrings on the right. We have that a, b, c, d ∈ N, the indices c, d
can be any number not yet used in the Gauss code. Each case corresponds to a
combination of crossing signs, we illustrate the first case in Figure 6.

(a) Before applying the Glide move (b) After applying the Glide move

Figure 6: Example of the Glide move, the triple U+
a O

−
b , O

+
a , U

−
b are each replaced

with O−
a U

+
b , O

−
c O

+
b O

−
d , U

−
c U

−
a U

+
d

3.3 Acyclic Diagrams

Definition 7. (Cyclic Tangle Diagrams) A “cascade path” is a path on the
tangle diagram that begins on one of the strands, follows the orientation of the
strand it is on, and at a crossing may drop from the upper strand to the lower
strand, if desired. A closed cascade path is one that returns to its starting position.
A diagram is cyclic if there exists a closed cascade path, a diagram that is not cyclic
is called acyclic.

An example of cascade paths and cyclic paths is given in Figure 7. The impor-
tance of this concept of cyclicity will be made clear shortly, when we mention the
OU algorithm and our variation on it.

3.4 OU Algorithm

We are now in the position to describe the algorithm from the paper:

1. For each string in order of occurrence in the Gauss code of the tangle, check
each pair of consecutive symbols

2. If we encounter a pair U s
i O

t
j, apply the Glide move,

3. If the diagram is in an OU form, we are done, if not return to step 1.

One will notice that the algorithm we outline here is not exactly as given in
[Bar-Natan et al., 2020], there after step 2 the diagram was simplified by R1 and
R2 moves. We choose not to do this step, since it is one less moving part in the

11

3.5 Issues arising with the approach

(a) The left red path is cascade since we drop
from an over strand to an understrand, the
right path is not, since we go up.

(b) The trefoil with a cycle indicated in red.
Notice the drop from the over strand to the
under on the left crossing.

Figure 7: (Non) examples of cascade paths, and cyclic diagrams

mechanism. The simplifications are not easily tracked, and one might notice some
miraculous simplifications completely changing the picture, removing “artifacts” in
a way we cannot easily follow. Not reducing by R1 and R2 moves should make it
simpler to conjecture statements.

For a tangle diagram D we write Γ(D) to represent the diagram resulting from
the application of the OU Algorithm on D. We would hope to see that for each
diagram D there exists a Γ(D), however it is shown in Theorem 2.3 of [Bar-Natan
et al., 2020] that Γ(D) only exists for diagrams that are acyclic.

3.5 Issues arising with the approach

So if we encounter an OU 1-tangle diagram, there is nothing much to discuss, the
distinction is not useful, since trivial tangle diagrams form only a small proportion
of all tangle diagrams. The converse of the statement is not true however, a trivial
tangle diagram can also be non OU, simply consider the tangle containing a single
Reidermeister 1 move (refer to Figure 2a the bottom diagram with UO), and here
the cyclic property helps distinguish these cases.

We had made the decision to not reduce by R1 and R2 moves, however this
produces issues with the original implementation of the Glide move, specifically,
there is a family of tangle diagrams for which the Glide move is not well defined.
For example in Figure 8 the OU algorithm will not successfully make a glide move,
since the move tries to swap the crossing with itself. As we push the crossing along
the under strand, the over strand retreats equally, in such a way we simply circle
around indefinitely. Any diagram that contains an R1 move like this will have issues
under the OU algorithm, so we decide to ignore crossings like this in step 2 of
the algorithm. This then implies that in some cases the algorithm can terminate
erroneously, which is not a serious problem, since we can simply remove the R1 loop
with no issues afterwards.

12

Figure 8: A very troublesome tangle

4 The “Scanning” tangle Drawing Algorithm

We present a 1-tangle drawing algorithm and a proof of its validity. We call it
the “Scanning” tangle drawing algorithm because one can picture it as a process
similar to a braiding board but upside down. The pieces of our finished diagram
are attached to the braiding board, and we hold a set containing crossings that we
still need to attach. We “scan” the diagram already on the braiding board and try
to find a crossing that we can attach. The scanning must be precise and greedy,
otherwise the method is not guaranteed to work. The generic steps of the algorithm
can be seen in Figure 10. We now give the algorithm again but more precisely:

1. If there are no crossings, we are done, otherwise proceed.

2. Label each segment between the crossings of the tangle. Consider the set of
crossings with each end labeled according to the respective connections in the
tangle.

3. Take the first crossing that we encounter along the tangle, leave the end from
which we came and attach the three other ends to the scanning front.

Figure 9: The first crossing, the left incoming strand we leave be, the right incoming
strand we raise to the “scanning” front.

4. At each iteration read the labels of pairs of ends attached to the front from
left to right, and attempt one of the following

(a) If possible attach a new crossing to the two strands, if there exists an
unused crossing with those labels (we allow rotating the crossings)

13

(b) If possible attach a new crossing to the left strand, if there exists an
unused crossing with that label

(c) If neither are possible, try to ”cap” off the strands, if they have the same
label.

If none of this is possible with the pair, consider the next pair given by the
right strand of the previous pair and the strand to the right of it. If none of
the consecutive pairs work, then try (b) with the right-most strand.

(a) Attaching two strands (b) Attaching one strand (c) Closing a ”cap”

Figure 10: What iterations of the scanning method look like

5. If there is only one strand left on the front, we are done, if there are more,
repeat the previous step.

Proof. What our algorithm essentially does is provide a nice drawing of the tangle
diagram, nice in the sense that it aims to not produce extra crossings in the process.
It is given that the tangle diagram is planar by definition, so if at every step the
diagram with scanning front is planar, then we are guaranteed to have a planar
drawing, with no extra crossings.

We see that at the first step, when we fix the first crossing, the diagram is
planar. Suppose at some iteration of the algorithm we have a planar diagram, then
by affixing a crossing or capping off two strands we do not change the planarity of
the diagram. Hence once the algorithm terminates, we have a planar tangle diagram.

Suppose at some iteration the algorithm produces a diagram with a cap that
closes off a loose strand as in Figure 11. If this happens we can trace out a closed
region as indicated in red. The crossing on the left lets a strand enter the region,
but since the region is closed it cannot leave the region without introducing extra
crossings, this implies that the original input for the algorithm did not encode a
planar diagram to begin with. So we need not worry about this situation occuring

�

5 Incidence matrices

Tangle diagrams essentially represent a combination of connections, i.e. strands
connect crossings, like edges connect vertices on a graph. Given this similarity, we
can construct incidence matrices for the crossings of our tangle diagrams.

We construct an incidence matrix for a tangle diagram as follows:

14

Figure 11: A supposed iteration of the scanning algorithm: we cap off a strand that
still needs to be connected. This cannot happen, since the region indicated in red
is a closed loop, this implies the input to the algorithm was not planar at the start.

1. Enumerate crossings in order of occurence in the tangle, if we have encoun-
tered a crossing before, we skip it. Prepare an “empty” square matrix A ∈
M(n, {R,G,B,W}) where n is the number of crossings, and R,G,B,W rep-
resent red, green, blue, and white.

2. For each crossing i in the order, making note of the orientation, we fill entries
of A with

• Aji = R

• Aii = G

• Aki = B

• for all m 6∈ {i, j, k}, Ami = W ,

where j, k are the crossings left of and right of the crossing i with respect to
the over strand, refer to Figure 12 for details

So in other words, each column represents a crossing, and we only consider what
is on either side of the crossing. Reading the columns from left to right we get a
sense of what crossings are hit. We picked R,G,B,W symbolically, since we wish to
plot the matrices, and after a few iterations, any numerical symbols will be illegible.

We plot some incidence matrices of tangles diagrams corresponding to closed
knots from the Rolfsen knot table as found in [Rolfsen, 2017]. We see interesting
patterns emerge! In Figure 13 we have a few instances of the trefoil tangle diagram
with an R1 loop added between some crossings, we see that there is some variation
after a number of iterations. This variation does not seem to be consistent since
the two lower examples have nearly the same incidence matrices, however the first
example differs greatly, e.g. the side bands are closer to the diagonal, and the pattern
around the diagonal is different.

15

Figure 12: Following the orientation of the crossing i, with respect to the over strand,
the left crossing is j and the right crossing is k. The orientation of the crossings j, k
is not important.

In Figure 14 we have a few more examples but of different tangles. We see
similar kind of behavior that as before, some have similar structures, for example,
the trefoil and 4,1 have about the same arrangement of squares, the bands and off
diagonal patterns, except the colors change. However if we compare them with 9,10
and 10,23, we see variation in features between those two examples, and the previous
trefoil and 4,1.

We see distinct and recognisable structures, yet it is not clear what the mecha-
nism behind their production could be.

16

Figure 13: On the left are diagrams of the trefoil with added R1 loops, on the right
their respective incidence matrices after 50 iterations of the OU algorithm

17

(a) trefoil diagram (b) 4,1 diagram (c) 9,10 diagram (d) 10,50 diagram

Figure 14: Comparing incidence matrices of several tangles diagrams under the OU
algorithm. Each column is a separate tangle, each column is 0, 5, 10, 50 iterations

18

6 Conclusions and Further work

6.1 What we did

From Figure 13 and Figure 14 we see that we indeed produce periodic structures with
differences from tangle to tangle, and between different starting tangle diagrams. We
did not however conclude how these patterns arise.

We only considered a few example diagrams for the trefoil tangle, perhaps for
different tangles we will see different results.

Another option is to consider Knots instead of Tangles, so that the glide move
may wrap around the starting and end strands.

6.2 Other things to consider

1. Our OU algorithm introduced the issue with R1 loops. We chose to ignore the
loops in our code, however it can be worthwhile to track the loops, e.g. count
their number or position of occurence.

2. The OU algorithm gets “stuck” within a cycle, augmenting the algorithm to
detect cycles and jump out of them could introduce more structures.

6.3 Convergence

We mentioned a distinction between tame and wild diagrams, yet never suggested
any sort of convergence of tame diagrams to wild ones. As the OU algorithm pro-
gresses the incidence matrix grows without bound, in such a way producing an
infinite structure. If we consider the sequence of incidence matrices as submatrices
of infinite matrices, and pick appropriate values for our symbolic R,G,B,W, we may
define convergence, and see if it produces any meaningful results.

6.4 Code and accumulated data

For computations and to produce the images (the matrices, and the blue tangle
diagrams) we used the SageMath package and its respective Knot Theory module.
We export the code after the references. We have precomputed and compiled a large
body of data, and stored it in a convenient place [Silvans, 2020]. Specifically, videos
in .avi format of sequences of incidence matrices for tangles corresponding to knots
in [Rolfsen, 2017] (we used the Oriented Gauss Code as given by each knot).

19

REFERENCES

References

Adams, Colin. 1994. Knot Book. W.H. Freeman.

Bar-Natan, Dror, Dancso, Zsuzsanna, & van der Veen, Roland. 2020. Over then
Under Tangles.

Lickorish, W.B. Raymond. 1997. An Introduction to Knot Theory. Graduate Texts
in Mathematics, vol. 175. New York NY: Springer Verlag.

Rolfsen. 2017. The Rolfsen Knot Table.

Silvans, Albert. 2020. Observations on Almost OU Tangles (Repository).

20

In []:
%matplotlib inline

In []:
from itertools import zip_longest, product,groupby
from numpy import pi, e, hstack, vstack, asarray
import numpy as np

from PIL import Image
import matplotlib.pyplot as plt
import os

In []:
def glide (link):
 '''
 An implementation of the glide move using the oriented
 Gauss code instead of a Dowker-like code.

 Takes as input a Link, outputs a more complicated Link
 '''
 gauss, signs = link.oriented_gauss_code()

 for comp in range(len(gauss)):
 for n in range(len(gauss[comp])-1):
 a, b = gauss[comp][n], gauss[comp][n+1]
 if abs(a) == abs(b) and sign(a) < sign(b):
 pass
 elif sign(a) < sign(b):
 L = len(signs)+1
 R = L+1

 a_sign, b_sign = signs[abs(a)-1], signs[abs(b)-1]

 # add the other crossings first
 # a_idx and b_idx are the locations of the strand with opposite sign
 Acomp_idx = gauss.index(list(filter(lambda x: -a in x, gauss))[0])
 Bcomp_idx = gauss.index(list(filter(lambda x: -b in x, gauss))[0])
 a_idx = gauss[Acomp_idx].index(-a)
 b_idx = gauss[Bcomp_idx].index(-b)

 if a_sign == 1 and b_sign == 1:
 gauss[Acomp_idx][a_idx] = [L,b,R]
 gauss[Bcomp_idx][b_idx] = [-R,a,-L]
 signs += [+1,-1]

 elif a_sign == 1 and b_sign == -1:
 gauss[Acomp_idx][a_idx] = [L,b,R]
 gauss[Bcomp_idx][b_idx] = [-L,a,-R]
 signs += [-1,+1]

 elif a_sign == -1 and b_sign == 1:
 gauss[Acomp_idx][a_idx] = [R,b,L]
 gauss[Bcomp_idx][b_idx] = [-R,a,-L]
 signs += [-1,+1]
 else:
 gauss[Acomp_idx][a_idx] = [R,b,L]
 gauss[Bcomp_idx][b_idx] = [-L,a,-R]
 signs += [+1, -1]

 # swap the orientations of a and b
 signs[abs(a)-1], signs[abs(b)-1] = signs[abs(b)-1], signs[abs(a)-1]
 # swap the signs of a and b
 gauss[comp][gauss[comp].index(a)] *= -1
 gauss[comp][gauss[comp].index(b)] *= -1
 # flatten the
 gauss[Acomp_idx] = flatten(gauss[Acomp_idx])
 gauss[Bcomp_idx] = flatten(gauss[Bcomp_idx])
 break

 return Link([gauss, signs])

 return Link([gauss, signs])

In []:
def nice_dowker(link):
 '''
 The built-in Dowker notation method does not order the strands,
 or at least I do not see that happening, so I made a version which does that
 '''
 gauss, signs = link.oriented_gauss_code()
 nice_dowker = [[None,None] for i in range(len(signs))]
 counter = 1
 for i in range(len(gauss)):
 for j in range(len(gauss[i])):
 if sign(gauss[i][j]) == +1:
 nice_dowker[abs(gauss[i][j])-1][1] = counter
 else:
 nice_dowker[abs(gauss[i][j])-1][0] = counter
 counter +=1
 nice_dowker = [tuple(i) for i in nice_dowker]
 return nice_dowker

In []:
some useful function abstractions to make the later code readable
f0 = lambda x: x
f90 = lambda x: np.rot90(x, k=1,axes=(0,1))
f180 = lambda x: np.rot90(x, k=2,axes=(0,1))
f270 = lambda x: np.rot90(x, k=3,axes=(0,1))
rotated = lambda x : [f(x) for f in [f0, f90, f180, f270]]

def arrange_crossings (link,arrowsize=5):
 '''
 Takes a link, and attempts to organise the crossings on a grid,
 as well as extra other visual elements. Outputs a Graphics object
 that can be plotted or saved

 It works by greedily focusing on the left most entries and depending on
 the structure below we take cases, it looks at each pair of strands in order and:
 (1) tries to connect a crossing to both strands
 (2) if not successful then tries to connect to the left one
 (3) checks if we can close the two strands

 The code is slow and not optimised
 '''

 # we get a "nice" dowker key and then order the crossings
 dowker = nice_dowker(link)
 final = max(flatten(dowker))

 # sort the dowker key by the min strand,
 # also we take into account that we need to sort the signs too
 dowker, signs = zip(*sorted(zip(dowker, link.orientation()), key= lambda x: min(x[0])))
 signs = list(signs)
 # we unwrap the dowker into 2x2 arrays the entries of which
 # are the numbers of the strands. the bottom numbers are coming in,
 # the top are coming out
 crossings = [np.array([[i[0]%final+1,i[1]%final+1],[i[1],i[0]]]) if j==1
 else np.array([[i[1]%final+1,i[0]%final+1],[i[0],i[1]]])
 for i,j in zip(dowker, signs)]
 crossings = [(n,i) for n,i in enumerate(crossings)]

 c_rotated = rotated(crossings[0][1])
 accepted = [n for n, c in enumerate(c_rotated) if c[1][0] == 1]
 top_line = flatten([c_rotated[accepted[0]][0,:].tolist(),c_rotated[accepted[0]][1,1]])
 accepted = [(accepted[0],signs[0],0)]
 crossings.pop(0)
 signs.pop(0)

 cross = [[(0,0), (0,1), (1,1), (1,0)]]
 lines = [[(0,1), (0,1), (0,1)],[(1,1), (1,1), (1,1)],[(1,0), (2,0), (2,1)]]
 extra_bits = []

 old = len(crossings)
 new = old - 1
 while top_line != [1]:

 checked = 0
 for i, (n, (m,c)) in product(range(len(top_line)-1),enumerate(crossings)):
 c_rotated = rotated(c)
 # check if we can connect two strands
 if top_line[i:i+2] in [c_rot[1].tolist() for c_rot in c_rotated]:
 checked = 1
 c_rot = c_rotated[[c_rot[1].tolist() for c_rot in c_rotated].index(top_line[i:i+2])
]
 accepted += [([c_rot[1].tolist()
 for c_rot in c_rotated].index(top_line[i:i+2]),signs[n],m)]
 cx, cy = lines[i][2]
 cross += [[(cx,cy),(cx,cy+1),(cx+1,cy+1),(cx+1,cy)]]
 extra_bits += [lines[i],lines[i+1]]
 lines[i] = [(cx,cy+1)]*3
 lines[i+1] = [(cx+1,cy+1)]*3
 lines = [lin if n==i or n==i+1
 else lin[:2]+[(lin[2][0],lin[2][1]+1)] for n,lin in enumerate(lines)]
 top_line[i:i+2] = c_rot[0].tolist()
 top_line = list(flatten(top_line))
 crossings.pop(n)
 signs.pop(n)
 break
 # check if we can connect at left strand
 # here we assume that we will never have to check the right most strand in top_line
 elif sum([True if x[1,0] == top_line[i] else False for x in c_rotated]):
 checked = 1
 c_rot = c_rotated[[True if x[1,0] == top_line[i]
 else False for x in c_rotated].index(True)]
 accepted += [([True if x[1,0] == top_line[i]
 else False for x in c_rotated].index(True),signs[n],m)]
 lines = [lin[:2]+[(lin[2][0],lin[2][1]+1)] for lin in lines]
 cx,cy = lines[i][2]
 lines = [[lin[0],(lin[1][0]+2,lin[1][1]),(lin[2][0]+2,lin[2][1]+1)]
 if (cx,cy) not in lin and lin[2][0] > cx
 else lin for lin in lines]
 lines = [[lin[0],(lin[1][0],lin[1][1]),(lin[2][0],lin[2][1]+1)]
 if (cx,cy) not in lin and lin[2][0] < cx
 else lin for lin in lines]
 cross += [[(cx,cy),(cx,cy+1),(cx+1,cy+1),(cx+1,cy)]]
 extra_bits += [lines[i]]
 lines = lines[:i] +[[(cx,cy+1)]*3,[(cx+1,cy+1)]*3, [(cx+1,cy),(cx+2,cy),(cx+2,cy+1)]
] + lines[i+1:]
 top_line[i] = c_rot[0].tolist() + [c_rot[1,1]]
 top_line = list(flatten(top_line))
 crossings.pop(n)
 signs.pop(n)
 break
 elif top_line[i] == top_line[i+1]:
 checked=1
 # add the 'caps', i.e. connect the strands on top
 extra_bits += [lines[i]+list(reversed(lines[i+1]))]
 top_line.pop(i+1)
 top_line.pop(i)
 lines.pop(i+1)
 lines.pop(i)
 lines = [lin[:2]+[(lin[2][0],lin[2][1]+1)] for lin in lines]
 break

 if crossings == []:
 for i in range(len(top_line)-1):
 if top_line[i] == top_line[i+1]:
 checked = 1
 # add the 'caps', i.e. connect the strands on top
 extra_bits += [lines[i]+list(reversed(lines[i+1]))]
 top_line.pop(i+1)
 top_line.pop(i)
 lines.pop(i+1)
 lines.pop(i)
 lines = [lin[:2]+[(lin[2][0],lin[2][1]+1)] for lin in lines]
 break

 elif checked == 0:
 for n, (m,c) in enumerate(crossings):

 for n, (m,c) in enumerate(crossings):
 c_rotated = rotated(c)
 if sum([True if x[1,0] == top_line[-1] else False for x in c_rotated]):
 c_rot = c_rotated[[True if x[1,0] == top_line[-1]
 else False for x in c_rotated].index(True)]
 accepted += [([True if x[1,0] == top_line[-1]
 else False for x in c_rotated].index(True),signs[n],m)]
 lines = [lin[:2]+[(lin[2][0],lin[2][1]+1)] for lin in lines]
 cx,cy = lines[-1][2]
 lines = [[lin[0],(lin[1][0]+2,lin[1][1]),(lin[2][0]+2,lin[2][1]+1)]
 if (cx,cy) not in lin and lin[2][0] > cx
 else lin for lin in lines]
 lines = [[lin[0],(lin[1][0],lin[1][1]),(lin[2][0],lin[2][1]+1)]
 if (cx,cy) not in lin and lin[2][0] < cx
 else lin for lin in lines]
 cross += [[(cx,cy),(cx,cy+1),(cx+1,cy+1),(cx+1,cy)]]
 extra_bits += [lines[-1]]
 lines = lines[:-1] +[[(cx,cy+1)]*3,[(cx+1,cy+1)]*3, [(cx+1,cy),(cx+2,cy),(cx+2,c
y+1)]]
 top_line[-1] = c_rot[0].tolist() + [c_rot[1,1]]
 top_line = list(flatten(top_line))
 crossings.pop(n)
 signs.pop(n)
 break

 G=Graphics()

 for n,(d,s,m) in enumerate(accepted):
 if d==0 and s==1:
 G += arrow2d(cross[n][3],cross[n][1],width=1,arrowsize=arrowsize,zorder=1)
 G += circle(((cross[n][2][0]+cross[n][0][0])/2,(cross[n][2][1]+cross[n][0][1])/2),0.25,fi
ll=True, facecolor='white',edgecolor='white',zorder=1)
 G += arrow2d(cross[n][0],cross[n][2],width=1,arrowsize=arrowsize,zorder=2)
 if d==0 and s==-1:
 G += arrow2d(cross[n][0],cross[n][2],width=1,arrowsize=arrowsize,zorder=1)
 G += circle(((cross[n][2][0]+cross[n][0][0])/2,(cross[n][2][1]+cross[n][0][1])/2),0.25,fi
ll=True, facecolor='white',edgecolor='white',zorder=1)
 G += arrow2d(cross[n][3],cross[n][1],width=1,arrowsize=arrowsize,zorder=2)
 if d==1 and s==1:
 G += arrow2d(cross[n][2],cross[n][0],width=1,arrowsize=arrowsize,zorder=1)
 G += circle(((cross[n][2][0]+cross[n][0][0])/2,(cross[n][2][1]+cross[n][0][1])/2),0.25,fi
ll=True, facecolor='white',edgecolor='white',zorder=1)
 G += arrow2d(cross[n][3],cross[n][1],width=1,arrowsize=arrowsize,zorder=2)
 if d==1 and s==-1:
 G += arrow2d(cross[n][3],cross[n][1],width=1,arrowsize=arrowsize,zorder=1)
 G += circle(((cross[n][2][0]+cross[n][0][0])/2,(cross[n][2][1]+cross[n][0][1])/2),0.25,fi
ll=True, facecolor='white',edgecolor='white',zorder=1)
 G += arrow2d(cross[n][2],cross[n][0],width=1,arrowsize=arrowsize,zorder=2)
 if d==2 and s==1:
 G += arrow2d(cross[n][1],cross[n][3],width=1,arrowsize=arrowsize,zorder=1)
 G += circle(((cross[n][2][0]+cross[n][0][0])/2,(cross[n][2][1]+cross[n][0][1])/2),0.25,fi
ll=True, facecolor='white',edgecolor='white',zorder=1)
 G += arrow2d(cross[n][2],cross[n][0],width=1,arrowsize=arrowsize,zorder=2)
 if d==2 and s==-1:
 G += arrow2d(cross[n][2],cross[n][0],width=1,arrowsize=arrowsize,zorder=1)
 G += circle(((cross[n][2][0]+cross[n][0][0])/2,(cross[n][2][1]+cross[n][0][1])/2),0.25,fi
ll=True, facecolor='white',edgecolor='white',zorder=1)
 G += arrow2d(cross[n][1],cross[n][3],width=1,arrowsize=arrowsize,zorder=2)
 if d==3 and s==1:
 G += arrow2d(cross[n][0],cross[n][2],width=1,arrowsize=arrowsize,zorder=1)
 G += circle(((cross[n][2][0]+cross[n][0][0])/2,(cross[n][2][1]+cross[n][0][1])/2),0.25,fi
ll=True, facecolor='white',edgecolor='white',zorder=1)
 G += arrow2d(cross[n][1],cross[n][3],width=1,arrowsize=arrowsize,zorder=2)
 if d==3 and s==-1:
 G += arrow2d(cross[n][1],cross[n][3],width=1,arrowsize=arrowsize,zorder=1)
 G += circle(((cross[n][2][0]+cross[n][0][0])/2,(cross[n][2][1]+cross[n][0][1])/2),0.25,fi
ll=True, facecolor='white',edgecolor='white',zorder=1)
 G += arrow2d(cross[n][0],cross[n][2],width=1,arrowsize=arrowsize,zorder=2)

 # add a little length to the outgoing strand
 lines = [lin[:2]+[(lin[2][0],lin[2][1]+1)] for lin in lines]
 for lin in lines+extra_bits:
 G += line(lin)

 # add a little length to the incoming strand
 G += line([(0,0),(0,-2)])

 G.set_aspect_ratio(1)
 G.axes(False)

 return G

In []:
knot = Knots().from_table(3,1)

for i in range(10):
 knot = glide(knot)
drawing the arrows is an issue because it's not clear how to scale them consistently,
so we coded the function in a way one can specify it on the scaling on their own.
we notice a general rule of thumb that works is to specify scaling as 1/number of crossings
G = arrange_crossings(knot,arrowsize=1/len(knot.orientation()))

G.show(figsize=[5,5])

In []:
#for 1 tangles
T.<t> = LaurentPolynomialRing(ZZ)

coloring = {0:[255,255,255], # white
 T(t):[255,0,0], # red
 T(-1):[0,0,255], # blue
 T(1-t):[0,255,0]}# green

colorize_incd_mat = lambda m: [[coloring[j] for j in i] for i in m]

def get_incd_mat(link):

 gauss, signs = link.oriented_gauss_code()
 gauss = gauss[0]
 glen = len(gauss)

 columns = []
 for i in gauss:
 if abs(i) not in columns:
 columns += [abs(i)]
 # we pad the gauss code with itself, so that it's easier to find the over strands later
 pgauss = [gauss[-1]] + gauss + [gauss[0]]

 entries = [[abs(pgauss[ent])-1,
 abs(pgauss[ent+2])-1]
 for ent in [gauss.index(-i) for i in columns]]

 size = len(signs)
 mat = np.full((size,)*2, T(0))

 for c,[i,j] in zip([i-1 for i in columns],entries):
 s = signs[c]
 mat[c][c] = T(1-t)
 if s == 1:
 mat[j][c] = T(t)
 mat[i][c] = T(-1)
 else:
 mat[j][c] = T(-1)
 mat[i][c] = T(t)

 return mat

In []:
code to produce incidence matrices of the tangle diagrams
import os

knot_names = [(n,j) for n,i in enumerate([1,1,2,3,7,21,49,165],3) for j in range(1,i+1)]
pas = 0
for knot in knot_names:
 frames = 50
 video_name = "video_"+str(knot[0])+"_"+str(knot[1])+"_"+str(frames)+".avi"
 knot = Knots().from_table(*knot).mirror_image()

 for i in range(frames):
 nodes = arrange_crossings(knot)

 img = Image.fromarray(np.array(colorize_incd_mat(get_incd_mat(knot)),dtype='uint8'),'RGB')
 img = img.resize((600,600), resample=Image.NEAREST)#Image.BOX)
 image_name = './' + str(i) + '.png'
 img.save(image_name)
 knot = glide(knot)

 # need to have ffmeg installed on system
 os.system("ffmpeg -f image2 -r 2 -i ./%01d.png -vcodec huffyuv -y ./"+video_name)
 os.system("rm ./*.png")

In []:
checking how the algorithm differs for the same tangle but with an added R1 move in between

knot = Knots().from_table(3,1)
knot, signs = knot.oriented_gauss_code()
knot = knot[0]
c = len(signs)

knot_names = [[Knot([[knot[:i]+[c+1,-(c+1)]+knot[i:]],signs + [1]]),
 Knot([[knot[:i]+[c+1,-(c+1)]+knot[i:]],signs + [-1]])] for i in range(len(knot)+1)]

knot_names = flatten(knot_names)

for n, knot in enumerate(knot_names):

 frames = 50
 G = arrange_crossings(knot)
 G.save('3_1_ed_'+str(n)+'.png')

 for i in range(frames):
 knot = glide(knot)

 img = Image.fromarray(np.array(colorize_incd_mat(get_incd_mat(knot)),dtype='uint8'),'RGB')
 img = img.resize((600,600), resample=Image.NEAREST)#Image.BOX)
 image_name = './tests_with_3_1/' + str(n) +'_'+ str(frames) + '.png'
 img.save(image_name)

