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Abstract

In this thesis we examine Carroll physics, taking the speed of light to 0 in a limit. The
motivation for this is that in recent years, several applications of Carroll physics have come
to light, such as in the study of black holes, gravitational waves and holography. We will
examine what Carroll geometry is, and how particles and strings travel through a curved Carroll
spacetime. In order to do this, we will compare Carroll physics with Galilean physics, which is in
some sense dual to Carroll physics. The similarity between the Carroll algebra and the Galilean
algebra is especially clear when considering only 2 spacetime dimensions. More generally, we
may consider generalised ‘Galilean’ algebras which are important when describing strings and
p-branes with low energies. These are very similar to generalised Carroll algebras. Given
a ‘Galilean’ gravity theory adapted to p-branes, where the corresponding symmetry group is
given by an extension of a p-brane Galilei group, we may use this similarity to immediately
write down a similarly generalised Carrollian gravity theory. We will investigate this similarity
at the level of the classical particle and string σ-models. When interpreting Carroll spacetime
as a limit of a Lorentzian spacetime, in some cases the resulting σ-models describe superluminal
objects. These cases include low energy p-branes coupling to p-brane Galilean gravity theories.
We will however also encounter examples where this is not the case.
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1 Introduction

In this thesis we will be discussing non- and ultra-relativistic limits of general relativity, and in
particular limits of particles, strings and p-branes coupling to the Riemannian metric.

A non-relativistic limit of general relativity is called Newton-Cartan geometry. This Newton-
Cartan geometry can be used to describe Newtonian gravity in a formalism that is covariant under
general coordinate transformations. In this way, Newtonian gravity can be understood in a geo-
metric manner.

In modern theoretical physics, symmetries are often considered to be fundamental to theories.
Famously, the standard model of particle physics is a gauge theory of a Lie group, and each particle
corresponds to an irreducible representation of this group. A similar statement can be made for
general relativity. The theory of general relativity may be obtained via a gauging of the Poincaré
group. The non-relativistic limit of the Poincaré group is given by the Galilei group. However, a
gauging of the Galilei group does not lead to Newton-Cartan geometry. Instead, Newton-Cartan
geometry may be obtained via a gauging of the Bargmann group, an extension of the Galilei group
[1].

The non-relativistic limit of general relativity corresponding to Newtonian gravity is particu-
larly interesting when describing the dynamics of particles. However, when considering relativistic
models describing the dynamics of extended objects such as strings, this limit leads to results that
are in some way trivial, or unsatisfactory. Instead, in order to describe strings moving with low
velocities, it is necessary to consider a different limit of general relativity [2]. The Galilei group,
and any of its extensions are unrelated to this limit. Instead the group corresponding to this is
a ‘stringy’ version of the Galilei group. We may further generalise this to p-brane Galilei groups,
when considering objects extended in p spatial directions.

The opposite of a non-relativistic limit is the less famous ultra-relativistic limit. The ultra-
relativistic limit of general relativity is called Carroll-geometry. It similarly describes a generally
covariant geometry through which particles may propagate. There is a reason why this limit is
not very well known. Single particles in Carroll geometry can not move. This can be understood
by noting that in the ultra-relativistic limit we take the speed of light to 0, together with the fact
that nothing can move faster than the speed of light. Following this reasoning, information can not
move through space in a Carroll geometry.

Carroll geometry can be obtained by gauging the Carroll algebra [3]. This algebra may be
obtained via a contraction of the Poincaré algebra, and consists of rotations, boosts and translations,
similarly to the Poincaré and Galilei algebras. However, it differs from these two algebras in the
way that the boosts work. Poincaré boosts leave only the spacetime distance between two points
invariant, Galilean boosts leave time distances invariant, and Carroll boosts leave spatial distances
invariant. Carroll geometry is different from Newton-Cartan geometry in that there is no analogue
of the Bargmann algebra.

Since Carroll geometry does not allow any movement of particles, it is not straightforward to see
why studying the geometry should be physically interesting. Indeed, when it was first discovered
by Lévy Leblond, it was remarked that at that moment, the practical use of such a group was quite
problematic [4]. However, in recent times it has come up frequently in very interesting physical
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subjects such as gravitational waves, dynamics of black hole horizons and holography. As such, it
is more interesting than previously thought to study Carroll geometry.

The Carroll algebra can be generalised similarly to the Galilei algebra. However, whereas the
p-brane Galilean algebra is particularly interesting when studying p-branes, it is not immediately
clear that the same is true for a specific generalised Carroll algebra. Indeed, two different ultra-
relativistic limits of the relativistic string have similar dynamics [5].

There are multiple ways in which the Carroll and Galilei geometries are similar to each other. In
this thesis we will be mainly interested in a similarity that exists at the level of the algebra. Namely,
there exists an invertible map between generalised versions of the Carroll and Galilei algebras [6]
with interesting properties and consequences. Specifically, the map relates p-brane Galilean algebras
with similarly generalised Carroll algebras. Although this map is not an isomorphism (except when
considering only 2 spacetime dimensions), we may use this map to relate results obtained for the
p-brane Galilei algebras to generalised Carroll algebras. Since these algebras and their extensions
can be gauged to describe Galilean and Carroll geometries, we will also be able to use this map
to relate Galilean and Carroll geometries. Given the large amount of research that has gone into
non-relativistic geometry, it is an interesting question whether we may directly apply the obtained
results to the less studied ultra-relativistic limit.

The main question we will be answering in this thesis is

“How may the similarity of generalised Galilean and Carroll algebras be used to obtain new
results for ultra-relativistic geometry?”

In order to do this, we will find it convenient to mostly focus on the limits of models describing
the movement of (extended) objects in a background of general relativity. We will find that these
limits will allow us to deduce a lot about the related geometry. After all, an important part of
general relativity is to describe how particles are affected by gravity. As we will see, in this context
we may indeed use this similarity to relate models describing Galilean and Carroll particles to each
other.

However the physical interpretation of these models can be more challenging. Namely, some of
the models obtained by this similarity can be interpreted as describing objects moving faster than
light. On the other hand, there are also exist models where this does not occur. Furthermore, the
analysis of Carroll gravity considered in this thesis should not be considered complete, since we do
not in all cases give the evolution equations of the background fields, or the matter coupling of the
background fields to particles.

We will start by discussing the history and the applications of the Carroll group in section
2. After that, we will look at the Carroll algebra and Galilei algebra as limits of the Poincaré
algebra in section 3 using the Inönü-Wigner contraction. We will also introduce the corresponding
flat spacetimes as limits of Minkowski space. Furthermore, we consider possible extensions of the
Galilei algebra and discuss stringy variants of non-relativistic and ultra-relativistic algebras. In
section 4 we will discuss how general relativity can be formulated in terms of vielbein fields and
the spin connection, and we will see how gauging the Poincaré algebra leads to general relativity.
In section 5 we discuss how we can generalise the Inönü Wigner contraction in cases where it
does not produce an invariant limit, using the Lie algebra expansion. In section 6 we will discuss
non- and ultra-relativistic limits of the Einstein Hilbert action in both a first order and second
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order formulation, and discuss which limits are useful to understand the backgrounds of particles
and strings. In section 7 we will discuss the non-relativistic limits of test particles and strings,
using the Lie algebra expansion. In order to do this, we consider a ‘stringy’ version of the non-
relativistic limit. We will furthermore pay special attention to the role played by torsion in this limit.
In section 8 we will consider conventional ultra-relativistic limits of the particle and string, and
look at the Polyakov and configuration space version of these actions. We compare the analogue
of the ‘stringy’ non-relativistic limit with conventional Carroll limits. In section 9 we will look
at similarities between the brane versions of the Carroll and Galilei algebras, and exploit these
relations to write down new gravity and p-brane actions. We will comment on the properties of the
obtained p-brane actions. In the conclusion 10 we will answer our main question by discussing the
relations between the generalised Galilei and Carroll algebras described in the previous sections.

In the appendix we will discuss several technical details related to the limits we take in this
thesis. In appendix A we will discuss the symmetry properties of a specific action that has an
important role in this thesis. In appendix B we will discuss the occurrence of Lagrange multipliers
when taking limits. In appendix C we will discuss the occurrence of extensions using the Lie algebra
extension. In appendix D we will discuss two matrix identities that are useful when taking limits.

2 History and applications of the Carroll group

The Carroll group was first described as an ultra-relativistic limit in [4], where it is named after
the writer and mathematician Lewis Carroll:

“The behaviour of a possible Universe which would be governed by the group invariance here is
reminiscent of that of “Wonderland” [7]. The absence of causation is particularly clear in Alice’s
adventures as well as the arbitrary value of the time intervals (cf. in particular Chapter 7,“A mad
tea-party”).”

Another property of the Carroll group is captured in the sequel to “Alice in Wonderland”,
“Through the looking glass, and what Alice found there” [8]:

“Well, in our country,” said Alice, still panting a little, “you’d generally get to somewhere
else if you run very fast for a long time, as we’ve been doing.” “A slow sort of country!” said the
Queen. “Now, here, you see, it takes all the running you can do, to keep in the same place. If you
want to get somewhere else, you must run at least twice as fast as that!”

This reflects that particles can not move in a Carrollian space-time. The Carroll group is
somehow the opposite of Galilei group, as in Newton-Cartan space-time any two non-simultaneous
events can be causally related, time is universal and velocity is unrestricted.
The Carroll group is one of three possible contractions of the Poincaré group, the other being the
Galilei group. The contraction to the Galilei group corresponds to taking c → ∞, whereas the
contraction to the Carroll group corresponds to taking c→ 0. The third possible contraction is the
static group, which is a contraction of both the Carroll and Galilei group [9]. We will not discuss
the static group further in this text.
Carroll symmetries occur in the strong coupling limit of general relativity, which can be used to
calculate the quantum propagation amplitude between two gravitational field configurations [10].
Furthermore Carroll symmetries occur near spacetime singularities [11]. Here, spacetime points
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spatially decouple. In particular, these two limits have in common that the spacetime points sep-
arate causally, i.e. the light cone collapses to a line. In particular, this means that the classical
equations of motion, that determine the evolution of the fields, are ordinary differential equations,
depending only on time. However, we do not have to go all the way to the singularity to obtain
Carrollian physics. Any black hole horizon can be described as a Carrollian geometry emerging
from an ultra-relativistic limit where the near-horizon radial coordinate plays the role of a virtual
speed of light [12].
The Carroll group also appears as a subgroup of a Bargmann group in one dimension higher. These
groups are the isometries of respectively Carroll space and Bargmann space, which have a specific
metric structure. One such a Bargmann space is the plane gravitational wave, in which the Carroll
space can be embedded. It follows that the group of isometries of the plane gravitational wave is
the Carroll group [13].
The Carroll group also has possible applications to holography. According to [14], Warped Con-
formal field theories may be the simplest of field theories without Lorentz invariance that can
be described holographically. The warped geometries that correspond to these field theories have
global symmetries which correspond to Carroll symmetries, with added dilatations.

3 Introduction to the Carroll algebra

Here we will introduce the Carroll algebra as an Inönü-Wigner contraction of the Poincaré algebra.
In order to this, we will first introduce the Poincaré group and the Galilei group. We will examine
the (flat) spacetimes related to these algebras. We will also examine how the Carroll and Galilei
algebra are related to each other via the Bargmann algebra, which gives us one way in which the
Carroll and Galilei algebra are dual to each other. We will also consider generalised versions of these
algebras, where we do not split the scaled translations in a time and space part, but differently.
We will note that these generalised versions of the Carroll and Galilei algebras are similar to each
other. This is the relation that we will exploit later in section 9.

3.1 The Poincaré group

The Poincaré group is usually defined as the Lorentz group with added translations. Perhaps the
most well known application of the Poincaré group is as the isometry group of Minkowski spacetime.
Minkowski spacetime is characterised as a manifold MD. This manifold is similar to RD, but has no
canonical basis or an origin. We know only the spacetime interval between two points ∆s2(p1, p2),
and a set of invertible parametrizations φ : MD → RD, p → ~x for which the distance function is
given by

∆s2(p1, p2) = (~x1 − ~x2)T η(~x1 − ~x2), (3.1)

where η = diag(−1, 1..., 1) is the Minkowski metric. These parametrizations correspond to iner-
tial observers. We will in practice only use these parametrizations. The Poincaré group is the
global isometry group of Minkowski space. That is, the group of maps f : MD → MD, sat-
isfying ∆s2(p1, p2) = ∆s2(f(p1), f(p2)) is the Poincaré group. This is most easily seen using a
parametrization φ with origin φ(p0) = 0. Let us denote ~f(~x) = φ(f(p)). Then ~f : RD → RD
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satisfies the property

(~f(~x)− ~f(0))T η(~f(~x)− ~f(0)) = ∆s2(f(p), f(p0)) = ∆s2(p, p0) = xT ηx. (3.2)

Thus, ~f consists of a Lorentz transformation L~x = ~f(~x) − ~f(0) plus a translation ~f(0). The
generators of the D dimensional Poincaré algebra are translations PÂ and Lorentz transformations

JÂB̂, with Â = 0, 1, ..., D − 1. The commutation relations are given by

[PÂ, PB̂] = 0

[JÂB̂, PĈ ] = 2ηĈ[B̂PÂ]

[JÂB̂, JĈD̂] = 4η[Â[ĈJD̂]B̂]. (3.3)

We can separate translations into time translations P0 = H and space translations Pa, a = 1, ..., D−
1. We can separate the Lorentz transformation into the boosts J0b = Gb and rotations Jab. It will
be convenient to consider the algebra rewritten using these generators. The nonzero commutation
relations are then given by

[Gb, Pc] = δcbP0 (3.4a)

[Jab, Pc] = 2δc[bPa] (3.4b)

[Gb, H0] = Pb (3.4c)

[Jab, Jcd] = 4δ[a[cJd]b] (3.4d)

[Gb, Gd] = −Jdb (3.4e)

[Gb, Jcd] = 2δb[cGd]. (3.4f)

3.2 Inönü-Wigner Contraction

The Inönü-Wigner group contraction is a way to contract a group. The group contraction was first
introduced in 1953 as a way to describe how groups can be limits of other groups. In particular,
since classical mechanics is a limiting case of relativistic mechanics, the Galilei group should be a
limit of the Poincaré group. The Inönü Wigner contraction formalises the sense in which this is
true. We will limit our description of the group contraction to the contraction of Lie algebras.

To define an Inönü-Wigner contraction of a Lie algebra g with bracket [, ], we use a linear
mapping φλ : g → g depending continuously on a dimensionless parameter λ ∈ [0, 1]. φλ is
invertible at all λ except at λ = 0. We define a new bracket [, ]′ contracted from [, ]

[a, b]′ := lim
λ→0

[a, b]′λ := lim
λ→0

φ−1
λ [φλ(a), φλ(b)], (3.5)

given that this limit is well defined for any elements a, b ∈ g. This is called an Inönü-Wigner
contraction. In particular, we are interested in Inönü-Wigner contractions of the following form:
Let g = V0 ⊕ V1. We define φλ by setting φλ(v0) = v0, φλ(v1) = λv1 for any v0 ∈ V0, v1 ∈ V1.

If [V0, V0] 6⊂ V0, the limit of [a, b]′λ is divergent and we do not obtain a new algebra. This sets
constraints upon which subspaces of g we can choose. Given this constraint, the contracted Lie
algebra is given by the commutation relations

[v0, w0]′ = [v0, w0]

[v0, v1]′ = [v0, v1]

[v1, w1]′ = 0, (3.6)
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for v0, w0 ∈ V0, v1, w1 ∈ V1.

The contracted Lie algebra has an invariant commutative subalgebra, given by V1. To under-
stand this physically, let us look at the contracted subgroup given by exp(av1) where a is a finite
parameter. In taking the limit, v1 becomes very small, and thus we effectively restrict ourselves
to group elements infinitesimally close to the origin. We replace the finite parameter a with the
infinitesimal parameter ε satisfying ε2 = 0. It is a simple calculation to show that any two such
elements commute. The parameters of the subgroup exp(av0) remain finite. The commutation of
an element with a finite parameter and an infinitesimal parameter remains infinitesimal, and hence
the contracted group is invariant.

Since the algebra of the bracket [, ]′λ is equivalent to the algebra [, ], the Inönü-Wigner contraction
can equivalently be viewed as being defined by a continuously changing λ dependent basis on g.
This can be seen as follows. The coefficients of [, ]′λ given the basis (gi) can be calculated in terms of
the coefficients of [, ]. In this basis, the matrix coefficients Aij = Aij(λ) are given by φλ(gi) = Aijgj .
Then

[gi, gj ]
′
λ = φ−1

λ [Aikgk, Ajmgm]

= φ−1
λ (AikAjmc

n
kmgn)

= AikAjmC
n
kmA

−1
np gp

=: C ′
p
ij(λ)gp (3.7)

Thus the new coefficients are given by

C ′
p
ij(λ) = AikAjmC

n
kmA

−1
np . (3.8)

Instead, the same coefficients can also be obtained by using a change of basis. Given the generators
gi, we can define the new generators g′i = φλ(gi). We then have

[g′i, g
′
j ] = [Aikgk, Ajmgm]

= AikAjmc
n
kmgn

= AikAjmc
n
kmA

−1
np g
′
p

= C ′
p
ijg
′
p. (3.9)

This shows that the algebra defined by [.]′λ and [, ] are equivalent. For any basis of g, the coefficients
of the new algebra g are the same as the coefficients obtained by applying a basis transformation
to the algebra. It also shows that the bracket [gi, gj ]

′ is isomorphic to the bracket defined by

[g′i, g
′
j ] = limλ→0C

′k
ij (λ)g′k. The coefficients of the algebra [, ]′ can be calculated by using C ′kij =

limλ→0C
′k
ij(λ).

3.3 The Galilei Algebra

Choosing g to be the Poincaré algebra and

V0 = {Jab, H}, V1 = {Ga, Pa}. (3.10)
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The corresponding Inönü-Wigner contraction is the Galilei algebra. Thus, the subgroup of the
Poincaré algebra generated by the boosts and the spatial translations is contracted to the iden-
tity. Physically, this implies that we only consider small velocity differences and small spatial
translations. We obtain the following nonzero commutation relations:

[Gb, H] = Pb

[Jab, Pc] = 2δc[bPa]

[Jab, Jcd] = 4δ[a[cJd]b]

[Gb, Jcd] = 2δb[cGd]. (3.11)

The effect of the Inönü Wigner contraction on the Poincaré algebra (3.4) is to set [Gb, Gd] (3.4e)
and [Gb, H] (3.4c) to zero. As the Galilean limit corresponds to taking the speed of light to ∞,
we may consider the scaling factor λ to be proportional to the inverse speed of light, λ = c0

c . In
our discussion, the dimensionfull constant c0 exists only to make the scaling factor dimensionless,
should not occur in any final answer and has no physical interpretation. If we would attempt to
make approximations for a small but finite c0

c , c0 should be considered as the characteristic velocity
for which the approximation holds. However, since we will be taking the limit c → ∞, any finite
characteristic velocity will be in some sense equivalent. We will avoid explicitly discussing it by
expressing anything in units where c0 = 1, so that λ = 1

c . The Galilei algebra is also the algebra
of symmetry transformations of the action S =

∫
dτ 1

2mẋ
2, which describes freely moving particles.

Related to this is the fact that the Galilei group is part of the global symmetry group of flat
Newton-Cartan geometry.
We can see this in the following way. The following maps on RD are a faithful representation of
the Galilei group.

x′a(t, x) = ηa +Rabx
b + λat,

t′(t, x) = t+ η0. (3.12)

Here ηa parametrizes the spatial translations, η0 the timelike translations, λa the boosts and Rab
an orthogonal matrix parametrizing the rotations. In order to obtain a good grasp of the flat
Newton-Cartan structure it is helpful to switch to a “local” perspective. First we note that the
time difference ∆t(p1, p2) = t(p1) − t(p2) is invariant. This implies that the one-form τ = dt is
invariant under the Galilean transformations (3.12). The one-form τ determines surfaces of constant
time, t = constant. The squared spatial distance d2

S(p1, p2) = ||xa(p1)−xa(p2)||2 is preserved under
Galilean boosts only if p1 and p2 occur at the same time, while all other transformations leave it
invariant for any p1 and p2. Thus, we have a spatial metric on the surfaces of constant time. We
cannot use this spatial metric to define a unique metric on the Galilean spacetime. Instead, the
inverse metric may be pushed forward along the embedding to Galilean spacetime. The tensor
δab ∂

∂xa
∂
∂xb

is invariant under the Galilean boosts. More specifically, it is invariant under the Lie
derivative of the vector field VBoost = t λa∂a. Thus, the flat Galilean structure is given by a one
form τ = dt and a tensor γ = δab∂a∂b on a D dimensional manifold.

These structure can be seen as the non-relativistic c → ∞ limit of the Minkowski metric
η(c) = −c2dt2 + δabdx

adxb and the inverse metric η−1(c) = −c−2(∂t)
2 + δab∂a∂b. This can be seen

as

lim
c→∞

η

c2
= −dt2, lim

c→∞
c2η−1 = δab∂a∂b. (3.13)
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A key property here is that dt spans the kernel of γ, when γ is viewed as a map from the co-tangent
space to the tangent space. Interestingly, these structures are not only invariant under the group
action (3.12), but also under time dependent space translations and rotations, i.e. the constants
ηa are replaced by time dependent functions ηa(t), Rab(t). Instead, the Galilei group is obtained
by demanding that straight lines remain straight under the Galilean transformations. In other
words, the Galilei group are those transformations that additionally leave the connection Γµνρ = 0
invariant (acting via the Lie derivative on the connection).

However, as the real world we experience in our daily lives is approximately a flat Newton-
Cartan spacetime, we should expect that at constant time t, there is a notion of spatial distance.
On the hyperplanes of constant t, the spatial distance function is invariant. To interpret this in a
local sense we introduce the projective inverses of δab∂a∂b, dt

2. These projective inverses are given
by a vector field v = vµ∂µ and a spatial metric g = gµνdx

µdxν satisfying the boost-independent
equations

(−τ2 + g)−1 = −v2 + γ, vµgµν = 0, v0 > 0. (3.14)

The last equation determines the sign of v. The first equation can be rewritten as

(−τµτν + gµν)(−vνvρ + γνρ) = δρµ. (3.15)

We cannot use these equations to solve for all components. Leaving va independent, we obtain

v0 = 1, g0a = −vbδba, gab = δab. (3.16)

Thus, on any submanifold given by t = constant, the metric induced by the pullback along the
embedding is uniquely determined to be δab, giving a notion of spatial distance between events
occurring at the same time.

Since vµ transforms under boosts, there is no unique symmetric affine connection connection
that can be introduced on this space. For a discussion on the properties of the possible connections,
see [15].

3.4 The Carroll algebra

Another way to contract the Poincaré algebra is to choose V0 = {Jab, Pa}, V1 = {Gb, H}. This
implies that in this limit we only consider small time differences and velocity differences. The
Inönü-Wigner contraction then gives the Carroll algebra, with the following nonzero commutation
relations:

[Gb, Pc] = δcbH

[Jab, Pc] = 2δc[bPa]

[Jab, Jcd] = 4δ[a[cJd]b]

[Gb, Jcd] = 2δb[cGd]. (3.17)

This algebra is obtained from the Poincaré algebra (3.4) by setting [Gb, Gd] (3.4e) and [Gb, Pc]
(3.4a) to zero.
We may immediately notice that commutation of boosts and time translations do not produce a
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translation. Since this commutation results in the Galilean algebra in a difference in velocity, we
may expect that the boost must leave any velocity invariant. A group action of the Carroll group
acting on the coordinate space of spacetime can be parametrized as

x′a(t, x) = xa + ηa +Rabx
b,

t′(t, x) = t+ η0 + λaR
a
bx
b. (3.18)

Here ηa parametrizes the spatial translations, η0 the timelike translations, ba the boosts, and
Rab is an orthogonal matrix parametrizing the rotations. We will, similarly to the Poincaré and
Galilei case introduce structures on a manifold, and define the Carroll group as the group leaving
those structures invariant. To motivate the structures introduced we observe that as c → 0, the
Minkowski metric η(c) = −c2dt2 + δabdx

adxb and its inverse have the following limits:

g = lim
c→0

η = δabdx
adxb (3.19)

−v2 = lim
c→0

c2η−1 = −∂2
t . (3.20)

Thus, we define a flat Carroll spacetime as a manifold equipped with the vector field v = ∂t and
degenerate metric g = δabdx

adxb. The transformations given in (3.18) leave these structures invari-
ant. Additionally, the structures are invariant under space-dependent time translations, i.e. η0(xa)
becomes dependent on the spatial coordinates xa. The Carroll group is obtained by demanding
that straight lines remain straight under the Carroll transformations. In other words, the Carroll
group are those transformations that additionally leave the ‘flat’ connection Γµνρ = 0 invariant.

In a Carroll spacetime, the spatial distance between points is boost-invariant and can be cal-
culated with the metric g. Meanwhile, the time difference between two events taking place at
different spatial locations is boost-dependent. We may similarly to the Galilean case introduce a
boost-dependent metric by introducing a degenerate metric γ and a one-form τ , satisfying

(−v2 + γ)−1 = −τ2 + g γ(τ) = 0 τ0 > 0, (3.21)

where the bivectors v2, γ are seen as maps from the co-tangent space to the tangent space of AD.
Leaving τa undetermined, we may solve for γ and τ0 as

γ00 = δabτaτb, γ0a = −δabτb, γab = δab, τ0 = 1. (3.22)

Along lines of constant xa, we may therefore measure the time in a Carroll invariant way using the
pullback of τµ along the embedding of the line.

3.5 The Bargmann algebra

Another interesting algebra is the Poincaré algebra extended by a generator M , Poincaré ⊗ U(1).
When we do an Inönü-Wigner contraction with the linear map

H → H + Z, Z → − 1

c2
Z, Gb →

1

c
Gb

Jab → Jab Pa →
1

c
Pa, (3.23)
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we obtain the Bargmann algebra, which has the same commutation relations as the Galilei algebra,
except

[Pa, Gb] = δabM. (3.24)

Since M commutes with every element of the Bargmann group, i.e. it is in the center of the group,
we say that the Bargmann group is a central extension of the Galilei group. Another way to obtain
this algebra is from the conserved charges of the classical nonrelativistic point particle action

S =

∫
dt

1

2
mẋ2. (3.25)

They are given by

H =
1

2
mẋ2

Pa = mẋa

Jab = mẋ[axb]

Gb = mẋbt−mxb (3.26)

Using Poisson brackets they generate the Bargmann algebra. Specifically, {Pa, Gb}PB = δabm gives
the central charge.
Related to this is that under Galilean boosts the Lagrangian (3.25) transforms as a total derivative,

δ(vbGb)S =

∫
dt mvaδabẋ

b. (3.27)

The Bargmann group was first discussed by Bargmann in [16]. It was encountered as the group
under which quantum mechanical states of the non-relativistic Schrödinger equation transform,
instead of the Galilei group. It was later recognised that, in order to properly describe the non-
relativistic limit of a particle, the Bargmann group should be used instead of the Galilei group.

Similarly to the Galilei group, there is such a thing as a Bargmann spacetime. Bargmann
spacetime is a semi-Riemannian manifold, equipped with a null vector field, which generates an
isometry of the metric. We call a vector field that generates an isometry a Killing vector field. In
other words, we have a non-degenerate metric gµν together with a vector field ξµ satisfying

gµνξ
µξν = 0 Lξgµν = 0. (3.28)

A flat Bargmann space B is given by ηµν = diag(−1, 1, ..., 1) and ξ = (1, 0, ..., 0,−1). We can
alternatively write this using light-cone coordinates η+− = 1, η++ = η−− = 0, ηab = δab, ξ = ∂−.
The Killing vector field is then given by

X = ηa∂a + η+∂+ + η−∂− + ηa∂a + λabx
b∂a + λa(xa∂− − x+∂a). (3.29)

In terms of the Minkowski space, the boosts generated by λa correspond to Λ+a, generating a
Lorentz transformation. The Lorentz transformations generated by Λ−a do not occur due to the
invariance requirement of ξ. If we identify points of the Bargmann space related by a η− translation
we obtain a flat Galilean space, where x+ has the role of time. Using this identification Newton-
Cartan geometry, the non-relativistic limit of a semi-Riemannian geometry can be described in a
generally covariant manner [17]. Furthermore, the unique connection of a Bargmann space uniquely
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defines a connection on Newton-Cartan geometry. Additionally, gauging the Bargmann algebra
leads to Newtonian gravity, under an additional assumption on the curvature of spacetime [1].

The Bargmann space has another surprising property. Specific null surfaces, in particular
D − 1 dimensional hypersurfaces of dimension D that contain the null Killing vector field ξ, are
Carroll manifolds [18]. Thus, Bargmann spaces contain in some sense both Carroll and Galilean
manifolds. This also induces a unique connection on the Carroll manifold. This idea has led to
some interesting applications of the Carroll algebra. For example, the relation between the BMS
algebra and conformal Carroll algebras discussed in [19].

3.6 Newton-Cartan and Carroll algebras for extended objects

The Carroll and Galilei algebra do not exhaust all possible contractions of the Poincaré algebra.
When discussing the non-relativistic particle the contraction to the Galilei algebra is used in order
to take the limit. However, when discussing limits of extended objects such as strings and p-branes
it is, in particular for the non-relativistic limit, much more interesting to use versions of these
contractions that are adapted to these extended objects. In the Galilean and Carroll algebra we
distinguish between time and space directions. Time is special first of all because timelike vectors
have negative length squared. However, when considering particles in particular it is special because
particles always travel in a timelike direction. When taking the non-relativistic limit of the particle,
the parametric velocity of the worldline in the time direction is assumed to be very large compared to
the parametric velocity in the spacelike direction. In other words, the time direction is longitudinal
to the worldline. On the other hand, the space-like directions are called transverse. On the other
hand, when discussing strings we have 2 spacetime directions in which the string is extended, and
D − 2 transverse directions in which the string is free to move. Therefore, the low velocity limit
corresponds to letting the longitudinal directions become very large compared to the transverse
directions. In order to distinguish the transverse directions from the longitudinal directions we
split the indices labelling spacetime coordinates Â = 0, ...., D − 1 into the longitudinal directions
labelled by A = 0, 1, ...p and the transverse directions a = p+ 1, ..., D − 1. In particular, particles
correspond to p = 0 and strings correspond to p = 1. In terms of these indices the Poincaré algebra
is given by

[GAb, Pc] = δĉb̂PA (3.30a)

[Jab, Pc] = 2δc[bPa] (3.30b)

[GAb, PC ] = −ηCAPb (3.30c)

[Jab, Jcd] = 4δ[a[cJd]b] (3.30d)

[JAB, JCD] = 4η[A[CJD]B] (3.30e)

[GAb, GCd] = ηACJdb + δdbJAC (3.30f)

[GAb, Jcd] = 2δ[b[cGAd] (3.30g)

The p-brane Galilean contraction of the Poincaré algebra then corresponds to setting

V0 = {PA, JAB, Jab}, V1 = {JAb, Pa}, (3.31)

contracting the transverse translations and JAb. JAb correspond to both boosts in the transverse
directions (A = 0), and rotations mixing the longitudinal and transverse direction (A = 1, ..., p).
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Similarly JAB correspond to both boosts in the longitudinal directions (A = 0, B = 1, ..., p) and
rotations in the longitudinal directions (A = 1, ..., p, B = 1, ..., p). We will refer to JAB, Jab and
JAb as longitudinal rotations, transverse rotations and boosts respectively.

On the other hand, the Carroll p-brane contraction of the Poincaré algebra corresponds to
setting

V0 = {Pa, JAB, Jab}, V1 = {JAb, PA}, (3.32)

which corresponds essentially to exchanging a, b ↔ A,B. Throughout the thesis we will not ex-
clusively associate p-brane actions with p-brane Galilei and Carroll algebras. In order to keep the
names of the algebra consistent with their applications we will therefore in the remaining part of
the thesis refer to these contractions as p + 1 Galilei contractions and p + 1 Carroll contractions,
following [20].

4 General relativity as a gauge theory

In order to take non-relativistic limits, we must first be clear what we are actually taking limits of.
Thus, in this section we will introduce general relativity. We will introduce the Einstein-Hilbert
action, the frame field, the spin connection, and first and second order formalism. After that, we
will rewrite the Einstein Hilbert action in terms of gauge fields. Thereafter we will discuss the
actions governing the motion of relativistic particles, strings and branes and their symmetries.

4.1 The Einstein Hilbert action in terms of the vierbein and the spin-connection

The Einstein Hilbert action is given by

SEH = G

∫ √
−gRdDx, (4.1)

where G is the gravitational constant, R the Ricci scalar, a contraction of the Riemann curvature
tensor

Rρσµν = 2∂[µΓρν]σ + 2Γρλ[µΓλν]σ, (4.2)

and where Γρµν is the Levi-Civita connection, the torsionless connection for which the covariant
derivative of the metric is zero,

∇µgνρ = ∂µgνρ − Γσµνgσρ − Γσµρgσν = 0 Γσ[µν] = 0. (4.3)

The contraction is given by R = δµρ gσνR
ρ
σµν . The action is invariant under gct’s. The equations of

motion determine the evolution of the metric.
An equivalent definition of the Riemann curvature tensor is that for any vector field vρ it satisfies

2∇[µ∇ν]v
ρ = ∇µ∇νvρ −∇ν∇µvρ = Rρσµνv

σ. (4.4)

To write the Einstein Hilbert action in terms of gauge fields, we will first rewrite it in terms of

the frame field E Â
µ and the spin connection ω ÂB̂

µ . The frame field also goes under different names.
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In one spacetime dimension, it is referred to as the einbein, in two spacetime dimensions as the
zweibein and in four spacetime dimensions it is referred to as the vierbein. In unspecified spatial
dimensions it is often called the vielbein.

The frame field consists of D orthonormal differential forms, one timelike one-form E 0
µ of length

−1, and D − 1 spacelike one-forms E a
µ of length 1. In other words, we have

E Â
µ g

µνE B̂
ν = ηÂB̂. (4.5)

Since length is invariant under a Lorentz transformation, the frame fields are only defined up to
local (spacetime coordinate dependent) Lorentz transformations, with infinitesimal transformations
given by

δE Â
µ = ΛÂ

B̂
E B̂
µ , (4.6)

where ΛÂB̂ is antisymmetric in Â and B̂, and dependent on spacetime coordinates. It should not
be a surprise that using a basis of the tangent space in which the metric is diagonal can simplify
matters a lot. In generally it is not possible to choose a coordinate system of spacetime in which
the metric is locally diagonal. Therefore we need the frame field.

The inverse vielbein is written as Eµ
Â

, and similarly consists of a timelike vector field of length
−1, and D − 1 spacelike vector fields of length +1, i.e.

Eµ
Â
gµνE

ν
B̂

= ηÂB̂. (4.7)

The one-forms EÂ = E Â
µ dx

µ form an orthonormal basis of the cotangent space at each point. In
other words, they form a moving frame of the cotangent space. Similarly, the inverse frame field
EÂ = Eµ

Â
∂µ form a moving frame of the tangent space. We may use the frame field to express

tensors in terms of the corresponding moving frame. For example, for a vector field vµ we have

vµ∂µ = vµE Â
µ EÂ =: vÂEÂ, (4.8)

where vÂ = vµE Â
µ denote the coefficients of the vector field in the moving frame. We note that

these coefficients are scalars when considering general coordinate transformations. On the other
hand, they do transform under Lorentz transformations whenever we transform the vielbein field.
Thus, they may be called Lorentz vectors. These properties generalise to Lorentz one-forms, and
more generally to Lorentz tensors.

We will sometimes refer to the indices Â as flat indices, and to the indices µ as curved indices.
Flat indices always correspond to Lorentz tensors, and curved indices to ‘normal’ tensors. We will
also discuss objects that have both flat and curved indices. These are both Lorentz tensors and

‘normal’ tensors. For example EÂµ is both a one-form and a Lorentz vector.

The Einstein-Hilbert action can simply be rewritten in terms of the frame field by using these
expressions for the metric and the inverse metric. This gives us the so called second order formalism
of general relativity. We also want to discuss the first order formalism. In order to do so, we
will first introduce the spin connection. The spin connection is closely related to the Levi-Civita
connection. It is naturally encountered when we discuss the action of the covariant derivative on
Lorentz tensors. Since the covariant derivative is an important operation in general relativity, it is
useful to know how it acts on Lorentz tensors. To find out how this works, it is sufficient to add
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one property to the connection. Whereas the Levi-Civita connection is defined using the metric
postulate (4.3), demanding the invariance of the metric under the covariant derivative, we define

the spin connection ω ÂB̂
µ by demanding the vielbein postulate

DµE
Â
ν = ∂µE

Â
ν − ΓρµνE

Â
ρ − ω Â

µ B̂
E B̂
ν = 0. (4.9)

Here, Γρµν is the usual Levi-Civita connection. The covariant derivative is defined such that the
covariant derivative of Lorentz tensors remain tensors. Since it is a derivative, this also implies the
invariance of the metric, implying that the usual definition of the Levi-Civita connection is implied
by the vielbein postulate. The spin connection is required in order to make this identity locally
Lorentz invariant. The spin connection can be uniquely solved from these equations. Since Γ has
no torsion, we have Γρ[µν] = 0. Therefore the unique torsionless spin-connection satisfies

2D[µE
Â
ν] = 2∂[µE

Â
ν] − 2ω Â

[µ B̂
E B̂
ν] = 0. (4.10)

From this equation we may solve for the spin connection. It is given by

ω ÂB̂
µ = −2Eν[Â∂[µE

B̂]
ν] + EνÂEρB̂EµĈ∂[νE

Ĉ
ρ] (4.11)

The Levi-Civita connection is not a tensor. Similarly, the spin connection is not a Lorentz
tensor. Instead, the transformation rule of the spin connection under an infinitesimal local Lorentz
transformation is given by

δω ÂB̂
µ = −∂µΛÂB̂ + ΛÂ

Ĉ
ω ĈB̂
µ + ΛB̂

Ĉ
ω ÂĈ
µ (4.12)

The Lorentz curvature can then be defined by

2D[µDν]v
Â = R Â

µν B̂
vB̂. (4.13)

Since the covariant derivative of the vielbein is 0, they commute. In other words, first expressing
a vector in the frame field and then taking the covariant derivative, is the same as taking the
covariant derivative in a coordinate basis and then expressing it in the frame field. Therefore we
have

R Â
µν B̂

vB̂ = 2D[µDν]v
Â = 2E Â

ρ D[µDν]v
ρ = 2EÂρ R

ρ
σµνv

σ = 2EÂρ R
ρ
σµνE

σ
B̂
vÂ (4.14)

From this, we may conclude that R Â
µν B̂

= EÂρ E
σ
B̂
Rρσµν . The Lorentz curvature and the Riemann

curvature tensor are the same tensor expressed in a different basis. The curvature can be expressed
in terms of the spin connection (and hence in terms of the frame field) as

R ÂB̂
µν = 2∂[µω

ÂB̂
ν] − 2ω Â

[µ Ĉ
ω ĈB̂
ν] . (4.15)

This expression allows us to write the Einstein-Hilbert action in terms of the spin connection and
the vierbein field in first order formalism. The Lagrangian is then given by

L = EEµ
Â
Eν
B̂
R ÂB̂
µν , (4.16)

17



where E is the determinant E = εÂB̂ĈD̂ε
µνρσE Â

µ E
B̂
ν E

Ĉ
ρ E

D̂
σ . The Lagrangian can also be written

as
L = εµνρσεÂB̂ĈD̂E

Â
µ E

B̂
ν R

ĈD̂
ρσ . (4.17)

The equations of motion (in a vacuum) are given by

R B̂Ĉ
ÂĈ
− 1

2
δB̂
Â
R ĈD̂
ĈD̂

= 0. (4.18)

The spin connection can also be considered as independent variables. This is called first order
formalism, whereas a dependent spin connection is called second order formalism. In first order
formalism, the Einstein-Hilbert action is given by the same expression, except that the spin connec-
tion is now independent. From the equation of motion of the spin connection follows the vielbein
postulate (4.10), and hence the equations of motion of the frame fields are given by (4.18), as in
the second order formalism.

In first order formalism, the Einstein-Hilbert action only contains first order derivatives, acting

on ω ÂB̂
µ . On the other hand, in second order formalism the Einstein Hilbert action contains second

order derivatives of the frame field (or the metric). Thus the name.

4.2 The Einstein Hilbert action as the action of gauge fields

Now that we have written the Einstein Hilbert action in terms of the vielbein and spin connection,
we will relate these fields to the gauge fields of the Poincaré algebra. Let us write down the gauge

fields corresponding to PÂ as E Â
µ , and the gauge fields corresponding to ΛÂB̂ as ω ÂB̂

µ .

In particular, the transformation of E Â
µ and ω ÂB̂

µ under θ = ΓÂPÂ + 1
2ΛÂB̂MÂB̂ are given by

δE Â
µ = ∂µΓÂ − ω Â

µ B̂
ΓB̂ + ΛÂ

B̂
E B̂
µ

δω ÂB̂
µ = ∂µΛÂB̂ − 2ω Ĉ[Â

µ Λ
B̂]

Ĉ
(4.19)

The fields transform like differential forms under gct’s, with parameter Γµ

δE Â
µ = Γν∂νE

Â
µ + E Â

ν ∂µΓν

δω ÂB̂
µ = Γν∂νω

ÂB̂
µ + ω ÂB̂

ν ∂µΓν . (4.20)

We would like to let the gauge field of translations “become” the frame field, and the gauge field
of rotations the spin connection. However, this is not something that directly follows. After all,
in GR we do not have a thing such as a local translation, and the vielbein is determined by the
frame field. These ‘issues’ are resolved when we examine the equations of motion of the first order
Einstein Hilbert Lagrangian, written in terms of both the Lorentz and translational gauge fields,

L = EEµ
Â
Eν
B̂
R AB
µν ,

R ÂB̂
µν = 2∂[µω

ÂB̂
ν] − 2ω Â

[µ Ĉ
ω B̂Ĉ
ν] . (4.21)
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The equations of ω ÂB̂
µ are given by

R Â
µν = 2∂[µE

Â
ν] − 2ω Â

[µ B̂
E B̂
ν] = 0. (4.22)

From this equation, two results follow. First of all, we can solve this equation to express ω ÂB̂
µ

in terms of the gauge field of local translations (similarly to how we can express the Levi-Civita
connection in terms of the metric). By the elimination lemma we may substitute this into the
action without changing the equations of motion. This lemma is stated as follows :

Let the action I[ψ, φ] depend on two sets of variables ψ and φ, such that the equation δI
δφ = 0

can be solved algebraically for the variables φ as functions of the variables ψ, i.e. φ = φ(ψ). In this
case

δI

δφ

∣∣∣∣
φ=φ(ψ)

≡ 0. (4.23)

The remaining equations of motion for are then equivalent to those obtained by variation of the
new action Î[ψ] = I[ψ;φ(ψ)], i.e. that obtained by back-substitution.

Secondly, the transformation of the translational gauge field becomes equal to a gct plus a
Lorentz transformation. This clarifies the role of the local translations in the second order formal-
ism, namely they correspond to gct’s. The correspondence between local translations and gct’s is
a bit more subtle then it seems, as we will see in the next section.

4.3 The difference between local translation and gct’s in the second order for-
malism

The Einstein-Hilbert action is manifestly invariant under gct’s and local Lorentz transformations.
However, the action is not invariant under P -transformations

δE Â
µ = ∂µΓÂ − ω Â

µ B̂
ΓB̂

δω ÂB̂
µ = 0 (4.24)

The usual transformation of the spin connection under P -transformations is zero. However, we can
modify the transformation of the spin connection so that the P -transformation is a symmetry of
the action. Furthermore, this modification disappears on the equations of motion, i.e. it is a Zilch

symmetry. The difference between a local P -transformations with parameter ΓÂ and gct’s with

parameter Γµ = Eµ
Â

ΓÂ acting on the gauge field of local translations and can be calculated using:

δ(ΓÂPÂ)E Â
µ = ∂µ(Γλ)E Â

λ + Γλ∂µ(E Â
λ )− ω Â

µ B̂
E B̂
λ Γλ (4.25)

R Â
µν = 2∂[µE

Â
ν] − 2ω Â

[µ B̂
E B̂
ν] (4.26)

δ(Γν∂ν)E Â
µ = ∂µ(Γλ)EÂλ + Γλ∂λE

Â
µ (4.27)

δ(ΛĈB̂JĈB̂)E Â
µ = ΛÂ

B̂
E B̂
µ . (4.28)
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It can then be seen that

δ(ΓB̂PB̂)E Â
µ = δ(Γν∂ν)E Â

µ − δ(Γλω ĈB̂
λ JĈB̂)E Â

µ − ΓλR Â
λµ . (4.29)

Note that we have

0 = δ(ΓĈPĈ)ω Â
µ B̂
6= δ(Γν∂ν)ω Â

µ B̂
− δ(Γλω ĈD̂

λ JĈD̂)ω Â
µ B̂

. (4.30)

Since the Einstein-Hilbert action is invariant under general coordinate transformations and local
Lorentz transformations, but not under

δE Â
µ = ΓλR Â

λµ , δω Â
µ B̂

= 0. (4.31)

We will redefine δ(ΓÂPÂ) such that δ(ΓÂPÂ)S = 0, by adding a term to the above δω such that
the transformation is a symmetry of the EH action.

We can do this in the following way. We consider an ansatz for δω of the form

δω ÂB̂
µ = aR [Â

µ ΓB̂] + bE [Â
µ R

B̂]

Ĉ
ΓĈ + cE [Â

µ RΓB̂], (4.32)

where RÂµ = R ÂB̂
µB̂

. Using

∂E

∂E Ĉ
ρ

= EE ρ

Ĉ

∂E µ

Â

∂E Ĉ
ρ

= −E ρ

Â
E µ

Ĉ
(4.33)

and the Lagrangian density

L = EE µ

Â
E ν
B̂
R ÂB̂
µν (4.34)

we obtain
δL
δEĈρ

= EE ρ

Ĉ
E µ

Â
E ν
B̂
R ÂB̂
µν − 2EE ρ

Â
E µ

Ĉ
E ν
B̂
R ÂB̂
µν (4.35)

Furthermore
δL

δω ÊF̂
ρ

= 2E[E α
Â
E ρ

Ê
E σ
F̂

+ E σ
Â
E α
Ê
E ρ

F̂
+ E ρ

Â
E σ
Ê
E α
F̂

]R Â
σα (4.36)

So that, up to partial integration, we have

δL =
δL
δE Ĉ

ρ

δE Ĉ
ρ +

δL
δω ÂB̂

µ

δω ÂB̂
µ = EΓF̂ (−RF̂R− 2R Ê

Â
R Â
ÊF̂

)

+ EΓF̂ (RF̂R(2a+ 4c) +RÊR
Ê
F̂

(−2a+ 4b) +R Ê
Â
R Â
ÊF̂

(2a)

= EΓF̂ ((2a+ 4c− 1)RF̂R+ (2a− 2)R Ê
Â
R Â
ÊF̂

+RÊR
Ê
F̂

(−2a+ 4b)) = 0 (4.37)

Thus we obtain a = 1, b = 1
2 , c = −1

4 . Modifying the transformation rule of the spin connection
with (4.32), we obtain a symmetry of the Einstein-Hilbert Lagrangian.
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4.4 Relativistic particles, string and branes

In order to discuss the non- and ultra-relativistic limits of particles, strings and branes, it will
be useful to first introduce the actions governing the motion of these objects, and discuss their
symmetries and other properties.

To describe a relativistic point particle, we need a spacetime manifold M with a metric Gµν .
Furthermore we need a worldline I, which is embedded into M via a function X : I → M . We
denote the coordinates of the worldline by τ , and the coordinates of the point X(τ) as Xµ(τ).
Hence, we differentiate between the coordinates of the embedding map Xµ, and coordinates of the
target space xµ. A relativistic point particle without spin is governed by the action

SNG = −m
∫
dτ
√
−Ẋ2, (4.38)

where Ẋ2 = ẊµẊνGµν . The action can alternatively be written in the Hamiltonian formalism.
However, the canonical Hamiltonian, H = pµẊ

µ − L = 0. Instead the Hamiltonian form of the
action is

SH =

∫
dτ pµẊ

µ − e

2
(p2 +m2), (4.39)

where pµ are the momenta conjugate to Xµ, and the einbein e is a Lagrange multiplier. Its equation
of motion results in the ‘on shell’ condition p2 +m2 = 0, which is the relativistic energy-momentum
relation. The Hamiltonian is simply given by H = e

2(p2 +m2). This is simply a Lagrange multiplier
multiplied by the on-shell condition.

We can solve for the momenta of the action using its own equation of motion as

pµ =
ẊνGνµ

e
(4.40)

to obtain a different form of the action, which we will call ‘Polyakov-type’.

SPol =

∫
dτ

1

2

Ẋ2

e
− m2e

2
. (4.41)

We can than in turn eliminate e once again obtain the action (4.38). e is then given by

e =

√
−Ẋ2

m
. (4.42)

Form this solution it is clear that −e2 should be interpreted as a one-dimensional metric of signature
−1 on the worldline. e is precisely the single vielbein field of this 1-dimensional metric, or the
einbein. If we substitute the solution (4.42 back into the action (4.41), we once again obtain the
‘Nambu-Goto type’ action (4.38). We can summarise this in the diagram

SNG
on shell conditions−−−−−−−−−−−→ Sphase

elimination of momenta−−−−−−−−−−−−−−→ SPol
elimination of worldvolume metric−−−−−−−−−−−−−−−−−−−−−→ SNG (4.43)

As we will take limits, these three actions will give different but essentially equivalent perspectives
of what is happening. Taking the ultra and non-relativisitic limits of these 3 actions will result in
3 actions that are related in a similar manner, cf. section 8 for the Carroll analogue, as well as the
non-relativistic limit [21]. This action has various types of symmetries. The first one to discuss is
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reparametrization invariance of the worldline, in other words the general coordinate transformation
of the worldline. An infinitesimal transformation is given by

δ(ξ)Xµ = ξẊµ δ(ξ)pµ = ξṗµ δ(ξ)e =
d

dτ
(ξe), (4.44)

where ξ is a worldline-dependent parameter. In other words, this is a gauge symmetry. Under this
transformation, the action (4.38) transforms only up to a boundary term

δS = −m
∫
dτ

d

dτ
(ξ
√
−Ẋ2). (4.45)

The next type of symmetry are so called σ-model symmetries, corresponding to reparametrizations
of the target space, given by

δXµ = Γµ, δGµν = LΓGµν . (4.46)

These ‘symmetries’ are in general not actual symmetries, as we transform the background fields.
Thus, in general, Noethers’ theorem does not apply to them. Only if the vector field is a killing
vector, i.e. if it satisfies LΓGµν = 0, does Γ generate an actual symmetry. In that case the
transformation generates an isometry of the metric. In the flat case, where Gµν = ηµν is the
Minkowski metric, the isometries are given by the Poincaré group. Thus, the symmetry group of the
particle in Minkowski spacetime is the Poincaré group, together with worldline reparametrizations.

If we write the action in terms of the vielbein fields, using Gµν = E Â
µ E

B̂
ν ηÂB̂, we obtain addi-

tional σ-model symmetries given by the local Lorentz transformations (4.6). Thus, in the vielbein
formalism the σ model symmetries of this action are given by the local Poincaré transformations,
consisting of Lorentz transformations and general coordinate transformations.

A relativistic particle with charge q couples to an electromagnetic potential Aµ as

S = S0 + q

∫
dτAµẊ

µ, (4.47)

where S0 is the free point particle action. Transforming the electromagnetic potential by a total
derivative, δ(a)Aµ = ∂µa, changes the action by a total derivative

δS = q

∫
dτ Ẋµ∂µa = q

∫
dτ ȧ. (4.48)

We will now discuss a string action along similar lines. A relativistic string is described by
an embedding from a worldsheet into a semi-Riemannian spacetime manifold with the embedding
X : (τ, σ) → X(τ, σ). Here, τ and σ are coordinates of the worldsheet. We similarly denote the
coordinates of the embedding function by Xµ. The pullback of the metric to the worldsheet along
the embedding induces a metric on the worldsheet, given by

Gαβ = ∂αX
µ∂βX

νGµν (4.49)

Here, α takes the values σ0 = τ , σ1 = σ. The string action then takes the form

S = −T
∫
dτdσ

√
−detGαβ, (4.50)
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where T is the tension of the string. dτdσ
√
−detGαβ is the area of a small piece of the worldsheet,

and the action is proportional to the area of the worldsheet. This is the Nambu-Goto action, de-
scribing the string using only the embedding coordinates, i.e. in configuration space. Alternatively,
using the notation

∂τX
µ = Ẋµ, ∂σX

µ = X ′
µ

(4.51)

for the worldsheet derivatives, we may write

−T
∫
dτdσ

√
(ẊµGµνX ′

ν)2 − (ẊµGµνẊν)(X ′ρGρσX ′
σ) (4.52)

Similarly to the particle case, the canonical Hamiltonian, H = pµẊ
µ − L equals zero. Instead,

the Hamiltonian form of the action is given by

S =

∫
dτ PµẊ

µ − e

2
(P 2 + (TX ′)2)− u(PµX

′µ). (4.53)

Here, Pµ are the momentum densities, and e and u are Lagrange multipliers. The on shell conditions
of the string are given by

P 2 + (TX ′)2 = 0 PµX
′µ = 0. (4.54)

These are the stringy analogue of the on-shell condition of the particle, p2 + m2 = 0. We can
eliminate the momenta of the action by using their own equations of motion, obtaining

Pµ =
1

e
GµνẊ

ν − uGµνX ′ν . (4.55)

We then obtain the Polyakov action, given by

S =

∫
dτdσ (

1

2e
Ẋµ − uX ′µ)2 − e(TX ′)2. (4.56)

More conventionally, the Polyakov action is written as

S = −T
2

∫
dτdσ

√
−hhαβGαβ, (4.57)

where hαβ is an independent worldsheet metric and h = dethαβ. We will call hαβ the conformal
worldsheet metric. The reason for this is that the action (4.57) is invariant under a conformal
transformation

h′αβ = Ω2(τ, σ)hαβ. (4.58)

This implies that hαβ has effectively only 2 degrees of freedom, instead of the 3 degrees of freedom
of a metric on a two dimensional space. The relation between (4.57) and (4.56) is given by the
coordinate transformation

[hαβ] =

[
u2 − T 2e2 u

u 1

]
. (4.59)

Thus, u and e correspond to the 2 independent components of the conformal metric. Eliminating
hαβ using its equations of motion returns the Nambu-Goto action (4.50). For hαβ we obtain

hαβ = Ω2(τ, σ)Gαβ. (4.60)
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For later use we will also give the solutions of u and e in terms of Xµ.

u =
Gτσ
Gσσ

e =

√
−detGαβ

Gσσ
. (4.61)

Thus, the actions are related to each other as described in the diagram (4.43). As we take the ultra
or non-relativistic limit of these three actions, we similarly to the particle case obtain three actions
which are related in the same manner, cf. section 8 for the ultra-relativistic limit, and [22] for the
non-relativistic limit.

We may quantize the string using lightcone quantization. Incredibly, requiring the Beta-
functions of the string to be 0, implies that Gµν satisfies the equations of motion of the Einstein-
Hilbert action! Thus, the conformal invariance of the string implies general relativity.

The symmetries of the Nambu-Goto action are similar to the symmetries of the particle action
(4.38). The action is invariant under general coordinate transformations of the worldsheet, up
to a boundary term. Furthermore, the action has σ-model symmetries corresponding to general
coordinate transformations of the target space, which reduce to symmetries whenever the metric
is invariant under the corresponding transformation. Additionally, writing the metric as a prod-
uct of the vielbein fields induces additional σ-model symmetries corresponding to local Lorentz
transformations.

The string naturally couples to a generalisation of the electromagnetic potential. Instead of
coupling to a one-form Aµdx

µ, as the one-dimensional particle does, the string naturally couples
to a two form Bµν dx

µ ∧ dxν . This two form is called a Kalb Ramond field. We may add the
Kalb-Ramond field to any of the previous actions. The 3 actions are changed by adding an extra
term

S = S0 +
1

2

∫
dτdσ εαβ∂αX

µ∂βX
νBµν . (4.62)

However, the addition of the Kalb-Ramond field changes the Hamiltonian action in such a way that
it is no longer of Hamiltonian form. Indeed, we may calculate the momenta

Pµ =
∂

∂Ẋ
(SHam(x, p′) + εαβ∂αX

µ∂βX
νBµν)

= P ′µ +Bµσ, (4.63)

where P ′ denotes the old momenta, and Pµ the new momenta. In order to put it back into
Hamiltonian form we use this equation to define the new momenta. The action then becomes

SHam(X,P ′) +Bτσ = SHam(X,Pµ −Bµσ). (4.64)

In words, the Kalb-Ramond induces a shift of Bµσ in the momenta, similarly to the particle case.

We will not extensively discuss p-brane actions. Nonetheless we will state the Nambu-Goto
type p-brane action we will refer to. It is given by

SNG = T

∫
dp+1σ

√
−detGαβ + εα0...αpBα0,...αp , (4.65)

where σα are the coordinate with α = 0, 1, ..., p, and Bµ0,...,µp is a generalisation of the electric
field. For Bα0,...Bαp = 0, this action corresponds to the volume of the worldsheet as measured by
the target space metric.
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5 The Lie algebra expansion

Algebras related to the Poincaré algebra can be found using the Lie algebra expansion. In this
subsection we will discuss the Lie algebra expansion in an abstract manner, and discuss how we
can use it to find limits of gauge theories. After that we will discuss how the Lie algebra expansion
applies to the Poincaré algebra. We will also examine why this expansion appears of fundamental
importance to the non-relativistic limit, and how it may be of importance for the ultra-relativistic
limit. However for the most conventional ultra-relativistic limit it does not produce results different
from the Inönü-Wigner contraction.

The Lie algebra expansion is a generalisation of the Inönü-Wigner contraction. In certain cases
the Inönü-Wigner contraction can be used to take the limit of an action describing a gravity theory,
a string or more generally a p-brane. However, in some cases the limit turns out to be somehow
trivial. Trivial in this case usually means an action consisting only of a total derivative term. In
such cases, rather then a contraction, an expansion can be used to produce a non-trivial limit, as
was first done for a flat limit of the AdS superstring [23]. This Lie algebra expansion was also
used to obtain actions for non-relativistic gravity theories [24], [25] and particle, string and p-brane
actions, as well as equations of motion for the corresponding gravity theory [26], although the
strategy had to be adapted here beyond simply applying the Lie algebra expansion to the action.

As the name suggests, rather than scaling certain generators of the algebra in terms of a scaling
parameter, we expand objects using a scaling parameter. Specifically, the Lie algebra expansion
is done by expanding the Maurer-Cartan one-forms of the algebra. Whereas an infinite expansion
does not change the physics of the action, truncating this infinite expansion does. The Inönü-
Wigner contractions corresponds to a specific truncation of the Lie algebra expansion. This means
that the algebras generated by the Lie algebra expansion contain in general more generators than
the Lie algebra from which they are generated.

We will first look at the definition of a Maurer Cartan form and examine one of its key properties,
which we shall use to expand the Lie algebra. The Maurer-Cartan one-form ω is a specific Lie
algebra valued one-form on the Lie group G. Letting h, g ∈ G we define the group action of left
multiplication by Lh : G→ G, g → hg. This allows us to relate a tangent vector at h, v ∈ TgG to
its push forward Lh∗(v) ∈ Thg(G), a tangent vector at hg. In particular, we may choose h = g−1, so
that Lg−1∗(v) ∈ Te(G) = g, where we identify the tangent space at the identity e with the Lie algebra
g. This pushforward to the identity is the Maurer-Cartan one-form, ω : TgG→ g, v → Lg−1∗(v).

The Maurer-Cartan one-form can be shown to satisfy a zero curvature condition

dω(v1, v2) +
1

2
[ω(v1), ω(v2)] = 0, (5.1)

where the bracket simply denotes the Lie bracket. This equation is referred to as the Maurer-Cartan
equation. In particular, we may use a basis of the Lie algebra ai to write, ω = ωiai

dωk(v1, v2)ak +
1

2
ωi(v1)ωj(v2)Ckijak = 0 (5.2)

Thus, the Maurer-Cartan one-form determines the Lie bracket via the Maurer-Cartan equation.

The Lie algebra expansion is done by expanding the Maurer-Cartan one-form in a power series
using a parameter λ. Each coefficient of a power of λ becomes a new one-form. This expansion
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will then be substituted into the Maurer-Cartan equation, and we demand that the equation holds
for every power of λ. This results into a infinite set of Maurer-Cartan equations, that determine
the commutation relations of an infinite dimensional Lie algebra. The Cartan one-forms of this
algebra can in a precise sense be evaluated to give the original algebra. Truncating this algebra
corresponds to approximating the original Maurer-Cartan one-form for small values of λ, up to a
certain power of λ.

We will consider the Lie algebra expansion only in a specific case. A more general treatment
can be found in [27]. More precisely, the Lie algebra expansion is applied to a Lie algebra g by
writing it as a direct sum g = V0 ⊕ V1 with the following properties

[V0, V0] ⊂ V0 (5.3a)

[V0, V1] ⊂ V1 (5.3b)

[V1, V1] ⊂ V0. (5.3c)

We choose a basis (ai0) of V0 labelled by indices i0 and a basis (ai1) of V1 labelled by indices i1, so
that we may write the Maurer-Cartan form of g as ω = ωi0ai0 + ωi1ai1 . We formally expand the
one-forms ωi0 , ωi1 as

ωi0ai0 =
(0)
ω i0ai0 + λ2(2)

ω i0ai0 + ...

ωi1ai1 = λ
(1)
ω i1ai1 + λ3(3)

ω i1ai1 + ... (5.4)

We may write this expansion a bit more abbreviated as follows:

ω(λ) =

∞∑
p=0

∑
ip̄

λp
(p)
ω ip̄aip̄ , (5.5)

where we denote p̄ = p mod 2.

We will use this expansion to define a new Lie algebra. This Lie algebra is constructed by
stating its Maurer-Cartan equations. We derive these equations by plugging the expansion of the
Maurer-Cartan form into the Maurer-Cartan equation (5.2) and assume that it holds for any λ ≤ 1.
This implies that it holds for every term in the λ-expansion of the equation. At the order λp we
obtain

d
(p)
ω k(v1, v2) +

1

2

∑
m+n=p

(m)
ω im̄(v1)

(n)
ω jn̄(v2)C

kp̄
im̄jn̄

= 0, (5.6)

where we purposefully leave out the basis of the Lie algebra ap, setting the components to 0, We may
now observe that these are the Maurer-Cartan equations of an infinite dimensional Lie algebra. Let

us denote the basis of this Lie algebra by
(p)
akp̄ , so that rewriting to this new Lie algebra corresponds

to replacing λpakp̄ by
(p)
akp̄ . We may explicitly write the Maurer-Cartan equations of the new Lie

algebra as

d
(p)
ω k(v1, v2)

(p)
akp̄ +

1

2

∑
m+n=p

(m)
ω im̄(v1)

(n)
ω jn̄(v2)C

kp̄
im̄jn̄

(p)
akp̄ = 0, (5.7)
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Note that setting
(p)
akp̄ = λpakp̄ returns the usual Maurer-Cartan equations of the fully relativistic

Lie algebra.

The vector space of the new Lie algebra’s simply consists of copies of the original Lie algebra

labelled by the corresponding power of λ. More explicitly let
(2k)

V0 and
(2k+1)

V1 be copies of the vector

space V0, V1.
(2k)
ai0 , ranging over i0 denotes the basis of

(2k)

V0, and similarly
(2k+1)
ai1 denotes the basis of

(2k+1)

V 1.

The vector space of this new infinite dimensional Lie algebra thus consists of the direct sum

∞⊕
k=0

(2k)

V0 ⊕
(2k+1)

V1. (5.8)

The commutators corresponding to the Maurer-Cartan equation (5.7) are given by

[
(n)
ain̄ ,

(m)
ajm̄ ] = C

km+n

im̄ jn̄

(m+n)
akm+n

. (5.9)

We note here that the commutation of a n-order term and an m-order term only gives m+n order

terms. In general, the coefficients of the infinite dimensional algebra can be denoted by C
kp̄p
im̄m jn̄n

.
They are given by

C
kp̄p
im̄m jn̄n

= C
kp̄
im̄jn̄

δpm+n. (5.10)

The Lie algebra expansion is then obtained by truncating the power series at some power k. That
is, all terms of order p > k are ignored. This is consistent since the sub-algebra consisting of terms
of order p > k is an ideal. If we truncate the series at k = 1 then we obtain an Inönü-Wigner
contraction with some extra conditions given by (5.3b) and (5.3c). In particular, the Inönü-Wigner
contraction from the Poincaré to the Galilei and Carroll algebra satisfy these conditions. Thus, the
Lie algebra expansion can be considered as a generalisation of the Inönü-Wigner contraction.

5.1 Gauge fields and the Lie algebra expansion

As we expand the Maurer-Cartan forms of the Lie algebra, so too can we expand the gauge fields.
We will first introduce gauge fields and their curvatures, and then explain how we can expand these
in order to obtain limits of actions.
Given a Lie algebra g and a manifold M , we will consider gauge fields as Lie-algebra valued one
forms on the manifold. Thus, a gauge field ω is given by

ω = ω i
µaidx

µ. (5.11)

Gauge fields transform under local actions of the group. We will only consider infinitesimal actions
of the group generated by the Lie algebra. Under a local transformation θ = θiaiof the group a
gauge field transforms as

δ(θ)ω = dθ − θjωkC i
jkai (5.12)

(5.13)
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The curvature of the gauge field is then given by

R = dω +
1

2
ωi ∧ ωjCkijak (5.14)

The curvatures transform covariantly under gauge transformations. That is, no derivatives occur
in the transformation rules assigned to them. The curvatures transform as

δ(R) = RiθjC k
ij ak (5.15)

The gauge fields corresponding to the Lie algebras can be expanded in a very similar way. Given
a gauge field

ωµ = ω i
µai = ω i0

µ ai0 + ω i1
µ ai1 , (5.16)

where we once again consider the Lie algebra to be a direct sum of two vector spaces g = V0 ⊕ V1.
We will consider this to be a Lie algebra valued one-form on a manifold. We may be given a way
to expand it in a way similar to the Lie algebra expansion

ωµ(λ) = λp
(p)
ω i0
µ ai0 + λp

(p)
ω i1
µ ai1 . (5.17)

It is these expansions that motivate the Lie algebra expansion in this thesis. We may replace,

similarly to the Maurer-Cartan forms the λpaip̄ by
(p)
aip̄ . Thus we obtain a gauge field of the infinite

dimensional Lie algebra.

ωµ =
(p)
ω i0
µ ai0 + λp

(p)
ω i1
µ ai1 . (5.18)

The expansion of the covariant curvatures of the gauge field is given by

R = Ri0ai0 +Ri1ai1 = λp
(p)

R ip̄aip̄ , (5.19)

where
(p)

Raip̄ are the curvatures of the infinite dimensional Lie algebra given by

(p)

R kp̄ = dωk +
∑

m+n=p

1

2
C
kp̄
im̄jn̄

(m)
ω im̄ ∧

(n)
ω jn̄ . (5.20)

Thus, the curvatures transform covariantly under transformations generated by the infinite
dimensional Lie algebra. When we cutoff the expansion at order k, the expression for the curvatures

up to
(k)

R remain unchanged, as higher order terms do not occur in the curvatures.

The infinite dimensional algebra can be extended with a dilatation in the following way. We

define the commutator of the dilatation D, with a homogeneous element
(p)
a of the infinitely expanded

algebra with grade p, as

[
(p)
a,D] = p

(p)
a. (5.21)

This also applies to truncated versions of the algebra. We will denote the parameter of the dilatation
by ΛD. The interpretation of this parameter acting on the gauge fields of the infinite dimensional
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Lie algebra is as a small change in the parameter λ. This can be seen be using the evaluation
(p)
aip̄ = λpaip̄ . We then have

δ(ΛDD)(ωµ) = ΛD
(p)
ω
ip̄
µ [

(p)
aip̄ , D]

= pΛD
(p)
ω
ip̄
µ

(p)
aip̄

= pλpΛD
(p)
ω
ip̄
µ aip̄

= ΛDλ
∂

∂λ
ωµ(λ)

= δλ
∂

∂λ
ωµ(λ), (5.22)

where in the last line we identified ΛD = δλ
λ . Thus, a constant dilatation can be seen as a small

change in the parameter λ. On the other hand, a local dilatation could be seen as promoting the
parameter λ from a constant to a function. These dilatations will later be interpreted as conformal
symmetries which occur in non-relativistic holography [28] and the BMS algebra [19].

5.2 Invariant actions and the Lie algebra expansion

To examine how the Lie algebra expansion can be used to obtain non-relativistic actions for particle,
string, p-brane and gravity actions, we first examine how the Lie algebra expansion can be used to
write down new actions, obtained from previous ones. We will assume that we have a Lie algebra
g with generators gi. Furthermore, we have a (spacetime) manifold M , on which we have gauge
fields ω i

µgi. We furthermore assume that we are given an action S, depending on the gauge fields.
There are 2 separate ways on how this action may depend on the gauge fields. First of all, the
gauge fields may be the dynamic variables of the action. Secondly, the gauge fields may occur as
background fields of the action, in which case they have already been determined and play the
role of parameters. In this second case, transformations of the gauge fields that leave the actions
invariant are not true symmetries, as we transform the background fields of the actions. Rather,
they are known as σ-model symmetries. In any case, we will assume the action to be invariant
under gauge transformations

δ(θigi)Ŝ(ω̂igi) = 0. (5.23)

Here, the θi are functions of spacetime. We may then be given a way to expand the gauge fields
with a parameter λ, so that we obtain a new action

S(ω) = S(ω(λ)) = λkS(k) + λk+2S(k+2) + ... (5.24)

Every action S(n) will be invariant under the expanded transformations δ(
(n)

θi
(n)
gi) [24]. Thus, we have

obtained new actions which are invariant under the gauge transformations. After having obtained
an interest in one of the actions in this expansion, we may note that only gauge fields of order p
or lower occur in the action. We may then truncate the Lie algebra expansion at order p, without
changing the action.
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5.3 The Lie algebra expansion of the Poincaré algebra

We will now apply the Lie algebra expansion method to the Poincaré algebra. We will slightly
adapt the Lie algebra expansion method in order to obtain an expansion that is useful when taking
limits. We will denote the gauge fields ωµ of the Poincaré algebra as

ωµ = Ê Â
µ P̂Â + Ω̂ ÂB̂

µ ĴÂB̂. (5.25)

For the non-relativistic Lie algebra expansion the Lie algebra is written as a direct sum with the
same subspaces as in the Galilean Inönü-Wigner contraction in (3.10.) We then expand the gauge
fields corresponding to the translations in the following way:

Ê 0
µ = cz

∑
p≥0

1

c2p

(2p)

E 0
µ

= cz(τµ +
1

c2
mµ + ...)

Ê a
µ (c) = cz

∑
p≥0

1

c2p+1

(2p)

E 0
µ

= cz−1(E a
µ + ...). (5.26)

The parameter cz does not change any of the arguments made in section 5.1 about the Lie algebra
expansion, as the spacetime translations form an invariant commutative subgroup of the Poincaré
group. This implies that it also does not change anything for the Inönü-Wigner contraction. When
we use the Lie algebra expansion to take the limit of an action, cf. equation (5.24), the parameter
z can be selected to be valued such that we obtain a finite action. The gauge fields corresponding
to the boosts and translations are expanded as prescribed by the Lie algebra expansion

Ω̂ ab
µ =

∑
p≥0

1

c2p

(2p)

Ω ab
µ (5.27)

Ω̂ ab
µ =

∑
p≥0

1

c2p+1

(2p+1)

Ω ab
µ . (5.28)

For the Carroll algebra we obtain a similar expansion. The gauge field corresponding to trans-
lations is expanded as

Ê 0
µ = cz+1

∑
p≥0

c2p
(2p)

E 0
µ (5.29a)

= cz+1(τµ + ...) (5.29b)

Ê a
µ (c) = cz

∑
p≥0

c2p
(2p)

E 0
µ (5.29c)

= cz(E a
µ + c2n a

µ + ...). (5.29d)
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In principle, when taking either the ultra or non-relativistic limit of a curved spacetime, we should
always include an infinite expansion of the gauge fields. However, in the limit only some of the
highest order terms are relevant. As we will see, in the Carroll limit only the highest order term is
relevant. This means that in this specific case the Lie algebra expansion does not give additional
results when compared with the Inönü-Wigner contraction. Of course, if we want a better approx-
imation when c << 1, we should consider the additional terms in the expansion. For example,
post-Newtonian physics can be discussed using the non-relativistic expansion [29].

6 Non- and ultra-relativistic gravity actions

In this section we will discuss the limits of the Einstein Hilbert action using the Lie algebra expan-
sion. Specifically, we will consider the limit in an empty space, without matter. Our motivation
for doing this is to understand Carrollian geometry as a limit of general relativity. We will restrict
our discussion to the conventional Carroll limit, i.e. A only takes the value 0.

6.1 The Lie algebra expansion: Gravity actions

The Lie algebra expansion can be used to find gravity actions, derived from the Einstein-Hilbert
action, that are invariant under the algebras generated by the Lie algebra expansion. We will first
consider the Lie algebra expansion with subspaces generated by V0 = {Jab, H}, V1 = {G0b, Pa}, in
other words corresponding to the Galilei algebra. We will denote the gauge field of G0b = J0b by
ω 0b
µ , and the gauge field of H by τµ = E 0

µ . The expansions of the gauge fields of the Lie algebra
expansion are then given by

τ̂µ =
(0)
τ µ + c−2(2)

τ µ + ...

Ê a
µ = c−1

(1)

E a
µ + c−3

(3)

E a
µ + ...

ω 0a
µ = c−1(1)

ω 0a
µ + c−3(3)

ω 0a
µ + ...

ω ab
µ =

(0)
ω ab
µ + c−2(2)

ω ab
µ + ... (6.1)

Assuming the gauge field E Â
µ to be invertible, we also obtain an expansion for the inverse gauge

fields

τ̂µ =
(0)
τ µ + c−2(2)

τ µ + ...

Êµa = c1
(−1)

E µ
a + c−1(1)

e µa + ...

(6.2)

Where each coefficient in the expansion is defined such that the matrix (τµ, Eµa) = (Eµ
Â

) is the

inverse of (τµ, E
a
µ ) = (E Â

µ ) (for any value of c). The starting point here is the first order Einstein-
Hilbert action (4.1), which is invariant under gct’s and local Lorentz transformations. We can then
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substitute the expansion of these gauge fields into the action

S =

∫
d4x εµνρσεÂB̂ĈD̂E

Â
µ E

B̂
ν R

ĈD̂
ρσ

=

∫
d4x

2

c
εµνρσεa0cd

(1)

E a
µ

(0)
τ ν

(0)

R cd
µν + ...

=
1

c
S(1) +

1

c3
S(3) + ... (6.3)

Every action in this expansion will be invariant under the full infinite dimensional algebra gen-
erated by the Lie algebra expansion. The first action corresponds to Galilei gravity. Note that
Galilei gravity is entirely different from Newtonian gravity. For one thing, it is invariant under
the Galilei algebra without central charge, whereas Newtonian gravity requires a central charge [1].
Alternatively this expansion can be written as

S = G

∫
d4x EEµ

Â
Eν
B̂
R ÂB̂
µν

= G

∫
d4x c−1

(3)

E
(−1)

E µ
a

(−1)

E ν
b

(0)

R ab
µν + c−3... (6.4)

We can do a similar thing for the Carroll gravity. The Lie algebra expansion then works with
subspaces with generators V0 = {Jab, Pa}, V1 = {Gb, H}. The expansion of the gauge fields is then
given by

τµ = c
(1)
τµ + c3(3)

τµ + ...

E a
µ =

(0)

E a
µ + c2

(2)

E a
µ + ...

ω a
µ = c1(1)

ω a
µ + c3(3)

ω a
µ + ...

ωabµ =
(0)
ω ab
µ + c2(2)

ω ab
µ + ... (6.5)

Assuming the gauge field EÂµ to be invertible, we also obtain an expansion for the inverse gauge
fields

τµ = c−1(−1)
τ µ + c1(1)

τ µ + ...

Eµa =
(0)

E µ
a + c2

(2)

E µ
a + ...

(6.6)

This produces the action

S = G

∫
d4x ÊÊµ

Â
Êν
B̂
R̂ ÂB̂
µν

= G

∫
d4x c

(1)

E
(0)

E µ
a

(0)

E ν
b

(0)

R ab
µν + c

(1)

E
(0)

E µ
a

(−1)
τ ν

(1)

R a
µν +O(c3) (6.7)

The O(c) terms give the action for Carroll gravity.
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6.2 Carroll gravity as described by the first order action

The equations of motion of the second order action, obtained by varying the action 6.7 are given
by

Rµν(H) = 0

R a
µν (P ) = 0

R a
µa (G) = 0

R ab
0b (J) = 0

R bc
ac (J) +R b

0a (G) = 0 (6.8)

This completely determines the geometry of Carroll gravity. The first two equations determine
that the geometry is torsionless, and can be used to solve for the spin connection in terms of the
vielbein fields.

ω a
µ = τµτ

νEρa∂[ντρ] + Eνa∂[µτν] + SabEbµ

ω ab
µ = −2Eρ[a∂[µE

b]
ρ] + EµcE

ρaEνb∂[ρE
c
ν] (6.9)

Note that we have an undetermined symmetric component Sab, which shows that these equations
do not uniquely determine ωaµ. We can then define the degenerate metric

hµν = EaµEνa. (6.10)

The extrinsic curvature is then given by the Lie derivative of the metric:

Kµν =
1

2
Lτ (hµν) = τρ∂ρhµν + hρν∂µτ

ρ + hµρ∂ντ
ρ. (6.11)

From the 2nd equation of motion it follows that that Kab = 0. We can furthermore define the affine
connection Γρµν by setting

Dµτν = ∂µτν − Γρµντρ − ω 0
µ aE

a
ν = 0,

DµE
a
ν = ∂µE

a
ν − ΓρµνE

a
ρ − ωaµ bE b

ν = 0. (6.12)

We have now introduced the main objects describing the geometry of Carroll gravity. Thereby
we note that from the first two equations of motion follows that the geometry is torsionless. This
means that Γρ[µν] = 0.
We can pass from this first order approach to a second order approach by substituting the solution
of the first two equations back into the action, thus obtaining a second order action. We can
separate the S(ab) term in the second order action to obtain

S =

∫
E
(

2τµEνaR(G)aµν
∣∣
Sab=0

+ EµaE
ν
bR(J)abµν + 2KabS

ab − 2δabδcdKabS
cd
)
. (6.13)

The equation Kab = 0 is only fulfilled once we vary with respect to Sab, which acts as a Lagrange
multiplier.
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6.3 Obtaining the Galilean and Carroll gravity from the second order EH action

We have already performed an Inönü Wigner contraction of the Poincaré algebra to either the Galilei
algebra or the Carroll algebra (which can be viewed as the first step of a Lie algebra expansion).
We obtain a gravity theory with a corresponding action in both cases. We can solve for the spin
connections, which are however only determined up to certain classes, where two spin connections
correspond to the same class if they differ by a tensor with a specific structure. Similarly, the
corresponding affine connection is also dependent on boosts.In the second order action of these
theories these undetermined tensors act as Lagrange multipliers. Variation of the action with
respect to these tensors provide a constraint on the geometry. On the other hand we can first
write down the relativistic spin connection for general relativity as a function of Eaµ, τµ and their
inverses, in second order formulation. We now expand E and τ . In this way we obtain an expansion
of the spin connections and the Einstein Hilbert action. By rewriting the expanded Einstein Hilbert
action, introducing an extra field in the process, we can obtain the Carroll gravity action as a limit
of this action. Also, given the constraints on the geometry for Carroll and Galilei gravity, we
check whether these expressions for the spin connection correspond to the spin connection in the
respective gravity theory. For Galilei gravity we have not yet obtained such a result, but a similar
statement should hold.

We expand the vielbeins corresponding to the Inönü-Wigner contraction

Ê a
µ = ck−1E a

µ τ̂µ = ckτµ, (6.14)

We note that the contraction corresponds to c → 0 in the Carroll case. In the following
discussion we will not label the vielbein fields with their corresponding power of c, since no confusion
is possible. When solving for the vielbein fields using equation (4.22), we note that the equation

is linear in Ê Â
µ . Therefore the overall factor ck in (6.14) can be divided out of the equation. As

a consequence, the factor ck only affects the Einstein-Hilbert action by an overall factor c(D−2)k.
We will now explicitly do this expansion, and show that the c→ 0 limit of the action produces the
action of second order Carrol gravity (6.13).

6.3.1 The expansion of the action

We will first write down an explicit c-dependent form of the action. In order to do this, we will
first discuss the boost and rotational spin connection, and the curvatures. Then we will substitute
these into the action. The c-dependent spin connections are given by

ω ab
µ = −c2EνaEρbτµ∂[ντρ]

− 2Eν[a∂[µE
b]
ν] + EνaEρbEµc∂[νE

c
ρ]

=
(−2)
ω ab
µ c2 +

(0)
ω ab
µ (6.15)
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ω 0b
µ = c(τνEρbτµ∂[ντρ] + Eνb∂[µτν])

+
1

c
(dE

(a b)
0 Eµa)

= c
(−1)
ω 0b
µ + c−1(1)

ω 0b
µ (6.16)

One thing we may note is that from there exist terms
(−2)
ω ab
µ and

(−1)
ω 0b
µ , which do not appear

in the Galilean Lie algebra expansion. However, these terms are all proportional to the torsion
constraint ∂[µτν] = 0. Only if this constraint holds, do the expansions of the spin connections
(6.15) and (6.16) match the ‘non-relativistic’ Lie algebra expansion of the Poincaré gauge fields

(6.1). Similarly, in the Carroll Lie algebra expansion we do not have a term
(1)
ω 0b
µ . This term

however is proportional to the torsionlessness constraint

Kab = dE
(ab)

0 = 0 (6.17)

Another thing to note is that the full Lie algebra expansion of E a
µ and τµ, with higher (Car-

roll)/lower (Galilei) order c terms, leads to different spin connections and hence to different limits.
We will not extend our discussion to the full expansion. From this expansion of the spin connection
follows the following expansion of the curvatures:

Rab(J) =c4[−
(−2)
ω ac ∧

(−2)
ω cb]

+c2[d
(−2)
ω ab −

(−2)
ω ac ∧

(0)
ω cb −

(0)
ω ac ∧

(−2)
ω cb −

(−1)
ω 0a ∧

(−1)
ω 0b]

+c0 [d
(0)
ω ab −

(0)
ω ac ∧

(0)
ω cb − 2

(1)
ω [a ∧

(−1)
ω b]]

+c−2 [
(1)
ω 0a ∧

(1)
ω 0b]

=c4
(−4)

R ab(J) + c2
(−2)

R ab(J) + c0
(0)

R ab(J) + c−2
(2)

R ab(J) (6.18)

R0b(J) =c3[−
(−2)
ω bc ∧

(−1)
ω 0c]

+c1[d
(−1)
ω 0b −

(−2)
ω bc ∧

(1)
ω 0c −

(0)
ω bc ∧

(−1)
ω 0c]

+c−1 [d
(1)
ω 0b −

(0)
ω bc ∧

(1)
ω 0c]

=c3
(−3)

R 0b(G) + c+1
(−1)

R 0b(G) + c−1
(1)

R 0b(G) (6.19)

We can then expand the action as follows:

S = G

∫
c(k−1)(D−2)+1e

(
+ c0[2τµEνbR

(1)b
µν + EµaE

ν
bR

(2)ab
µν ]

+ c2[2τµEνbR
(−1)b
µν +EµaE

ν
bR

(0)ab
µν ]

+ c4[2τµEνbR
(−3)b
µν +EµaE

ν
bR

(−2)ab
µν ]

)
(6.20)

We have R
(−4)ab
ab = 0, and hence it does not occur in the action

35



6.3.2 The Carroll limit of the second order Hilbert action

In this section we take the c → 0 limit of the Einstein-Hilbert action. The conclusion is that we
obtain the same limit as obtained for the first order action [30].

In Carroll gravity the spin connection ω ab
µ is uniquely determined, but ω a

µ is not. It is only

determined up to SabE b
µ , where Sab is a symmetric tensor [30]. ω

(1)
µ = KabE b

µ can be written in

this way, using the symmetric tensor Kab = 2Eρ(aτν∂[νE
b)
ρ] .This relation can be exploited to write

the action of second order Carroll gravity as a limit of the expanded Einstein Hilbert action. Upon
identifying the expanded gauge fields with the gauge fields of Carrol gravity , we obtain

ω(0)ab = ω
(0)ab
C

ωb = λ−1ω(−1)b + λω(1)b = λ−1ωbC |Sab=λ2Kab (6.21)

Where spin connections labelled with C denote the Carroll spin connections in terms of the vierbein
fields. We would like to take the limit λ → ∞ of the action, however the highest order term is
not at all similar to the second order Carroll gravity action. There are however strong similarities
between the second highest order term and Carroll gravity. We use this as a motivation to drop all
lower order terms and continue only with the two highest order terms. The lower order terms will
tend to 0 as λ→∞.

S =

∫
E
(

+ λ2[2τµEνbR
(1)b
µν +EµaE

ν
bR

(2)ab
µν ]

+ [2τµEνbR
(−1)b
µν + EµaE

ν
bR

(0)ab
µν ]) (6.22)

By expressing the spin connections in terms of the vielbein fields and the curvature Kab we find
that

S =

∫
E
(
2τµEνbR

b
Cµν |Sab=c−2Kab + EµaE

ν
bR

ab
Cµν + c−2EµaE

ν
bR

(2)ab
µν

)
=

∫
E
(
2τµEνbR

b
Cµν |Sab=0 + EµaE

ν
bR

ab
Cµν + c−2(KabKab −KaaKbb)

)
, (6.23)

where R b
Cµν , R

ab
Cµν denote the curvature tensors of boosts and rotations, where the spin connections

are evaluated as in 2nd order Carroll gravity. The first two terms correspond directly to terms in
the Carroll action, and we will denote them with L0 . The last term is a divergent quadratic form,
and has to be rewritten before we can take a finite limit. The action

S ′ =
∫
L0 + 2KabSab − 2KaaSbb − c2(SabSab − SaaSbb) (6.24)

has the same equations of motion, while it does not have any divergent terms. As we take the limit
c→ 0 we obtain the second order action of Carroll gravity (6.13). We conclude that this action is
simply the c→ 0 limit of the second order Einstein Hilbert action.

An interesting question is whether the same trick can be done for Galilei gravity.

7 Nonrelativistic particles and strings

In previous sections we have discussed the Lie algebra expansion as a method of taking limits of
actions, the particle actions in general relativity and the Galilei algebra. In this section we will
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use these tools to describe the non-relativistic particle and string actions. We apply these tools to
these cases first of all because we already now much about the non-relativistic limit, and we can
do a sanity check of our methods by applying it to a particle travelling around a Schwarzschild
black hole. More importantly however, the non-relativistic is physically very interesting, and there
are many articles on the subject and applications. Therefore, taking into account the similarity
between the generalised (p-brane) Galilei and Carroll algebras, we may use this to learn interesting
things about Carroll geometry.
It will be our point of view that in curved space, it does not matter which particle or string ac-
tion we use to obtain the limit, whether we use the configuration space (i.e. Nambu-Goto type),
Hamiltonian, or the Polyakov action. As we will see, all limits of these actions can be related to
each other by either introducing new coordinates or eliminating coordinates. This only becomes
unclear if we fix a certain gauge. In the current section we will use Polyakov type actions.
We show that the limit of the relativistic particle in curved space has σ-model symmetries which
satisfy the Bargmann algebra without local translations. As discussed previously, the local transla-
tions correspond to general coordinate transformations. That remains true in the limit if we keep
the curvature of the translations equal to 0. We will then discuss applications of the non-relativistic
string and take the non-relativistic limit of the relativistic string. We will explain that the appro-
priate non-relativistic limit requires a different c-dependence of the vielbein fields, as mentioned in
section 3.6.
In this section we will focus our discussion on the dynamics of the particles and strings, and keep
the comments about the background fields to a minimum. In particular we will not discuss the
dynamics of the background fields. However, when taking the limit the torsion plays an important
role. This is because in the torsionlessness condition puts certain conditions on the vielbein fields.
We will first deal with the torsionless case, and then investigate for which types of torsion the limit
we take is legitimate.
While we focus in this section on Newton-Cartan geometry as a limit of semi-Riemannian ge-
ometry, there are physical applications for Newton-Cartan geometry with any torsion, such as
Horava-Lifshitz gravity [31]. We are only interested in distinguishing the types of Newton-Cartan
geometry which can be interpreted as a limit, and which types can not.

7.1 The non-relativistic particle in a torsionless background

In this section we will take the non-relativisitic limit of the ‘Polyakov’-type relativistic particle
action 7.1, interacting with an ‘electric field’ Aµ, given by

S = −
∫
dτ

1

2
(−Ĝ

ê
+m2ê) + Âµẋ

µ, (7.1)

where we use the notation Ĝ = ẊµẊνĜµν , and m denotes the mass of the particle. The config-
uration space version of the action (4.38) can be obtained by eliminating e using its equation of
motion. We obtain

S = −m
∫
dτ

√
−Ĝ (7.2)

is obtained from the Polyakov action by solving the equation of motion of ê, obtaining ê =

√
−Ĝ
m .

The non-relativistic limit of this action is taken by first scaling the background fields in a ‘non-
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relativistic particle expansion’

τ̂µ = c2τµ +mµ +O(c−2)

Êaµ = c1E a
µ +O(c−1) (7.3)

We then expand the einbein as ê = c2e+O(c0), as the expansion of its solution would suggest.
We then choose a particular dependence for the electric field, Âµ = −c2τµ + Aµ, which is chosen
such that, if we solve for e, it precisely cancels the leading order term of the action, which is given
by

Sleading = −m
∫
c2ẋµτµ. (7.4)

We also note that, if and only if 2∂[µτν] = 0, the divergent term of the field Âµ is locally a total
derivative. We will call a field τµ satisfying this condition torsionless, because it is implied by
taking the limit of the vielbein postulate with zero torsion (4.10). In particular, using the Lie
algebra expansion we may expand the relativistic curvature of time translations as

lim
c→∞

1

c2
R 0
µν (P̂ ) = lim

c→∞
R 0
µν (H) +

1

c2
R 0
µν (Z)

= R 0
µν (H)

= 2∂[µτν] = 0. (7.5)

Thus, torsionlessness of the relativistic spin connection implies torsionlessness in this limit. It is
interesting to note that, unlike in the relativistic case, the torsionlessness condition in the non-
relativistic limit gives rise to a constraint on the geometry τµ. We noted in section 3.3 that a
Galilean manifold consists of surfaces of constant time. We can interpret this in two different
ways. Firstly, we may assume that there exists a clock function τ, satisfying τµ = ∂µτ. This
functions serves as a global clock on which every observer agrees. If we only assume this function
to exist locally, this is equivalent to the torsionlessness constraint (7.5). On the other hand, we
may only assume the less stringent condition of existence of a foliation of spacetime consisting
of spacelike hypersurfaces, orthogonal to τµ. By this we mean that any tangent vector contained
in the hypersurface has (timelike) length 0. In other words, the subbundle of the tangent space
spanned by Eµa is integrable. The existence condition of such a foliation is given by the Frobenius
theorem. This tells us that such a foliation exists if and only if Eµa equipped with the Lie bracket
spans a Lie algebra, i.e.

2Eµ[a∂µE
ν
b] = C c

abE
ν
c, (7.6)

where we antisymmetrize a and b. Equivalently, it exists if and only if

τ[µ∂ντρ] = 0, (7.7)

where we antisymmetrize µ, ν and ρ. In words, this condition tells us that the exterior derivative
of τ is proportional to τ . A geometry satisfying this condition has twistless torsion.

In this derivation we will continue with a torsionless geometry. Furthermore, we will set the
field Aµ = 0, since we will not use it in our further analysis.

In the Polyakov formalism a divergent leading order term remains however, since we do not
solve for e. The action is given by

S =

∫
dτ

1

2e
(c2(τ2

τ − 2ττme+m2e2) + EaτE
b
τδab − 2mτττ ) +O(c−2), (7.8)
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where we use the τ subscript to denote the pullback to the worldline. The divergent term may be
cancelled by realising that the highest order term is a quadratic form, which implies that we can
rewrite the action by introducing a single new variable λ, in the following way,

S = −
∫
dτ

1

2e
(−2λ(ττ −me) + EaτE

b
τδab − 2mτττ ) +

λ2

e
c−2 +O(c−2). (7.9)

In this action, the O(c−2) term is taken to be independent of λ. We can explicitly solve for λ
using its equation of motion to find the previous action. Now we may take the limit without any
divergent terms, obtaining

S = −
∫
dτ

1

2e
(−2λ(ττ −me) + EaτE

b
τδab + 2mτττ ) +Aτ . (7.10)

Now λ has become a Lagrange multiplier. This is a ‘Polyakov type’ non-relativistic particle action.
We note that both e and λ are only a single variable. We may solve for both e and λ in terms
of the other variables using both equations of motion. Since it is a Lagrange multiplier, the term
containing λ cancels and we obtain only

S = −
∫
dτ
mEaτE

b
τδab

2ττ
−mmτ +Aτ , (7.11)

This action is invariant under gct’s of the worldline. We may observe that the fields Aµ and mµ,
have the same ‘role’ in this action, the action only depends on Aµ−mµ. We will use this to redefine
mµ to absorb the term Aµ, so that the action only depends on mµ. If we use this gauge freedom
to set X0 = τ and additionally set E a

µ = δaµ, τµ = τµ = δ0
µ and mi = 0 and Aµ = 0, we obtain

S = −
∫
dX0mẋ

aẋbδab
2

−mm0, (7.12)

where the 0 denotes the zeroth component of a one-form or vector. This action has a clear inter-
pretation in classical mechanics. The first term is the kinetic term of a particle moving in a space
with metric δab, with a potential V = mm0. The potential m0 is the gravitational potential of
Newton’s gravity.

This interpretation is particularly clear when we look at the Schwarzschild black hole. A metric
describing the geometry of the Schwarzschild black hole is given by

ds2 = −(1− 2GM

c2r
)c4dt2 + (1− 2GM

rc2
)−1c2dr2 + r2c2dθ + c2r2 sin2 θdφ2. (7.13)

Where we have chosen the c-dependence in such a way that S = −m
∫
ds. We can then choose the

nonzero components of the vielbein fields to be

Ê 0
t = c2

√
1− 2GM

c2r

Ê 1
r = c

√
1− 2GM

c2r

−1

Ê 2
θ = cr

Ê 3
φ = cr sin θ. (7.14)
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This choice of vielbeins corresponds to the expansion (7.3) We then obtain, when expanding in c
the nonzero components

τt = 1

mt = −GM
r

E 1
r = 1

E 2
θ = r

E 3
φ = r sin θ. (7.15)

In E a
µ E

b
ν δab we recognise the spatial euclidean metric, whereas τ simply measures the time differ-

ence t between any two events and mmt is the gravitational potential. Filling in the values of these
fields into the action (7.12), without an electric field, we obtain

S =

∫
dt
ẊaẊbδab

2
+
GMm

r
. (7.16)

This is just the classical action for a non-relativistic particle in a gravitational field. The action
(7.10) has σ-model symmetries, which are not actually symmetries of the action as they act on the
background fields, instead of on the variables. The σ-model symmetries of this field are given by the
Bargmann group in addition to a scaling symmetry. The Bargmann group consists of the Galilean
symmetries with a central extension. The action of this central extension is given by δ(ξ)mµ = ∂µξ.
The action of the scaling symmetry is given by

τµ → c2τµ, e aµ → ce aµ , mµ → mµ (7.17)

Thus, this scaling symmetry corresponds to a local rescaling of scaling parameter c in the expansion
(7.3). Essentially this means that for this particular model, the exact value of c does not matter
and may vary. The torsionlessness δRµν(H) = 0 implies that eµa∂µc = 0, indicating that c only
depends on the time

∫
ẋµτµdτ if we want to keep the background field torsionless.

We re-iterate that given a set of equations, or an action, determining the evolution of the
vielbein fields, these will generally not be invariant under the local scaling transformation, or even
a constant scaling transformation. It is when studying only the σ-models that it is necessarily
gauge symmetry.

7.2 The torsionless non-relativistic limit of the string, and the string Newton
Cartan algebra

The non-relativistic limit of the Polyakov string action is very similar to the non-relativistic limit
of the ‘Polyakov’ particle action. There is much interest in non-relativistic string theory because it
promises to open a window into non-relativistic quantum gravity. Another point of interest is that
non-relativistic string theory is related to a limit of AdS/CFT correspondence, as shown in [32].
There are two related non-relativistic string actions, defined on somewhat different geometries. The
first one is the Newton-Cartan string of Gomis and Ooguri [2]. This string is constructed by using
a torsionless limit of the relativistic string action. The related geometry is called string Newton-
Cartan geometry [26], [33]. Secondly we have a string embedded in a torsional Newton-Cartan
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(TNC) geometry [32]. These two types of string Newton-Cartan geometry are related to each other
[34].

We will now discuss the non-relativistic limit of the Polyakov string action. We will keep
our comments about the background fields to the minimum required for taking this limit, only
discussing the background fields that occur in the action and the constraints we put on them. We
will take the limit similarly to [26], where the only differences are that we do not write down the
field C A

µ , which is related to symmetries of the background fields in the non-relativistic limit. Since
this field does not occur in the final limit, we will not include it here. If one wishes to include this
gauge field, one can simply replace every τ Aµ by X A

µ = τ Aµ + 1
c2
C A
µ , where C A

µ satisfies the same

curvature conditions as τ Aµ . Another difference is that we keep the action classical and do not use
the effective action used when studying the path integral of this string theory.

The limit we are going to take is analogous to the particle limit. The limit starts at the
relativistic string Polyakov action, interacting with a Kalb-Ramond field. We introduced this
action in equation (4.57). Together with the Kalb-Ramond field, the action is given by

Ŝ = −T
∫
d2σ

√
−ĥĥαβĜαβ + εαβB̂αβ (7.18)

Objects labelled by the world-sheet indices α, β, ... = 0, 1 refer to coordinates on the worldsheet,
and often are used to denote pullbacks so that for example Ĝαβ = ∂αX

µ∂βX
νĜµν . We define

ĥ = det ĥαβ.

The metric ĥαβ has conformal invariance. That is, ĥαβ(t, σ) and γ(t, σ)ĥαβ(t, σ) lead to the
same actions if γ is an everywhere nonzero scalar. Thus only two degrees of freedom of the three
that hαβ possesses actually occur in the action.

We proceed similarly to the particle case. We start by splitting up to coordinates labelled by
Â = 0, ..., D into longitudinal coordinates labelled by A = 0, 1 and transverse coordinates labelled
by a = 2, ..., D. We will then expand the vierbein fields in a ‘non-relativistic manner’, where c can
be assumed to be large.

Ê A
µ = cτ Aµ + c−1m A

µ +O(c−3)

Ê a
µ = E a

µ +O(c−2). (7.19)

We have chosen this particular scaling of the vielbein fields in order to obtain a finite answer when
taking the limit without requiring a rescaling of the mass tension. Using this expansion we expand
the metric Ĝµν as

Ĝµν = c2τ Aµ τ Bν ηAB + E a
µ E

b
ν δab + 2τ A(µm

B
ν) ηAB

= c2τ Aµ τ Bν ηAB +Gµν . (7.20)

When entering this expansion into the Nambu-Goto string action (4.50), the divergent leading order
term is given by

Slead = −T
∫
dτc2|τ |, (7.21)

where τ = det τAα = εαβτ Aα τ Bβ εAB. We will assume τ to be non-zero, as implied by the name

longitudinal. We consider the field strength R A
µν = 2∂[µτ

A
ν] − Ω A

[µ Bτ
B
ν] . If τ[µR

A
νρ] = 0 then the

leading order term is locally a total derivative.
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More generally, we recognise that this divergent term can be cancelled with a Kalb-Ramond
field given by

B̂µν = c2τ Aµ τ Bν εAB +Bµν (7.22)

and hence we will use this Kalb-Ramond field in the Polyakov action. Of course, if the leading
order term of the action is locally a total derivative, adding this Kalb-Ramond field to the action
will not change the equation of motion of the action.

Upon elimination of hαβ we obtain hαβ(~σ) = γ(~σ)c2τ Aα τ Bβ ηAB+O(c0), suggests that the leading

order term of hαβ is invertible, since τ Aα is invertible. Hence any lower order terms of ĥαβ will not
contribute to the action. We can use the conformal invariance to cancel any scaling factor in front
of ĥαβ, and hence we use the expansion ĥαβ = hαβ +O( 1

c2
). We enter this into the Polyakov action

to obtain

S = −T
∫
d2σ(
√
hhαβ(c2τ Aα τ Bβ ηAB +Gαβ) + εαβ(τ Aα τ Bβ εAB +Bαβ) +O(

1

c2
). (7.23)

Since hαβ is symmetric and εαβ we may simply add them together in the following way if we ensure
that the tensors they originally contract with are symmetric resp. anti-symmetric.

S = −T
∫
d2σ((

√
hhαβ + εαβ)(c2τ Aα τ Bβ (ηAB − εAB)) +

√
hhαβGαβ + εαβBαβ) +O(

1

c2
). (7.24)

We may also rewrite hαβ = e
(α
Ce

β)
Dη

CD, and εαβ√
h

= −e[α
Ce

β]
Dε

CD. Thus we may write

S = −T
∫
d2σ
√
h(c2eαCτ

A
α eβDτ

B
β (ηAB− εAB)(ηCD− εCD)) +

√
hhαβGαβ + εαβBαβ +O(

1

c2
. (7.25)

We recognise here that the highest order term is a quadratic form in eαAτ Bα . However, the
matrix of ηAB−εAB is degenerate. We may simplify our expression by using light cone coordinates.
We have

(ηCD − εCD)eαCe
β
D = −2ēαeβ

(ηAB − εAB)τ Aα τ Bβ = −2τατ̄β, (7.26)

where we define the light cone components of τ Aα , eαA as

eα =
1√
2

(eα0 + eα1), ēα =
1√
2

(eα0 − eα1) (7.27)

τα =
1√
2

(τ 0
α + τ 1

α ) τ̄α =
1√
2

(τ 0
α − τ 1

α ) (7.28)

We thus obtain the action

S = −T
∫
d2σ(
√
h(4c2ēαταe

β τ̄β +Gαβ +Bαβ). (7.29)

We now introduce the parameters λ λ̄ in an equivalent rewriting of the action.
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S = −T
∫
d2σ(
√
h(4λeβ τ̄β + 4λ̄ēατα +Gαβ +Bαβ)− 4λλ̄

c2
) +O(

1

c2
). (7.30)

Where the λ, λ̄ dependence of the O(c−2) term is explicitly written out. Solving for λ, λ̄ using their
equations of motion we obtain

λ = c2ēατα λ̄ = c2eατ̄α. (7.31)

Substituting these values for λ into the action (7.30), we obtain (7.29), thus demonstrating the
equivalence of the action.
We may take the limit c→∞ to obtain

Snonrel = −T
∫
d2σ(
√
h(4λeβ τ̄β + 4λ̄ēατα +Gαβ +Bαβ). (7.32)

In this action λ and λ̄ are Lagrange multipliers. The restrictions associated with these Lagrange
multipliers indicate that the lightcones of hαβ and τ Aα τ Bβ ηAB point in the same direction, i.e.

ēαε
αβ τ̄β = eαε

αβτβ = 0

Solving for both the equations of λ, λ̄, eα, ēβ, we obtain the action

Snonrel = −T
∫
d2σ|τ |ηABταAτ

β
BGαβ (7.33)

This action equals the non-relativistic string action given in [6]. We note that all mµ dependence
can be absorbed into the Kalb Ramond field using a redefinition of Bµν . This is especially clear
in the Nambu-Goto type action. However, in the remainder of this thesis we will choose not to do
this and essentially set Bµν = 0.

7.3 Symmetries of the non-relativistic particle and string actions

In order to fully understand all the σ-model symmetries of the Newton-Cartan particle it will be
useful to first analyse the symmetries of the trivial highest order term. Although we cancel the
term, it will give us some interpretation of the symmetries we encounter in the Newton-Cartan
particle. The term is specifically given by

S = m

∫
dτ τµẊ

µ. (7.34)

We are particularly interested in σ-model symmetries. Clearly, the action is invariant under the
U(1) gauge symmetry δ(Γ)τµ = ∂µΓ. This can be interpreted in the following way. Since the
action is a total derivative, the action is, up to boundary terms, completely invariant of Xµ. We
can use this freedom to set δXµ = 0 under general coordinate transformations. Thus, gct’s act
only on the field τµ, via equation (4.29). Since we assume R 0

µν = 0 this implies that the action is
invariant under local time translations, acting only on the coordinates. Equivalently, it means that
the action is invariant under general coordinate transformations acting only on the fields. Thus,
the ‘triviality’ of the action implies the symmetry under local time translations. All other local
Galilean transformations, do not affect τµ, and are therefore not interesting.
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As we explain in the appendix C, the existence of a σ-model symmetry acting on this action,
implies the existence of a σ-model symmetry acting on the Newton-Cartan particle action, given
by

δ(Γ)mµ = δgct(Γ)τµ. (7.35)

This can be alternatively interpreted as a combination of boosts and local time translation of order
1
c2

, as

δ(Γ)mµ = δ(Γ0H)τµ − ΓνRµν(H) = ∂µΓ0 − ΓνRµν(H). (7.36)

Thus if Rµν(H) = 0, we may instead write ∂(Γ0)mµ = ∂µΓ0. This shows that only one of the
parameters of the gct paramater Γµ actually generates a new symmetry. This transformation
corresponds precisely to the extension of the Galilei algebra that occurs in the Bargmann algebra.
Furthermore, the conformal transformation (7.17) leaves the action invariant. This conformal
symmetry, together with the Bargmann symmetries forms the full symmetry group of this action.
They satisfy the Lie algebra

[Gb, H] = Pb [Jab, Pc] = 2δc[bPa]

[Jab, Jcd] = 4δ[a[cJd]b] [Gb, Jcd] = 2δb[cGd].

[Gb, Pc] = δbcZ [Gb, D] = −Gb
[Pa, D] = Pa [H,D] = 2H. (7.37)

Usually, when discussing the conformal symmetries D, the special conformal transformation gen-
erated by C are also included in the algebra, satisfying the relations

[H,C] = D, [C,D] = −2C

[Pa, C] = −Ga (7.38)

This algebra is also called the Schrödinger algebra, since it is the algebra of the free particle
Schödinger equation, see for example [35]. The transformations generated by C do not transform
the gauge fields E A

µ , τµ, which explains why we did not encounter the generator in our analysis.
However, the Schrödinger algebra is also important for the non-relativistic free particle σ-model,
see section 7.4.

Let us now consider the symmetries of the non-relativistic string. Of course, as can be seen from
the Lie algebra expansion, the obtained action is invariant under the homogeneous Galilean group,
consisting of the Galilean group without translations. Furthermore, by the Lie algebra expansion,
it is also invariant under second order longitudinal rotations. The second order transverse rotations
do not act on any of the fields contained in the action and therefore may be ignored.

Similarly to the particle there are also extra ‘accidental’ symmetries, which we would not a priori
expect from the Lie algebra expansion. These can be most intuitively explained by considering the
trivial first term in the expansion of the action (7.21), given by

S =

∫
dτdσ|det τ Aα |. (7.39)

Since this is a total derivative, the general coordinate transformations of the target space coordi-
nates only are a symmetry up to boundary terms, given by δXµ = Γµ. Since general coordinate
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transformations are already symmetries of the action, this implies that general coordinate trans-
formations of the background fields also contribute only boundary terms. Additional symmetries
are given by

δ(Λ̄)τ Aµ = 2Λ̄ABτ
B
µ , Λ̄AA = 0 (7.40)

where Λ̄AB is any traceless tensor. We use the bar to denote a traceless tensor. Given any tensor
with two indices XA

B that has a trace, we may decompose it in an isotropic part and a traceless
part.

XA
B =

δABX
D
D

δCC
+ X̄A

B. (7.41)

The invariance of the action under this transformation can be seen using a short calculation, see
appendix A. In particular, when writing out the action explicitly,

det τ Aα = εαβ∂αX
µ∂βX

ντ Aµ τ Bν εAB, (7.42)

we see that it depends on the two-form τ A[µ τ
B
ν] εAB. Anything that leaves this two-form invariant

leaves the area of the worldsheet invariant (at highest order). These transformations are precisely
the transformations (7.40).

We may interpret these transformations generated by ΛAB at a single point in spacetime as the
area preserving transformations of two dimensional Minkowski spacetime, or equivalently of R2.
They act on coordinates XA via matrix multiplication. The corresponding Lie group is given by
SL(2,R). For R2, a basis of the Lie algebra is given by

a1 =

[
0 −1
1 0

]
a2 =

[
0 1
1 0

]
a3 =

[
1 0
0 −1

]
. (7.43)

Here, a1 generates rotations, a2 generates boosts and a3 generates squeezes, stretching one direction
while compressing the other. However, we will use a different notation for the bases, denoting them
by the traceless part of the matrices (M B

A )CD = 2δCAδ
B
D, given by

(M̄ B
A )CD = 2δCAδ

B
D − δBAδDC (7.44)

The commutation relations of this basis can be computed using the matrix multiplication, and are
given by

[M̄ B
A , M̄ D

C ] = 2δCBM
D
A − 2δDAM

C
B = 2δCBM̄

D
A − 2δDA M̄

C
B . (7.45)

Specifically, the Lie algebra consists of infinitesimal rotations 1
2(M 0

1 −M 1
0 ), boosts 1

2(M 1
0 +M 0

1 )
and squeezes 1

2(M 0
0 −M 1

1 ). Interpreted as actions on Minkowski spacetime, squeezes squeeze space
and time in an area preserving manner, and rotations rotate space and time. These are considered
to be accidental symmetries of the action, whereas the boosts follow from the boost invariance of
the relativistic particle.

Following the discussion in the appendix C, the accidental symmetries in the trivial leading
order term imply accidental symmetries in the non-relativsitic limit of the string action (7.33),
corresponding to the transformations (7.40) at order 1

ω2 . These transformations can be viewed as
the gauge transformations of the string Newton-Cartan algebra with generators.
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HA Longitudinal translations

Pa transverse translations

M =
1

2
εABJAB longitudinal string rotations

J[ab] transverse string rotations

JAa string Galilean boosts

ZA 2nd order local longitudinal translations

Z̄AB, 2nd order area preserving traceless linear maps

The Newton-Cartan algebra is an extension of the Galilean algebra. The string Newton-Cartan
algebra is given by

[HA, JBC ] = 2ηA[BHC ] [HA, JBc] = ηABPc (7.46)

[Pa, Jbc] = 2δa[bPc] [JAa, JBC ] = 2ηA[BJC]a (7.47)

[JAb, Jcd] = 2JA[dδc]b [Jab, Jcd] = 4δ[b[cJa]d] (7.48)

[Pa, JBc] = −δacZB [ZA, JBC ] = 2ηA[BZC] (7.49)

[JAb, JCd] = δdbZ̄[AC], [HA, Z̄BC ] = 2ηACZB − ηBCZA (7.50)

[JAB, Z̄CD] = 2ηC[BZ̄A]D − 2Z̄C[BηA]D (7.51)

Furthermore, the action (7.33) is invariant under local conformal transformations

τ Aµ = cτ ′
A
µ mA

µ =
1

c
m′

A
µ . (7.52)

Similar to the particle case this transformation has the property that it does not leave the triviality
of the divergent term invariant, i.e. det τ Aα does not remain a total derivative. However, it does
leave invariant the foliation constrain dτ Aab = 0. We will discuss this further in section 7.4.

7.4 Torsion in non-relativistic geometry

In the previous sections we have discussed the non-relativistic particle and string particle actions
in the torsionless case. In this section we will discuss how much torsion can be allowed in Newton
Cartan and string Newton Cartan geometry, but still be considered a limit of general relativity.
We also discuss how the dilatations and torsion are related.

Whereas in the non-relativistic particle limit we took we assumed torsionlessness, there are also
formulations of Newton-Cartan theory including torsion. For example, gauging the Schrödinger
algebra, which consists of the Bargmann algebra along with the previously discussed dilatations
and special conformal transformations, leads to twistless torsion Newton-Cartan geometry [36].
Further considerations of this algebra, by introducing an additional Stückelberg scalar, can lead to
torsional Newton-Cartan geometry. We note here that torsion is introduced only after taking the
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non-relativistic limit. Torsional and twistless torsion Newton-Cartan geometry are closely related
to Lifshitz holography [37] and the fractional quantum Hall effect [38].
In the method we discussed for taking the non-relativistic limit, the torsionless condition Rµν(H) =
0 is necessary in order to guarantee that the divergent term of the action (7.4) is a total derivative.
This requirement implies that, classically, we do not modify the relativistic particle in order to take
the limit. We only add a total derivative. This also implies that if we introduce torsion in general
relativity, that does not satisfy Rµν(H) = 0, the divergent term is not a total derivative. In order
to take the limit we then need to cancel the divergent term with an electric-magnetic potential that
is not a total derivative.

However, after taking the limit, we have seen that additional σ-model symmetries occur, which
do not preserve the 0 torsion condition. Indeed, the conformal transformation (7.17) changes the
torsion

∂[µτν] = c2∂[µτ
′
ν] + 2cτ ′[ν∂µ]c = 0, (7.53)

but leaves the equation

dτab = 0 (7.54)

invariant. Whenever τ satisfies this equation, we refer to it as twistless torsion. This is equivalent
to the hypersurface orthogonality condition of the Frobenius theorem (7.6). However, there exist
limits leading to twistless torsion for which the divergent term is not a total derivative. In particular,
a necessary condition for the term to be a total derivative is

D[adτb]0 = 0, (7.55)

where Dµ is a connection satisfying D[aDb] = 0.

In the stringy non-relativistic limit, there is a bit more subtlety. As it turns out, the torsion-
lessness condition

R A
µν = 2∂[µτ

A
ν] − 2Ω A

[µ Bτ
B
ν] = 0 (7.56)

is not necessary to guarantee that the divergent term (7.21) is a total derivative. Instead, a
necessary condition is given by R B

aB = 0, and R C
ab = 0. We may distinguish two separate reasons

for this. Firstly, R A
µν is dependent on the gauge field of longitudinal rotations Ω AB

µ . Thus, various

components of the curvature R A
µν can be used to solve for the spin connection. The spin connection

does not occur in the particle action, and therefore, its value does not affect the action. In particular,
the equations

R C
AB = 0, R [BC]

a = 0, (7.57)

may be used to solve for the spin connection. Thus, only the remaining equations

R C
ab = dτ C

ab = 0, R (BC)
a = dτ (BC)

a = 0, (7.58)

affect the value of the action, and only torsion in these terms affect whether the divergent term is
a total derivative. The second reason is of a similar vein. As discussed previously, the divergent
term (7.21) is invariant under the action of the SL(2,R) given by (7.40). This symmetry group is
larger than the Lorentz group of longitudinal rotations. This implies that the curvature R A

µν (H)
of the Lorentz group is not covariant under these transformations, and hence equation (7.56) is not
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invariant under these transformations. In order to obtain a covariant curvature, it is convenient to
introduce a gauge field

Ω̄ A
µ BJ̄

B
A , (7.59)

where Ω̄ A
µ A = 0. The gauge fields corresponds to the transformation J̄ B

A of SL(2,R). This gauge
field will only be used as a convenient tool in this calculation. The covariant curvature of the time
translations is then given by

RSL A
µν = 2∂[µτ

A
ν] − 2Ω̄ A

[µ Bτ
B
ν] = 0, (7.60)

which we may set to 0. The components

RSL C
AB = 0, (7.61a)

R̄SL C
aB = RSL C

aB − 1

2
RSL D
aD δCB = 0, (7.61b)

may be used to non-uniquely solve for Ω̄ A
µ B. The remaining equations

R̄ B
aB = dτ B

aB = 0 (7.62a)

R̄ C
ab = dτ C

ab = 0, (7.62b)

form a necessary condition for the divergent term (7.21) to be a total derivative, as is shown in
the appendix A. We note that these conditions are equivalent to setting ∂[µτ

A
ν τ Bρ] εAB = 0.

It is interesting to note that the hypersurface orthogonality condition dτ A
ab = 0 is implied by

the torsional constraints (7.56) as well as by (7.60), implying that in these limits there exists a
foliation of transverse surfaces.

After taking the limit, the action is furthermore invariant under the conformal transformations
(7.52). This transformation only leaves invariant the hypersurface orthogonality condition (7.62b),
and do not leave invariant the restriction (7.62a). This is related to the fact that the action of
SL(2,R) and the conformal transformations on τ Aµ form precisely the general linear group GL(2,R).

However, this does not complete the discussion on possible torsion in the non-relativistic action.
One of the reasons is that the only geometries that can be considered limits of a relativistic geometry,
have R C

aC which is purely gauge. This sets constraints on the possible values of τ . The exact
formulation of these constraints is beyond the scope of this thesis.

Another reason is that it may be useful to also consider torsional stringy Newton Cartan ge-
ometry without any constraints, since this also has application with Newton Cartan geometry, i.e.
in the particle case [37].

7.5 Massless particles and tensionless strings in the non-relativistic limit

In this section we have put considerable attention to the appearance of the extensions to the Galilei
algebra that should be considered in the non-relativistic limit of massive particles. However, these
do not appear in the massless limit of the non-relativistic particle. This can be clarified by noting
that the divergent term is proportional to the mass. Hence, if we take this parameter to 0, there
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is no divergent term to be cancelled, and no extension to the algebra. The massless limit of the
Galilean particle is very similar to the massless limit of the Carroll particle, as we will see in the
next section. We will treat the massless limit in the Hamiltonian formalism. The non-relativistic
Hamiltonian is given by

S =

∫
pµẊ

µ − e

2
(−2mp0 + (pa)

2), (7.63)

where einbein e acts as a Lagrange multiplier setting the mass-shell condition p0 = 1
2m(pa)

2.
Furthermore, the Polyakov action (7.10) without Aµ-field can be obtained by eliminating pa using
its equation of motion. This action is also linear in the energy p0, implying that it also is a Lagrange
multiplier. The constant λ in (7.10) corresponds to the energy of the particle. The massless limit
is taken by letting m→ 0 in expression (7.63). We obtain

S =

∫
pµẊ

µ − e

2
p2
a. (7.64)

The energy p0 is now a Lagrange multiplier setting Ẋ0 = 0. Therefore, the particle is restricted to
a surface of constant time. The remaining equation of motions are

ṗµ = 0, pa =
1

e
Ẋa, (7.65)

implying that the path the particle takes is straight. This limit matches the non-relativistic limit
of the massless relativistic particle.

Since there is no divergent term when taking the limit, we may also consider a limit of the rela-
tivistic particle where we scale the vierbein in the way used to deal with the non-relativistic string,
with Ê A

µ = τ Aµ + O( 1
c2

) and Ê A
µ = E A

µ , with A = 0, 1 and a = 2, ..., D. In general we may also
take A = 0, ..., p, and a = p + 1, ..., D, and obtain very similar limits. The actions corresponding
to these limits are similarly given by equation (7.65), where only the range of a changes. In this
limit, PA act as Lagrange multipliers setting ẊA = 0.

8 Ultra-relativistic limits of the relativistic particle and string

Here we will consider certain ultra-relativistic limits of the Carroll particle and string actions,
with single particles. Following previous articles on the dynamics of Carroll particles [39] and
strings [5] we will begin with the Hamiltonian form of the action, where the Carroll limit has a
very direct interpretation as a limit of the on-shell conditions. Furthermore, taking the limit will
be straightforward compared to the other choice of action, as we will not need to introduce new
variables which play the role of Lagrange multipliers. We will also comment on the dynamics
of these objects, which turn out to be trivial. When we use Lie algebra expansions adapted to
non-relativistic p-branes we obtain dynamics of objects which are very similar to the massless
non-relativistic limits.

As noted in [5], there are (at least) two different limits which can be referred to as Carroll
limits. The first one (‘à la particle’) is taken by splitting up the relativistic vielbein into τµ, E a

µ ,
and scaling these fields separately. The second one is taken by taking the ‘stringy’ limit, splitting up
the variables in A = 0, 1, a = 2, ..., D − 1. Unlike in the non-relativistic limit, the actions obtained
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have similar properties. A string in a Carroll background resembles an collection of particles in a
Carroll background, and a 2-Carroll contracted string resembles a collection of 2-Carroll contracted
particles. An exception to this statement holds for strings that are precisely longitudinal to the
contracted directions.

8.1 Ultra-relativistic limit of the Hamiltonian particle action

The Hamiltonian version of the relativistic particle action is given in equation (4.39). For conve-
nience we will restate it here,

S =

∫
dτpµẊ

µ − e

2
(pµĜ

µνpν +m2). (8.1)

Here, e, assumed to be bigger than 0, is a Lagrangian multiplier fixing the mass-shell condition
p2 +m2 = 0 and pµ are the momenta associated with xµ. We note that all independent components
of the momenta occur in the mass-shell condition. We may solve for momenta as in equation (4.40),

pµ =
Ĝµν ẋ

ν

e
(8.2)

We may enter this into the action to obtain the usual Polyakov-type action for the particle given
in (7.1). We remind ourselves that solving for the einbein ê results in

ê =

√
−ẋ2

m
(8.3)

We use the following scaling of the vierbein fields:

Ê a
µ =

1

c
E a
µ +O(c)

τ̂µ = τµ +O(
1

c2
). (8.4)

This implies the following relations for the inverse vierbein:

Êµa = ceµa +O(
1

c
)

τ̂µA = τ Aµ +O(
1

c2
). (8.5)

We will assume that the worldsheet and target space coordinates are not expanded. We will rewrite
e for reasons we will justify later as

ê = e+O(
1

c2
). (8.6)

This then leads to the action

S =

∫
dτpµẊ

µ − e

2
(−pµpντµτν +m2) +O(c2) (8.7)

We have chosen the expansion of Ê a
µ and τ̂ Aµ such that the action is convergent. There are no

terms that require cancellation or other complication. We obtain in the limit

S =

∫
dτpµẊ

µ +
e

2
((pµτ

µ)2 −m2). (8.8)
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We may remark that the only background field occurring in this action is the boost invariant vector
field τµ. The mass-shell constraint only puts a constraint on the energy given by E2 := (pµτ

µ)2 =
m2. This implies that the energy becomes completely independent of the transverse momenta. The
equations of motion are given by

ẋµ = −epντντµ ṗµ = e∂µτ
ρpρpντ

ν (pµτ
µ)2 = m2. (8.9)

The first equation of motion shows that ẋµ moves along the integral trajectories of τµ, independently
of the transverse momenta. The second equation shows that in a non-trivial background the
momenta have non-trivial equations of motion.

In order the inspect Carroll versions of the Polyakov and Nambu-Goto type particle actions,
we may eliminate some of the momenta from the Hamiltonian actions. In order to do this, we will
first switch coordinates

pµ, xµ → p0 = τµpµ, pa = Eµapµ, xµ. (8.10)

We may then eliminate p0 from the action using its own equation of motion. We obtain

p0 = −1

e
ẋµτµ. (8.11)

Using pµẊ
µ = p0τµẊ

µ + paE
a
µ Ẋ

µ, we can use this to rewrite the action as a Polyakov type action.
We obtain

S =

∫
dτ paẋ

a − (ẋµτµ)2

2e
− m2e

2
, (8.12)

where pa = Eµapµ, ẋa = E a
µ ẋ

µ. In this action, pa occur as Lagrange multipliers, setting ẋa = 0.

We may further reduce the amount of variables encountered in this classical action by eliminating
e using its equation of motion. We then obtain

e =
|ẋµτµ|
m

, (8.13)

using the assumption e > 0. This is consistent with the einbein expansion (8.6), in that e is
invariant under a small change in c0. We then obtain the action

S =

∫
dτ paẋ

a −m|ẋµτµ|. (8.14)

The σ model symmetries of the Carroll action are given by homogeneous Carroll transformations
of the background fields, along with a local scaling symmetry given by

E a
µ (x)→ c(x)E a

µ (x). (8.15)

This scaling symmetry corresponds to a local rescaling of the parameter c0 discussed in section (3.3).
However, in general this local scaling transforms the torsionless field E a

µ into a torsional field. If
we want to keep working with torsionless Carroll geometry we have to require the constraint

R a
µν (P ) = 0 (8.16)
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to be invariant under these scaling symmetries. In particular, this equation implies a restriction on
the geometry given by

2τµEν(b∂[µE
a)
ν] = 0, (8.17)

which must remain invariant. Assuming this restriction holds, the restricted term transforms as

0 = 2τµeν(b∂[µE
a)
ν] → δabτµ∂µc (8.18)

Setting this to 0 to preserve this restriction implies τµ∂µ(c) = 0. Thus, the torsionless Carroll
geometry is preserved for scaling transformations of the transverse vierbein fields, where the scaling
factor c is constant in the longitudinal direction.

However, the full σ-model symmetries of the Carroll particle action transform the background
field into torsionfull background fields, which seems to indicate that certain components of the
relativistic torsion are not relevant when describing the trajectories of Carroll particles.

In order to obtain a better understanding of what the expansion of the relativistic einbein ê
(8.6) implies, we apply this assumption to its classical solution (8.3). We obtain

e2 =
(τµẋ

µ)2 − 1
c2
ẋµẋνE a

µ E
b
ν δab

m2
(8.19)

Thus, our rewriting ê = e + O( 1
c2

), and the assumption that this remains finite implies that
ẋµE a

µ = O(c2). This is precisely tells us that in the limit c→ 0, the particle does not move in the
spatial directions. This clarifies what assumption has led to the restriction of the particle to a line
in spacetime.

The Polyakov (8.12) and Nambu-Goto (8.14) type Carroll actions can also be derived by taking
the limit of the respective relativistic particle actions. In these cases, a divergent quadratic form
needs to be used to restore the momenta pa as variables, with the method described in appendix
B.

8.2 Carroll string action

The ultra-relativistic limit of the phase-space action is performed in [5]. We will in particular
consider the ‘stringy’ limit, where both a timelike and a single spacelike vielbein field is scaled.
These fields are usually referred to as longitudinal, but we will refrain from doing so since the
string does not need to be longitudinal to the rescaled directions. In order to avoid confusion we
will call the longitudinal directions the τ directions, and the transverse spacetime directions the E
directions. The limit is taken in a way similar to the Carroll particle, but appears to describe a
string that is not without dynamics.

On the other hand there is a different limit of the action in which the τ Aµ is assumed to be
longitudinal to the string. In this limit, the dynamics are trivial.

S =

∫
dτdσpµẊ

µ − ê

2
(P 2 + T 2Ĝσσ)− û(Pµ∂σX

µ) (8.20)
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We then apply the Inönü Wigner contraction to the Poincaré algebra, where we choose the following
rescaling of the vielbein fields

τ Aµ = c1/2τ Aµ

Ê a
µ = c−1/2E a

µ . (8.21)

This re-scaling is chosen in such a way that the action we obtain in configuration space has
no c-dependence, and we are therefore not required to rescale the tension. The corresponding c
dependence of ê is given by

ê = ce+O(c3), (8.22)

whereas û = u does not depend on c. We then obtain in the limit

S =

∫
dτdσ PµẊ

µ − e

2
(PAη

ABPB + T 2E a
σ E

b
σ δab)− u(Pµ∂σX

µ). (8.23)

Similarly to the Carroll particle, we are only taking a limit in the on-shell condition of e. P 2 +
T 2Ĝσσ = 0 is replaced by PAη

ABPB + T 2Gσσ = 0, where G is the degenerate spatial metric.

In order to interpret the equations of motion we move to the Carroll equivalent of the conformal
gauge, given by e = 1, u = 0, and consider a flat background. We then obtain the equations of
motion of PA, Pa, and Xµ respectively

ẊA = PBη
AB Ẋa = 0 Ṗµ = −∂µτνAηABτ

ρ
BPνPρ + T 2∂µ(E a

σ E
b
σ δab)X

′ν . (8.24)

In a flat spacetime this reduces to

ẊA = PBη
AB Ẋa = 0 Ṗµ = 0. (8.25)

We see that the E-coordinates of the string are constant in time, whereas the τ -coordinates of the
string are not. This shows that the string can only move in two directions. This does not constrain
the entire movement of the string. For example, consider the open string in a 3 dimensional flat
spacetime at an instant τ = 0 given by

X0 = P0(σ)τ, X1 = P1(σ)τ, X2 = σ, (8.26)

where
P 2

0 − P 2
1 = T 2. (8.27)

P0 and P1 are constant in time, but not necessarily constant in σ. Then the string both moves and
satisfies the equations of motion. This is a counter-intuitive example since for constant PA(σ) = PA,
this string is spatially extended only in the E-direction, which, in the non-relativistic limit we called
transverse. However, this string does minimize the action (8.23). In order to avoid a discussion
of boundary conditions in this non-Lorentzian spacetime we can compactify the X2 direction, i.e.
identify X2 ∼ X2 + 2πR, so that X2 is a parameter along a circle. This implies that the string is
closed, wound around a circle. The spacetime is given by M2×S1, the product of two dimensional
Minkowski spacetime and a circle. The string then traces out a flat cylinder R × S1 embedded in
spacetime, moving in a timelike direction. It seems thus that this string is only partially restricted
in its motion.

In a certain sense however, the motion of the string does not have any dynamics. In particular,
points having different values of xa, do not affect each other. This holds for any solution of the

53



string. Hence, the string resembles a collection of individual relativistic massive particles, labelled
by the coordinate Xa, with independent momenta, each moving in a two-dimensional space, with
the appropriate mass-shell condition (8.27). This two dimensional space is given in the flat case by
X2 = const., and more generally by the manifold perpendicular to E 2

µ , if it exists.

We may look at the implications of the e dependence (8.22). We have per equation (4.61),

ê =

√
− det Ĝαβ

Ĝσσ
. We may introduce the c dependence as

ê =

√
−detE a

α E
b
β δab + c2τAα τ

B
β ηAB)

E a
σ E

b
σ δab + c2τ Aσ τ Bσ ηAB +O(c2)

= O(c). (8.28)

We may conclude therefore that the c dependence of ê implies that detE a
α E

b
β δab → 0. In particular

this assumes that E a
α has rank 1 in the limit. This condition implies that the string is spatially

extended in the E a
µ directions, but does not move in these directions.

Let us examine the Polyakov and Nambu-Goto versions of the Hamiltonian Carroll action. We
may first obtain the Polyakov action by eliminating all momenta occurring quadratically in the
action (8.23). We obtain

S =

∫
dτdσ

(DtX
A)2

2e
+ PaDtX

a − e

2
(X ′

a
)2, (8.29)

where Dt = ∂τ − u∂σ. The justification that this limit is of Polyakov type is given by the fact that
the limit of the Polyakov action taken using (8.21) and (8.22) produces this action. The divergent
quadratic term occurring in this limit is used to restore the variables Pa, as in the appendix B.
Interestingly, the dependence of the worldsheet metric hαβ on c is of Carroll type. We may say
that we take a Carrollian limit on the worldsheet. This can be seen from the dependence of hαβ
on e and u, given in equation (4.59). In particular, the zweibeins satisfying hαβ = e Aα e

B
β ηAB are

given by

e 0
0 = Tce, e 1

0 = 0, e 0
1 = u, e 1

1 = 1. (8.30)

We may furthermore eliminate e, u and P =
√
PaP a using their equations of motion to obtain

an action of Nambu-Goto type. This shows that we retain D − 3 variables which play a role
analogous to Lagrange multipliers, in addition to the D variables Xµ. This limit is particularly
clear for D = 3, where all momenta are eliminated. In this case, we may denote Xa = X2 = X.
We obtain

S = −T
∫
dτdσ

√
−(X ′ẊA − ẊX ′A)2 (8.31)

In light of a formal map between Carroll and Galilei actions discussed in section 9, it is interesting
to note that the highest order term in the non-relativistic limit ‘à la particle’ of the relativistic
string is given by [40],[41]

S = −T
∫
dτdσ

√
(Ẋ0X ′a −X ′0Ẋa)2. (8.32)

The similarities are self evident.
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The derivation of the Nambu-Goto version of the Carroll limit is most easily done by taking
the limit of the relativistic Nambu-Goto action. This requires the restoration of the D−3 variables
occurring in the action, obtained by using a quadratic form. The derivation of this limit makes use
of the Weinstein-Aronszajn identity, and the Cauchy-Binet identity. These identities are used in
the computation of matrix determinants and are discussed in the appendix D. We start with the
relativistic Nambu-Goto action (4.50). We will first examine the D = 3 case; we expect an answer
matching (8.31). We substitute the vielbein expansions (8.21) into the action. We obtain

S = −T
∫
dτdσ

√
−det(

1

c
EαEβ + cταβ) +O(c4)

= −T
∫
dτdσ

1

c

√
−det (ταβ) det(τγαEαEβ + c2δγβ) +O(c4))

(8.33)

where ταβ = τ Aα τ Bβ ηAB. Note that the determinant of τγαEαEβ is 0, preventing us from directly
taking a limit. Using the Aronszajn-Weinstein identity we obtain

det τγαEαEβ + c2δγβ = c2(Eατ
αβEβ + c2). (8.34)

Thus we obtain

lim
c→0

S = −T
∫
dτdσ

√
−det(τα′β′)ταβEαEβ +O(c2). (8.35)

We note that although in the calculation of the limit we used the inverse of ταβ, both the Nambu-
Goto action and the limit (8.35) are in general differentiable at det ταβ = 0. In particular the
adjunct of ταβ, given by adj(τ)αβ = det(τα′β′)τ

αβ is differentiable. This shows that the action
describes without issues states where the worldsheet is ‘orthogonal’ to τ 1

µ . Instead, the action is
not differentiable if the worldsheet is ‘orthogonal’ to Eµ, i.e Eα = 0.
In the more general case D ≥ 3, we have some complications, as we obtain a quadratic divergent
term. We once again start at the Nambu-Goto action, in D ≥ 3.

S = −T
∫
dτdσ

1

c

√
−det(E a

α E
b
β δab + c2ταβ) +O(c4) (8.36)

Directly taking the limit c → 0 has an issue, since the term in the square root becomes negative.
This can be dealt with in two separate ways, where we obtain two separate results. We will first
discuss the method that corresponds directly to the previous discussion. In this method, we expand
the determinant in powers of c2,

S = −T
∫
dτdσ

1

c

√
−det(E a

α E
b
β δab)− c2

(2)

det (E a
α E

b
β δab + c2ταβ) +O(c4). (8.37)

(2)

det gives the coefficient corresponding to the power c2. At this point we may note that the first
term under the square root is quadratic, using the Cauchy-Binet theorem, discussed in appendix
D. Explicitly, we may write using equation (D.6)

detE a
α E

b
β δab =

∑
S∈( [n]

D−2)

(detE S(β)
α )2, (8.38)
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Here
([n]
k

)
is the set of increasing maps S : {0, 1} → {2, ..., D − 1}. These maps match a value of

the index α = 0, 1 to a value of the index a = 2, ..., D− 1. These maps label all 2× 2 minors of the
matrix E a

α . Clearly, equation (8.38) is quadratic, and hence we may introduce Lagrange multipliers

1

c2
detE a

α E
b
β δab →

∑
S∈( [n]

D−2)

2λS detE S(β)
α − c2λ2

S . (8.39)

We may note that for D > 4, the number of possible maps S given by (D−2)(D−3)/2, is larger than
D−3, which is the expected number of Lagrange multipliers as we deduced by eliminating variables
from the Polyakov action. Nevertheless, these restrictions are equivalent to linear dependence of
Ẋa and X ′a. The second order terms can be calculated using the Aronszajn-Weinstein identity,
and are given by

(2)

det (E a
α E

b
β δab + c2ταβ) = det (τα′β′)(τ

αβE a
α E

b
β δab). (8.40)

The final limit of the action is therefore given by

lim
c→0

S = −T
∫
dτdσ

√√√√−det (ταβ)(ταβE a
α E

b
β δab) + 2

∑
S∈( [n]

D−2)

λS detE
S(β)
α (8.41)

As shown in [5], there is nothing stopping us from discussing a Carroll limit of the string ‘à la
particle’, i.e. rescaling only one time dimension separately from the spatial directions. In this limit
we do in fact obtain a string without movement. Alternatively, we may also consider ‘stringy’ limits
of the particle, where we rescale the time coordinate and an additional direction separately from
the remaining directions. This leads to a particle that is restricted to only move in one direction,
similar to the ‘stringy’ limit of the string.

This is in stark contrast with the non-relativistic limit, where the particle has an interesting
physical in the limit ‘à la particle’, and the string has an interesting physical interpretation in the
‘stringy’ limit.

8.2.1 A completely static Carroll string

In this section we will discuss an alternative limit of the Carroll string, obtained by starting with
(8.36). EaαE

b
βδab is quadratic in E a

α , and hence we may rewrite it to the equivalent action

S = −T
∫
dτdσ

1

c

√
−det(2c2E a

α λ
b
β δab + c2ταβ − c4λ a

α λ
b
β δab +O(c4)) (8.42)

For ταβ invertible, this limit converges to

S = −Tc
∫
dτdσ(

√
−det(2E a

α λ
b
β δab + ταβ) +O(c2)). (8.43)

This is precisely an action that describes a string longitudinal to the directions τ Aµ . This is because
the Lagrange multipliers set the restrictions E a

α = 0. By Frobenius’ theorem, this equation of
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motion only has a solution if dEAB
c = 0.

We note that the action obtained approaches 0 as c→ 0. As such, if we were to write the original
action (8.36) as a combination of both (8.42) and (8.38), then this action would only contribute at
O(c). This shows that for this particular limit the scaling of the vielbein (8.21) is not appropriate,
unless we re-scale the mass. Instead, we could use the c-dependence

τ Aµ = τ Aµ

Ê a
µ = c−1E a

µ . (8.44)

This action is, in a certain sense, much more similar to the ultra-relativistic particle. In both cases,
the classical solutions to the equations of motion correspond to the sub-manifolds obtained by
integrating τµ respectively τµA. However, if we are to view τ as a time parameter, for the particle
any initial condition (i.e. any position of the particle) is allowed. However, in the string case, the
constraints imposed by λ b

β do not allow for all initial conditions of the string. The string must

necessarily be transverse to the E a
µ , i.e. parallel to τµ1.

9 Carroll and Galilei from a brane perspective

In this section we will carefully discuss the formal map between k-Galilei Lie algebras, with A =
0, ..., k − 1, and D − k-Carroll Lie algebra’s, with A = 0, ..., D − k − 1, discussed in [6]. This
duality also holds for the Lie-algebra expansion, or any other extensions of the Galilei and Carroll
algebras. We will interpret this map as interchanging a space direction with a time direction. Using
this formal map we can map Galilei and Carroll gravity actions to each other. We can also use this
map to relate extended objects to each other. This is a subtle matter, since the map changes the
physical meaning of the actions. We will look at the dynamics of these actions and interpret them
as the limits of relativistic actions.

9.1 σ-models with a central charge symmetry

As noted in [6], the formal mapped can be used to obtain from a (homogeneous) Galilei invariant
σ-model a (homogeneous) Carroll invariant σ-model. This includes any extensions of the Galilei
and Carroll algebras. This is in particular applied to the non-relativistic p-brane actions when
D = 2(p + 1), to obtain Carroll invariant σ-models. As a first application let us consider the
Nambu-Goto action of the non-relativistic particle in D = 2, in a curved background. This action
is given by

S = m

∫
dτ

(Ẋ1)2

Ẋ0
+mµẊ

µ, (9.1)

where 0 and 1 are flat indices. The map A = 0 ↔ a = 1 gives an action for a moving Carroll
‘particle’,

S = m

∫
dτ

(Ẋ0)2

Ẋ1
+ nµẊ

µ. (9.2)

This action is completely analogous to the non-relativistic particle in 2 dimensions, having an
analogous symmetry group and analogous dynamics. If we want to retain the interpretation of a
Carroll space as having a 0 light speed, this implies that this particle is moving faster than the
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speed of light. Indeed, it can be interpreted as the limit of the 2-dimensional relativistic particle
action

S = m

∫
dτ
√
Ẋ2, (9.3)

where Ẋ2 > 0, i.e. the particle is moving faster than the speed of light. Thus interchanging a↔ A
in this case has led to a particle with a larger than light speed.

For D = 4, we can similarly compare the non-relativistic Nambu-Goto action (7.33), explicitly
given by

det (τ A
′

α′ )ηABταAτ
β
B(E a

α E
b
β δab + τ Cα m D

β ηCD), (9.4)

with its ultra-relativistic counterpart

det (E a′
α′ )δ

abEαaE
β
b(τ

A
α τ Bβ ηAB + E c

αn
d
β δcd). (9.5)

If we interpret the Carrollian spacetime as a limit of a relativistic spacetime, the condition detE a′
α′ 6=

0 is the condition for a string being spatially extended, i.e. moving faster than the speed of light.
This action can indeed be obtained as the ultra-relativistic limit of a relativistic string moving
faster than the speed of light, completely analogous to the limit used to obtain (7.33).

It is worth noting that this similarity does not only involve D = 2(p+1). Indeed, the action (9.5)
is invariant under the generalised homogeneous Carroll transformations with central extensions for
A = 0, ..., D − 3, a = D − 2, D − 1, i.e. the only condition required is that a ranges over 2 values.
This, however, forces us to consider strings in an ultra-relativistic limit of the Poincaré algebra that
is usually not considered to be ‘stringy’. It is not difficult to show that these strings are related
to each other via dimensional reduction, precisely analogous to the way that the non-relativistic
strings are related to each other via dimensional reduction. An analogous statement can be made
for the Carroll particle action (9.2), where we may replace 0→ A = 0, ..., D − 2, 1→ D − 1.

As shown in [6], it is possible to write down an action where a ranges over only 1 value, which
does have a central extension. This action can be obtained from the action (9.5) by assuming
constraints on the background fields similar to dimensional reduction of a string. To be more
precise, we split the available spacetime indices into µ = 0, ..., D − 1 → µ̃ = 0, ..., D − 2, keeping
D − 1 separate. Similarly, a splits into D − 2 and D − 1. We assume all background fields to be
independent of xD−1, and we assume the conditions

E D−1
µ̃ = 0 E D−1

D−1 = 1 E D−2
D−1 = 0 τ AD−1 = 0 n D−1

µ = 0 n D−2
D−1 = 0 (9.6)

The action obtained is given by

S = T

∫
dτdσεαβ∂αX

D−1nβ −
εα0α1εβ0β1(−τα0τβ0 + ∂α0X

D−1∂α0X
D−1)hα1β1

2εαβ∂αXD−1Eβ
(9.7)

As it turns out, this action is the formal dual of the non-relativistic string action introduced in
[32], which couples to torsional Newton-Cartan geometry in D−1 dimensions. This non-relativistic
string action can be obtained from a non-relativistic string coupling to a stringy Newton-Cartan
geometry (7.33) in a similar fashion.
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9.2 σ-models without a central charge symmetry

For the σ-models considered in the previous section, the formal duality between the generalised
Carroll algebra and the Galilei algebra relates an object moving slower than the speed of light with
an object moving faster than the speed of light. There exist examples where this is does not occur.
In this section we will discuss examples where the map relates 2 objects that either both move
slower than the speed of light, or at the speed of light.
We have already two actions related in this fashion, namely actions (8.31), (8.32). However in a
certain sense, both of these actions have trivial dynamics. Since, in a torsionless Carroll geometry
(more precisely, if there exists a foliation causally separated surfaces), (8.31) all points on the
string are causally separated from each other, it seems unlikely that this string as very interesting
dynamics. On the other hand (8.32) is considered in [40], where it is noted that the action simply
prescribes the string to be of minimal length, and does not describe any dynamics. However, in
[41] a supersymmetric version of this Galilean string is considered, which has drawn some interest.
Perhaps these ideas extend to the related Carroll string action.

This formal duality between these two actions also holds for any spacetime dimension D ≥ 2.
The corresponding D − 1-Carroll algebra corresponds to letting A = 0, ..., D − 2, a = D − 1.
Physically this string can be interpreted as being extended a large amount in the ED−1

µ direction,

and a small amount in the τ Aµ directions, including the time direction.

We may also consider σ-models in which the objects are moving at the speed of light. This is
for example the case for the massless Galilean particle (7.64), given by

S =

∫
pµẊ

µ − e

2
p2
a. (9.8)

The map from a Galilean particle to a Carroll particle corresponds to sending the massless Galilean
particle to the massless Carroll particle, obtained by letting m → 0 in the Carroll particle action
8.8

S =

∫
pµẊ

µ − e

2
p2
A. (9.9)

Alternatively, these actions can be considered as an non- respectively ultra-relativistic limit of a
massless relativistic point particle. These actions can be obtained for any choice of the generalised
Galilean and Carroll algebras, i.e. for any A = 0, ..., k − 1, a = k, ..., D − 1. Similar actions exist
for any tensionless p-brane.

10 Conclusion and discussion

In this thesis we started with the main question

“How may the similarity of generalised Galilean and Carroll algebras be used to obtain new
results for ultra-relativistic geometry?”

In order to answer this question partially, we have studied Galilean and Carroll σ-models. These
σ-models give an action principle describing how particles, strings and p-branes couple to types
of Galilean and Carroll geometry. We found that every Galilean invariant σ-model has a formal
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Carroll dual (and vice versa), which may be immediately written down and is guaranteed to be
invariant under the transformations of the respective algebras. There are multiple particle and
string actions which each shed a different light on this formal duality.

In order to understand the formal duality it is necessary to consider generalisations of the
Carroll and Galilei algebra. These generalisations can, similarly to the Carroll and Galilei algebras,
be obtained as limits of the Poincaré algebra via the Inönü-Wigner contraction. Whereas the
Galilei algebra can be considered to be a limit of the Poincaré algebra where we only consider large
time differences and small spatial differences, the generalisations of the Galilei algebra are limits of
the Poincaré algebra where we consider large time differences, large spatial differences in p spatial
directions, and D − (p + 1) spatial directions in which we only consider small differences. These
generalised algebras are especially well suited to describe the low velocity limits of p-branes.

The generalisations of the Carroll algebra related to the p-brane Galilean algebras are instead
obtained as a limit from the Poincaré algebra where only small time differences are considered.
For the Carroll algebra specifically, all considered spatial differences are large. For the generalised
Carroll algebra related to the p-brane Galilei algebra we consider small spatial differences in D −
(p+2) directions. In the p+1 remaining spatial directions, we consider only large differences. Thus,
only when in D = 2 spacetime dimensions is the Carroll algebra directly related in this way to the
Galilei algebra. In all other spacetime dimensions this formal duality relates generalised versions
of the algebra to each other.

While the Galilean limit of the relativistic particle can ‘informally’ be obtained by sending the
speed of light c to infinity, this is not really a correct interpretation. Only dimensionless parameters
have physical meaning. This means that in practice we do not take a limit of the speed of light,
but instead the ratio of the speed of light with a velocity. The velocity can for example be the
maximum velocity of an object that is considered. A particle can move in any direction, and
therefore we have to assume that the velocity in each of those directions is small. Strings only
move in directions transverse to the string. Therefore, in order to take a non-relativistic limit,
we first have to determine directions in which the string is extended, and then assume that the
velocity of the string in the transverse directions is small. This leads to a splitting of the algebra
into two directions longitudinal to the string (one timelike and one spacelike) where we consider
large distances, and we only consider short distances in the D− 2 remaining transverse directions.

The non-relativistic particle in D spacetime dimensions is formally dual to an ultra-relativistic
‘particle’ that has a large velocity (faster than light) in a single longitudinal spatial direction, and a
small velocity in the remaining directions (including the time dimension). This can be interpreted
as an ultra-relativistic limit of a relativistic tachyon. This interpretation raises questions about
the physical relevance of this model, but being the limit of a tachyon does not exclude physical
applications. Since in many applications Carroll spacetime does not emerge directly as a limit of a
relativistic spacetime, it is even unclear whether the σ-models considered actually describe faster
than light objects in those applications. Furthermore, a massless particle with a property called
colour can be obtained as the non-relativistic limit of a tachyon [42], providing an example where
the limit of a tachyon leads to an interesting result.

Similarly, the non-relativistic string in D spacetime dimensions is formally dual to an ultra-
relativistic surface that is longitudinal to 2 spatial directions. This surface can be thought of as a
string moving faster than the speed of light.
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We may also consider non-relativistic strings embedded in a D− 1 dimensional Newton-Cartan
geometry, instead of a D dimensional string Newton-Cartan geometry. This non-relativistic string
can be interpreted instead as being embedded in a string Newton-Cartan geometry with a compact
spatial longitudinal isometry [34]. As with any action invariant under an extension of the Galilean
group, this string has a Carroll formal dual. The formal dual to a string in D = 3 Newton-Cartan
geometry was discussed in [6] as a dimensional reduction of the D = 4 Carroll string model with
non-central extensions.

There also exist ‘non-relativistic’ limits without (non)central extensions, which can not precisely
be considered as low velocity limits. One example is the somewhat trivial limit of the relativistic
string where we consider only small distances in all spatial directions, including the longitudinal
direction. In other words, we take the limit corresponding to the Galilei algebra. One reason why
this limit is particularly interesting is that the formal dual is apparently the most general ultra-
relativistic limit of the relativistic string where the speed of the string does not exceed the speed
of light. The Carrollian limit has one spatial direction where we consider large distances, which is
longitudinal to the string. Since we only consider small time differences, this means that in general
any two points on the string appear to be causally separated from each other. Due to the simplicity
of this limit it is an interesting candidate to test whether the duality holds up in a more general
context, such as in the supersymmetric version of the non-relativistic string discussed in [41].

We also have some additional remarks related to torsion. Torsion in Newton-Cartan geometry
is closely related to the existence of surfaces of constant time, a characterising feature of Newton-
Cartan geometry. From a symmetry point of view it is an important concept, as the invariance
of the non-relativistic particle action under Bargmann and Schrödinger gauge transformations is
directly related to the torsion. From the point of view of the Lie algebra expansion, the action is
however always invariant under homogeneous Galilean transformations, and 0th order as well as 2nd
order general coordinate transformations of the worldline, independent of the torsion. However, the
algebra that these symmetries form is dependent on the torsion. This is most easily seen by noting
the torsion dependent identity relating general coordinate transformations and local translations
in general relativity.

From a different point of view the torsion is not a vital concept. This point of view can be held
in p-brane non-relativistic limit. In particular in the string case, we may tune the Kalb-Ramond
field in precisely such a way that the divergent term appearing in the non-relativistic limit of the
string cancels. In doing this, the gauge fields corresponding to the extensions of the Galilei algebra
can be absorbed into the Kalb-Ramond field. The Kalb-Ramond field should then be considered
as an integral part of the string Newton-Cartan geometry, as its transformation rule allows for the
invariance of the non-relativistic string action under the string Galilei algebra.

In this thesis we have also considered specific conformal transformations of the gauge fields
occurring in σ-models, corresponding to variations of the expansion parameter. These transforma-
tions are local symmetries for any limit of a relativistic σ-model. However, this is not necessarily
true for the corresponding limit of the Einstein-Hilbert action. Therefore, they can in general not
truly be considered gauge symmetries of the introduced gauge fields.

In this thesis we have applied the formal duality between Carroll and Galilei only at the level of
the σ-models, and the application has led to interesting particle and string models, generalisations
and extensions of the Carroll algebra. It will be interesting to see whether these ideas will lead to
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new applications.
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A Symmetries of
∫
dp+1σ τ

Here we prove the claims of invariance made in section 7.3 about the action S =
∫
dστ . First of

all, we check that the action is invariant under the traceless tensor δ(Λ)τAµ = ΛABτ
B
µ :

δ(Λ)S = 2T

∫
dp+1σ τ ταAΛABτ

B
α

= 2

∫
dσ τΛAA = 0.

The invariance of the action under local translations δ(ξBPB)τ Aµ = ∂µξ
A − Ω A

µ Bξ
B involves a bit

more work, and is only a σ-model symmetry symmetry up to boundary terms. Furthermore, the
invariance only holds if a constraint on R A

µν (PA) is satisfied.

We will assume τ = det τ Aα > 0.

δ(ξ)S = T

∫
dp+1σ δ(ξ)τ

= T

∫
dp+1σ τταADαξ

A

= T

∫
dp+1σ ∂α(τταAξ

A)− ξADα(τταA)

= Sboundary − T
∫
dp+1σ 2ξAτταAτ

β
BD[ατ

B
β] +

= Sboundary − T
∫
dp+1σ ξAτταAτ

β
BR

B
αβ (P )

Thus, the local translation of the gauge fields is a σ-model symmetry of this term if and only if
the background fields satisfy

τβBR
B

αβ (PA) = 0 (A.1)

for all Xµ. The invertibility conditions of the longitudinal and transverse vierbein imply

τβB∂βX
ν = τνB + E a

β E
ν
aτ
β
B. (A.2)
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Hence the action is invariant if τνBR
B

αν (PA) + τβBE
a
β E

ν
aR

B
αν (PA) = 0 for all Xµ. A sufficient

condition for this to hold is

R B
µB (P ) = 0 and R B

µa (P ) = 0. (A.3)

However, for particles, p = 0, equation (A.1) is trivially satisfied. For strings, p = 1, (A.3) is
equivalent to R A

µν = 0.

B Divergent quadratic forms

When taking the non or ultra-relativistic limits of an action it occurs relatively often that one finds
a divergent quadratic form, i.e. we have a Lagrangian of the form

L = L0(φ) + ω2Q(K), (B.1)

where the quadratic form Q : V → R can be written as a symmetric bilinear form Q(K) = B(K,K).
For example, this occurs when taking the non-relativistic of the Polyakov string or particle action,
cf. section 7, when taking the Polyakov type limit of the Carroll particle and string actions cf.
section 8, and also when discussing gravity actions in second order formalism, cf. section 6. All
these cases have in common that they can be derived by eliminating variables from actions with
more variables. For example, the relativistic Polyakov actions can be obtained by eliminating
the momenta from the Hamiltonian action. However, after taking the non-relativistic limit of the
Hamiltonian action, not all momenta can be eliminated without also eliminating the Lagrange
multipliers e, in the particle case. This is because the energy p0 becomes a Lagrange multiplier.
Thus, we should expect some complications when taking the non-relativistic limit of the Polyakov
action. This complication occurs in the form of a divergent quadratic form. We can in general use
this quadratic form to essentially restore the previously eliminated variables in the following way.

L has the same equations of motion as the Lagrangian

L′ = L0(φ) + 2B(S,K)− ω−2B(S, S), (B.2)

where c 6= 0, and S ∈ V . This can be seen by eliminating the variable S from this equation using
its equation of motion,

δS

∫
L′ =

∫
B(δSS,K)− ω−2B(δSS, S) = 0. (B.3)

Note that equation (B.3) must hold for any δS ∈ V . Therefore this equation implies that∫
ω−2B(S, S) =

∫
B(K,S) =

∫
ω2B(K,K). By substituting this into the action (B.2) we ob-

tain the original action (B.1). This shows via the elimination lemma that L and L′ have the same
equations of motion.

Taking the limit ω →∞ gives in the limit

L = L0(φ) + 2B(S,K). (B.4)

Here, S has become a Lagrange multiplier.
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We have formally only considered cases where K is a field on its own, however does this also
hold if K is a function of fields φ and its derivatives? The answer is yes, since the above proof uses
only the variation of S, which remains a field on its own. Furthermore, the bilinear form B is also
allowed to depend on additional fields.

More generally, we can apply the same procedure to Lagrangians when the Lagrangian is a
function of a quadratic form, under the condition this function is differentiable with respect to
K for all possible values of the quadratic form. In particular, in the limit ω → ∞ it should be
differentiable at B(K(φ),K(φ)) = 0. The variables S in a Lagrangian of the form

L(φ, 2B(S,K(φ);φ)− ω−2B(S, S;φ)), (B.5)

can be eliminated to obtain the action

L(φ, ω2Q(K(φ);φ)). (B.6)

In particular, the Carroll p-brane limit, including the particle and string limits configuration space
are of this form cf. section 8.

Furthermore, there is a correspondence between the symmetries of L and L′. In particular,
if δ represents a symmetry of L, then the difference in the variations

∫
δL − δL′ =

∫
δB(ωK −

ω−1S, ωK − ω−1S). If the variation of S is defined such that this term is 0, δ is also a symmetry
of L′. In particular, if the quadratic form is invariant, i.e.

∫
δB(K,K) = 0, then δS = δK has this

property.

C The occurrence of gauge field extensions and accidental sym-
metries in brane actions

The following part is based on a comment in section 4.2.2. of [24], where it stated that, in a specific
case, the higher order term actions in the Lie algebra expansion can be obtained by examining the
lowest order term, and then replacing the gauge fields in them by gauge fields of higher order. We

will be a bit more explicit. Let us consider a brane action S = S[X](EÂµ ), and let us consider the

Carroll limit c→ 0. Using the scaling τAµ (c) = cτAµ , we obtain an expansion of the action

S[X](e aµ , cτ
A
µ ) = ckS(k) + ck+2S(k+2) +O(ck+4) (C.1)

for some integer k. If we expand the vielbein fields further, as in the Lie algebra expansion (5.17),
we obtain for small c

S[X](e aµ +c2n a
µ , cτ

A
µ +c2m A

µ +; c) = ckS(k) +ck+2(S(k+2) +
∂S(k)

∂e aµ
n a
µ +

∂S(k)

∂τ Aµ
m A
µ )+O(ck+4). (C.2)

From this, we can draw a few conclusion about the occurrence of central charges in the limit. First
of all, the extensions of the gauge fields only occur in the limit if the first nonzero term S(k) of the
expansion of the action is cancelled by another term, such as the near-critical electric field in the
Galilean particle limit. Secondly, if the highest order term S(k) has symmetries which transform
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e aµ and/or τ Aµ , beyond the symmetries of S, then these symmetries will re-occur in the next term,

as δ′n a
µ = δe aµ , δ′τ Aµ = δm a

µ .

δ′(S(k+2) +
∂S(k)

∂e aµ
n a
µ +

∂S(k)

∂τ aµ
m a
µ ) =

∂S(k)

∂e aµ
δ′n a

µ +
∂S(k)

∂τ Aµ
δ′m A

µ

=
∂S(k)

∂e aµ
δe aµ +

∂S(k)

∂τ Aµ
δτ Aµ

= δS(k) = 0 (C.3)

This holds in particular also for symmetries of S(k) which do not correspond to symmetries of
S. This also occurs in the Galilean/2(p + 1) = D Carroll limit, where the local translations
paramatrized by ξA/ξa and local boosts, rotations and scalings parametrized by traceless ΛAB/Λab

discussed in section 7.3 re-occur as symmetries of the action acting on m A
µ /n

a
µ .

D A short aside on the computation of matrix determinants

In this text we use two identities to computes matrix determinants. The first one is called the
Weinstein-Aronszajn identity, or the Sylvester determinant identity, given by

det 1 +AB = det 1 +BA, (D.1)

where A is a n × k matrix and B is an k × n matrix. This determinant relates an n × n matrix
with a k × k matrix. This identity is easily derived using the n+ k × n+ k block matrices

M =

[
1 A

0 1

]
, N =

[
1 −A
B 1

]
(D.2)

We have

det 1 +AB =

[
1 +AB 0

B 1

]
= detMN = detNM =

[
1 0

B 1 +BA

]
= det 1 +BA. (D.3)

We use a re-scaled version of the identity given by

detλ1 +AB = λn−k detλ1 +BA (D.4)

The second identity is the Cauchy-Binet formula. For n > k we have

detBA =
∑

S∈([n]
k )

detAS×[k] detB[k]×S , (D.5)

where S ranges over all k-element ordered subsets of [n] := (1, ..., n), AS×[k] is the k × k minor
consisting of the rows S, and similarly B[k]×S is the k × k minor consisting of the columns S. The
proof of the Cauchy-Binet formula happily consists of inspecting the n− k order term of (D.4), see
[43], page 297-298.
For B = AT we have

detATA =
∑

S∈([n]
k )

(detAS×[k])
2, (D.6)
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Figure 1: The squared area of the black parallelogram equals the sum of the squared areas of its
orthogonal projections. In this case, the squared areas are given by 3 = 1 + 1 + 1.

If A is a column vector, this is just the Pythagorean theorem. If k > 1 this generalises the
Pythagorean theorem. This formula has a nice geometric interpretation.

√
detATA is the volume

of a k-dimensional parallelepiped constructed by the k column vectors Ai in Rn. |detAS×[k]| is
the area of the orthogonal projection of the parallelepiped onto the subset spanned by the basis
vectors ei, i ∈ S. Thus, the volume squared of the parallelepiped equals the sum of squares of the
orthogonal projections of the parallelepiped, see figure 1.

Specifically, the Cauchy-Binet theorem (D.5) tells us that detATA is a quadratic form of A,
where the vector space the corresponding bi-linear form acts on consists of the determinants of
k × k minors of A.
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