
University of Groningen
Faculty of Science and Engineering

A Domain Specific Language for Non-programmers used
in order to create questinnaires

Thesis for obtaining Master of Science title in Data Science and
Distributed systems

Author: Marios Lykiardopoulos(S3490890)

Groningen, April 2019

The Netherlands

Abstract

Nowadays, questionnaires are used by scientists as a way to collect
data by specifically targeted social groups in order to collect and pro-
cess information about specific issues that they are interested in. A way
to collect these data is the use of online questionnaires, as they provide
a fast and efficient way to monitor social behaviors and conditions by
different social groups. For that reason, plenty of online applications
exist in order to shape, render and register the answers exist.

Different web applications which are concerned with this domain are
already being used. These kind of applications require a User Inter-
face(UI) which is used by the questionnaire makers in order to define
and render the questionnaires. However, these web applications are
not a silver bullet as different problems appear such as vendor lock-in
which may cause extra costs for the user or even difficulty from moving
from one platform to another.

A different solution for questionnaire rendering is the use of a Do-
main Specific Language. A Domain Specific Language(DSL) is a pro-
gramming language, which is designed to serve a very specific applica-
tion domain. The research gap which exists has to do with examining
possible differences in usage and understanding among people with dif-
ferent backgrounds on computer science. Furthermore, whether could
it be possible to minimize possible drawbacks such as vendor lock-in by
designing a platform which could be capable of compiling the question-
naire output into different application backends.

This research investigates the use of a DSL for questionnaire ren-
dering among people with different backgrounds on computer science.
Furthermore we provide a study on different questionnaire platforms
in order to examine the possibility of a platform which can compile the
output to other back-ends.

We present a platform which is based on a DSL and separates the
application logic from the code by using a simple syntax in order to help
non-programmers to get familiar with the language and the application.

Our findings show that the DSL we designed and implemented was
more efficient in terms of time needed for questionnaire rendering com-
pared to other questionnaire platforms, in our case the u-can-act.nl plat-
form. Moreover, no significant differences were spotted among users
with different scientific backgrounds.

Based on our results, we can assume that it is possible to design
Domain Specific languages and people with very small experience on
computer science to work effectively with them, even compared to com-
puter science professionals.

Contents

List of Figures 3

1 Introduction 5

2 Background 6
2.1 Code Generation Pipeline . 7
2.2 Domain Specific Languages . 7

2.2.1 Internal DSL . 8
2.2.2 External DSL . 8

2.3 Purpose . 8

3 Summary 9

4 Related Work 10
4.1 Involving nonprogrammers with DSLs 10
4.2 Online Questionnaire Editors . 11

4.2.1 Text Formatting . 11
4.2.2 Data Format Validation . 11
4.2.3 Comparison between online survey editors 12

4.3 Survey Platforms . 14
4.3.1 Quby . 14
4.3.2 u-can-act.nl . 14
4.3.3 Survey Monkey . 15
4.3.4 Survey Gizmo . 16
4.3.5 LIme Survey: . 17
4.3.6 Google Forms . 18
4.3.7 Qualtrics . 18

4.4 Language Workbenches for Defining DSLs 19
4.5 Summary . 20

5 System Design 20
5.1 Syntax Design . 21

6 Analysis 22
6.1 JSON object . 22
6.2 Questionnaire Design . 22

6.2.1 Survey Monkey Design . 25

7 Implementation 26
7.1 PEG.JS Parser Generator . 26
7.2 User Interface . 28

7.2.1 React JS . 29
7.2.2 UI Components . 29

7.3 DSL Syntax . 29

1

7.4 Survey Monkey DSL syntax . 31
7.5 Defining the Syntax Rules . 32

8 DSL vs u-can-act platform 35
8.1 Hypothesis . 35
8.2 Experiment Procedure . 36

9 Analysis Methods 36
9.1 ANOVA . 36

9.1.1 Assumptions . 37
9.1.2 Checking Assumptions . 37

9.2 Turkey’s Honestly Significant Difference 38

10Results 38
10.1Datasets . 38

10.1.1ANOVA Dataset . 38
10.1.2Turkey’s HSD Dataset . 38

10.2Statistics . 39
10.3ANOVA results . 41
10.4Results from RUG psychology department users 43

11Discussion 43

12Conclusion 44

13Future Work 44

A SurveyMonkey JSON examples 45

B Peg.Js Installation and Compilation commands 46

C Questionnaire to render 46

D Questionnaire answers-Original Platform 47

E Questionnaire answers-DSL Platform 48

2

List of Figures

1 Code Generation Pipeline . 7
2 SurveyMonkey Data Validation Options 12
3 Google Forms Data Validation Options 12
4 Survey Monkey question types 15
5 Survey Gizmo Poll question . 17
6 Google Forms create new form 18
7 Qualtrics Create Question . 19
8 System Architecture . 21
9 JSON for rendering the questionnaires 23
10 Example questionnaire . 24
11 Questionnaire design . 25
12 Questionnaire design by Survey Monkey 26
13 User Interface . 29
14 Survey Monkey DSL parser output 32
15 High CS Background-Original platform 39
16 High CS Background-DSL platform 39
17 Low CS Background-Original platform 40
18 Low CS Background-DSL platform 41
19 Shapiro-Wilk normality test . 42
20 Levene variance test . 42
21 ANOVA results . 42
22 Turkey HSD Original platform . 42
23 Turkey HSD DSL platform . 43
24 Survey Monkey Multiple Choice question 45
25 Survey Monkey Image Choice question 46

Listings

1 Question Types . 12
2 JSON for multiple choice questions 15
3 Survey Gizmo question types . 16
4 LSRC2 supported features . 17
5 Qualtrics Categories . 18
6 u-can-act supported types . 24
7 Example of a simple start rule . 27
8 Example of a simple expression 27
9 Example of a simple Character class 28
10 User Interface key points . 28
11 Create question Example . 32
12 Defining Question Elements . 33
13 Defining the character classes . 34

3

14 Installation of peg.js with node package manager 46
15 Compilation of pegjs grammar into javascript code 46
16 Python example . 47
17 u can act platform questionnaire 47
18 DSL questionnaire . 48

4

1 Introduction

Domain Specific Languages (DSLs) started to appear in their early stage
around 1970. One of the very first examples of a Domain Specific Language
(DSL) was the Emacs Lisp which appeared back in 1985 and is a dialect
of Lisp programming language and was used by Emacs text editor used for
editing purposes.

Over the years, domain specific languages (DSLs) evolved and became
more and more popular. Some very well known examples which are widely
used mainly by computer scientists are: Structure Query Language(SQL) or
Hypertext Markup Language (HTML). Latest improvements allow computer
scientists to quickly design and implement their domain specific language
by using language workbenches such as MPS, provided by JetBrains.

Domain Specific Languages (DSLs) offer a wide variety of advantages
which made them popular over the years. The most important advantages
are that DSLs are less expressive compared to General Purpose Languages
(GPLs) which deducts the complexity of the language. This makes easier for
non-programmers to use DSls instead of GPLs. Moreover, DSLs provide a
clear separation between the domain and the actual implementation(code).
This helps in order to bridge the gap between the domain experts and the
developers.

By taking into account the above advantages it is obvious that DSLs can
minimize the gap between computer scientists and people from different
application domains. Although there is still a research gap on how peo-
ple with different scientific background can benefit from DSLs compared to
computer scientists.

In this thesis we present a web platform for online questionnaire render-
ing, based on a DSL which will be used by people working on the psychology
department on the University of Groningen. One of the most common ways
for psychologists in order to collect data is the use of online questionnaires.
This type of questionnaires provide an efficient and cheap solution for sci-
entists in order to collect and analyze data from large social groups. Users
can fill in the questionnaires at any time and in any place without the pres-
ence of the researcher.

Many applications which allow the formation of online questionnaires
exist. Some examples of these applications are: Google Forms, Survey
Monkey, etc. These applications provide to the user a Graphical User Inter-
face(GUI) where through some expression builders the user can define the
questionnaire. However, such platforms have significant drawbacks such as

5

vendor lock-in or high level of complexity because of the complicated menus
and dependencies which they provide.

In this document, we provide an alternative solution which gives the
opportunity to the users to create questionnaires through a text based editor
interface by using a Domain Specific Language(DSL). Also, we provide a
study on how this platform can be extended in a way that will eliminate the
vendor lock-in problem by converting the output to different backends.

2 Background

The main goal when analyzing data is to extract valuable knowledge in or-
der to gain advantage or improve the existing knowledge on a particular
domain. For example, psychologists use questionnaires as an efficient and
fast solution in order to gain information from a large amount of people.
Questionnaires can provide the means for gaining information about social
life, behavior or preferences from a large amount of people.

Today, many tools exist in order to format text. One of these tools is
Markdown which uses a simple and extremely easy to learn syntax and it
compiles it to different output formats such as Portable Document Format
(PDF) or Hyper Text Markup Language(HTML). HTML is one of the most
fundamental building blocks of the web as it defines the meaning and struc-
ture of the web content. One of the key advantages of Markdown is that
because of its simplicity it is very easy to be used by non-programmers.
Markdown offers a very simple syntax which is based on common symbols
for a user. For example, in order to define a header level we use the cor-
responding number of hashtags which can vary from 1 to 6. Accordingly
the user can form different text objects(lists, block-quotes, etc) by using the
appropriate symbol.

In our study we look over different online questionnaire platforms such
as Survey Monkey, Google Forms, and others in order to examine the pro-
cess of building an online questionnaire. Two major drawbacks which ap-
pear by using these platforms, are: vendor lock-in and reusability. A solution
to the addressed problems could be a platform based on a Domain Specific
Language(DSL) which is a programming language focused in a specific ap-
plication domain. In our case this domain is online questionnaire rendering
and it can be compiled to different application backends. This solution could
help users to minimize the impact of these drawbacks.

6

2.1 Code Generation Pipeline

Code generation is comprised by three main steps: (i)lexical analysis, (ii)syntax
analysis and (iii)code generation.
Lexical analysis is performed by the lexer which accepts a stream of text
and tokenizes it. By tokenizing we mean that the accepted stream of text is
divided into discrete tokens, and an identification for each of the tokens is
performed. The output is a new stream of the divided tokens[10].
After the lexical analysis the syntax analysis takes place. Syntax analysis is
performed by the parser which identifies if the stream of text(the sequence
of the divided tokens) fits the expected grammar. If it fits the grammar then
the parser constructs the Abstract Syntax Tree(AST)[10].
The Abstract Syntax Tree(AST) is a tree representation of the source code
which is produced by the parser. The root of the tree defines the starting
rule of the grammar and each of the nodes defines a grammar rule which
can be an expression, term or factor[1]. Image 1 gives a simplified view of
the code generation pipeline.

Figure 1: Code Generation Pipeline

2.2 Domain Specific Languages

Definition 2.1 A domain-specific language (DSL) is a programming lan-
guage or executable specification language that offers, through appropri-
ate notations and abstractions, expressive power focused on, and usually
restricted to, a particular problem domain[3].

In contrast with the general purpose languages (GPL) such as Java, C, or
Python which are designed to be used for writing software and cover a wide
variety of application domains, domain specific languages are designed to
be used in one very specific application domain. Some examples of domain
specific languages which are widely known and used are: Structure Query
Language(SQL) which is used for handling data in relational databases,
Hyper Text Markup Language(HTML) for creating web pages, Extensible
Markup Language for data encoding, Unified Modelling Language(UML)
used for visualising the design of a system and Very High Speed Integrated
Circuit Hardware Description Language(VHDL) for hardware design.

7

Domain specific Languages can be split in two main categories: internal
and external DSLs. A DSL which is built on top of another programming lan-
guage is called internal DSL. On the other hand a DSL which uses its own
syntax and which is not built on top of another language is called external
DSL.

2.2.1 Internal DSL

Internal Domain Specific Language (DSL) is a language which is usually
built on top of another language. As a result, the internal DSL has to respect
the grammar and the syntax of the original language. This approach comes
with some serious advantages but also drawbacks. Some of the advantages
are that the user can use the tools which are already available for the origi-
nal language, the DSL can be implemented on top of another language and
the needed time for a developer to produce the domain specific language is
significantly less as he can use the already existed infrastructure(parser) of
the source language[7]. On the other hand one of the drawbacks which an
internal DSL has is that it comes with all the limitations of the original gen-
eral purpose programming language. Furthermore the syntax of an internal
DSL is limited as it should follow the legal syntax of the source language[7].

2.2.2 External DSL

An external DSL is making a completely new language. This results new
challenges when designing and implementing an external DSL, such as com-
pilation and symbol parsing. One of the main advantages that external DSL
offer is the freedom of expressiveness which is not restricted compared to
the internal DSL[7]. Furthermore the final result may be much easier to be
understand from a person which is a non programmer. On the other hand
external DSL require much more effort in order to be built as it requires
different programming concepts to be implemented such as a completely
new parser.
This analysis between external and internal DSLs will help us in the future
of the project in order to examine which of these two solutions we will adopt
in our case.

2.3 Purpose

The goal of this project is twofold. Firstly we describe the implementation
of a platform for building questionnaires. The major components of this
platform are a Domain Specific Language (DSL) and a User Interface. The
formatting syntax of the Domain Specific Language should be constructed
in a way which ensures learnability and easy understanding by the users.
Furthermore, the platform should ensure that other programmers would

8

be capable to extend the already existing syntax or even adjust it based on
their individual needs. The aforementioned platform will be implemented as
a web application for inputting data and creating questionnaires by wrap-
ping the inputted data into a syntax.
The second goal of this thesis is to provide an extensive research among the
different online survey providers in order to examine the process of ques-
tionnaire rendering, the different supported question types the text format-
ting, etc. The architecture of our system is designed in a way which ensures
that it will not perform as a single application but can interact with various
platforms. This approach can significantly help users in the future to inter-
act with different questionnaire platforms by using one application. Finally
we are interested in examining how well our DSL solution performs com-
pared to other online survey editors. For this reason we will conduct an
experiment, including users with different backgrounds on computer sci-
ence in order to collect data and answer our research questions.

3 Summary

A Domain Specific Language (DSL) is a programming language which is spe-
cialized in a very specific application domain. Instead of General purpose
Programming Languages(GPLs) which are broadly applicable to different
application domains. Some famous examples of DSls are Structured Query
Language (SQL), Hyper Text Markup Language (HTML) and many more [3].
As Martin Fowler explains in his book ’Domain Specific Languages’, they
can be split into two main categories: internal and external domain specific
languages. As internal domain specific language we define the language
which is built on top of another language. On the other hand as external
DSLs we define a language which uses its own syntax [4] for example XML.
Nowadays in many different domains Domain Specific Languages are used
in order to solve problems or even simplify procedures. In this thesis we will
try to examine how people with different scientific backgrounds can under-
stand and use a Domain Specific Language in the domain of questionnaire
building compared to other online survey editors. The research questions
which will be answered are the following ones:

• RQ 1: Can we reduce the time needed to create a questionnaire by
using our DSL compared to other online survey editors?

• RQ 2: Are there significant differences in understanding and usage
of the DSL between people with computer science background and
people with different scientific background?

In order to answer the aforementioned research questions we developed
a domain specific language which uses its own syntax, and it was inspired
by Markdown.

9

Furthermore we conducted research between the main online survey
editors platforms in order to examine the process they use in order to define
questions and extend our platform in order to support the aforementioned
platforms also.

4 Related Work

This section sums up previous work in the fields of: Involving non-programmers
with Domain Specific Languages, online survey editors including text for-
matting and data format validation. Moreover we provide a comparison
between different web based questionnaire platforms which are addressed
in the following bullet list. We chose these specific platforms because they
share a very big part of the market in online survey editors platforms [15].
Finally we look over u-can-act and Quby, a web based survey platform based
on a DSL.

• Survey Monkey

• Survey Gizmo

• Lime Survey

• Google Forms

• Qualtrics

4.1 Involving nonprogrammers with DSLs

One of the most challenging topics nowadays is to help people who are not
programmers to use and interact with a high level programming language
in order to use it in their domain field. Some examples of these people are
engineers, accountants, psychologists, and many more. As Martin Fowler
explains the most appropriate choice for a nonprogrammers DSL is to create
an external DSL because it comes with two significant advantages. The first
advantage is that we can put aside all the baggage of your host language
and create something which will be very clear and understandable by a user
who is not a computer specialist. Secondly, compared to the internal DSLs
it is very easy for the user to be confused because he can do things which
make sense in the language but are completely out of the scope that the DSL
comes to solve. Furthermore a non-programmers DSL which is designed as
an external DSL requires a significant less amount of time for the user to
be trained and learn how to use it[5]. Of course designing such a domain
specific language that way is not a silver bullet. It requires more effort for
designing and implementation but also increases the cost for creating the
appropriate tools in order to support the language.

10

4.2 Online Questionnaire Editors

Most online questionnaire editors use a Graphical User Interface(GUI) which
is composed by a set of forms which allow the user to define and edit the
questionnaires. We will look into two online survey editors: SurveyMon-
key and Google Forms. We choose these two platforms because they form
a representative sample in the fields of text formatting and data validation
which different online platforms also follow. Despite that, in the upcoming
sections we will provide a more complete comparison with additional online
survey platforms.

4.2.1 Text Formatting

When defining a question it may require to adjust the text formatting in
order to serve our goal. For example when we want to emphasize we may
use a bold format instead of a regular one. SurveyMonkey gives to the user
this option with a toolbar where the user can select between different text
formats. Google Forms allows the user to choose between five different text
formats.

4.2.2 Data Format Validation

Data Validation lets you define what type of data we want to be entered in
the answer field and how these data should be entered. For example when
a question requires a date as an answer we must ensure that the user will
enter a date information in order to be accepted by the system as a valid
answer. As it can be seen from the following images SurveyMonkey lets the
user to choose between different options(checkbox, dropdown menu, slider,
etc) where the user can choose which is the most appropriate question type.
The next step for the user is to validate the answer for the specific format
that he chose. The validation options can be seen from Figure 3. On the
other hand Google Forms allow the user to choose between different types
of question types but the user can not set any further constraints based on
the question type that he chose. For example if the question type is Date
the format would be Day, Month, Year and this format can not be changed.

11

Figure 2: SurveyMonkey Data Validation Options

Figure 3: Google Forms Data Validation Options

4.2.3 Comparison between online survey editors

In this section we will provide a comparison between the five big play-
ers in the field of online survey editors. The comparison was performed
among Lime Survey, Survey Monkey, Google Forms, Survey Planet and Sur-
vey Gizmo. Table 1 presents the most common question types among these
platforms. This comparison can significantly help future developers for ex-
tending our platform and make it compatible with different back-ends. De-
velopers can use table 4.2.3 in order to support the common question types
for the different platforms. The main question types which are used by the
aforementioned providers are described in the following list:

Listing 1: Question Types

12

• Array: An array allows for the creation of sub-questions. Each of
these questions uses the same set of answers. This type of questions
mainly used when we need to receive feedback for different aspects of
a specific product.

• Multiple Choice: Multiple Choice questions are one of the most com-
mon in surveys. This type of question allows the survey maker to pro-
vide the possible answers for the participants. The survey maker can
decide whether or not the user can choose one or multiple answers
from the provided answers.

• Mask Questions: As mask questions we define a category of ques-
tions which include question types with predefined answer inputs,
such as gender, date, language switch, etc.

• Free Text: The question type which is defined as text allows the user
to answer the question by collecting the typed text from the user. In
this type of question the survey maker can set characters restriction
as well as can set the size of the textbox. This type of questions is
mainly divided into four smaller subcategories based on the size of the
text. These subcategories are the following: short free text, long free
text, huge free text and multiple short text.

• Single Choice/Radio: The single choice question type allows the user
to select only one choice among the provided choices.

• Score/Ranking: Scoring questions allow the participants to assign a
numerical score to a series of choices. The survey maker can set the
lowest and highest value for the scoring process.
Ranking questions ask the respondents to compare items to each other
by placing them in order of preference.

• Drop-down: Drop-down questions are close ended questions which
allow the participants to select an answer by a list of choices which
are presented in a drop-down menu. This type of questions is very
similar to the single-choice questions and the main difference is how
this question is presented to the user.

• Image Choice: Image choice questions are simple close ended ques-
tions where the participant is allowed to select an image from an im-
age list which is provided.

• Date/Time: A date or time question type is an open text field question
with validation which ensures that the correct format was chosen.

13

Question
Types

Survey
Editors

Lime Survey Survey Monkey Google Forms Survey Planet Survey Gizmo

Arrays
Multiple Choice
Mask Questions
Text
Single Choise
Scale/Ranking
Dropdown
Image Choise
Date/Time

Table 1: Online Survey editors Comparison

4.3 Survey Platforms

We looked into different platforms in order to examine the process of ques-
tionnaire building. More specifically we focus on the use of Application
Programming Interface(API) for each of the platforms in order to enter new
questionnaires.

4.3.1 Quby

Quby is an online application designed to be used by domain experts, in
this case psychiatric research staff in order to form questionnaires, which
are filled by psychiatric patients. It comes up with an exposable API which
allows the application to communicate with other platforms such as RoQua
which provides important information about patients[18]. Users are divided
into two main categories: domain experts which define the questionnaires
and patients who fill in the rendered surveys. Quby provides an editing
environment for users in order to write surveys in the DSL. Furthermore
users can preview or test the rendered questionnaires[18]. Regarding the
Quby DSL, if we examine it from a conceptual view we can divide it into four
different components:Questionnaire, Panel, Question and Score. Each of
these components has its own attributes which some of them are mandatory
and others are not. For example each questionnaire should have its own
’title’ attribute.

4.3.2 u-can-act.nl

U-can-act.nl is an open source web application for hosting online question-
naires. It was designed and implemented by the University of Groningen in
order to examine the factors which lead to early school leaving. It provides a
Graphical User Interface(GUI) where question makers can define question-
naires and participants can fill them out. This open source application is im-
plemented in Ruby on Rails framework. The architecture of the application

14

except from the web server which includes the questionnaire engine(VSV)
contains also three different databases each of those stores different types
of data. The first stores the questionnaires, the second stores users data
and the third includes statistics based on user responses. This application
contains also a scheduler which sends invitations to the users for filling out
the questionnaires[16]. In our research we will use the u-can-act platform
as a case study which will compare to our DSL solution in terms on how fast
users can build questionnaires in both of the platforms. Furthermore we
connected our service to the questionnaire engine provided by the u-ca-act
app as a way to prove that our service does not run as a stand alone applica-
tion but it can communicate with external back-ends. We choose to connect
our platform with the u-can-act questionnaire engine mainly because it is an
open source application and can minimize the difficulties and the drawbacks
of a closed-source software.

4.3.3 Survey Monkey

In order to format questions in Survey Monkey we have two options. We
can either use the user interface or we can define questions through API us-
ing JSON objects. In Survey Monkey all questions have a type and subtype,
which define their type and some of the questions have also a display type
and a display subtype which define further their type. Figure 4 shows the
possible options for the ’family’, ’subtype’, ’Display Type’ and ’Display Sub-
type’. Based on the different question types(single choice, multiple choice,
image choice, etc) the parameters vary accordingly. In the following listings
2, 25 we present examples of different question types and how the JSON ob-
jects look like for these questions.

Figure 4: Survey Monkey question types

15

1
2 {
3 "headings": [
4 {
5 "heading": "Which monkeys would you like as pets?"
6 }
7],
8 "position": 1,
9 "family": "multiple_choice",

10 "subtype": "vertical",
11 "answers": {
12 "choices":[
13 {
14 "text": "Capuchin"
15 },
16 {
17 "text": "Mandrill"
18 }
19]
20 }
21 }

Listing 2: JSON for multiple choice questions

In the following list we will explain some of the basic JSON parameters
that Survey Monkey uses in order to understand their specific role in the
process of a question formatting.

• headings: The ’headings’ tag defines the heading of a question.

• position: The ’position’ tag defines the position of the question in the
page and is type of "integer".

• family: The ’family’ tag defines the question family and the type of
this parameter is a string. The possible options for this parameter can
be found on figure 4.

• visible: The ’visible’ tag refers to whether or not the question is visible
on the User Interface. The type of this parameter is Boolean.

• required: The ’required’ tag declares whether or not an answer is
required for the question. The type of this parameter is an object.

4.3.4 Survey Gizmo

In this subsection we will explain through different examples the process of
creating different types of questions using the Survey Gizmo REST API. In
the following listing 3 we present different survey objects and the calls in
order to create them through the REST API.

Listing 3: Survey Gizmo question types

16

• Poll Question: In order to create a survey object of poll type we need
to declare the type of the survey which will be poll and the different
poll options of the survey. A call for the aforementioned type of survey
is presented in the following figure:

Figure 5: Survey Gizmo Poll question

• Image Heatmap Question: In order to create an image heatmap
question we need to use the survey question and survey option end-
points in order to build them. The first step in this process is to create
the image heatmap question by declaring the REST method which we
will use and it is of method = PUT and then define the required fields
which is the following: type = heatmap.
The second step is to define the different options for our image Heatmap
question. The REST method = PUT and the required fields are: title =
OptionT itle which defines the title of the question and the value =

ReportingV alue.

4.3.5 LIme Survey:

Lime Survey uses a JSON-RPC based web service named LimeSurvey Re-
moteControl 2(LSRC2) which offers different API functions. A list of the
supported features are presented in the following list:

Listing 4: LSRC2 supported features

• Start a predefined survey (change titles and things)

• Add predefined groups or questions

• Activate the survey, restrict it to start and endtime

• Add participant data/tokens when you need them

• Return the unused tokens to the main application

• Get a fieldmap for a survey object.

The aforementioned actions can be implemented through different meth-
ods from the API.

17

4.3.6 Google Forms

In this section we will explain the process of creating different question
types by using the Google Forms API. Google uses Google Apps Script which
is a platform that allow users to interact with the different google platforms
such as gmail, google sheets, google forms etc. Google App Scripts are
scripts written in JavaScript and act on a Google App like the ones we re-
ported before. In figure 6 we present an example which creates a new form
and defines different types of questions along with the different options for
each of these questions.

Figure 6: Google Forms create new form

Summarizing, it is possible to create or modify surveys by using the spe-
cific platform that Google provides for developers. A full documentation of
all the available classes and methods we can use in order to interact with
Google forms can be found in google documentation [6].

4.3.7 Qualtrics

Qualtrics survey platform offers the possibility to define questions through
an API call to the platform. The way to achieve that is by making a post
request to their API and define the expected parameters. The post request
includes a json request which includes the necessary data for the action the
user wants to perform. The possible actions for the surveys through the API
are divided in the following categories which are presented in the following
listing:

Listing 5: Qualtrics Categories

• Questions: The user selects which type of question wants to use.

18

• Flows: The Flow option is where the survey maker defines the correct
order of the survey elements and how they are presented to the user.

• Blocks: A block is a group of questions which are displayed as a set
in the survey. Blocks also help users and survey makers to organize
better their surveys especially when these surveys are large.

• Options: Survey options gives the right to the user to make changes
for different settings of the survey, such as the message which will be
printed when the user finishes the survey, the language of the survey
or the expiration day of the survey and many more.

• Survey: The survey option is divided to three different options. The
user can get,create or delete a survey.

• Languages: The user defines the available languages of the survey.

In the following figure we present a POST request to the qualtrics API in
order to create a new question.

Figure 7: Qualtrics Create Question

4.4 Language Workbenches for Defining DSLs

Language workbenches are developer tools for the purpose of defining and
developing programming languages. Usually they provide a set of DSLs in
order to define different features of languages such as syntax, structure or
semantics[11]. One of these tools is MPS which is produced by Jetbrains.
MPS is used for designing and developing languages(DSLs also) in order

19

to be used in the real-world application domains. Its differentiate charac-
teristic is that it provides an editor which supports a wide range of differ-
ent composition features such as textual, mathematical and graphical no-
tations[11]. More information about language workbenches and especially
MPS can be found on [19]; the book provides a detailed explanation about
language composition, modularization and extension with MPS. Other lan-
guages workbenches similar to MPS are for example: Intentional, MetaEdit
which is focused on graphical modelling or Spoofax which is mainly used
for textual languages.

4.5 Summary

We expect that new developers which will extend our work will use the
comparison between survey editors in order to understand how the different
APIs work and what programming concepts they should follow in order to
make compatible our application with the different questionnaire platforms.
Furthermore we propose some language workbenches which can be used in
order to deploy domain specific languages or extend already existed ones.

5 System Design

We propose a platform which is designed in order to communicate with dif-
ferent questionnaire platforms and interact with them. Our solution results
in a great advantage that it is possible to minimize drawbacks which many
users face by using other platforms sucha as vendor lock-in and reusability.
We designed a platform in which domain experts can define questionnaires
and users can fill them in. Our application is not designed to work stand-
alone, instead it is served as a single point of access to interact with various
questionnaire platforms. An overview of the architecture is shown in figure
8.

We provide a text editor where the domain expert can define the ques-
tionnaire by writing in the DSL. Our application exposes an API which can
communicate with different questionnaire engines. In our case it communi-
cates with the VSV questionnaire engine where we send the questionnaire
parsed into JSON and receive the questionnaire in form of HTML.

Our platform works as a micro-service, as a part of a system which is al-
ready implemented and used. This is achieved by a web exposed API which
can interact with various platform according to the user needs. Micro-
services are defined as a specific architectural style that structures an ap-
plication as a collection of services which should follow the basic charac-
teristics as they described below: highly maintainable and testable, loosely

20

coupled, independently deployable, organised based on business capabili-
ties and owned by a small team[12].

The platform is consists of three components: (i) a UI component, (ii)
a parser, and (iii) the questionnaire engine. User Interface (UI) allows the
user to interact with the system. Parser is responsible for taking the stream
of tokens and converts it into an Abstract Syntax Tree (AST), which repre-
sents the structure of our DSL. The third component of our platform is the
questionnaire engine which is responsible for the questionnaire rendering.
Figure 8 depicts the architecture of the system.

Figure 8: System Architecture

To allow domain experts produce questionnaires in our application we
provide a web editor. Inside that editor the user can write questionnaires
in the DSL. Then the questionnaire which is written in the DSl is parsed
into a JSON object which acts as an intermediate object and through the
API it is sent to the questionnaire engine which is selected by the user.
The questionnaire engine renders the questionnaire and send it back to the
application in order to be displayed for the user.

The Domain Specific Language (DSL) we created is designed in a way
which ensures extensibility and flexibility to third party developers in order
to extend or modify the existing language. Extensibility is achieved by the
fact that a third-party developer can easily add new keywords, concepts and
syntax rules to our source language.

The syntax was designed in a way which ensures that is easily extensible,
flexible and usable for people who are not professional programmers.

5.1 Syntax Design

The top priority when designing the syntax was to be easily understand-
able by new users. In order to achieve that we need to minimize the syntax
amount in our DSL. The decision we took was to use different symbols which
a non-programmer uses in his/her everyday life. For example many users
use every day the hashtag symbol in their social network activity. A tool

21

which played a significant role in the design of our syntax is the Markdown
language. Markdown is a web tool for converting text to HTML. Its syntax
is based on the philosophy that is easy for the users to read, write or edit.
Taking this idea a step further we decided to design our syntax based on this
pattern. We used plenty of symbols which are used also by Markdown lan-
guage. This decision ensures that our syntax will be easily understandable
and usable by new users especially for those who already have an experi-
ence with Markdown language.

6 Analysis

In this section we will explain and analyze the whole process of implement-
ing the Domain Specific Language. We will also refer all the technical deci-
sions we take in order to deploy the system. Furthermore we will provide
some useful examples that we think are necessary for the reader in order to
understand the whole implementation process.

6.1 JSON object

As we described in the previous chapter the output of the parser will be a
JSON object which will act as an intermediate that links the syntax with the
questionnaire engines.
To provide a structure to our intermediate object we used the JavaScript
Object Notation(JSON). JSON is a data format which is widely used for data
exchange[8].

6.2 Questionnaire Design

Each questionnaire is comprised by different questions. Depending on the
question type each question has its attributes which may differ, depending
on the question type and the dependencies between questions. The content
of the questionnaire is an array which stores the questionnaire definitions.

Figure 9 presents the specific format of the JSON object which is the
questionnaire syntax that the VSV engine accepts in order to render the
questionnaires.

22

Figure 9: JSON for rendering the questionnaires

As it can be easily examined from the above figure 9 each question is
determined by a set of elements such as the id, type, title, placeholder, op-
tions and many more. It is very important to investigate the format of each
question type because based on this format we will design and implement
the parser which takes the stream of text and produces the output.

In the following listing we will explain the role of each of these basic
elements and in the following image we will present the results of the ques-
tionnaire engine when it accepts this JSON file.

• id: Each question should have its own id which is unique for every

23

question.

• type: The type element determines the type of the question which will
be rendered. The question types which are supported are the follow-
ing ones: checkbox, radio, range, raw, textarea, textfield, expandable,
time, date and dropdown.

• title: The title in every question determines the main body of each
question.

• options: Options element determines an array which can contain ei-
ther hashes or strings.

In the following image we can see how the rendered questionnaire looks
like when it is created by the VSV engine.

Figure 10: Example questionnaire

The question types which are supported by the u-can-act platform are
the following ones, presented in the following listing 6:

Listing 6: u-can-act supported types

• Checkbox

• Radio

• Range

24

• Raw

• Textarea

• Textfield

• Expandable

• Time

• Date

• Dropdown

Each of the above question types have their specific parameters which
they differ from question type to question type.
Figure 11 presents a diagram of the questionnaire design along with the
different types of questions and their individual parameters.

Figure 11: Questionnaire design

6.2.1 Survey Monkey Design

Except from the VSV engine we looked into the Survey Monkey question-
naire platform in order to examine the questionnaire structure which they
support. We will go deeper in the syntax design of the Survey Monkey plat-
form. We will present through the upcoming figure 12 the syntax design of
the Survey Monkey surveys which was necessary to study in order to pro-
ceed for the next steps of the project which is the design of the Domain
Specific language.

25

Figure 12: Questionnaire design by Survey Monkey

Survey Monkey questionnaires are divided into two main components:
(i)survey, (ii)questions, each of these components has its own attributes.
The first component is the survey and is characterised by the title, id, cate-
gory, language, etc. When the aforementioned parameters are defined the
next step is to define the questions of the survey. This is the second com-
ponent which includes parameters such as the headings, position, family
and others. The role for each these parameters is explained analytically in
section 4.

7 Implementation

Our implementation focuses on developing a generic solution that could
interact with multiple questionnaire engines from different platforms. In the
following sections we will explain the tools we used in order to implement
our platform as long as with some important code snippets.

7.1 PEG.JS Parser Generator

Peg.js is a parser generator which uses specific grammar rules that are
very close to the JavaScript Programming language. Given a set of rules
which consist the grammar of the language, the parser accepts a stream
of text and if this stream fits to the defined grammar the Abstract Syntax
Tree is constructed and this leads to the code generation. Peg offers a
set of significant advantages with the most important to be: (i) performs

26

both lexical analysis and parsing, (ii) provides a simple and extensive gram-
mar, and because it is based on parsing expression grammar formalism it
is much more powerful compared to traditional parsers which are based
context free grammars. Furthermore peg.js is usable from the browser or
through a JavaScript API[13].

The grammar is consisted by different rules. Each of the rules has a
unique name which identifies the rule and a parsing expression which de-
fines a pattern to match against the input text. It may also contains some
Javascript code that determines what happens if the pattern matches suc-
cessfully [13]. The parsing start from the first rule which is also called ’start
rule’. An example of a simple rule can be found in the following listing.

1 start
2 = additive
3
4 additive
5 = left:multiplicative "+" right:additive { return left + right; }

Listing 7: Example of a simple start rule

As it can be seen from the above listing a start rule named additive is
defined. This rule takes as inputs two numbers and when the "+" sign is
recognised it computes and returns the sum of these numbers. Except of
the rules there are also some others essential components when we define a
grammar with peg.js. These components will be explained in the following
list.

• Rules: As we described, a rule matches a parsing expression of a rule
recursively and returns its match result. Each rule should be unique
and followed by an equality sign("=") and a parsing expression which
defines a pattern to match.

• Start Rule: A start rule is the first rule which is being processed. This
block of code is executed before the generated parser starts parsing.

• Expressions: Many expressions can be used in order to determine a
sequence of occurrences in a matched syntax. For example if we have
an expression of type [3,4] and we want to match this expression as a
point the code block will look like as in the following list example.

1 point
2 = "[" left:value ws right:value "]" {
3 return {
4 type: "point",
5 x:left,
6 y:right
7 }
8 }

Listing 8: Example of a simple expression

27

• Character classes: Character classes are used in order to define a
set of characters and match any of these characters . An example of a
character class can be found in the following listing.

1 alphanumerical:[A-Za-z0-9\]+

Listing 9: Example of a simple Character class

The aforementioned character class example tries to match an al-
phanumerical sequence of characters and name it as "alphanumeri-
cal."

These examples help us understand on how to define the rules which
form the grammar for a language.

7.2 User Interface

We want users to be able to easily input new questionnaires in a textual
format. In order to achieve this goal we should design and develop a User
Interface which should have a high level of usability. By usability we mean
how easy is for the users to reach their objectives by using the web inter-
face. Of course the term usability is composed by others sub-factors such as
efficiency, learnability, effectiveness and colour using. These factors
should be taken seriously into account when designing a user interface. In
the following listing we will explain each of these factors we mentioned
above:

Listing 10: User Interface key points

• Efficiency: By the term ’efficiency’ we mean that the user is able to
complete a task with the minimal effort. In our case the goal for the
user is to produce the correct json output depending on the platform
which they want to use, either the u-can-act or the Survey Monkey
platform.

• Learnability: By the term ’learnability’ we define how easy is for the
user to get used to the GUI. This key point is very crucial for the users
because it can reduce significantly the time needed for the users in
order to reach their objectives.

• Effectiveness: One of the most important key drivers for a well de-
signed GUI is how effective this GUI is. By effectiveness we mean how
well it performs the tasks which is designed to perform.

• Colour using: Another significant factor is the use of colours which
the designer of the GUI decide to use. For example the use of bright

28

colours helps to give emphasis on specific points in the User Inter-
face but simultaneously may be frustrating for the users especially for
those who use the User Interface for a long period of time.

7.2.1 React JS

Our GUI was designed and implemented with ReactJS. which is a JavaScript
library which gives the developers the opportunity to create fast and highly
dynamic web-pages. Our decision to use React is based on the advantages
which offers and more specifically to the reactive way on displaying data.

7.2.2 UI Components

Our GUI can be divided into two main components. The first component is
the ’editor’ panel which is used by the user in order to define the questions
by writing them in our DSL. The second component of the UI is the ’view’
panel where the user can see the rendered questionnaire.
In the following image we present an overview of how the User Interface
looks like. On the left side the ’editor’ panel exists while in the right side
there is the ’view’ panel.

Figure 13: User Interface

7.3 DSL Syntax

Our DSL is designed to be used mainly by people who are not developers
or computer scientists. Our philosophy is that we should design a language
which will be easy to read and easy to write for the users. Based on these
remarks we set that the top priority when designing the syntax is to be
understandable and intuitive by a non programmer but also to ensure ex-
tensibility for users with programming experience who want to modify it or
extend it.

29

We tried to design a syntax which follow similar syntax as the Markdown
language, explained in section 3. Its primary operators are symbols such as
the number sign, brackets, curly brackets etc. Each of these symbols has a
special usage and specifies a unique element.

For example when the user writes &v1 this is recognized by the parser
as id:v1. The syntax is interpreted sequentially and designed to be user
friendly for non-programmers. Some of the attributes are not compulsory
for the user to be determined and in this case the value which is assigned
to these elements is null. In the following listing we explain the syntax of
the DSL and how it is interpreted by the parser. We present the syntax we
defined and the type of data which should follow our syntax.

• &alphanumerical: The value which follows the ampersand symbol is
parsed as the "id" of the question. For example when the user types
the following syntax &v1 the parser renders the following output id:v1
in terms of JSON syntax. The id of the question is compulsory to be
declared by the user.

• #Text: After the hashtag symbol, the user can define the title of the
question.

• ∼ {Text}: Inside the curly brackets the user can define which ques-
tion type to use. The supported question types are the following:
checkbox, radio, range, raw, textarea, textfield, expandable, time,
date, dropdown.

• []Text: Next to the brackets the question maker defines the available
options for the user in order to choose one or multiple of them, de-
pending on the question type. The question maker can use the options
notation as many times as the available answers are.

• $Text: The dollar sign matches the placeholder of the question.

• ∗Text: The asterisk notation denotes the possible labels on a question.
We can have multiple labels which are separated with comma.

• %true/false: The text that follows the title of the question is recog-
nised by the parser as the required tag. The required tag can take
only two possible values. It can be either ’true’ or ’false’.

• @min:Number: Defines the minimum value in a range of numbers. It
is mainly used in number question types.

• @max:Number: Defines the maximum value in a range of numbers.
It is mainly used in number question types.

30

• @ml:Number: Defines the maximum length value that the user can
enter as a response to the question. It is mainly used in number ques-
tion types.

• +hf:Number: Hours from(hf) is used in time question types and spec-
ifies the value where the drop-down will start.

• +ht:Number: Hours from(hf) is used in time question types and spec-
ifies the value where the drop-down will start.

• +hs:Number: Hours to(ht) is used in time question types and speci-
fies the step size between hours from and hours to.

• Raw Text: The user can add also raw text or HTML code in the ques-
tionnaire if needed in the questionnaire.

7.4 Survey Monkey DSL syntax

In the previous section we presented the syntax design and the output based
on the VSV questionnaire engine which is used by the u-can-act platform. In
this section we will present the DSL syntax we designed and implemented
in order to adjust it to the Survey Monkey platform. With this implemen-
tation we give the option to the user to use our implementation in order to
define questionnaires through the Survey Monkey API.
In order to serve usability we used a very similar DSL syntax as the one we
used before but the output is different based on the needed format for the
Survey Monkey platform as it is described in section 3.4.1 .
In the following listing we describe the syntax along with the rendered out-
put.

• (Text): The text which is inside the parenthesis denotes the heading
the question.

• &Number&: The number between the ’and’ symbols is parsed as the
"position" and denotes the position of each question in the question-
naire.

• #Text#: The text between the ’hash’ signs denotes the ’family’ of the
question which determines the type of the question which will be ren-
dered.

• Subtype: The text which follows the ’family’ question type is recog-
nised by the parser as the ’subtype’ of the question which specifies
further the type of the question.

• [Text]: The string inside the brackets is parsed as the choices for each
question which is the list of the available choices for the user.

31

• {Text}: The string inside the curly brackets is parsed as the ’display
type’ of the question. The ’display type’ is an optional field which
further define the question type.

Image 14 shows how the grammar is parsed based on the Survey Monkey
questionnaire platform. The grammar is not complete as it can be extended
based on the Survey Monkey API but it is a good base for developers to
extend it in the future and make it compatible with Survey Monkey.

Figure 14: Survey Monkey DSL parser output

Through our Survey Monkey implementation we proved that our plat-
form can be extended to work also with different back-ends. Actually no
current connection exists between Survey Monkey and the DSL but future
developers can use our work as a basis in order to extend and connect it to
different platforms.

7.5 Defining the Syntax Rules

The new language is consisted by rules. Each of the rules matches the pars-
ing expression and returns the matched result.
In the following listing we can see how we defined the basic rules for the
Domain Specific Language.

Listing 11 presents three functions of the parser. The first function con-
verts its first argument into a string, parses the rendered string and finally
returns an Integer or a null value. Some of the question attributes such as
the id and the title are compulsory for each type of questions except the raw
type. Other attributes such as the labels or the placeholder are not compul-
sory and used depending on the type and the complexity of the question. If
these attributes are not needed in a question we assign them the null value.
The second function is one of the most important functions as it is the func-
tion that we specify all the possible attributes that consist a question. These
attributes are for example the id, title, type etc. The third function is called
’removeDuplicateSpaces’ and takes as input the typed text by the user and
is responsible to remove double spaces which may be typed by the user.

1 {

32

2 function makeInteger(o) {
3 return parseInt(o.join(""),10);
4 }
5 function createQuestion(id, title, type, options, placeholder, labels, required

, min, max, ml, hf, ht, hs) {
6 var question = {
7 id: id,
8 title: title,
9 type: type,

10 options: options,
11 placeholder: placeholder,
12 labels: labels,
13 required: required,
14 min: min,
15 max: max,
16 maxlength: ml,
17 hours_from: hf,
18 hours_to: ht,
19 hours_step: hs
20 }
21 return question;
22 }
23
24 function removeDuplicateSpaces(text) {
25 return text.replace(/\s\s+/g,’’);
26 }

Listing 11: Create question Example

Code listing 12 shows the separation between two categories of ques-
tions. The first category includes the raw type questions where the user
can directly give as input raw text or HTML code and the parser directly
recognise the question type and matches the input to the grammar.
The second category consists of questions where the user should define the
id of the question, the title and the type by using the DSL syntax.
Furthermore through the code snippets we can understand how the rules
are defined in order to match the input stream to the defined grammar.

1 QuestionsType
2 = questions:(Question/QuestionCont)* { return questions; }
3
4 QuestionCont "(question with content)"
5 = content:Raw
6
7
8 Raw ’rawtype’
9 = content:RichText QuestionSeparator {return{type:"raw",content}}

10
11
12 Questions
13 = _ questions:(Question)* _ { return questions }
14
15 Question ’(question)’
16 = QuestionAnswersAtEnd

33

17
18 QuestionAnswersAtEnd "(question with answers at end)"
19 = id:QuestionId _ title:QuestionTitle _ type:QuestionType? _ options:

QuestionOptions? _ placeholder:QuestionPh? _ labels:Questionlab? _

required:Questionreq? _ min:Questionmin? _ max:Questionmax? _ ml:
Questionmaxlength? _ hf:QuestionHoursFrom? _ ht:QuestionHoursTo? _ hs:
QuestionHoursStep? QuestionSeparator

20 {
21 var question = createQuestion(id, title, type, options, placeholder, labels

, required, min, max, ml, hf, ht, hs);
22 return question;
23 }
24
25 QuestionId
26 = ’&’ id:RichText {return id}
27
28 QuestionTitle
29 = _ ’#’ title:RichText { return title }
30
31
32 QuestionType
33 = _ ’~{’ type: RichText ’}’ {return type}
34
35 QuestionOptions "Options"
36 = options:(QuestionOption) + { return options; }
37
38 QuestionOption "Option"
39 = ’[]’ option:(RichText)
40 { return option; }

Listing 12: Defining Question Elements

These rules were defined in a way which ensures usability for question
makers as they can use simple every day symbols in order to build question-
naires, but also extensibility for future developers to extend or modify the
already existed rules.

Code listing 13 defines the different character classes we used in our
grammar. A character class defines a group of characters and matches any
single character of the set.

1 RichText
2 = Text { return text().trim(’’) }
3
4 Number
5 = chars:[0-9]+ frac:NumberFraction?
6 { return parseFloat(chars.join(’’) + frac); }
7
8 NumberFraction
9 = "." chars:[0-9]*

10 { return "." + chars.join(’’); }
11
12 _ "(whitespace)"
13 = (EndOfLine !EndOfLine / Space / Comment)*

34

14
15
16 Comment "(comment)"
17 = ’//’ (!EndOfLine .)* (EndOfLine / EndOfFile)
18
19 Space "(space)"
20 = ’ ’ / ’\t’
21 EndOfLine "(end of line)"
22 = ’\r\n’ / ’\n’ / ’\r’
23 EndOfFile
24 = !. { return "EOF"; }

Listing 13: Defining the character classes

From the above listing 13 we can observe the process of defining the dif-
ferent character classes such as the Text, Number or Number Fraction
but also other classes such s the end of line or the end of file.
The process of defining the character classes for the Survey Monkey plat-
form is very similar to the process we described above.

8 DSL vs u-can-act platform

A comparison between the DSL platform and the u-can-act platform was
performed in order to collect and analyze data to answer our research ques-
tions. We asked from users with different experience levels on computer
science to build a questionnaire by using our platform and the u-can-act.
We keep track of the time needed to build the same questionnaire in both of
the platforms and we analyzed the data we collected. Through this analysis
we will be in position to justify whether or not a DSL can reduce the needed
time for questionnaire building compared to other platforms but also how
easy is for non-programmers to understand and use DSLs.

8.1 Hypothesis

The aim of this study is to explore whether a DSL related platform for build-
ing questionnaires constitutes a development over a JSON related platform.
We hypothesised that the DSL solution can reduce significantly the neces-
sary time in order to build questionnaires. The above assumption comes
from the fact that most of the users are not familiarized with JSON syntax.
On the other hand a Domain Specific Language which is based on a user
friendly syntax can provide us better results in terms of time. We believe
that the results of our experiment can also show that DSLs can also bridge
the gap between developers and domain experts. The acceptance of this
assumption can significantly boost the usage of DSLs in the future as both
developers and domain experts can both benefit from DSLs.

35

8.2 Experiment Procedure

We performed an experiment in order to measure how fast our DSL per-
forms compared to other online survey editors(u-can-act). Intended partic-
ipants are users with different experience in computer science. The par-
ticipants are divided into three main categories based on their computer
science background. The first category includes participants with a high
level of computer science, the second group includes participants with a
low level background and the third group includes users which already use
the app.u-can-act.nl platform. All the participants were asked to build
the same questionnaire 16 which includes seven different questions, by us-
ing both of the platforms.
Before the experiment starts, a manual was provided to the users which
describes how both of the platforms work, along with examples and a brief
description of the goal of the research. After participants read the manual
they could ask questions in case that something was unclear or they need
further clarifications about the platforms.
The next step was to ask the participants to start the experiment by start-
ing building the questionnaire. During the experiment we keep track of the
time needed for the participants to build the questionnaire by using both
of the platforms in order to examine if our DSL solution constitutes a de-
velopment, compared to the application which is already being used. When
the aforementioned procedure is completed the times are recorded and will
compared in order to examine the differences between the platforms and
the users.
Our experiment acts as a case study in order to collect data and justify our
hypothesis. In the future it can be extended by including more question-
naire platforms which can give us a more complete picture on how our DSL
acts compared to other platforms.

9 Analysis Methods

9.1 ANOVA

Analysis Of Variance (ANOVA) is a set of statistical tests, used in order to ex-
amine whether or not there are significant differences between the means
in a sample[2]. This method is mainly used in the analysis of experimental
data. Anova is based on accepting or rejecting the null hypothesis. The
null hypothesis is that between group means there are no statistical signif-
icant differences. A result is considered as statistically significant when a
probability p− value is less than a predefined threshold, which justifies the
rejection of the null hypothesis[2].
In statistics, the null hypothesis is a general statement that there is no rela-
tionship between two measured, or no association between groups. For ex-

36

app.u-can-act.nl

ample, in a typical ANOVA scenario where we compare two different treat-
ments the null hypothesis would be that both of the treatments have the
same results. By rejecting the null hypothesis we accept that the observed
differences between the groups are unlikely to be due to random chance.
In our case the null hypothesis is stated as following: There are no signifi-
cant differences in the time means for the DSL platform and the u-can-act
platform.

9.1.1 Assumptions

In order to apply the ANOVA test we that data should follow three main
assumptions as they described in the following listing.

• Normality: Each of the groups which are compared should follow the
normal distribution.

• Independence: The dependent variables should not be affected by
the conditions in other samples.

• Variance: Samples should come from populations with the same vari-
ance.

9.1.2 Checking Assumptions

As we described in the above section in order to apply the ANOVA test the
above assumptions should be fulfilled. In order to check for these assump-
tions we will apply two tests, to check for the assumptions. The first test is
the Shapiro-Wilk test which checks for the normality and the second test is
the Levene test which checks for the variance assumption. In the following
listing we give an overview for both of the tests.

• Shapiro-Wilk: The Shapiro-Wilk test tests the null hypothesis that a
sample x1...xn came from a normally distributed population[14]. The
null hypothesis means that the population is normally distributed. If
the p − value is less than a specific α value, the null hypothesis is re-
jected, meaning that the data come from a non-normally distributed
population. On the other hand if the p − value value is greater than
the α value then the data come from a normally-distributed popula-
tion[14].

• Levene’s test: Levene’s test the null hypothesis that the population
variances are equal. If the p−value is less than a specific value(typically
0.05) then the null hypothesis is rejected, meaning that the the pop-
ulation variances are not equal. On the other hand if the p − value is
greater than the significance level(0.05) the null hypothesis is valid[9].

37

9.2 Turkey’s Honestly Significant Difference

If the ANOVA results show that there is evidence that the means of the
population differ significantly, we need to examine which of the means are
different. This is where the Turkey’s test is used. This test compares the
difference between each pair of means with the necessary adjustment in
order to perform multiple testing[17].

10 Results

In this section we will present the results from the analysis we performed
after the data collection through the experimental procedure.

10.1 Datasets

10.1.1 ANOVA Dataset

The ANOVA dataset is organised in a way in order to be able to perform the
ANOVA test. The dataset is organised in 4 different columns based on the
user’s computer science background and the application they are tested.
The four columns are explained in the following listing:

• CSExpAPP: This column includes the time records from the users with
high computer background which they tested the http://staging-app.
u-can-act.nl/questionnaire/interactive platform.

• CSExpDSL: This column includes the time records from the users with
high computer science background, testing the DSL platform for the
questionnaire rendering.

• NoCSExpApp: In this column the included time records are from
users with low level of computer science background, testing the http:
//staging-app.u-can-act.nl/questionnaire/interactive platform.

• NoCSExpDSL: This column includes the time records from users with
low computer science background, testing the DSL platform for ques-
tionnaire rendering.

10.1.2 Turkey’s HSD Dataset

In order to apply the Turkey’s test we need to modify the way which the
dataset is organised. In the following listing we present the columns that
the dataset is organised.

• App: This column includes the time records for the users that tested
the original app.u-can-act platform.

38

http://staging-app.u-can-act.nl/questionnaire/interactive
http://staging-app.u-can-act.nl/questionnaire/interactive
http://staging-app.u-can-act.nl/questionnaire/interactive
http://staging-app.u-can-act.nl/questionnaire/interactive

• DSL: This column includes the time records for the users that tested
the DSL platform.

• CSBG: This column includes the computer science background for
each user. The different values in this column, depending on the users
are: "high" , "low".

10.2 Statistics

In the following figures 15, 16 present some basic statistics regarding the
time records for the users based on their computer science experience level.

Figure 15: High CS Background-Original platform

Figure 16: High CS Background-DSL platform

39

The above figures are pertained to the testers with a high computer
science background, comparing the two different platforms. As we can ob-
serve from the results there is a significant difference of 39.79% between
the means for both of the platforms. Furthermore the lowest value, using
the original platform is 11 minutes and 25 seconds and the highest is 22
minutes and 3 seconds. On the other hand the counterpart statistics for the
DSL platform are: 6 minutes and 44 seconds, 12minutes and 31 seconds. In
terms of the minimum values we observe a decrease of 42.76% and 44.12%
among the highest ones.

So far, we examined the differences between the two platforms regard-
ing people with high computer science background. Now, we will present
the differences among the platforms between users with low computer sci-
ence background. In the following figures 17, 18 we present these differ-
ences:

Figure 17: Low CS Background-Original platform

40

Figure 18: Low CS Background-DSL platform

As we observe from the above figures there is a significant difference be-
tween the means for both of the platforms, regarding users with the same
level in computer science(low). The mean value in the original platform
is 18min and 16secs, while the mean for the same users, tested the DSL
platform is 10min and 49secs. This results a decrease of 42.24%. Big dif-
ferences between the platforms are also observed by the min and the max
values. More specifically the difference between the min values is 47.22%,
while the difference between the max values is 50.39%.

By comparing the differences between the users with "high" and "low"
levels of computer science backgrounds we can assume that people with a
higher level in computer science manage to achieve better scores by testing
both of the platforms. Although it is also worth mentioning that for both of
the users the difference between the two platforms is very big, meaning
that the DSL platform managed to simplify the procedure of questionnaire
rendering compared to the original platform which uses the JSON format.

10.3 ANOVA results

In this section we will present the results from the ANOVA test. As we
described in the previous chapters in order to proceed with ANOVA test
first we have to check for the assumptions regarding the normality and the
variance. In the following figures 19, 20 we can see that all pvalues are
greater than the threshold a = 0.05, therefore we fail to reject the null
hypothesis. That means that the samples come from the population follow
the normal distribution have the same variance.

41

Figure 19: Shapiro-Wilk normality test

Figure 20: Levene variance test

The ANOVA results are presenting in the following figure. We performed
an ANOVA test among the four different categories in our data which we
collect through our experiment with users among the two different survey
platforms.

Figure 21: ANOVA results

As p < a(0.05) we state that we have a main interaction effect. As the
probability is lower than 0.05 we reject the null hypothesis. This means that
statistically significant differences among groups have identified. However
these results does not identify the pairs which cause these significant dif-
ferences. For our further examination we will use the Turkey HSD (hon-
estly significant difference) test which is a single multi-comparison test.
For this purpose we categorized our user based on their computer science
level("high", "low") and we will compare their times for both of the plat-
forms. The results can be found on the following images 22, 23.

Figure 22: Turkey HSD Original platform

42

Figure 23: Turkey HSD DSL platform

Based on the above results we can assume that the computer science
background of the users does not have a significant impact on the times
that the users did using the platforms. This is the reason why we do not
"reject" the null hypothesis that there are no significant differences based
on the computer science background for each user. Although we observe
that the "meandiff" value between the users with different computer science
background is much lower on the DSL platform. This shows that it is easier
for non-experienced users to cover the gap from users which are much more
experienced.

10.4 Results from RUG psychology department users

In order to examine the behavior of users experienced in the app.u-can-
act.nl platform we asked them to take part in the experiment. As we can see
from table 10.4, despite the fact that the users were coming in touch with
the DSL platform for the first time, the difference in terms of time is very
significant as the DSL was 57% faster . This difference can be explained by
focusing in three main factors: (i) users can faster trace and correct their
syntax errors and (ii) it is very easy easy for the users to understand and
reproduce the syntax and (iii) they could copy/paste questions of the same
type and directly modify them.

DSL u-can-act
11min 10sec 23min 56sec
4min 35sec 11min 19sec

11 Discussion

Our main goal was to develop a platform which will be based on a DSL
in order to provide non-programmers an easy and efficient way for survey
building. The results show that our approach is much faster not only for
non-programmers but also for people with experience in computer science.
Apart from that, we found that it is easier for the users to work with a DSL,
as they can easily copy/paste questions which are of the same question type
or modify them. Furthermore it is much easier for users to detect possible

43

errors which may have been made regarding the syntax.
The biggest problem we detected was that the users were not familiar with
the parser precision as the syntax has a clear and strict order which can
not be violated. This can lead to small errors mainly regarding the order of
the syntax rules which are defined. There was a significant learning effect
regarding the DSL platform as users managed to understand and use it
much faster that the other platform. Also they liked the fact that through
simple notations you can directly have a complete questionnaire. Although
what would be also interesting is to have a comparison between the DSL
and other GUI platforms. The results of this comparison would help us to
have the complete picture of our platform compared to other platforms.

12 Conclusion

In this thesis, implementation of an application for building questionnaires
by writing them in a DSL has been discussed. An easy text syntax was
developed in order to make our platform accessible and usable by people
with different experience on computer science. The architecture supports
that our platform can interact with various questionnaire platforms and ex-
tended in the future.

The goals of the project were met as we proved that a DSL can signif-
icantly reduced the needed time for building a questionnaire compared to
other online survey editors and secondly that there are no significant dif-
ferences in understanding and usage between people with different back-
grounds on computer science. This approach can have a significant impact
on computer science domain as it can extend the field of Domain Specific
Languages even more in domains which are still unexplored.
Of course, further development that adds more features will be welcome
and will further improve the final result.

13 Future Work

The architecture of our platform is designed to fit to different back-ends.
Currently no actual implementation of that exists but it would be a nice
feature for future work to be implemented.
One important extension would be to make our platform compatible with
other online survey editors. For example a user using our DSL would be
capable of rendering questionnaires in other online survey platforms such
as Survey Monkey, Google Forms, etc. Of course this depends on other
platforms too, and it has to do with how much access they give you to their
API.

44

Another possible feature which could be added would be to inform users
about possible syntax errors. For example we could highlight the line where
the errors has been made in order to be easier for the user to correct it.
Finally, we could support a feature which could read a questionnaire from a
word file and convert it to our DSL format. This could be very useful for the
users in order to directly render already predefined questionnaires without
the need of converting it manually to our DSL syntax format.

A SurveyMonkey JSON examples

Figure 24: Survey Monkey Multiple Choice question

45

Figure 25: Survey Monkey Image Choice question

B Peg.Js Installation and Compilation commands

1 $ npm install -g pegjs

Listing 14: Installation of peg.js with node package manager

1 $ pegjs parser.pegjs

Listing 15: Compilation of pegjs grammar into javascript code

C Questionnaire to render

46

1 Id :v1
2 title: 1. How much do you suffer from psychological complaints?
3 type : radio
4 option: Not or hardly
5 option: Quite
6 option: Very much
7
8 Id :v2
9 title: 2. How much do you suffer from physical complaints

10 ?
11 type : radio
12 option: Not or hardly
13 option: Quite
14 option: Very much
15
16 Id: v3
17 title: 3. How much do psychological complaints interfere
18 with your (looking for) work?
19 type: radio
20 option: Not or hardly
21 option: Quite
22 option: Very much
23
24 Id: v4
25 title: Year of first psychotic episode:
26 type: number
27 min:1900
28 max:3000
29 maxlength 4
30
31 Id: v5
32 title: Year of first mental health care - contact
33 type: number
34 min:1900
35 max:3000
36 maxlength:4

Listing 16: Python example

D Questionnaire answers-Original Platform

1 [{"type":"raw","content":"Very briefly! Help us understand how you feel"},{"
type":"raw","content":"Can you tell us how you felt about the past week,
through today, have felt? We ask you to give report marks in a number of

2 areas."},{"type":"raw","content":"Read each question carefully and circle the
number that best describes your current situation."},{"id":"v1","type":"
radio","title":"1. How much do you suffer from psychological complaints?","
options":[{"title":"Not or hardly"},{"title":"Quite"},{"title":"Very much"
}]},{"id":"v2","type":"radio","title":"2. How much do you suffer from
physical complaints?","options":[{"title":"Not or hardly"},{"title":"Quite"
},{"title":"Very m u c h }]},{"id":"v3","type":"radio","title":"3. How much
do

3 psychological complaints interfere with your (looking for) work? ","options":[{
"title":"Not or hardly"},{"title":"Quite"},{"title":"Very m u c h }]},

47

4 {"id":"v4","type":"number","title":"Year of first psychotic
5 episode? , maxlength ":4,"placeholder":"1234","min":1900,"max":3000,"

required":true}]]

Listing 17: u can act platform questionnaire

E Questionnaire answers-DSL Platform

1 Very briefly. Help us understand how you feel
2
3 Can you tell us how you felt about the past week,
4 through today, have felt? We ask you a
5 to give report marks in a number of areas.
6
7 Read each question carefully and circle the number that
8 best describes your current situation.
9

10 &v1
11 #1. How much do you suffer from psychological complaints?
12 ~{radio}
13 []Not or hardly
14 []Quite
15 []Very much
16
17 &v2
18 #2. How much do you suffer from physical complaints?
19 ~{radio}
20 []Not or hardly
21 []Quite
22 []Very much
23
24 &v3
25 #3. How much do psychological complaints interfere
26 with your (looking for) work?
27 ~{radio}
28 []Not or hardly
29 []Quite
30 []Very much
31
32 &v4
33 #Year of first psychotic episode:
34 ~{number}
35 @min:1900
36 @max:3000
37 ml:4
38
39 &v5
40 #Year of first mental health care - contact
41 ~{number}
42 @min:1900
43 @max:3000
44 @ml:4

Listing 18: DSL questionnaire

48

References

[1] Abstract Syntax Trees. URL: https://ruslanspivak.com/lsbasi-
part7/.

[2] ANOVA. URL: https://en.wikipedia.org/wiki/Analysis_of_

variance#:~:text=Analysis.

[3] Paul Klint Arie van Deursen and Joost Visser. “Domain-Specific Lan-
guages: An Annotated Bibliography”. In: ().

[4] Martin Fowler. Domain Specific Languages.

[5] Martin Fowler. “Language Workbenches: The Killer-App for Domain
Specific Languages”. In: ().

[6] Google Forms. URL: https://developers.google.com/apps-script/
reference/forms.

[7] Internal vs External DSLs. URL: https://subscription.packtpub.
com/book/application_development/9781782166504/1/ch01lvl1sec09/
internal-versus-external-dsls#:~:text=The%20use%20of%20a%
20DSL,be%20called%20an%20External%20DSL..

[8] Json Documentation. URL: json.org.

[9] Levene test. URL: https://www.itl.nist.gov/div898/handbook/
eda/section3/eda35a.htm.

[10] Lexing and parsing overview. URL: http://savage.net.au/Ron/
html/graphviz2.marpa/Lexing.and.Parsing.Overview.html.

[11] Klaus Birken Markus Voelter Bernd Kolb and Federico Tomassetti.
“Using Language Workbenches and Domain-Specific Languages for
Safety-Critical Software Development”. In: ().

[12] Microservices. URL: https://microservices.io/.

[13] Peg.js Documentation. URL: https://pegjs.org/documentation.

[14] Shapiro-Wilk test. URL: https : / / www . itl . nist . gov / div898 /
handbook/prc/section2/prc213.htm.

[15] Survey platforms market share. URL: https : / / www . pcmag . com /
picks/the-best-online-survey-tools.

[16] The u-can-act Platform: A Tool to Study Intra-individual Processes of
Early School Leaving and Its Prevention Using Multiple Informants.
URL: https://www.frontiersin.org/articles/10.3389/fpsyg.
2019.01808/full.

[17] Turkey’s HSD. URL: http://www.blackwellpublishing.com/specialarticles/
jcn_8_304.pdf.

[18] M. Veldthuis. “Quby, a domain-specific language for non-programmers”.
In: ().

49

https://ruslanspivak.com/lsbasi-part7/
https://ruslanspivak.com/lsbasi-part7/
https://en.wikipedia.org/wiki/Analysis_of_variance#:~:text=Analysis
https://en.wikipedia.org/wiki/Analysis_of_variance#:~:text=Analysis
https://developers.google.com/apps-script/reference/forms
https://developers.google.com/apps-script/reference/forms
https://subscription.packtpub.com/book/application_development/9781782166504/1/ch01lvl1sec09/internal-versus-external-dsls#:~:text=The%20use%20of%20a%20DSL,be%20called%20an%20External%20DSL.
https://subscription.packtpub.com/book/application_development/9781782166504/1/ch01lvl1sec09/internal-versus-external-dsls#:~:text=The%20use%20of%20a%20DSL,be%20called%20an%20External%20DSL.
https://subscription.packtpub.com/book/application_development/9781782166504/1/ch01lvl1sec09/internal-versus-external-dsls#:~:text=The%20use%20of%20a%20DSL,be%20called%20an%20External%20DSL.
https://subscription.packtpub.com/book/application_development/9781782166504/1/ch01lvl1sec09/internal-versus-external-dsls#:~:text=The%20use%20of%20a%20DSL,be%20called%20an%20External%20DSL.
json.org
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm
http://savage.net.au/Ron/html/graphviz2.marpa/Lexing.and.Parsing.Overview.html
http://savage.net.au/Ron/html/graphviz2.marpa/Lexing.and.Parsing.Overview.html
https://microservices.io/
https://pegjs.org/documentation
https://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
https://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
https://www.pcmag.com/picks/the-best-online-survey-tools
https://www.pcmag.com/picks/the-best-online-survey-tools
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01808/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01808/full
http://www.blackwellpublishing.com/specialarticles/jcn_8_304.pdf
http://www.blackwellpublishing.com/specialarticles/jcn_8_304.pdf

[19] Markus Voelter. “Language and IDE Modularization, Extension and
Composition with MPS”. In: pp. 383–430.

50

	List of Figures
	Introduction
	Background
	Code Generation Pipeline
	Domain Specific Languages
	Internal DSL
	External DSL

	Purpose

	Summary
	Related Work
	Involving nonprogrammers with DSLs
	Online Questionnaire Editors
	Text Formatting
	Data Format Validation
	Comparison between online survey editors

	Survey Platforms
	Quby
	u-can-act.nl
	Survey Monkey
	Survey Gizmo
	LIme Survey:
	Google Forms
	Qualtrics

	Language Workbenches for Defining DSLs
	Summary

	System Design
	Syntax Design

	Analysis
	JSON object
	Questionnaire Design
	Survey Monkey Design

	Implementation
	PEG.JS Parser Generator
	User Interface
	React JS
	UI Components

	DSL Syntax
	Survey Monkey DSL syntax
	Defining the Syntax Rules

	DSL vs u-can-act platform
	Hypothesis
	Experiment Procedure

	Analysis Methods
	ANOVA
	Assumptions
	Checking Assumptions

	Turkey's Honestly Significant Difference

	Results
	Datasets
	ANOVA Dataset
	Turkey's HSD Dataset

	Statistics
	ANOVA results
	Results from RUG psychology department users

	Discussion
	Conclusion
	Future Work
	SurveyMonkey JSON examples
	Peg.Js Installation and Compilation commands
	Questionnaire to render
	Questionnaire answers-Original Platform
	Questionnaire answers-DSL Platform

