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Abstract

In recent literature, the Burer-Monteiro factorization algorithm has shown to be an efficient
method to solve large scale semidefinite programs that admit a solution of low rank: instead
of optimizing over a sizable matrix X, one splits this matrix apart into two smaller ones by
factorizing X = V V >. The disadvantage of factorizing X in this way is that possibly extra
non-optimal second-order critical V ’s are generated. While the article [Bandeira, Boumal, and
Voroninski 2020] shows that in many situations this downside of the Burer-Monteiro approach is
benign, recently [Waldspurger and Waters 2019] determined cases for which this factorization
approach leads to an incorrect solution. In this current thesis, the results of both of these
papers are combined by considering a classic minimization problem concerning optimization
over quadratics, known as the trust-region subproblem. In particular, Chapter 4 will provide
two examples of how to construct the trust-region subproblem in such a way that factorizing
X = V V > is not benign, and will therefore lead to convergence failure when applying the Burer-
Monteiro factorization algorithm. Both of these examples are built on a step-by-step framework
for how to deliberately bring about convergence failure of the Burer-Monteiro factorization
algorithm, which will be discussed in Chapter 3.
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Chapter 1

Introduction

The Burer-Monteiro factorization algorithm is a relatively new approach to solving semidefinite
programs (SDPs), designed by Samuel Burer and Renato Monteiro [Burer and Monteiro 2003;
Burer and Monteiro 2005]. An SDP is a problem of the following form:

minimize 〈C,X〉
such that A(X) = b,

X � 0,

(SDP)

where 〈C,X〉 = Tr(C>X), as the latter denotes the trace of the n× n-matrix C>X. Here, we
minimize over the positive semidefinite matrix X in the space of symmetric n × n-matrices.
Besides that, C ∈ Rn×n is a fixed and symmetric cost matrix, and A : Rn×n → Rm is a linear
operator that captures m equality constraints, for which b ∈ Rm. Lastly, X � 0 refers to the
requirement that X is positive semidefinite.

Problem (SDP) could be used as a relaxation for various difficult problems, with a suitable
change of variables, to make them easier to solve. One of the classic examples in which SDPs
can be used as a relaxation is MaxCut, which is a problem from graph theory that first appeared
in [Delorme and Poljak 1993; Svatopluk Poljak 1995] and made famous by the work [Goemans
and Williamson 1995]. In particular, in the MaxCut problem, one considers a graph of vertices
(points) of which some are connected by edges, and where the goal is to divide the vertices into
two sets, such that the line drawn to separate these sets cuts the maximum number of edges.

In order to solve the SDP-relaxations of difficult problems like MaxCut, nowadays one can
choose from a whole variety of iterative solvers (interior point methods) to obtain the solution
to Problem (SDP). In small scale cases, using these iterative algorithms is efficient, since SDPs
are convex. This latter fact allows one to solve these programs in polynomial time1, while the
original problems (without using any relaxation) are in many practical settings NP-hard2. This
makes rewriting complex problems into the form of Problem (SDP) an already established and
often-used method to solve optimization problems.

The issue here, is that in many practical cases X is a very large matrix, which makes
conventional iteration methods for solving Problem (SDP) computationally demanding and
slow. To overcome this, [Burer and Monteiro 2003] used the main results of [Pataki 1998] and

1When an optimization problem can be solved in polynomial time, it is possible to solve the problem without
waiting an infinite amount of hours.

2NP-hard refers to the fact that it is impossible to solve that particular problem directly (i.e. without using
a relaxation).
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[Barvinok 1995] to come up with an algorithm that solves Problem (SDP) more efficiently.
Namely, the latter two articles pointed out that the optimal solution of Problem (SDP), which
we will denote as Xopt, is often of low rank3. Now, one of the useful properties of low-rank
semidefinite matrices X ∈ Rn×n, is that they can easily be factored out in the form X = V V >,
where V ∈ Rn×p. This is convenient, since it is true that in empirical settings p� n, and hence
V is a significantly smaller than X.

The Burer-Monteiro factorization approach substitutes V V > for X into Problem (SDP),
which yields

minimize 〈CV, V 〉
such that A(V V >) = b,

(Factorized SDP)

where we now optimize over V ∈ Rn×p, instead of optimizing over X ∈ Rn×n. Also, we note
that 〈CV V >〉 = 〈CV, V 〉 = Tr(C>V V >).

Motivation behind the Burer-Monteiro factorization algorithm

When compared with Problem (SDP), solving Problem (Factorized SDP) is less computation-
ally demanding, since we optimize over a smaller matrix, as we already mentioned that in most
applications p � n. In Problem (SDP) we had to deal with the n × n-matrix X, while when
using Problem (Factorized SDP), one works with the n× p-matrix V . Now, in the former case
we have to optimize over n2 variables, while in the latter we only have np variables. This
makes solving Problem (Factorized SDP) far less computationally expensive than finding the
global minimum of Problem (SDP), when applying iterative solvers. Another advantage of the
Burer-Monteiro factorization is that the positive semidefiniteness constraint in Problem (SDP)
can be omitted, since it will be automatically satisfied using X = V V >. This last point is very
relevant, since X � 0 is "the most challenging aspect" of solving Problem (SDP), as Burer and
Monteiro mention in their paper [Burer and Monteiro 2003, page 330].

There has been a lot of work on the Burer-Monteiro approach in recent years. Research
of great value such as the first manifold-inspired perspective [Journée et al. 2010] and the fact
that points which satisfy necessary optimality conditions approximately are also approximately
optimal [Bhojanapalli et al. 2018; Pumir, Jelassi, and Boumal 2018; Cifuentes and Moitra 2019]
can therefore not be missed.

Downsides of the Burer-Monteiro approach

Although rewriting Problem (SDP) into Problem (Factorized SDP) makes solving computa-
tionally easier, there are a few downsides when using this factorization algorithm. Firstly,
when substituting V V > for X into the objective function of the SDP, it may be that extra
non-optimal second-order critical points are introduced. For the case that such an additional
critical point has lower objective function than the V that corresponds to the global optimum
of the SDP4, optimization algorithms over the factorized problem are doomed to find the V

3In [Pataki 1998, Theorem 2.1] it is stated rank(Xopt) .
√
2m, where we recall that m is the number of

affine contraints. Hence,
√
2m defines an approximate upper bound for the rank of the optimal solution which,

we can now say, must be of low rank.
4As we will see in Chapter 3, this situation lies at the base of Step 5 of examples 1 and 2. Namely, we can use

it for showing that the V0 (that corresponds to the optimal solution of the SDP) is a non-optimal second-order
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that is optimal for the Burer-Monteiro factorization. Instead, they find a (for the factorized
problem) global optimal V that corresponds to a non-optimal X of the SDP. This issue is fully
dependent on the cost matrix C and on p, as known from [Waldspurger and Waters 2019,
Sections 3.3, Section 5.1].

To make matters even worse, by going from the convex Problem (SDP) to the non-convex
Problem (Factorized SDP), it may be that the optimization algorithms that are used over the
Burer-Monteiro factorization cannot even find the global minimum. In particular, it can be that
(Riemannian5) optimization algorithms get stuck at a non-optimal second-order critical point,
instead of finding a global minimizer of the SDP, due to non-convexity of the factorized problem.
Whether this issue arises or not depends on the following pitfall of Problem (Factorized SDP),
namely the choice of the column dimension of V , denoted by p.

In particular, the third downside of using Problem (Factorized SDP) is that the factorization
rank6 p has to be chosen. Nevertheless, in many emperical experiments, interior point methods
solve Problem (Factorized SDP) when p ≥ rank(Xopt). Numerical examples of this result can
be found in [Burer and Monteiro 2003], [Boumal 2016], [Bandeira, Boumal, and Voroninski
2016a] and [Rosen et al. 2019]. In all of these papers, restrictive assumptions are made on the
cost matrix C in order for local optimization algorithms to solve Problem (Factorized SDP). If
no restrictions on C are made, there are no guarantees for convergence to a global minimum,
unless p &

√
2m, where we recall that m is the number of constraints, as can be found in

[Bandeira, Boumal, and Voroninski 2020]7. Recently, [Waldspurger and Waters 2019] slightly
improved this bound, but confirmed that if p .

√
2m, Riemannian optimization algorithms

cannot be certified correct without assumptions on C.
Lastly, it is important to note that while (the searching space of) Problem (SDP) is convex,

Problem (Factorized SDP) is not. For this disadvantage [Bandeira, Boumal, and Voroninski
2016b] showed that non-convexity is benign when the threshold of p &

√
2m is satisfied.

Convergence failures for the Burer-Monteiro appraoch

In this thesis we will explore the phenomenon that the choice of both the factorization rank
p and cost matrix C determines the possibility of convergence failure8 of Riemannian opti-
mization algorithms on Problem (Factorized SDP). This will be done by reconsidering one of
the applications from the latest research of [Bandeira, Boumal, and Voroninski 2020, Section
5.2], namely the trust-region subproblem (which nowadays is a classic minimization problem
concerning optimization over quadratics).

We will see that actually it is not difficult to come up with C’s that lead to an incorrect

critical point: there exists a feasible second-order critical V1 that has lower objective function than V0, which
satisfies X0 = V0V0 and where X0 is the global minimum of the SDP.

5Riemannian optimization algorithms are a specific class of interior point methods. Nowadays, they are
considered as the most efficient solvers for SDPs, since these algorithms iterate on the manifold directly: all
iterates satisfy constraints up to numerical accuracy.

6Instead of saying “the column dimension of V ”, the common term used in the literature is the factorization
rank p.

7The only assumption made in this paper is that the feasible set of matrices defined asMp = {V ∈ Rn×p :
A(V V >) = b is a smooth manifold. Under this assumption Problem (Factorized SDP) satisfies the Karush-
Kuhn-Tucker (KKT) conditions, which makes points (i.e. matrices) more efficiently computable. Analysis of
cases for which the Burer-Monteiro approach works for applications where the searching space for V is not a
smooth manifold can be found in [Bhojanapalli et al. 2018; Cifuentes 2020].

8The precise definition of convergence failure will be stated in Chapter 2.
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solution for Problem (SDP) when the Burer-Monteiro factorization algorithm is applied. In
particular, when we add just one extra constraint to the trust-region subproblem given in
[Bandeira, Boumal, and Voroninski 2020, Section 5.2], we can generate a list consisting of
many ’bad’ cost matrices for which the Burer-Monteiro factorization cannot find the global
minimizer of Problem (SDP). This latter fact can easily be confirmed by the main result of
[Waldspurger and Waters 2019], which stated that when p(p+1)

2
+ r0p < m (where p is again the

column dimension of V , m denotes the number of constraints, and r0 = rank(Xopt)), there exists
a set of cost matrices for which solving Problem (Factorized SDP) results in a local optimum
that is not a global minimum. In particular, in Chapter 4 we will commit to the choice p = 1,
m = 2 and r0 = 1 for which the assumption of [Waldspurger and Waters 2019, Theorem 2]
is indeed satisfied. Therefore, there must exist a set of cost matrices C for which the optimal
solution of Problem (Factorized SDP) does not correspond to the global minimum of Problem
(SDP).

Now, it would be interesting to apply [Waldspurger and Waters 2019, Theorem 2] to appli-
cations given in the latest research of [Bandeira, Boumal, and Voroninski 2020, Section 5.2] to
explore how constructing cost matrices that lead to convergence failure of the Burer-Monteiro
factorization algorithm works in practice. This point leads to the first research goal of this
thesis, namely computing a list of cost matrices C that result in convergence failure for the
Burer-Monteiro factorization algorithm for the trust-region subproblem. Here, ’convergence
failure’ refers to two distinct possible cases, which are results of using iterative solvers to find
the global optimal solution for Problem (Factorized SDP): (1) the case in which the sequence
provided by the iterative solver is non-convergent, and (2) the case in which possible solutions
do converge, but to a V that does not correspond9 to the optimal solution of Problem (SDP)).
This means that when p(p+1)

2
+ pr0 ≤ m, there exists a list of bad C’s for which the Burer-

Monteiro factorization gives either a wrong solution or no solution at all. In the former case,
there exists a unique global minimizer for Problem (SDP), but the corresponding V is not a
global optimum for Problem (Factorized SDP).

Thesis outline and research goals

Now, the point that [Waldspurger and Waters 2019, Theorem 2] has given us the guarantee of
existence of a set of cost matrices for which the Burer-Monteiro factorization algorithm does
not work, we will use this as the motivation for the research goal of this current thesis. The
reader will be provided two examples of the trust-region subproblem of [Bandeira, Boumal,
and Voroninski 2020, Section 5.2] where we will compute a list of cost matrices that will lead
to convergence failure of the Burer-Monteiro factorization algorithm, which corresponds to the
following research goal:

Compute a list of cost matrices C that result in convergence failure for the
Burer-Monteiro factorization algorithm for some modified version of the

trust-region subproblem as given in [Bandeira, Boumal, and Voroninski 2020,
Section 5.2].

In order to make all of this possible, Chapter 2 will look at the preliminaries that are needed
to understand when a specific point is locally or globally optimal and what it means to be a

9Applying X = V V >.
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unique global optimum. Using those preliminaries, in Chapter 3 a step-by-step approach is
constructed for generating C’s for which applying the Burer-Monteiro factorization algorithm
does not result in a global minimum Xopt, which we in turn will use for the two examples of
convergence failure in Chapter 4.

As the author of this report, this pair of goals allowed me to apply new-learned theoretical
knowledge to practical applications. Also, the amount of scientific articles that was needed
to provide a solid background for generating the examples in this thesis, resulted in the fact
that now I am not only able to read elementary scientific mathematics articles, but also I can
extract the essence and most important content of these articles.

It is worth mentioning that the research goal of this thesis has been inspired by the work
of [Celis 1984], which considered examples of convergence failure for iterative algorithms on
equality constrained optimization problems.
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Chapter 2

Preliminaries

2.1 Definitions
Definition 1. A semidefinite program (SDP) is a linear optimization program of the following
form:

minimize 〈C,X〉
such that A(X) = b,

X � 0

(SDP)

where we optimize over X ∈ Sn×n and 〈C,X〉 = Tr(C>X), as the latter denotes the trace of the
n×n-matrix C>X. Here, Sn×n refers to the space of symmetric n×n matrices, A : Sn×n → Rm

is a fixed linear map, b ∈ Rm is fixed, and C ∈ Sn×n is called the cost matrix. Also, here 〈C,X〉
denotes the objective function.

Remark. Since C is a symmetric matrix, it follows that C> = C, and we will therefore omit
the transpose symbol when using the Burer-Monteiro relaxation for notational convenience.
For example, when in Chapter 4 we compute the objective function 〈C,X〉 = Tr(CX), we will
write the latter instead of Tr(C>X).

Definition 2. The set of feasible points C of an SDP (also referred to as the searching space
of an SDP) is given by C = {X ∈ Sn×n : A(X) = b,X � 0}.

As motivated in the introduction in Chapter 1, when one assumes that Problem (SDP)
allows an optimal solution Xopt with rank r, and fixes some p ≥ r, it is equivalent to its rank p
Burer-Monteiro factorization.

Definition 3. A Burer-Monteiro factorization of an SDP, also referred to as the factorized
problem, is a linear optimizationn program of the following form:

minimize 〈C, V V >〉
such that A(V V >) = b,

(Factorized SDP)

where we optimize over V ∈ Rn×p, and where p is called factorization rank. Here, V > denotes
the transpose of V , A : Sn×n → Rm is a fixed linear map, b ∈ Rm is fixed, and C ∈ Sn×n. Also,
〈C, V V >〉 = 〈CV, V 〉 = Tr(CV V >).
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Definition 4. The set of feasible points Mp of a Burer-Monteiro factorization (also referred
to as the searching space of an Burer-Monteiro factorization) is given by Mp = {V ∈ Rn×p :
A(V V >) = b}.

We note that when the factorization rank p is clear from the context, we will often write
M instead ofMp.

Definition 5. Let N be a Riemannian manifold, and f : N → R a smooth function. For any
x ∈ N , let ∇f(x) denote the gradient of f at x. We say that x is a first-order critical point of
f iff ∇f(x) = 0.

Next, we will provide the definition of a second-order critical point. This refers to local as
well as global optimal points.

Definition 6. Let N be a Riemannian manifold, and f : N → R a smooth function. For any
x ∈ N , let Hess f(x) denote the Hessian of f at x. We say that x is a optimal second-order
critical point of f iff both ∇f(x) = 0 and Hess f(x) � 0.

One can distinguish optimal and non-optimal points of a minimization problem by the fact
that a feasible second-order critical point X is non-optimal when there exists another feasible
second-order critical point X1 that leads to a lower output of the objective function. From
this, it follows that a point X is a global optimum, when no such X1 exists. Knowing this, the
following definition can be formulated.

Definition 7. A cost matrix C is called bad iff both∇〈CX〉 = ∇〈CV, V 〉) = 0 and Hess〈CX〉 �
0, and Hess〈CV, V 〉 � 0, where X is the global optimum of the SDP, while V is a non-optimal
second-order critical point for the factorized problem, satisfying X = V V >.

It follows that when a cost matrix is bad, applying the Burer-Monteiro factorization algo-
rithm will lead to convergence failure. Namely, when one solves the factorized problem of a
particular SDP, iterative algorithms such as Riemannian optimization will lead to the optimal
solution Vopt of this particular Burer-Monteiro factorization. The caveat here is that the V0
that corresponds to the optimal solution of the SDP (hence X = V0V

>
0 ) is non-optimal for the

factorized problem and hence V0 6= Vopt. Informally, this means that Riemannian optimization
algorithms cannot “find” the V0 that corresponds to the global minimum of the SDP.

Definition 8. We say that convergence failure for the Burer-Monteiro factorization is the
case when (1) the sequence provided by the iterative solver is non-convergent, or (2) possible
solutions do converge, but to an X for which the corresponding V is not an optimal solution
of the Burer-Monteiro factorization.

Here, iterative solvers refers to the iterative algorithms that are used to solve a Burer-
Monteiro factorization. Often these are classes of Riemannian optimization algorithms (which
are interior point solvers). Moreover, Burer and Monteiro proposed in [Burer and Monteiro
2003] to use methods such as Augmented Lagrangian and Dual Ascent. Since convergence
failure is guaranteed when the global optimum of and SPD does not correspond to the global
optimum of its factorized problem, it is not needed to use such advanced iterative algorithms
to construct cost matrices that lead to convergence failure. Also, it can be helpful to know
that a Burer-Monteiro factorization is slightly different than the Burer-Monteiro factorization
algorithm. Namely, the Burer-Monteiro factorization algorithm proposes to factorize an SDP
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into a Burer-Monteiro factorization, after which a specific iterative optimization algorithm is
used to find a Vopt that is guaranteed to correspond to the optimal solution Xopt of the SDP
when p &

√
2m.

The next definition is important for stating that the minimizer Xopt of an SDP is unique,
as we will see from Proposition 2.

Definition 9. We say that a solution Xopt of Problem (SDP) satisfies strict complementary
slackness at Xopt if and only if for all ε > 0 there exists a neighbourhood Bε(C) around C, such
that for all Ĉ ∈ Bε(C) it holds that Xopt is also a solution of Problem (SDP) with the objective
function 〈Ĉ,X〉.

2.2 Basic properties
Proposition 1. A matrix X ∈ C is a solution of Problem (SDP) if and only if it is a second-
order critical point.

Corollary 1. A matrix V is not a solution of Problem (Factorized SDP) if it is a non-optimal
second-order critical point.

Proposition 2. A matrix X ∈ C is a unique solution of Problem (SDP) if and only if it is both
a globally optimal second-order critical point and strict complementary slackness holds at X.

We omit the proofs of the above two propositions here, since these can be found in [Wald-
spurger and Waters 2019, Appendix A.1] and [Waldspurger and Waters 2019, Appendix A.2],
respectively.

Now, the following theorem is important for the upcoming examples of convergence failure,
since it gives a guarantee of existence of bad C’s. This can be rather helpful when deliberately
searching for these kind of cost matrices, as we will do in examples 1 and 2 of Chapter 4.

Theorem 1. Let r0 ∈ N∗ be fixed. Let p ≥ r0 be such that p(p+1)
2

+ pr0 ≤ m. If the following
assumptions are satisfied, then there exists a neighbourhood of bad cost matrices C such that
Problem (SDP) has a unique global minimizer of rank r0 and Problem (Factorized SDP) has a
non-optimal second-order critical point:

1. C has at least one extreme point Xopt with rank r0;

2. (A, b) is p-regular;

3. There exists V ∈Mp such thatMp is Xopt-minimally secant at V .

This theorem is the main result of [Waldspurger and Waters 2019], which is proved in
Section 5 of that same paper. Here, r0 ∈ N∗ refers to the fact that r0 is the rank of the
optimal solution Xopt. Since the three assumptions above are always satisfied for any version of
the trust-region subproblem, and for simplicity, we will assume that they are satisfied for the
trust-region subproblems of Example 1 and Example 2.
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Chapter 3

Step-by-step approach for constructing C

In this section, we will give a general outline of how to construct C’s that lead to convergence
failure of the Burer-Monteiro approach and will therefore not lead to a global minimum of the
corresponding semidefinite program. To do this, we use the proof given in [Waldspurger and
Waters 2019, Section 5] which illuminates how to construct such a bad C. In particular, the
proof not only gives the reader an idea of how to construct such a bad cost matrix C, it also
used classical geometrical arguments such as the implicit function theorem to show that there
exists an open neighbourhood around a bad C in which all cost matrices are bad. This means
that when we have found one bad C, we can apply small perturbations in order to come up
with more such matrices. This latter result is important for generating the bad cost matrices
in examples 1 and 2 of Chapter 4.

Now, consider the case in which you are dealing with a difficult optimization problem
which can be relaxed to an SDP and its corresponding Burer-Monteiro factorization. Step 1 of
constructing a bad C is reassuring the existence of a set of bad cost matrices, using Theorem
1:

Step 1 Check whether the SDP at hand satisfies p(p+1)
2

+ pr0 ≤ m.

Here, p denotes the factorization rank, m is the number of constraints and r0 is the rank of
the optimal solution of the SDP.

Step 2 Fix a feasible X0 ∈ C that has rank r0 and fix a V0 ∈Mp.

To be clear, by Definition 2, we can choose an arbitrary matrix X0 that satisfies the con-
straints of the SDP. Also, note that we are not fixing an arbitrary V0, since obtaining V0 will
follow as a consequence of fixing X0 by the fact that X0 = V0V

>
0 .

After this, the next step reads:

Step 3 Construct C such that X0 and V0 are both second-order critical points for the SDP
and its factorized problem, respectively (according to Definition 6).

By Definition 6, Step 3 equals finding a C for which ∇Tr(C,X0) = 0, ∇Tr(C, V0V
>
0 ) = 0

and HessTr(C,X0) � 0, and HessTr(CV0, V0) � 0.

Step 4 Apply small perturbations to C in order to find other cost matrices that satisfy the
conditions given in Step 3.

11
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This step is substantiated by [pp. 15 Waldspurger and Waters 2019, Lemma 4], namely
that Theorem 1 provides us existence of a set of bad cost matrices, which can be obtained by
slightly changing a bad C. This means that there are cost matrices close to the bad C for which
both X0 and V0 are still second-order critical.

Lastly, we need to make sure that X0 is not just a local optimal point, but is actually the
unique global minimizer of the SDP, that corresponds to a V that is not optimal (hence, a
local minimizer) for the factorized problem. Namely, Step 3 guaranteed that the generated
cost matrix will be such that X0 and V0 are second-order critical, but does not provide any
information about the local or global optima. Therefore, the last step will provide assurance
that X0 is the unique global minimizer for the SDP at hand, but V0 is a non-optimal point for
the corresponding factorized problem.

Step 5 Check if it is indeed the case that there exists no feasible second-order critical X
that lead to a lower output of the objective function of the SDP than the value of the
objective function using X0. Also, produce a feasible second-order critical V that has
lower objective function output than V0.

Now, in the next two chapters, the step-by-step approach we constructed above will be
used as a guideline for finding C’s for which the Burer-Monteiro approach leads to convergence
failure.
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Chapter 4

Convergence failures

In this chapter we will consider a slightly modified version of the trust-region subproblem (TRS)
as given in [Bandeira, Boumal, and Voroninski 2020, Section 5.2]. The goal of this chapter is to
apply Theorem 1 to a specific application, in this case the trust-region subproblem for which
we restrict ourselves to small-dimensional cases, for computational convenience. Namely, for
large-dimensional cases of this optimization problem, the general procedure of constructing bad
C’s will be exactly the same.

Trust-region subproblem SDP
The trust-region subproblem, as given in [Bandeira, Boumal, and Voroninski 2020, Section 5.2],
consists in approximately solving a problem of the form:

minimize x>Ax+ 2b>x+ c

such that ||x||2 = 1
(TRS)

where we optimize over the variable x ∈ Rn, which is a vector with n ≥ 3, and where (A, b, c) ∈
Rn×n × Rn × R are fixed. In order to rewrite Problem (TRS) to the form of Problem (SDP),
we will introduce

X =

(
x
1

)(
x> 1

)
=

(
xx> x
x> 1

)
, and C =

(
A b
b> c

)
. (4.1)

Since C is linear in X, we can formulate the following SDP relaxation:

minimize 〈C,X〉
such that Trace(X1:n,1:n) = 1, Xn+1,n+1

X � 0.

(TRS-SDP)

Here, again, we minimize over X ∈ S(n+1)×(n+1) and X1:n,1:n denotes the first n× n block of X
in the obvious way.

The Burer-Monteiro factorization to this problem reads:

minimize 〈CV, V 〉
such that ||V1||2 = 1, ||v2||2 = 1

with V =

(
V1
v>2

) (TRS-BM)

13
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where V1 ∈ Rn×p and v2 ∈ Rp with factorization rank p, and hence V ∈ Rn+1.
In order to come up with convergence failures for the Burer-Monteiro approach to solve

Problem (TRS) in the upcoming examples, we will show how to deliberately construct (A, b, c)
for Problem (TRS) such that this results in a ’bad’ C for Problem (TRS-SDP).

As mentioned in the introduction of the current chapter, we will restrict ourselves to a
small-dimensional case of Problem (TRS). In particular, this restriction allows us to present
the application of the step-by-step approach constructed in Chapter 3 in a clear way, without
having to work with a vast amount of variables. Therefore, we will now consider the trust-region
subproblem and its corresponding SDP and Burer-Monteiro factorization for which n = 3,
m = 2, p = 1 and r0 = 1.

Trust-region subproblem where n = 3, m = 2, p = 1 and r0 = 1

Now, we have finally reached the point at which we can apply the content provided in the
former two chapters. First, we will apply Step 1 of the approach described in Chapter 2. After
that, two concrete examples will be considered for which we fix an X and its corresponding V
and compute a list of bad C’s, for which steps 2, 3 and 4 of the step-by-step approach are used.

Step 1 We need to make sure that the problem we will use to computing bad cost matrices
satisfies p(p+1)

2
+ pr0 ≤ m. This is exactly why for the trust-region subproblem that will

be used in the upcoming two examples we set the variables n = 3, m = 2, p = 1 and
r0 = 1.

Also, since m = 2 refers to the choice to set the number of constraints of the SDP to two,
one needs to have two constraints for Problem (TRS). In the upcoming two examples,
we will do this by setting the last coefficient of x to 0 and 1/2, respectively.

Now, the above choice of variables leads to the following problem description:

minimize x>Ax+ 2b>x+ c

such that ||x||2 = 1,

g(x) = k

where g : R3 → R represents a second constraint to satisfy m = 2.
Note that we need to compute the gradient and Hessian of the objective function of Prob-

lem (TRS-SDP) and Problem (TRS-BM) later on, specifically for Step 3 of our step-by-step
approach1. Also, it is important to mention here that the gradient and Hessian can only be
calculated when we consider x in terms of its variable coefficients. Therefore it is now conve-
nient to express x, A, b and c into variables in order to compute the objective functions of its
SDP and Burer-Monteiro factorization, from one can easily obtain the gradient and Hessian.

Following this line of thought, since n = 3, we can denote

x =

x1x2
x3

 ∈ R3, A =

a11 a12 a13
a12 a22 a23
a13 a23 a33

 ∈ R3×3, and b =

b1b2
b3

 ∈ R3,

1See Chapter 2.
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for computational use. It should be pointed out that A is symmetric, since we want the cost
matrix C occurring in Problem (TRS-SDP) to be symmetric2. Following the construction of
X described in (4.1), together with the Burer-Monteiro factorization X = V V > leads to

X =

(
xx> x
x> 1

)
=


x21 x1x2 x1x3 x1
x2x1 x22 x2x3 x2
x3x1 x3x2 x23 x3
x1 x2 x3 1

 =


v1
v2
v3
v4

(v1 v2 v3 v4
)
= V V >, (4.2)

and C =

(
A b
b> c

)
=


a11 a12 a13 b1
a12 a22 a23 b2
a13 a23 a33 b3
b1 b2 b3 c

 (4.3)

where we can see from Problem (TRS-BM) that V1 =
(
v1 v2 v3

)> ∈ R3 and v2 = v4 ∈ R.
Next, we compute the objective functions of Problem (TRS-SDP) and Problem (TRS-BM),

which are given by

〈C,X〉 = Trace(C>X)

= a11x
2
1 + 2a12x1x2 + 2a13x1x3 + a22x

2
2 + 2a23x2x3

+ a33x
2
3 + 2b1x1 + 2b2x2 + 2b3x3 + c

〈CV, V 〉 = Trace(C>V V >)
= a11v

2
1 + 2a12v1v2 + 2a13v1v3 − 2a11v1v4

+ a22v
2
2 + 2a23v2v3 − 2a12v2v4 + a33v

2
3 − 2a13v3v4 + cv24

From here, we can easily work out the gradient and Hessian of 〈C,X〉, denoted by ∇〈C,X〉
and Hess〈C,X〉, respectively.

∇〈C,X〉 = 2

a11x1 + a12x2 + a13x3 + b1
a12x1 + a22x2 + a23x3 + b2
a13x1 + a23x2 + a33x3 + b3

 (4.4)

Hess〈C,X〉 = 2

a11 a12 a13
a12 a22 a23
a13 a23 a33

 = 2A (4.5)

Also, from the objective function 〈CV, V 〉 the gradient and Hessian can be computed, which
results in

∇〈CV, V 〉 = 2


a11v1 + a12v2 + a13v3 − a11v4
a12v1 + a22v2 + a23v3 − a12v4
a13v1 + a23v2 + a33v3 − a13v4
−a11v1 − a12v2 − a13v3 + cv4

 (4.6)

Hess〈CV, V 〉 = 2


a11 a12 a13 −a11
a12 a22 a23 −a12
a13 a23 a33 −a13
−a11 −a12 −a13 −c

 (4.7)

2Namely, by the definition of an SDP (Definition 1) C has to be symmetric.
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Now we have computed the necessary formulas for applying Step 3, we can look at specific
examples. In the upcoming examples, we will look for the notorious bad C’s. By Definition
7, these C’s result in the fact that both 〈C,X〉 and 〈CV, V 〉 satisfy second-order optimality
conditions, and Problem (TRS-SDP) has X as its global minimizer, while the corresponding V
is a non-optimal point of Problem (TRS-BM).

Example 1. n = 3, m = 2, p = 1, r0 = 1. Find (A, b, c) ∈ R3×3 × R3 × R, for a chosen
x ∈ R3, as in Problem (TRS-EX1) below, such that the Burer-Monteiro approach does not lead
to a global optimum.

minimize x>Ax+ 2b>x+ c

such that ||x||2 = 1,

x3 = 0,

(TRS-EX1)

where we minimize over x ∈ R3.
By the above information, it is not difficult to see that the corresponding SDP-relaxation

and Burer-Monteiro factorization of the above problem are equivalent to Problem (TRS-SDP)
and Problem (TRS-BM), respectively, where we add the extra constraint x3 = 0.

Step 1 As we explained in the subsection above, the inequality p(p+1)
2

+ pr0 ≤ m is indeed
satisfied when we choose p = 1, m = 2 and r0 = 1.

Step 2 We will fix a feasible X0 ∈ C that has rank r0 = 1 by first fixing x ∈ R3. For this
example, we will choose x =

(
x1 x2 x3

)>
=
(
1 0 0

)>.
This x is indeed feasible and will lead to

X0 =

(
xx> x
x> 1

)
=


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 =


1
0
0
1

(1 0 0 1
)>

= V0V
>
0 (4.8)

as proposed in (4.1). We confirm that indeed rank(X0) = 1 = r0 and X0 is positive
semidefinite since its eigenvalues are λ = 0 (multiplicity 3) and λ = 2. For this choice of
V0, the constraints given in Problem (TRS-BM) are trivially satisfied. Hence, both X0

and V0 are feasible for Problem (TRS-SDP) and Problem (TRS-BM), respectively.

Step 3 According to Step 3 (again, we refer to the method proposed in Chapter 2) we now need
to construct C such that the SDP of Problem (TRS-EX1) has X0 and V0 are second-order
critical points.
First, it is necessary for X0 and V0 to satisfy the first-order optimality conditions, as
defined in Definition 5.3 Therefore, one needs to make sure that both ∇〈C,X0〉 =

∇〈CV0, V0〉 = 0. This can be done by simply substituting x =
(
1 0 0

)> and V0 =(
1 0 0 1

)> into (4.4) and (4.6), respectively. Now, one obtains

∇〈C,X0〉 = 2

a11 + b1
a12 + b2
a13 + b3

 , and ∇〈CV0, V0〉 = 2


0
0
0

−a11 + c

 . (4.9)

3The reasoning behind this can be found in the description below Step 3 in Chapter 2.
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To automatically satisfy these first-order optimality conditions, the suggested choice of
variables for b and c in (4.3) is as follows:

b1 = −a11
b2 = −a12 and c = a11. (4.10)
b3 = −a13

Namely, if we incorporate these equalities into our construction of C, it implies that for
all C’s we construct, X0 and V0 will satisfy first-order optimality conditions.

In particular, we now know that C has to be of the following form (by substituting the
equations given in (4.10) into (4.3)):

C =


a11 a12 a13 −a11
a12 a22 a23 −2a12
a13 a23 a33 −2a13
−a11 −2a12 −2a13 a11

 . (4.11)

Now, still following Step 3 of our step-by-step approach, the bad C also has to sat-
isfy other assumptions regarding second-order optimality conditions. Therefore, it is
required (as explained in the text below Step 3 in Chapter 2) that Hess〈C,X0〉 � 0 and
Hess〈CV0, V0〉 � 0.

Besides that, from equations (4.5) and (4.7) we observe that both Hess〈C,X0〉 and
Hess〈CV0, V0〉 depend only on values of A. Hence, no substitution of coefficients of X0

and V0 is needed here. Instead, in order to come up with concrete matrices for C, we
will now directly search for cost matrices that are of the form of (4.11) and for which
Hess〈C,X0〉 � 0 and Hess〈CV0, V0〉 � 0. This brings us to the last step – Step 4.

Step 4 It is not difficult to find numerous C’s for which both of these constraints are satisfied.
Below we provide a list of candidates of bad C’s, together with the corresponding values
of the determinants of Hess〈C,X〉 and Hess〈CV, V 〉. In Appendix A the reader can find
a detailed explanation of how Excel was programmed and used to deliberately search for
the cost matrices listed below.
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C0 =


−0, 07723033 −2 −4 0, 07723033

−2 −1 2 2
−4 2 2 4

0, 07723033 2 4 −0, 07723033

 ,

C1 =


−0, 07723033 −2, 5 −4 0, 07723033
−2, 5 −1 2 2, 5
−4 2 2 4

0, 07723033 2, 5 4 −0, 07723033

 ,

C2 =


−0, 07723033 −2, 5 −4 0, 07723033
−2, 5 −1, 5 2 2, 5
−4 2 2 4

0, 07723033 2, 5 4 −0, 07723033

 ,

C3 =


−0, 07723033 −2, 5 −4 0, 07723033
−2, 5 −1, 5 2, 5 2, 5
−4 2, 5 2 4

0, 07723033 2, 5 4 −0, 07723033

 ,

C4 =


−0, 07723033 −2, 5 −4 0, 07723033
−2, 5 −1, 5 2, 5 2, 5
−4 2, 5 1, 5 4

0, 07723033 2, 5 4 −0, 07723033

 ,

C5 =


−0, 07723033 −2, 5 −4 0, 07723033
−2, 5 −1, 5 2, 5 2, 5
−4 2, 5 1 4

0, 07723033 2, 5 4 −0, 07723033

 ,

C6 =


−0, 07723033 −2, 5 −3 0, 07723033
−2, 5 −1, 5 2, 5 2, 5
−3 2, 5 1 3

0, 07723033 2, 5 3 −0, 07723033

 ,

where the values for the determinants of the Hessians correspond to the following:

det(Hess〈C0, X0〉) = 232, 707056, det(Hess〈C0V0, V0〉) = 100, 000011;

det(Hess〈C1, X0〉) = 351, 707056, det(Hess〈C1V0, V0〉) = 108, 649808;

det(Hess〈C2, X0〉) = 416, 324898, det(Hess〈C2V0, V0〉) = 128, 611637;

det(Hess〈C3, X0〉) = 497, 715044, det(Hess〈C3V0, V0〉) = 153, 754788;

det(Hess〈C4, X0〉) = 522, 251662, det(Hess〈C4V0, V0〉) = 161, 334673;

det(Hess〈C5, X0〉) = 546, 78828, det(Hess〈C5V0, V0〉) = 168, 914557;

det(Hess〈C6, X0〉) = 362, 78828, det(Hess〈C6V0, V0〉) = 112, 073034.

As we stated before, both ∇〈Ci, X0〉 = 0 and det(Hess〈Ci, X0〉) ≥ 0 (where the latter
guarantees that Hess〈Ci, X0〉 is positive semidefinite) from which it follows that X0 is a
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minimum. Still, it is too soon to conclude whether this is locally or globally, which will
be determined in Step 5.

Also, notice that the above list of C’s can be extended by slightly increasing or decreasing
the values of the entries, for which both det

(
Hess〈Ĉ,X0〉

)
and det

(
Hess〈ĈV0, V0〉

)
will

still be positive, and where Ĉ is the cost matrix with (slightly) perturbed entries.

Step 5 We will end this example by proposing how to determine which of the above cost
matrices indeed lead to convergence failure of the Burer-Monteiro factorization algorithm.
The latter is the case when X0 is the unique global maximum of the SDP for all the
computed cost matrices, and V0 =

(
1 0 0 1

)> is a local minimizer (hence, not the
global minimizer) of the factorized problem.

First, we will show that X0 is the unique global-optimal second-order critical point of the
SDP of Problem (TRS-EX1). For this, consider the set of feasible X’s

C =

X =


x21 x1x2 x1x3 x1
x1x2 x22 x2x3 x2
x1x3 x2x3 x23 x3
x1 x2 x3 1

 ∈ R4×4 : Tr(X1:3,1:3) = 1, Xn+1,n+1 = 1, x3 = 0

 ,

where the constraint X � 0 can be omitted, since any matrix X this form, always has
determinant 0, and is therefore positive semidefinite. We can further simplify notation
by defining

C =

X =


x21 x1x2 0 x1
x1x2 x22 0 x2
0 0 0 0
x1 x2 0 1

 ∈ R4×4 : x21 + x22 = 1

 .

From here, we consider the set

Ccrit = {X ∈ C : ∇〈C,X〉 = 0, Hess〈C,X〉 � 0},

which are all critical feasible matrices of the SDP.

By construction of the potentially bad cost matrices above, Hess〈C,X〉 � 0 will always
be satisfied, since this constraint does not depend on the choice of X, which we recall
from (4.5). Now, considering (4.4), we have that

∇〈C,X〉 = 0 ⇒


a11x1 + a12x2 + b1 = 0
a12x1 + a22x2 + b2 = 0
a13x1 + a23x2 + b3 = 0

 . (4.12)

From Figure 4.1 below (where the horizontal axis represents x1 and the vertical axis x2)
it can be read off that X0 (with x1 = 1, x2 = 0) is actually the only element of Ccrit
and is therefore the solution of the SDP of the trust-region subproblem considered in this
example. By Figure 4.1, as well as it follows from complementary slackness (Proposition
2), we conclude that X0 is the unique solution.
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Figure 4.1: Graph of the constraints given in (4.14).

Lastly, we need to show that the corresponding V0 is a non-optimal second-order critical
point of the factorized problem of (TRS-EX1). We will do this by showing that there
exists a feasible second-order critical V1 such that 〈CV1, V1〉 < 〈CV0, V0〉, from which it
follows that V0 cannot be the global minimum.

In order to find such a second-order critical V1 that is feasible and satisfies 〈CV1, V1〉 <
〈CV0, V0〉, we will first determine the setMcrit of all V ∈M such that V is second-order
critical. Here, C is any of the cost matrices computed above.

For this particular problem all feasible matrices V ’s are represented by the set

M = {V =
(
v1 v2 v3 v4

)> ∈ R4 :
∥∥∥(v1 v2 v3

)>∥∥∥ = 1, ‖v4‖ = 1},

which is equivalent to

M = {V =
(
v1 v2 ±

√
1− v21 − v22 1

)> ∈ R4 : |v1|, |v2| ≤ 1}. (4.13)

Here, we used the fact that
∥∥∥(v1 v2 v3

)>∥∥∥ = 1 implies v21 + v22 + v23 = 1, and hence

v3 = ±
√
1− v21 − v22, where both |v1| and |v2| have to be smaller than or equal to 1. Also,

we used that ‖v4‖ = 1 yields v4 = 1.

From here, we now look at the setMcrit of all feasible V ’s that are second-order critical:

Mcrit := {V ∈Mp : ∇〈CV, V 〉 = 0, Hess〈CV, V 〉 � 0}.

From (4.6) we know that

∇〈CV, V 〉 = 0 ⇒


a11v1 + a12v2 ± a13

√
1− v21 − v22 − a11 = 0

a12v1 + a22v2 ± a23
√

1− v21 − v22 − a12 = 0

a13v1 + a23v2 ± a33
√

1− v21 − v22 − a13 = 0

−a11v1 − a12v2 ± a13
√

1− v21 − v22 + c = 0

 . (4.14)
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These equalities can be simplified (by Gaussian elimination) to the equality

v21 + v22 +

(
(a12 + a13)v1 + (a22 + a23)v2 − a11 − a12 − a13 + c

a23 + a33

)2

− 1 = 0. (4.15)

Besides this, the condition Hess〈CV, V 〉 � 0 is invariant under changing X, regardless
of the choice of V . Namely, this expression is fully dependent on the entries of C, as
can be seen from (4.7). Since all candidates for a bad cost matrix satisfy this constraint
by construction, all V1 ∈ M that satisfy (4.15) equal the set Mcrit (with C = Ci for
i = 0, . . . , 6), and are therefore second-order critical points.

Now, as an example we will show that V0 is a non-optimal point of the factorized problem
by considering cost matrix C = C0. Recalling that this particular cost matrix is given as

C0 =


−0, 07723033 −2 −4 0, 07723033

−2 −1 2 2
−4 2 2 4

0, 07723033 2 4 −0, 07723033

 ,

we compare its entries with (4.3) and substitute these into (4.15), which results in the
equality

v21 + v22 +

(
−6v1 + v2 + 6

4

)2

− 1 = 0.

This is equivalent to solving

10v21 + 1
1

4
v22 − 18v1 + 3v2 − 3v1v2 + 8 = 0, (4.16)

which represents an ellipsoid (minus all points for which |v1|, |v2| > 1 as known from
(4.13)), and give us all V ∈Mcrit when considering C0 as the cost matrix of the factorized
problem. See Figure 4.2 below, where the horizontal axis represents values of v1, and the
vertical axis values of v2.

Considering this figure, one can see that indeed V0 (for which v1 = 1 and v2=0) is inMcrit

as expected, since its entries satisfy (4.16).

To show that there exists V ∈ Mcrit such that 〈C0V, V 〉 < 〈C0V0, V0〉, we could take
v1 = 0, 966 and v2 = −0, 2572, which (approximately4) satisfies (4.16) and is therefore on
the ellipsoid of Figure 4.2, which yields

V1 =


0, 966
−0, 2572

0
1

 ∈Mcrit.

We observe that indeed |v1|, |v2| ≤ 1 as (4.13) requires, and that this choice of v1 and v2
satisfies (4.14) with coefficients of C0, considering (4.3).

4Here, we keep in mind the work of [Bhojanapalli et al. 2018; Pumir, Jelassi, and Boumal 2018; Cifuentes
and Moitra 2019] that showed that points which approximately satisfy necessary optimality conditions are
approximately optimal.
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Figure 4.2: Graph of (4.16) (red), |v1| ≤ 1 (blue), |v2| ≤ 1 (green).

This choice of V results in 〈C0V1, V1〉 ≈ −0, 1012. Fortunately to us, this is indeed strictly
smaller than 〈C0V0, V0〉 = 0. This confirms that V0 is non-optimal second-order critical
point of the factorized problem. In the same way, we could show that this is also the
case for the other C’s we computed above, i.e. V0 is a non-optimal second-order critical
point for Ci, where i = 0, . . . , 6. Together with the fact that X0 is the unique solution
to the SDP of Problem (TRS-EX1), we recall Definition 7 to conclude that the Ci’s we
computed in this example are indeed cost matrices that lead to convergence failure of the
Burer-Monteiro factorization algorithm.

Example 2. n = 3, m = 2, p = 1, r0 = 1. Find (A, b, c) ∈ R3×3 × R3 × R, for a chosen
x ∈ R3, as in Problem (TRS-EX1) below, such that the Burer-Monteiro approach does not lead
to a global optimum.

minimize x>Ax+ 2b>x+ c

such that ||x||2 = 1,

x3 =
1

2
,

(TRS-EX2)

where we minimize over x ∈ R3.
By going over Example 1, we assume that the reader is already familiar with applying the

procedure described in Chapter 2, and therefore in this example a less detailed explanation is
provided when following our step-by-step approach of constructing bad C’s.

Also, we note that it is not difficult to see that the corresponding SDP-relaxation and
Burer-Monteiro factorization of the above problem are equivalent to Problem (TRS-SDP) and
Problem (TRS-BM), respectively, where we add the extra constraint x3 = 1

2
.

Step 1 For this step, we need to make sure that the inequality p(p+1)
2

+ pr0 ≤ m is indeed
satisfied. Note that (TRS-EX2) is almost identical to (TRS-EX1), but now the constraint
on x3 has changed a more realistic one, namely x3 = 1

2
. Hence, the choice of variables

n, m, p and r0 is the same as in Example 1, and we confirm that the inequality above is
indeed satisfied.
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Step 2 Now, we fix a feasible x ∈ R3, such that the constraint x3 = 1
2
is satisfied, and

such that the corresponding X0 has rank(X0) = 1. In this example we will choose
x =

(
x1 x2 x3

)>
=
(
1
2

√
2 1

2
1
2

)>. Using (4.2), we obtain

X0 =


1
2

1
4

√
2 1

4

√
2 1

2

√
2

1
4

√
2 1

4
1
4

1
2

1
4

√
2 1

4
1
4

1
2

1
2

√
2 1

2
1
2

1

 and V0 =


1
2

√
2

1
2
1
2

1

 .

The reader can verify that indeed r0 = rank(X0) = 1. Also, X0 meets the positive
semidefinite constraint of the SDP-form of (TRS-EX2), since its eigenvalues are λ = 0
and λ = 2.

Step 3 In this step we again first look for which coefficients of C the points X0 and V0 satisfy
first-order optimality conditions. Therefore, one needs to make sure that both∇〈C,X0〉 =
∇〈CV0, V0〉 = 0. To obtain these properties, we substitute x =

(
1
2

√
2 1

2
1
2

)> into (4.4)
and (4.6), respectively, which yields

∇〈C,X0〉 =

 a11
√
2 + a12 + a13 + 2b1

2a12
√
2 + a22 + a23 + 2b2

a13
√
2 + a23 + a33 + 2b3

 , (4.17)

∇〈CV0, V0〉 =


(
√
2− 2)a11 + a12 + a13

(
√
2− 2)a12 + a22 + a23

(
√
2− 2)a13 + a23 + a33

−a11
√
2− a12 − a13 + 2c

 . (4.18)

When we set both of these gradients equal to 0, we obtain the following suggestion for
variables for C as in (4.3):

∇〈C,X0〉 = 0 =⇒


b1 = −1

2
a11
√
2− 1

2
(a12 + a13)

b2 = −1
2
a12
√
2− 1

2
a22 − 1

2
a23

b3 = −1
2
a13
√
2− 1

2
a23 − 1

2
a33

 , (4.19)

∇〈CV0, V0〉 = 0 =⇒


a11 =

2a12+2a13

1−
√
2

2

a22 =
2a12+2a13
4−2
√
2

a33 = (2−
√
2)a13 − a23

c =
√
2a11+a12+a13

2

 . (4.20)

In particular, we now know that every bad C has to be of the form such that the above
equalities hold. When curious how exactly these requirements have been incorporated
into C, we refer the reader to Appendix B, in which (by substituting (4.19) and (4.20)
into (4.3)) the generating process of C’s is explained in more detail.

After having satisfied first-order optimality conditions ofX0 and V0, we now look for which
specific C’s it holds that X0 is a second-order critical of Problem (TRS-SDP), keeping
in mind that x3 = 1/2. For that, it is necessary that Hess〈C,X〉 � 0. Simultaneously,
we also want these C’s to result in a second-order critical V0, for which it is needed that
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Hess〈CV, V 〉 � 0. In the next step, we will directly search for cost matrices that meet
both of these requirements, together with satisfying the equalities given in (4.19) and
(4.20).

Step 4 Also, for this example, it is not difficult to find numerous C’s that meet the above
requirements. Below we provide a list of possible bad C’s, together with the corresponding
values of the determinants of Hess〈C,X〉 and Hess〈CV, V 〉. In Appendix B the reader
can find a detailed explanation of how Excel was programmed and used to deliberately
search for the cost matrices listed below.

C0 =


−4205606, 32 −2523587, 15 60000 4205606, 32
−2523587, 15 −1478285, 1 2 2523587, 15

6000 2 35145, 1863 −60000
4205606, 32 2523587, 15 −60000 −4205606, 32

 ,

C1 =


−4196657, 61 −2518345, 11 60000 4196657, 61
−2518345, 11 −1475214, 4 2 2518345, 11

60000 2 35145, 1863 −60000
4196657, 61 2518345, 11 −60000 −4196657, 61

 ,

C2 =


−4192183, 26 −2515724, 1 60000 4192183, 26
−2515724, 1 −1473679, 1 2 2515724, 1

60000 2 35145, 1863 −60000
4192183, 26 2515724, 1 −60000 −4192183, 26

 ,

C3 =


−4187708, 92 −2513103, 1 60000 4187708, 92
−2513103, 09 −1472143, 7 2 2513103, 09

60000 2 35145, 1863 −60000
4187708, 92 2513103, 09 −60000 −4187708, 92

 ,

C4 =


−4188268, 2 −2513430, 71 60000 4188268, 2
−2513430, 7 −1472335, 6 2 2513430, 71

60000 2 35145, 1863 −60000
4188268, 2 2513430, 71 −60000 −4188268, 2

 ,

C5 =


−4187848, 73 −2513184, 99 60000 4187848, 73
−2513184, 99 −1472191, 7 2 2513184, 99

60000 2 35145, 1863 −60000
4187848, 73 2513184, 99 −60000 −4187848, 73

 ,

where the values for the determinants of the Hessians correspond to the following:

det(Hess〈C0, X0〉) = 105, 756441, det(Hess〈C0V0, V0〉) = 1779079823;

det(Hess〈C1, X0〉) = 263, 841906, det(Hess〈C1V0, V0〉) = 4429016552;

det(Hess〈C2, X0〉) = 8, 78557688, det(Hess〈C2V0, V0〉) = 147322993;

det(Hess〈C3, X0〉) = 175, 528473, det(Hess〈C3V0, V0〉) = 2940248607;

det(Hess〈C4, X0〉) = 193, 106491, det(Hess〈C4V0, V0〉) = 3235127099;

det(Hess〈C5, X0〉) = 61, 4369675, det(Hess〈C5V0, V0〉) = 1029154905;
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Step 5 Considering the space of feasible matrices of the SDP of Problem (TRS-EX2), we have
that

C =

X =


x21 x1x2

1
2
x1 x1

x1x2 x22
1
2
x2 x2

1
2
x1

1
2
x2

1
4

1
2

x1 x2
1
2

1

 : x21 + x22 +
1

4
= 1

 ,

from which it follows that the set of all feasible critical points is

Ccrit = {X ∈ C : 〈C,X〉 = 0, Hess〈C,X〉 � 0} .

Now, as an example we pick C = C0 for which Ccrit equals all X ∈ C such that
−4205606, 32x1 − 2523587, 15x2 +

1
2
· 60000 + 4205606, 32 = 0

−2523587, 15x1 − 1475214, 4x2 +
1
2
· 2 + 2518345, 11 = 0

60000x1 + 2x2 +
1
2
· 35145, 1863− 60000 = 0

 (4.21)

are satisfied, which can be seen from comparing the entries of C0 with (4.3) and imple-
menting these into (4.4). From Figure 4.3 (where the horizontal axis denotes values of
x1, and the vertical axis represents values of x2) one can see this is only the case when
x1 ≈ 1

2

√
2, x2 ≈ 1

2
. Therefore we conclude that X0 is the only element of Ccrit and is

therefore the unique global solution of the SDP of Problem (TRS-EX2) with C = C0.
Similarly, the same result can be shown for C = Ci, where i = 1, . . . , 5.

Figure 4.3: Graph of the constraints given in (4.21).

Finally, we will will come up with a V1 ∈ Mcrit (where the latter denotes the set of
V1 ∈ M such that this V1 is second order critical) such that 〈CV1, V1〉 < 〈CV0, V0〉. If
there indeed exists such a V1, it follows that V0 is a non-optimal second-order critical
point.

Now, we can use the result of Step 5 of Example 1 that a feasible V is only second-
order critical for the factorized problem of Problem (TRS-EX2) (using the cost matrices
computed above, for which Hess〈CV, V 〉 � 0 regardless of the choice of V ) if and only if
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(4.15) holds. Comparing (4.3) with C0, we substitute its values into (4.15) which results
in

v21 + v22 +

(
−2463587, 15v1 − 1478283, 1v2 + 2463587, 15

−1478283, 1

)2

− 1 = 0. (4.22)

Figure 4.4: Graph of (4.22)

From Figure 4.4 (where the horizontal axis represents v1 and the vertical axis v2) it can
be seen that V0 =

(√
2/2 1/2 1/2 1

)> is indeed (approximately) an element ofMcrit,
since it is a point on the ellipse of Figure 4.4. Moreover, we can now pick

V1 =


0, 8352
−0, 2265

0, 5
1

 ∈Mcrit,

for which 〈C0V1, V1〉 = −379541, 1 which is indeed strictly smaller than 〈C0V0, V0〉 = 0.
This shows that V0 is a non-optimal second-order critical point for the factorized problem
of Problem (TRS-EX2) when C = C0. Similarly, the same result can be shown for C = Ci,
where i = 1, . . . , 5. From this, it follows that the potential bad cost matrices computed
above indeed lead to convergence failure of the Burer-Monteiro factorization algorithm.
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Chapter 5

Conclusion

Discussion of the results

The main results of this thesis are the examples 1 and 2 given in Chapter 4, in which a list of
potentially bad cost matrices was constructed, followed by an informal proof that showed that
these cost matrices will indeed lead to convergence failure of the Burer-Monteiro factorization
algorithm. Although literature such as [Burer and Monteiro 2003; Journée et al. 2010; Ban-
deira, Boumal, and Voroninski 2016a; Ge, Lee, and Ma 2018] state that the Burer-Monteiro
factorization algorithm works when p = r0, the results of this thesis emphasize that this choice
of factorization rank only works in specific situations. Namely, both examples in Chapter 4
showed convergence failure of the Burer-Monteiro factorization algorithm, despite the fact that
p = r0. In particular, the Burer-Monteiro approach can be certified correct when specific as-
sumptions on the cost matrix C are made. If not, it is not difficult to construct C’s that will
lead to convergence failure of the factorization algorithm, as shown in Example 1 and Example
2.

Also, Step 5 of both examples pointed out that (for the trust-region subproblem) it is
important to take the gradient of the objective function of the SDP and its factorized problem
into account when considering bad cost matrices. Specifically, the size of the set of second-order
critical V mainly depends on this n× p matrix ∇〈CV, V 〉, which has to equal the zero matrix.
After this, second-order optimality is easily satisfied, since it does not depend on neither X nor
V , and therefore for all cost matrices that are computed on the hand of Step 1-3, X and V are
second-order critical if and only if they are first-order critical. Realizing this can drastically
shorten the proof that a potentially bad cost matrix (that satisfies Step 3) indeed leads to
convergence failure.

Lastly, with both examples that were given in Chapter 4 the research goal of generating
a list of C’s for which the Burer-Monteiro factorization algorithm cannot provide the global
solution of the SDP-relaxation of the trust-region subproblem, is satisfied. Theorem 1 (the
main result of [Waldspurger and Waters 2019]) was particularly important for this, so that
we had a guarantee for existence of C’s for which the V0 that corresponded to the optimal
solution of the SDP was non-optimal for the factorized problem. If one had no such guarantee,
finding a V1 that has lower objective function than V0 would be based rather on luck than on a
deliberate search. Besides that, the research goal of the current thesis, together with the results
substantiated a more general statement provided by that same paper [Waldspurger and Waters
2019]: when p .

√
2m Riemannian optimization algorithms cannot be certified correct.
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Essential justification

Coming back to the choice of values for the parameters used in examples 1 and 2 of Chap-
ter 4, the reader could argue that it would be valuable to consider large-scale SDPs, instead
of restricting ourselves to smaller dimensional cases. Moreover, one could justly argue that
the Burer-Monteiro approach is specially designed for large scale semidefinite programs, as
mentioned in Chapter 1. This limitation to small scale cases of SDPs would indeed be inap-
propriate when the research goal of this Bachelor’s thesis would have been something along the
lines: apply the Burer-Monteiro approach to real-life applications. Connecting to this vision, it
is appropriate to note that Chapter 3 mentioned that the step-by-step procedure we constructed
also applies to the large-dimensional semidefinite programs.

On the other hand, the main goal of the current thesis was actually much smaller and more
specific than that: discovering the procedure of how to set up examples for which the Burer-
Monteiro approach does not converge and actually computing cost matrices for which this is the
case. Although the procedure of computing these cost matrices would have been the same when
the dimension of X0 would have been much larger, it would not be doable to compute essential
features for examples 1 and 2 (such as the gradients and Hessians of the objective functions)
by hand, let alone showing global optimality of X0 and non-optimality of V0. While for large
scale semidefinite programs, this would have required a significant amount of programming,
it would not have contributed to the main goal of this thesis, nor the understanding of the
Burer-Monteiro algorithm. Merely, it would add a tremendous amount of equalities for e.g.
equations (4.4) and (4.6) that needed to be satisfied. Along with that, much more time would
have been spended on programming MatLab and Excel, which again does not provide a better
understanding the procedure of producing bad C’s (compared to restricting oneself to only
small scale SDPs).

Further research

In this current Bachelor’s thesis, we generated cost matrices (see Chapter 4 for which the
Burer-Monteiro approach does not work. This “not working” was based on the fact that, for
bad cost matrices, the global optimal solution X of an particular SDP corresponded to a non-
global optimal solution of its Burer-Monteiro factorization, using Proposition 1 and Corollary
1. Using this specific property of bad C’s, we used Theorem 1 as a suggestion how to set up
the examples of convergence failure and to actually generate bad cost matrices. Hence, when
the Burer-Monteiro factorization algorithm would be applied, convergence failure (Definition
8) would be the case.

Following this reasoning, the close reader would note that this way of proving convergence
failure is rather indirect. When one prefers a direct proof, it would have been appropriate to run
the Burer-Monteiro factorization algorithm using some bad cost matrices for the corresponding
trust-region subproblems given in Chapter 4. In particular, as Burer and Monteiro proposed
in their early findings [Burer and Monteiro 2003] one could use two conventional optimiza-
tion algorithms for this (together): Augmented Lagrangian and Dual Ascent (respectively) (as
already noted in Chapter 2).

Since the main goal of this thesis was to compute bad C’s we used the indirect approach
rather than the direct approach to show that these cost matrices are indeed bad, simply because
proving “badness” of cost matrices is much more efficient when using the former (indirect)
approach instead of the latter. Nevertheless, proving convergence failure in the direct way
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would have been a powerful extension of the paper of [Waldspurger and Waters 2019], since it
allows one to step from theory into a more practical setting. Therefore, a useful proceeding of
this current Bachelor’s thesis is to use Augmented Lagrangian and Dual Ascent to show that
when one uses the bad cost matrices we computed, the Burer-Monteiro factorization algorithm
indeed converges to a different Vopt than the V0 that was fixed in examples 1 and 2.

Also, as we saw in examples 1 and 2, it is not difficult to generate lists of bad C’s for
the trust-region subproblem of [Bandeira, Boumal, and Voroninski 2020, Section 5.2]. In this
particular section of Boumal et al. it was stated that for p ≥ 2 and for almost all (A, b, c),
second-order critical points of Problem (TRS-BM) are optimal. Now, since the set-up for the
examples in Chapter 4 will not significantly differ from the case where p = 2 (instead of p = 1),
it would be interesting and worth wile to generate bad C’s for the former choice of p to test
[Bandeira, Boumal, and Voroninski 2020, Theorem 1.4]. Moreover, this test of the main result
of the latter paper would be even better substantiated when we compute not only the lists of
bad cost matrices, but also the volume of the bad cost matrices in the space of feasible cost
matrices. Namely, the in the recent literature the expression “for almost all” has been used quite
often, where the only clarification of this use of language was in [Waldspurger and Waters 2019].
Computing the volume of bad C’s (only if we knew how) in the total space of cost matrices
would be a huge contribution to the rather vague use of language that “the Burer-Monteiro
approach with a certain choice of factorization rank works almost always”.
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Appendix A

Generating bad C’s for Example 1

As promised in Chapter 4, this appendix will explain how Excel was used for generating the cost
matrices of Example 1 for which the Burer-Monteiro approach does not work. Here, the setup
and implementation of constraints (such as (4.10)) will be discussed, together with screenshots
of the Excel spreadsheet itself.

In the above spreadsheet, one can see the program we used for producing the cost matrix C6

as given in Example 1. All red-coloured boxes are fixed values. For example, the red-coloured
matrices on the left side represent x, X0 and V0. Since we fixed all of these matrices, all of
the coefficients themselves are fixed, and therefore we will not change them when searching
for bad cost matrices. Besides that, all yellow-coloured boxes are constraints that need to be
satisfied, such as ∇〈C,X0〉 = 0 and ∇〈CV0, V0〉 = 0 which are the yellow vectors indicated with
Gradient <C,X0> = and Gradient <CV0,V0> =, respectively. Lastly, the green-coloured boxes
are the values we are allowed to manipulate when searching for bad C’s. For this program, we
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are only allowed to change the diagonal and upper-diagonal values of A. Namely, since A must
be symmetric (as C is a symmetric cost matrices according to Definition 1), the lower-diagonal
values have to equal the corresponding upper-diagonal values, and hence these former values
depend on the latter ones. We simply incorporated this by setting E3=F2, E4=G2 and F4=G3, as
can be seen in the screenshot below.

After this, we incorporated equation (4.10) by setting the values of b and c as follows:
J2=-E2, J3=-F2, J4=-G2 and M3=E2. By doing this, b and c now depend on the upper-diagonal
values of A, and hence we will designate the colour red to the former vectors. Besides that, the
gradients ∇〈C,X0〉 and ∇〈CV0, V0〉 will also be implemented in the spreadsheet by setting the
coefficients equal to the corresponding combinations of the values of A, b and c as proposed in
(4.9). Note that by construction (J2=-E2, J3=-F2, J4=-G2, M3=E2) the gradients will always
equal the zero vector, no matter how we change the green boxes (diagonal and upper-diagonal
values of A). The Hessian matrices indicated by Hessian <C,X0> and Hessian <CV0,V0> are
constructed in the same way by considering (4.5) and (4.7). The determinants of these matrices
can be calculated easily by using the MDETERM-command, which is built in by default into Excel.

Now, since C consists of A, b and c as given in (4.3), we will set P2=E2, Q2=F2, R2=G2, S2=J2,
etc. From here, considering the computationally undemanding choice of x this example, the bad
matrices C were found by experimenting with the green boxes of the matrix A, and observing
when the values of Determinant Hessian <C,X0> and Determinant Hessian <CV0,V0> were
positive. In contrast with this, for Example 2 these determinant values were much harder to
realize, as is explained in the next appendix.
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Appendix B

Generating bad C’s for Example 2

This last appendix justifies the generating process of bad cost matrices for Example 2 of Chapter
4. The overall setup corresponds to the one of Example 1 that was described in Appendix A.

Since features such as the gradients given in (4.17) and (4.18), the equations (4.19) and
(4.20) that followed from setting these gradients to 0, and the Hessians as in (4.5) and (4.7)
are implemented in the same way as in Appendix A, we refer the reader to the latter appendix
for explanation about implementation. Again, by construction (i.e. by satisfying the equalities
given in (4.19) and (4.20)) of the matrix A the gradients indicated by Gradient <C,X0> = and
Gradient <CV0,V0> = will always equal the zero vector.

We will now directly turn to the generating process of bad cost matrices. Again, in the
above spreadsheet, we allow ourselves to only change the values of the boxes in green, since all
values in red-coloured boxes depend on these green-box coefficients. Using this, we apply the
Goal Seek-feature of Excel, which can be found under the Data tab in the menu bar (see the
screenshot of the Dutch Excel version below).
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Goal Seek allows us to directly set one of the determinants of the Hessians equal to a desired
positive or negative value by changing one of the upper-diagonal values of A. For example, in
the figure below, we set Determinant Hessian <C0,X0> approximately equal to 100.

By setting the Goal Seek-command up like this, one lets Excel search for a value of
Determinant Hessian <C,X0> (box D22) close to to 100 (or any other positive value, since
we want detHess〈C,X0〉 � 0) by changing the value of the upper-right coefficient of A (box
G2), from which the result can be seen in the figure beneath. In the same way, we can de-
liberately set Determinant Hessian <CV0,V0> equal to some positive value (since we want
detHess〈CV0, V0〉 � 0), if this was not already the case after applying Goal Seek to Determinant
Hessian <C,X0>.

Now, since C consists of A, b and c as given in (4.3), the values of C depend on only A (since
b and c also depend on solely values of A). After having used the Goal Seek-feature, we can jot
down our C (and correspondingly C) for which it holds that Gradient <C,X0> is positive, while
Gradient <CV0,V0> is negative, and so Hess〈C,X0〉 � 0, together with Hess〈CV0, V0〉 � 0.
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