
BENCHMARKING SOTA VISUAL OBJECT DETECTION TECHNIQUES FOR MEDICAL
APPLICATIONS

Alessandro Pianese
S4106431

a.pianese@student.rug.nl

1. INTRODUCTION

Object detection and classification in computer vision is an
active field of research and has been for quite some time[1].
The aim of object detection is to spatially locate and identify
a specific semantic object in images or videos[2].

Object detection can be performed with two approaches:
by instance segmentation or by object localization. In in-
stance segmentation, each pixel is assigned one or more labels
depending to the class they belong to[3]. Usually, a model
outputs a three dimensional object having the same spatial
dimension of the input image but with a third dimension as
deep as the number of classes where each dimension high-
lights the pixel belonging to that class. In object localization,
for each possible object, the model returns a set of coordi-
nates that specify an enclosing box around the said object and
a predicted class for the proposed bounding box. Different
networks may use different classification algorithms and as-
sign more than a single class to the same object, such as the
labels person and woman.

These techniques are usually applied to natural images,
such as RGB pictures taken with standard cameras, but they
are also applied to medical images due to the ability of deep
networks to learn high-level features[4]. Although difficult to
come by due to their scarcity or privacy issues, medical data
sets need different approaches compared to large scale data
sets[5]. Detection targets in this kind of data sets [6, 7] are
similar in size and shape and have ill defined edges which
makes targets detection harder.

However, deep convolutional neural networks are not the
only means to perform object detection and classification. Be-
fore and also afterwards the release of the first deep CNN,
hand-crafted methods targeted to a specific class of problems
were employed. These methods required the algorithm to
manually extract and manipulate the handcrafted features be-
fore using a learning model for prediction.

1.1. Previous work

Handcrafted models are usually built on top of existing com-
puter vision methods that performs feature extraction. One
of the most famous example is AdaBoost[8]. This method

is based on boosting which consists of producing a highly
accurate prediction by combining and weighting different
slightly inaccurate rules. Boosting proceeds as following:
first, the booster receive a collection of labelled examples
{(xi, yi)}i=1..N where xi is the actual data and yi is the
corresponding label; secondly, the booster creates a distribu-
tion Dt over the set of examples for each epoch t = 1..T
and obtains weak hypothesis[8] with their corresponding er-
rors. By combining this information, the booster can, after
T epochs, adapt the weights of each rule based on their ac-
curacy throughout the examples. Differently by AdaBoost
authors previously published methods[9, 10], AdaBoost does
not need previous knowledge on the accuracy of the weak
hypothesis.

A first famous example of handcrafted method for object
detection is the Viola-Jones detector[11]. Three key points
made this detector perform faster than its predecessor: a new
image representation called Integral image that allow the au-
thors to calculate a set of features close to the Haar-like fea-
tures in constant time; using a modified version of AdaBoost
where each weak classifier depends only on one feature so
that the algorithm is actively selecting a small subset of fea-
tures from the one extracted through the previous step; a de-
generate decision tree that initially employs a classifier whose
task is to quickly discard negative results and send positive
results to a second classifier which has been adjusted to have
higher detection rates w.r.t the predecessor and that can also
trigger a third classifier and so on. This method allows for a
computationally expensive classifier to focus on only a subset
of features that are deemed relevant.

In computer vision, another famous tool employed in ob-
ject detection is SIFT[12], which stands for scale-invariant
features. This method employs keypoints, a series of salient
features extracted from images: first, a set of images is pro-
cessed for keypoints to be extracted and then stored in a
database; secondly, a new image goes through the processing
stage to extract another set of keypoints. These are compared
with the already stored keys to see if then new image matches
any of the stored ones or not. Such keypoints are obtained by
applying a difference of Gaussian functions in the scale space
to smoothed and re-sampled images. Obtaining these point
in such a way allows them to be strongly resistant to rotation

1

and scale operations while also being slightly resistant to
shear operations and change in illumination of the image. To
reduce the number of false matches, the authors also rejected
the matches where the ratio of the nearest neighbour distance
to the second neighbour distance was over a certain threshold.

In [13], the authors combined the SIFT keypoints extrac-
tion with graph theory to perform object detection in satel-
lite images. Their objective was to successfully detect man-
made structure in such images which is a tedious task if done
manually. Previous attempts in the literature considered ele-
ments such as the buildings shape, corners or even the texture
of the satellite image itself. Detecting building, however, re-
sulted to be difficult due to the changes observed by the illu-
mination setting, differences in the contrast, occlusions, such
from trees, and the fact that building does not have a standard
shape. To overcome these obstacles, the authors applied the
SIFT keypoints extraction process to the satellite image, after
it was upsampled and smoothed to reduce the noise, and then
used the keypoints to build a graph. In this graph, the key-
points would act as vertices and the neighbourhood of each
keypoint is used to build the edges. Afterwards, the task of
building detection is formulated as a graph cut problem to
match the obtained subsets.

Another famous method to extract feature for object de-
tection is histogram of oriented gradients or HOG. The idea
behind this method was to divide an image into connected
blocks and then obtaining a descriptor by computing and, for
each of these blocks, and concatenating histograms of gradi-
ent directions. It was first introduced in a patent[14] but it
became more widely used in 2005 thanks to [15]. In this pa-
per, the authors used the HOG descriptors to detect humans.
The pipeline they set up is rather simple: first, the image is
gamma and colour normalized to compensate for illumination
variations; secondly, the gradients are computed and, for each
pixel, a weighted vote, collected in orientation bins for each
spatial region, based on the orientation of an edge centred on
that pixel; lastly, gradients are normalized based on the slid-
ing window in question before being concatenated and sent
to a linear support vector machine[16] for classification. This
method turned out to perform better than previous methods
for this task.

A more recent handcrafted method that employs key-
points is the trainable COSFIRE filters[17] one. The name
stands for Combination Of Shifted FIlter REsponses since
the response of a COSFIRE filter in a specific point is com-
puted as a function of the shifted responses of a simpler
filter[17]. The concept of this filter is very simple: a set of
Gabor filters[18] is applied to an image, the filter response is
Gaussian blurred, the outcome is then shifted using specific,
different vectors and finally, all the results are combined by
applying a Geometric Mean. Multiplication was chosen over
addition due to the intrinsic benefits over shape recognition.
Furthermore, the COSFIRE filters can provide strong invari-
ance to rotation, scale, mirroring and contrast inversion. An

advantage of this method is its versatility: in fact, COSFIRE
filters can be configured on a sample pattern image and then
produce excellent results in recognizing such patterns in new
images.

The 2015 ImageNet Large Scale Visual Recognition
Challenge[19], or ILSVRC for short, marks the transition to
deep learning based object detection. The challenge contains
two main competition: the first one is the object detection
challenge, where the algorithm is expected to provide for
each image a class label, confidence score and a bounding
box proposal; the second challenge is the object localization
one where an algorithm is expected to produce five class
prediction, each with its bounding box, in decreasing order
of confidence; the main idea behind this challenge was to
evaluate the localization procedure by considering the label
and bounding boxes that best match the ground truth and,
also, to not penalize the prediction that is, in fact, present in
the image but not in the ground truth.

Looking at the results of the previous years, we can see
how handcrafted methods started getting less frequent than
deep learned based methods. One of the last and most suc-
cessful handcrafted approach was a method proposed during
the 2013 challenge by the UvA-Euvision team. Their ap-
proach used a selective search method proposed in [20] to
create candidate bounding boxes. The focus of this selective
search is to generate between a 10́00 an 100́00 locations by
looking at object contours. The sheer number of locations al-
lows to virtually include every possible object in the image
as stated by the authors. These boxes are then represented
by extracted SIFT color descriptor at different scales. Lastly,
the proposed boxes are also encoded using a multi level spa-
tial pyramid which allows this approach to run faster than the
previous bag of words method.

Looking at the results of 2015 challenge, howver, we can
see that the most successful team propositions mostly rely on
the Faster R-CNN[21] model.

Faster R-CNN[21] presents itself as an improvement to
the 2015 Fast R-CNN showed in [22]. The Faster R-CNN
network builds, on top of a VGG16[23] backbone, two mod-
ules: A region proposal network and a region of interest
pooling. The former is used to extract a set of rectangular
object proposal from the feature map and feed these with the
feature maps to the latter, which then classifies each proposal.
The novelty in this approach was to allow different modules to
share convolutional layers and, therefore, reduce the number
of operations needed. Although this model was able to estab-
lish itself as state of the art, the efficiency of Fast R-CNN, by
today standards, has been long surpassed by other models.

Researchers in deep neural networks are constantly look-
ing to develop breakthroughs in object detection that allow
the models to have better efficiency as is the case with R-
CNN[24], which introduced a new selective search method
that was able to generate and evaluate 2 000 predictions per
image. These proposals are then fed to a CNN that extracts

2

features which are classified via SVM. This improvement was
obtained by fixing the number of regions that need to be in-
vestigated. Although this method was faster than previously
available region proposers, the model still needed around 47
seconds for inference on a single image. Moreover, the selec-
tive search algorithm does not encompass automatic parame-
ter tweaking to allow learning from examples.

Afterwards, the U-Net model aimed to improve the square
window pixel-wise classification method reported in [25] by
Ciresan et al in 2012. In fact, the authors of [26] wanted
to improve on the two major drawbacks of the square win-
dow pixel-wise classification strategy: their sliding windows
approach could be accelerated by not looking at individual
patches one at a time and the trade-off between accuracy
and patch dimensions is quite inconvenient. The idea behind
U-Net is to pair an usual contracting network, a network
where the output of the convolutional layers gets smaller as
we progress through the network, to another network whose
pooling layers are replaced by symmetric up-sampling layers
to increase the resolution of the output. This, combined with
the high number of feature channels, allows the network to
propagate high resolution features[26] to the later stages of
the network. Hence, the network is able to look for features
in lower levels, avoiding the creation of patches and their
redundancy, and looks for them just once.

SSD[27], which stands for Single Shot multi-box Detec-
tor, aimed to achieve real-time performance while preserving
a high mean average precision. Starting from the premise that
Faster R-CNN was not suited for real-time applications, this
model removed the bounding box proposals and therefore all
the re-sampling operations usually performed on these ones.
Furthermore, to compensate for the loss of precision due to
the last step, the authors added convolutional filters to obtain
a 74.1% mAp and a 59fps detection speed outperforming the
7fps of Faster R-CNN.

One of the most recent addition is YOLOv4, presented in
[28]. This network is intended to be an improvement of the
previous release of the YOLO network proposed in 2018 in
[29].

The first version of YOLO[30] provided a simple yet
efficient network able to process images at 45fps that can
be brought up to 155fps if using the Fast YOLO variant,
while still keeping a high mean average value if compared to
contemporary models. The authors approach was to handle
bounding box prediction and classification as a regression
problem[30] allowing the network to perform such predic-
tion in one pass. In the second release of YOLO, called
YOLO9000[31], the authors aimed to improve the perfor-
mances by replacing the original bounding box proposer with
a anchor based one. The speed of the model was not affected
by this change due to the shared convolutional layers between
the CNN and the proposal generator while it helped increas-
ing the accuracy. In the third installement of the model,
YOLOv3[29], two issues were adressed. First, they intro-

duced a independent logistic classifier for each class allowing
the model to predict multiplle classes for one object. Sec-
ondly, the authors added shortcuts connection to allow some
information from the first layers in the CNN to survive the
downsampling until the last layers, increasing the detection
rate of small objects. In the last release, YOLOv4[28], sev-
eral changes were introduced. On top of a new backbone, the
authors applied the CSPNet[32] architecture, added a spatial
pyramid pooling block[33] to accept input of arbitrary size
and the PANet[34] neck to boost the speed of the network by
adding more shortcuts in the CNN.

1.2. Medical data sets for computer vision

Most medical data sets for machine learning share the same
issues: the amount of data is scarce, images can be better
collected, annotated and shared[35]. Hospitals tend to col-
lect and store images and data collected from patients during
regular exams but sharing said information may incur in pri-
vacy issues[6]. Furthermore, images need to be hand anno-
tated from medical experts to be used for research. Building
a medical data set is more difficult than to build a database of
natural images. If we consider, for example, a data set of dif-
ferent types of tumors as seen by CT scans, we have to keep
in mind that some are rarer than others resulting in a heavily
imbalanced data set. Nonetheless, efforts to build and share
these data sets are constantly being made.

As a first example, we can look at the DeepLesion[6] data
set, the one employed in this report. This data set, released in
2017, contains 32 735 slices of CT scans annotated with dif-
ferent kinds of internal lesions. This data set was built with
decades of images stored into the internal picture archive sys-
tem.

In the same year, the chestX-ray8[7] data set was released.
It contains 108 948 frontal view chest x-ray images of 32 717
unique patients collected from 1992 to 2015. To obtain the
annotations, the authors used natural language processing to
extract labels from the associated description. This step was
deemed necessary since radiologists often use complex, ab-
stract sentences while describing their findings. This data set
was built with the idea of tackling three issues:

1. Crowd-sourcing annotation is not possible when con-
sidering medical data sets, since experts in a specific
filed are always required. Automatic labels harvesting,
as discussed above, is required to obtain efficient re-
sults.

2. Such X-rays images are as big as 3000x2000 pixel and
the corresponding region of interest, while varying in
sizes, are often very small compared to the full image
size. An automatic framework for multi label image
classification and disease localization is developed in
order to face this issue.

3

3. Image classification models are usually strongly de-
pendent on the ImageNet[36] data set for initialization.
While this data set is able to teach a network to rec-
ognize a different number of classes due to its huge
amount of instances, it may not be suited for a medical
image classification model.

The Digital Retinal Images for Vessel Extraction[37], or
DRIVE, data set has been created to allow studies on auto-
matic vessel segmentation. Eye vessels characteristics, such
as width, length or branching patterns, are used to diagnose
and examine a wide range of diseases. Automatic detection
and analysis of such vessels’ characteristics can aid medical
experts to provide more efficiently treatment for such con-
ditions. The data set was built from a diabetic retinopathy
screening program in the Netherlands. The study compre-
hended 400 subjects within the 25-90 years old range. The
final data set consists of forty photographs, equally divided
in training and validation, in which thirty-three images do not
report any sign of diabetic retinopathy while the remaining
seven do. Furthermore the training set contains a single man-
ually built segmentation mask highlighting the blood vessels
while the test set contains two: one gold standard mask and
another one to confront the computer generated output with
the one of a manual annotator. It is obvious that this data set
is very small and cannot be used to train deep models, since
we would only have seven images we can learn from.

The most recent examples of medical data set for com-
puter vision are the numerous data set containing CoVid-19
related lesions and symptoms. For instance, the COVID-
CT[38] contains 349 images positive with CoVid-19, ex-
tracted from several paper pre-prints, and 397 images that do
not present the disease. Unfortunately, this data set is very
useful only during an outbreak. In fact, when there are more
suspected cases of CoVid-19 pneumonia, it is hard to gather
enough kit to test all the patients. With this data set, one
can detect if a patient has pneumonia, that may be CoVid-19
related or not, just by looking at a CT scan and avoiding the
use of a testing kit. During such outbreak, a patient with
pneumonia is very likely to also have the CoVid-19 virus and,
therefore, this allows the use of artificial intelligence to aid
medics in handling a large number of patients. One of the
concerns of this data set is that, due to the source of the CT
scans, their quality was not high enough to be employed for
this task but, as said in the data set paper, radiologists have
confirmed that the quality of a CT scan can be decreased
without incurring in loss of information.

1.3. Motivation

The latest approach for object detection are based in deep con-
volutional neural networks and trained on huge data sets that
are built with ten of thousands different annotated images an
impressive number of classes. If we take a look at the Faster
R-CNN paper, it is reported that they used two different data

set for training and evaluation: both Pascal VOC 2007[39]
and 2012 data sets and the Microsoft Common Object in
Context[40], or COCO : the 2012 release of the Pascal VOC
provided 115́30 images with 274́50 different annotations and
69́29 segmentations all distributed within twenty classes; the
COCO data set, insead, presents more than 2500́00 annotated
images with 1.5 million object instances and 80 different
classes.

Comparing this data set with the medical ones previously
introduced, it is easy to observe a disparity. It is unknown if
these deep learning based models can perform well for appli-
cations for which very limited amount of data is available

With this report, we wanted to investigate this matter. We
selected Faster R-CNN and YOLOv4 and trained them on the
DeepLesion data set to observe if the chosen model returned
comparable performances to the one reported in their respec-
tive papers.

In section 2 we further explain all the details about the
DeepLesion data set and the Faster R-CNN and YOLO meth-
ods. In section 3 we explain the different settings we used
to perform the experiments and the evaluation procedure. In
section 4 we presents our results and in section 5 we discuss
them. In section 6 we report our conclusions and some addi-
tional future developments.

2. METHODOLOGY

2.1. Data set

As a data set, we are going to use the Deep Lesion data set
presented in [6]. It was built by using the picture archiving
and communication system (PACS) of the national health in-
stitute situated in Bethesda, Maryland, United States of Amer-
ica. Radiologists in the institute used bookmarks, as showed
in figure 1, to annotate internal lesions in images from CT
scans. The goal of [6] authors was to be able to mine hos-
pitals’ PACS, almost effort-free, to be able to create a large
scale medical data set.

The data set provides 32 735 slices obtained only from CT
scans since this source had the largest collection of images.
The CSV file contained in the data set provided a different
number of information on each lesion which are reported in
table 1.

For the experiment we executed we only used the image
path, the bounding box corners and the lesion type.

As for the labels, stored as integers, we can encounter
eight different kind of lesions, each with their corresponding
value:

1. Bone lesions

2. Abdomen lesions

3. Mediastinum lesions

4. Liver lesions

4

1 File name
2 Patient index starting from 1
3 Study index for each patient starting from 1. There are up to 26 studies for each patient
4 Series ID
5 Slice index of the key slice containing the lesion annotation, starting from 1
6 8D vector containing the coordinates of the diameter of the lesion and of its normal axis
7 4D vector containing the estimated bounding box for the lesion
8 2D vector containing the length of the long and short axis
9 The relative body position of the center of the lesion

10 The type of the lesion
11 Field to note if the slice is possibly noisy or not
12 The slice range: in fact for each slice the authors also included additional contiguous slices
13 Spacing (mm per pixel) of the x, y, and zaxes. The 3rd value is the slice interval, or the physical distance between two slices
14 Image size
15 The windowing (min max) in Hounsfield unit extracted from the original tridimensional file
16 Patient gender. F for female and M for male
17 Patient age
18 Official randomly generated patient-level data split

Table 1: Table describing the data set’s CSV file.

Fig. 1: An example of bookmarked CT scan image from the
DeepLesion paper.

5. Lung lesions

6. Kidney lesions

7. Soft tissue lesions, such as fat, muscle or skin lesions

8. Pelvis lesions

Moreover, there was a ninth label used to identify other
type of lesions with value -1. This class, despite being present
in the data set, is not employed while training the universal
lesion detector in [6], therefore we will also ignore this class
and only focus on the remaining 9 816 slices. In figure 2 we
can observe how many samples are available0 for each class
and we can appreciate that this data set is heavily imbalanced.
In fact, the lung lesion label is the most predominant, with
2 394 occurrences out of the total 9 816. On the other hand,
the least encountered are bone lesions with just 247 labels.

For each annotated slice, the data set also provides addi-
tional unmarked sections up to 30mm above and under the
annotated slice. In the paper it is unclear if all these extra
slices contain the lesion or not and it is not reported if the le-
sion increases in volume, decreases or does not undergo any
change. Due to these unknown factors, it has been decided to
ignore these additional slices to avoid the risk of introducing
false positives into the data set.

2.2. Convolutional neural networks

Convolutional neural networks, CNNs or ConvNets, are a
specific type of feed-forward neural networks that take im-

5

1 2 3 4 5 6 7 8

0

500

1,000

1,500

2,000

N
um

be
ro

fe
le

m
en

ts
pe

rc
la

ss

Classes

Fig. 2: Bar chart displaying the imbalance of the data set

ages as input. An example of a CNN is reported in figure
3. Inside the network, images are processed with the use
of different kinds of layers. The ones that are ubiquitous
are convolutional layers, pooling layers and fully-connected
layers.

Fig. 3: Example of convolutional neural network. Images
from Muhammad Rizwan’s Convolutional Neural Networks -
In a Nutshell

A convolutional layer simply performs a filtering oper-
ation on the image with a number of kernels. Each kernel
slides over each pixel of the image spatial dimension and per-
forms a dot product between the filter and the corresponding
highlighted image subsection. Here, among the values of the
kernel itself, the filter size can be set and the most common
dimensions are 3x3xC, 5x5xC, 7x7xC and 11x11xC, where
C is the number of channel of the input image. Small dimen-
sions allow to highlight finer details more easily while bigger
filter sizes tend to ignore these smaller feature. The stride
of a kernel can also be changed: a kernel with stride one will
move one pixel to the right after each dot product; if the stride
were two, the process would skip a pixel while performing the
filtering operation. A higher stride will allow for faster com-
putation but may make some features harder to find.

A pooling layer is used to downsample the input along
the spatial dimensions and extract dominant features. In fact,

Fig. 4: Architecture of Faster R-CNN, image taken from [21].

since applying several convolutional filters increase the di-
mensionality of the output, it’s easily observable how the
amount of weights needed would be too massive to handle.
The two most common pooling methods are max pooling and
average pooling. In max pooling, the maximum value from
the section of the image in question is selected, while in aver-
age pooling the average of all values of the kernel is chosen
instead. Max pooling also acts as a better noise suppression
than average pooling since noisy values are discarded right
away.

A fully connected layer applies a linear transformation to
the input such as y = W · x + b where x is the input, W
are the weights and b is the bias. When a layer of this kind is
the last layer in a CNN then it performs the actual discrimina-
tion and is able to learn a rule. A fully connected layer in this
position will output a 1×1×C vector where each value corre-
sponds to a class score and where C is the number of classes
we have in our problem. A fully connected layer expects a
fixed size input to applies the weights to predict the correct
label However, fully-connected layers are not so widespread
in modern CNNs as they were before due to the high number
of parameters they introduce.

2.3. Object detection using CNNs

2.3.1. Faster R-CNN

The first model we decided to employ is Faster R-CNN[21].
In its paper, as displayed in figure 4, it contains a VGG16[23]
backbone, a region proposal network and a region of interest
pooling layer. In the implementation we utilized, the back-
bone was replaced by a RenNet-50[41] CNN.

6

https://engmrk.com/convolutional-neural-network-3/
https://engmrk.com/convolutional-neural-network-3/

This CNN, as the names implies, presents fifty layers and
can be split up into five stages:

• The first stage presents a single convolution with a 7x7
filter dimension and 64 different kernels with stride
two. The output of this stage has a spatial dimension of
112x112 for an input size of 224x224.

• The second stage starts with a max pooling layer with
3x3 dimension and stride two. Then we have three con-
volutions. The first one has a 1x1 filter size and ap-
plies 64 different kernels. The second one has a 3x3
filter size and applies 64 different kernels. The last one
has again a 1x1 filter size but applies 128 different ker-
nels. These three convolutions are repeated three times
in this order for a total of 9 layers. The output of the
second stage has a spatial dimension of 56x56.

• The third stage consists of firstly a 1x1 filter dimension
and applies 128 different kernels, followed by a convo-
lution with a 3x3 filter dimension and again applies 128
different kernels and, lastly, a convolution with 1x1 fil-
ter size with 512 different kernels. These convolutions
are repeated four times for a total of twelve layers. This
stage output has a spatial dimension of 28x28.

• The fourth stage repeats the previous pattern. First a
1x1 filter size that applies 256 different kernels then a
3x3 filter size that again applies 256 different kernels
and lastly a 1x1 filter size that applies 1024 different
kernels. These convolutions are repeated six times for
a total of eighteen iterations. This stage output has a
spatial dimension of 14x14.

• The last stage consists of a first convolution with a 1x1
filter size and 512 different kernels then a convolution
with 3x3 filter size and 512 different kernels and then
a 1x1 convolution with 2048 different kernels. These
convolutions are reiterated three times for a total of 9
layers.

At the end of this CNN we find an average pooling layer
that precedes a fully connected layers with 1000 neurons.
This fully connected layer forwards its output to a softmax
function that transforms the output vector into a class proba-
bility vector, with values between 0 and 1.

If we count all the convolutions, the fully connected layer
and the softmax function, they add up to fifty layers.

On top of the backbone, Faster R-CNN presents two mod-
ules: a fully convolutional layer that generates region propos-
als and a region of interest pooling layer that uses these pro-
posals.

The region proposal network, or RPN, takes a feature map
from the last convolutional layers of the backbone as an input
and it outputs a list of proposals. To generate proposals, the
RPN extracts features by feeding the feature map to a small

network with a sliding window procedure. This network takes
as an input a 3x3 spatial window, reduces its dimension and
feeds the output to two sibling modules: a box regressor layer
and a classifier layer, both implemented with a 1x1 convolu-
tional layer. At each window location, the RPN predict multi-
ple proposals up to a maximum defined value called k. Each
proposal has 4 × k outputs encoding the coordinates of the
bounding box and 2 × k score reporting the probability of
an object being there or not being there. The value of k de-
pends on the the number of anchors. In the paper the authors
use 3 aspect ratios and 3 scales for a total of k = 9 anchors.
They also state that this approach is translation invariant and
presents a smaller model size.

The key improvement of this model is the speed that
is able to achieve with regard to its predecessor, Fast R-
CNN[22]. In fact, it is able to share convolutional features
at a single scale, without needing to train the regressor for
different scales. Their approach, which uses a method called
”pyramid of anchors”, it is able to identify region of interests
at different scales by using different aspect ratios anchors
while maintaining a feature map at a single scale.

The employed loss function is formulated as follows:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i)+λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i)

where i is the index of an anchor in a mini-batch, pi is the
predicted probability of an object being inside the anchor i,
p∗i is the ground truth labels and is 1 if the anchor is positive
or 0 if the anchor is negative, ti is a 4D vector with the coor-
dinates of the predicted bounding box while t∗i is a 4D vector
with the ground truth coordinates. The Lcls is the loss w.r.t.
the classes of the present objects vs the objects not present
while Lreg(ti, t∗i) = R(ti − t∗i) where R is the smooth L1

introduced in [22] which is

R(x) =

{
0.5x2 if | x |< 1.
| x | −0.5 otherwise.

The term p∗iLreg means that the regression loss is acti-
vated only for positive anchors, i.e. p∗i > 1.

The terms Ncls and Nreg represent respectively the mini-
batch size and the number of anchor locations. They are
used for normalization and an out-of-the-box Faster R-CNN
presents Ncls = 256 and Nreg = 2400. The λ parameter is
used for balancing and by default it is set to λ = 10.

For the bounding box regression the authors of the paper
parameterizated the four coordinates as follows:

7

tx = x−xa

wa
ty = y−ya

ha

tw = log(wwa
) th = log(hha

)

t∗x = x∗−xa

wa
t∗y = y∗−ya

ha

t∗w = log(w
∗

wa
) t∗h = log(h

∗

ha
)

In the above equations x, y represent the bounding box
center coordinates while w and h respectively represent the
bounding box width and height. Variables with a as a sub-
script, such as xa, refers to the anchor bounding box relative
value and variables with a ∗ as a super script, such as x∗, rep-
resents the relative ground truth bounding box value.

This regressor predicts bounding box proposals differ-
ently than before. In fact, previous models [22] performed
regression on features obtained from arbitrarly sized regions
of interest and the weights were shared among different
regions size. Here, different bounding box regressors are
learned for different sizes and they do not share weights so
that the network is able to correctly predict boxes of different
sizes.

The region of interest, or RoI, pooling layer of Faster R-
CNN is the same as Fast R-CNN. It accepts as input a feature
map from the last convolutional layer and a set of object pro-
posals from the RPN regressor. For each proposal it extracts
a fixed-length feature vector from the corresponding section
of the feature map.

In Faster R-CNN paper, the authors adopt a 4-step alter-
nating training:

1. In the first step, the RPN is trained, initialized with an
ImageNet[36] pre-trained model and then used to train
the Fast R-CNN components. This last tuned network
is then employed to initialize the RPN from now on.

2. In the second step a separate detection network is
trained using Fast R-CNN and the previously generated
proposals. The detection network is again initialized
with the ImageNet pre-trained model.

3. In the third step the RPN is initialized with the above
tuned detection network but the convolutional layers
are fixed so that the training modifies only the layers
unique to the RPN.

4. as the last step, the shared convolutional layers fixed are
kept and the layers unique to the Fast R-CNN classifier
are fine-tuned.

The RPN and the Fast R-CNN ROI pooling section share
the same convolutional layers.

The network employed in DeepLesion[6] data set paper
was modified to fit the needs of the task. The authors kept the

VGG16 backbone but removed the last two pooling layers to
allow smaller features to appear in the outputted feature map.
Furthermore, they recomputed the anchor sizes and the an-
chor ratios by investigating the ground truth bounding boxes
of the data set. In the end they used five anchor scale (16,
24, 32, 48, and 96) and three anchor ratios (1:2, 1:1 and 2:1).
Lastly, the authors replaced the 4096D fully connected layer
in VGG16 to decrease the size to 1/4 while keeping a compa-
rable accuracy.

In our experiment we used the out-of-the-box PyTorch
implementation of Faster R-CNN. More on our experimental
setup in section 3.1.

2.3.2. YOLO

We decided to also pick YOLOv4 since it’s a state of the art
object detection system which is capable of both high detec-
tion speed and accuracy.

When YOLO was first released, it proposed a major boost
in performances compared to other networks of the same pe-
riod, such as Faster R-CNN. YOLO applies a single neural
network to the whole image. This image is split into regions
and the network, for each region, predicts a class and a bound-
ing box. Non maxima suppression is later applied to combine
bounding boxes of the same element. The downside of this
approach is that each region can only detect one object. Since
YOLO uses grids of 7x7, the maximum number of objects it
can detect is 49.

In the second release of YOLO[31] the authors improved
the accuracy of the predicted classes and bounding boxes.
Besides batch normalization and training the classifier at a
lower resolution, the most substantial change they did with
YOLOv2, or YOLO9000, was to add a convolution with
anchor boxes. Inspired bythe Faster R-CNN architecture,
YOLOv2, with a fully connected layer, is able to share image
features with the bounding box proposer. Detection speed
and accuracy were substantially increased: the mAP went
from 63.4% to 73.7% and the speed increased respectively
from 40 fps to 81 fps.

With YOLOv3[29] the authors tackled the multi label
problem. Since an object, with the data set they were us-
ing, can be assigned multiple labels, it is incorrect to assign
only one. An independent logistic classifier for each class
was used to replace softmax. Furthermore, the authors also
addressed the problems YOLO had with detecting small ob-
jects. They introduced shortcut connections that allowed
smaller features from earlier future maps to survive until the
later stages. This increased performances with small objects
but also made larger objects harder to find.

The YOLOv3 head that predicts bounding boxes and
performs classification, is similar to what we can find in
YOLO9000. For generating the priors, they used the di-
mension cluster technique instead of hand picking anchors
dimension. Running on the whole training data set, the au-

8

thors used k means clustering on the ground truth boxes to
obtain k centroids to use as priors. To calculate the distance
between a box and a centroid, they used d(box, centroid) =
1− IoU(box, centroid).

To predict the location of the bounding boxes they do
something similar to YOLO where the coordinates of the
boxes are predicted relative to the grid they fall in. In fact,
for each box, the networks predicts four coordinates: tx, ty ,
tw and th. The first two represent the box offset from the
current cell top left corner while the last two represent the
predicted width and height respectively. In the paper, to turn
these values into usable bounding box coordinates, they used
the following equations:

bx = σ(tx) + cx
by = σ(ty) + cy
bw = pwe

tw

bh = phe
th

where (cx, cy) is the offset from the top left corner of the
images, pw and ph are respectively the width and height of
the corresponding anchor.

YOLOv3 also assign an objectness score to each predic-
tion. If the predicted bounding box overlaps an object more
than any other bounding box prior then the objectness score
is one, otherwise it gets ignored.

To calculate the loss for the bounding box, the authors
used the sum of squared error L(w, x) =

∑N
i=0

(t−t̂)2
N where

t is the predicted value while t̂ is the ground truth.
Each box prediction also performs multi-label classifica-

tion. Instead of using a softmax approach, the authors use
independent logistic classifiers for each class. The loss em-
ployed in this phase is the binary cross-entropy loss.

For the training, they heavily used data augmentation,
such as flip, rotation, crop, trained at different scales and
batch normalization.

The change the authors of [28] proposed for YOLOv4
was to employ a different backbone. They proposed to use
CSPDarknet53[29, 32] since it allowed for a larger recep-
tive field, therefore a larger accuracy, while maintaining
real-time performances. As a whole, the architecture of
YOLOv4 is comprised of the said backbone, a spatial pyra-
mid pooling[33] block to further increase the receptive field,
PANet[34] path aggregation neck and YOLOv3[29] anchor
based head.

The CSPDarknet53 backbone is comprised of two parts: a
Darknet53[29] backbone and the cross stage partial network[32]
technique applied to it.

DarkNet53, similarly to ResNet-50, contains in its name
the number of convolutional layers it presents as also shown
in figure 5. As reported in [29], this backbone performances
are on par with ResNet-101[41] and ResNet-152[41] but
with 36% less floating point operations. This backbone is
enhanced with the cross stage partial network (CSPNet).

Fig. 5: Architecture of DarkNet53 taken from [29]

The aim of CSPNet is to reduce the amount of com-
putation during the back-propagation while still keeping an
enough detailed gradient to perform precise calulations. The
key insight is to partition the feature map of the base layer
into two parts that are then merged at the end of the net-
work. This also allows for the gradient flow to be split and
propagated throughout different paths. The splitting of the
gradient avoids the learning of redundant information. As
we can observe in figure 6, the output of the base layer is
being initially split and then merged back together in a partial
transition layer. In fact, CSPNet optimizes the function

y =M([x′0, T (F (x
′′
0))])

where F is a mapping function, the input is split into two parts
x0 = [x′0, x

′′
0], T is the function used to truncate the gradient

flow and M is the transition function used to reunite the two
parts.

CNNs accept input of a certain size, such as 240x240, or
they do resize the input images to allow compatibility with
fully-connected layers. This limits the accuracy of the net-
work as a whole[33]. To avoid this, the authors of [33] suggest
to replace the last pooling layer with a spatial pyramid pooling
block to allow a variable sized feature map to be turn into a
fixed length vector. A SPP improves the Bag of Words[42] ap-
proach. It maintains spatial information by pooling together
local spatial bins. Since the size of said spatial bins is propor-
tional to the image size, the number of bins is fixed regardless

9

Fig. 6: Example of CSPNet applied to a ResNe(X)t[32]

Fig. 7: Example of spatial pyramid pooling taken from [33]

of the image size. In figure 7 we can observe how the SPP
works. Bins of different sizes are used to pool the response
of each filters of the last convolutional layer, 256 in this ex-
ample. The output of this pooling layer is kM dimensional,
where M is the number of bins and k is the number of filters.
In the paper, max pooling is used to pool the responses for
each bin throughout all the filters.

The path aggregation network, or PANet, aims to improve
the information flow in proposal based instance segmentation
network. PANet, as shown in figure 8, consists of five com-
ponents. To obtain the performance improvements, we have
to look closely at these three modules:

• Bottom-up path augmentation

• Adaptive feature pooling

• Fully-connected fusion

The bottom-up path augmentation allows strong low-level
features to be propagated to higher levels through a shortcut,
the dashed green line in figure 8. This path consists of 10
layers instead of the 100+ layers along the default path. Prop-
agating the strong response of repeating patterns and local
textures allows the network to improve the localization per-
formance.

Fig. 8: Architecture of PANet taken from [34]. (a) FPN back-
bone. (b) Bottom-up path augmentation. (c) Adaptive feature
pooling. (d) Box branch. (e) Fully-connected fusion.

In the feature pyramid network[43], bounding box pro-
posals are assigned to different feature levels based on their
size. Small proposals are assigned to low feature levels while
larger proposals to higher levels. We can see how a small
difference of a handful of pixels can result in two similar pro-
posals to be assigned to different feature levels. To solve this,
the authors of [34] suggest to employ adaptive feature pool-
ing. This means to pool features from all level and fuse them
together for generating the prediction.

To increase the quality of the final prediction, the authors
combine a fully convolutional network, or FCN, and the fully-
connected layer predictions. FCNs are able to predict pixel-
wise class instances in mask segmentation and the authors of
Mask R-CNN[44] also put a small FCN on the feature grid
to predict instances without class competition. On the other
hand, fully-connected layers provide different results based
on the location of the proposal and can therefore adapt to
different spatial locations. Fully-connected layers also use
global information for each proposal prediction.

YOLOv4, to have a faster and more accurate regression
in case of both overlap and inclusion, the authors decided to
employ the Complete IoU Loss[45]. To achieve this, the loss
must consider three geometric factors: overlap area, central
point distance and aspect ratio. The loss equation is:

LCIoU = 1− IoU +
ρ2(b, bgt

c2
+ αv

where ρ is the euclidean distance between the two boundig
box centers, b is the predicted bounding box, bgt is the ground
truth bounding box, c is the diagonal lenght of the smallest
box enclosing the two boundig boxes, the predicted and
ground truth ones, v measures the consistency of aspect ratios

v =
4

π2
(arctan

wgt

hgt
− arctanw

h
)2,

and α is a positive trade off parameter defined as

α =
v

(1− Iou) + v
.

For our experiments we select YOLOv4 since this latest
release brought such improvement to both speed and accuracy
over the previous versions as well as other state of the art
object detection neural networks.

10

3. EXPERIMENTAL FRAMEWORK

In this section, we explain the way we set the experimental
framework and the evaluation procedure we adopted.

3.1. Faster R-CNN

To run experiments with Faster R-CNN[21], we employed the
PyTorch[46] implementation of the model. Differently from
the original Faster R-CNN paper, this implementation used
a ResNet-50[47] backbone instead of VGG16[23]. The re-
maining sections of the network, the RPN module and the
RoI pooling layers were the same as the ones described in the
paper.

The only change we needed to make was to set the number
of classes inside the RPN module to the number of different
lesions in our data set plus one. Faster R-CNN also contem-
plates a background class, referred to as class zero, which is
discarded during classification.

To experiment, we decided not to modify the internal
structure of the backbone, as done in the data set paper, but
we only tweaked some hyperparameters: since the PyTorch
library allowed us to import the model with a pre-trained or
untrained backbone, we decided to test with both to see if a
difference could be observed. Also, the library allowed us to
pick our optimizers. The first optimizer we decided to pick
was stochastic gradient descent[48], due to its simplicity but
also because it’s the same optimizer used in the data set paper
with the authors’ customized Faster R-CNN model. The sec-
ond optimizer we selected was Adam[49] due to its adaptive
gradient effectiveness. Both optimizers are briefly discussed
in section 3.1.1.

With this in mind, we combinations of hyperparame-
ters are displayed in table 2. The pretrained weights of
PyTorch[46] Faster R-CNN were obtained by training the
model on COCO Train2017[40]. Looking at our configura-
tions, we firstly run an experiment with the pretrained back-
bone and the adam optimizer without batch balancing. With
this experiment, we wanted to observe the baseline results
for the model. Since we did not perform batch balancing, we
expected the model to overfit on the most predominant class
of the dataset.

The next two experiments, 2 and 3, both had balanced
batches and the Adam optimizer but here we wanted to ob-
serve how much of an impact the pretrained backbone can
have with said optimizer. The same happens for experiments
4 and 5 but, instead of Adam, we are using SGD.

Lastly, we are running one experiment with pretrained
backbone, balanced batches and Adam optimizer but, this
time, we also are adding a data augmentation pipeline to mea-
sure the possible increase or decrease in detection accuracy.

Concerning the learning rate, we discovered that 0.0001
was one of the optimal value that allowed a trade-off between
speed and accuracy while using Adam. Higher learning rates,

such as 0.001, resulted in an exponential increase in the loss
after the first epochs, while smaller learning rates, combined
with the learning rate decay, didn’t allow for the model to
keep learning at a reasonable rate after a handful of epochs.

For SGD, we found that the same learning rate wasn’t al-
lowing the loss to decrease throughout iterations so we kept
lowering the learning rate until it reached 0.00002. At this
point, we saw that lowering the learning rate further wasn’t
going to outperform the Adam optimizer. More on this in
section 5.

We trained all the Faster R-CNN experiments for 110
epochs. For the experiments with the balanced batches, the
images from the least predominant classes were presented
cyclically, until the network encountered once all the images
from the most abundant class.

We didn’t use any learning rate scheduler although Adam
optimizer does decrease the learning step on its own, as ex-
plained in the relative sub-subsection.

Momentum for SGD was set to 0.9.

3.1.1. Optimizers

SGD is different from batch gradient descent or mini-batch
gradient descent. In the stochastic approach we only use one
example for calculating the cost instead of calculating the cost
of the whole batch. The formula for updating the weights is

wt+1 = wt − η · ∇wt
C(x, y)

where wt are the weights at iteration t, η is the learning rate,
∇wt

is the gradient with regard to wt and L(x, y) is the cost
function with the current input.

SGD presents the benefits to be fast, since it only cal-
culates the cost of one example at a time, and also easy to
be understood given its simplicity. However, due to its lim-
ited vision, the algorithm is slower to converge and has more
probability to be stuck in a local minimum. To avoid this, the
concept of momentum has been introduced.

Momentum helps the optimization move faster towards
the (local) minimum. The way it works is to add a fraction of
the last updates of the weights. The formula become

wt+1 = wt − η · ∇wt
C(x, y) + ρvt

where ρ is the momentum value, usually set at 0.9 and vt is
the change of the weights in iteration t. As a result, if our
optimization process would fall in a local minimum while de-
scending, the momentum would allow it to keep moving and
exit this minimum.

Adam, differently from stochastic gradient descent, does
not maintain a single learning rate for weights updates but it
is adapted as the training proceeds. The authors of [49] state
that Adam combines the advantages of both AdaGrad[50] and
RMSProp[51].

Adam is efficient with sparse gradient problems, as Ada-
Grad, and it adapts the learning parameter on the average first

11

Pretrained backbone Optimizer Balanced batches Data augmentation

1 Adam

2 Adam

3 Adam

4 SGD

5 SGD

6 Adam

Table 2: Table summarising all the experiment we ran with Faster R-CNN

moment, as in RMSProp, but it also employs the average of
the second moment. The algorithm uses the moving average
of the gradient and the square gradient whose decay rates are
controlled by variables β1 and β2.

The algorithm for Adam needs the following inputs:

• step size α

• β1, β2 exponential decay rates for momentum estimates

• stochastic objective function f(w)

• w0 initial parameter vector

Meanwhile the algorithm proceeds as following:

1. m0 ← 0 initialize first moment vector

2. v0 ← 0 initialize second moment vector

3. t← 0 initialize timestep

4. while wt not converged do

(a) t← t+ 1

(b) gt ← ∇wft(wt−1) get gradient w.r.t. time step t

(c) mt ← β1 ·mt−1+(1−β1) ·gt update biased first
moment estimate

(d) vt ← β2 ·vt−1+(1−β2)·g2t update biased second
raw moment estimate

(e) m̂t ← mt

1−βt
1

compute bias-corrected first moment
estimate

(f) v̂t ← vt
1−βt

2
compute bias-corrected second raw

moment estimate

(g) wt ← wt−1 − α·m̂t√
v̂t+ε

update parameters

3.1.2. Data balancing

When we did not perform data balancing, examples from the
data set were progressively selected. This mean that batches
were mostly containing images from the same class. To im-
prove this, we used a custom function to provide balanced
batches. First, the function divide all the images in different

bins based on their class. By default, each batch contains 32
elements so the algorithm divides this number by the number
of classes it has and picks an equal amount of images from
each. Since the data set is heavily imbalanced, it has classes
that are way more copious than other implying that smaller
classes are going to run out of images to offer. To make up
for this, the algorithm is cyclically going to select pictures
once a class has already been entirely seen.

3.1.3. Data augmentation

The augmentation pipeline utilized in the last experiments
consisted of several transforms: we first add 50px pad on
each side of the image in a way that the added information is
consistent with what was already present in the image; next,
we perform a random rotation between −30◦ and 30◦, a ran-
dom centered crop between 0px and 64px on each side and
a rescale operation to a 240x240px resolution. Using this
pipeline, we can be sure to use slightly different images each
time data augmentation is used. When the batch balancer
would select an image from a very small class, instead of see-
ing the same image over and over, it would study a slightly
different version of it, possibly improving the generalization
process.

3.2. YOLO

To train YOLOv4[28], after we compiled the darknet frame-
work on our system, we followed the instructions avail-
able at the project repository: https://github.com/
alexeyab/darknet

For a first experiment, we followed the repository guide-
lines on modifying the configuration file. To set the config file
to work with our data set, we tweaked the following parame-
ters:

• the batch dimension parameter was set to 64 batch=64
and the subdivision parameter, to avoid incurring in an
out of memory error, was set to 32.

• the network dimension, width and height, was set to
448x448

12

https://github.com/alexeyab/darknet
https://github.com/alexeyab/darknet

• the upper limit of iteration was set to 160́00

• the flip data augmentation was disabled since some
types of lesions are not always observed on both side
of the body

• the number of classes was set to be eight in all the three
[yolo] layers

• the filters parameter in the three convolutional layers before
each [yolo] layer was set to 39, accordingly to the number
of class and following the formula filters=(classes+5)×3asprovidedintherepositoryinstructions.

In a second YOLO experiment we decided to try to in-
crease detection and classification accuracy on smaller object.
On top of the previous modifications, we also tweaked the fol-
lowing hyperparameters:

• we calculated the anchors for this specific data set and
replaced the default values in each [yolo] layers
with anchors = 15, 15, 21, 21, 29, 26,
34, 38, 50, 37, 46, 58, 69, 60, 97,
94, 156,133

• the stride was increased to four and layers parameter in
the different [yolo] layers was set to 23 to allow the
network to detect objects smaller than 16x16 pixels

• the network dimensions was increased to 869x869 for
training. During inference it was further increased to
1024x1024 to increase the accuracy of the model with-
out the need to re-train the network.

We did not feel the need to change the default learning
rate, which was 0.001, as it seemed to be compatible with the
data set in use. Also, the momentum was left at its default
setting which was, again, 0.9. The optimization process and
learning rate scheduling were handled by the framework itself
as they were hidden from the user. The YOLO model trained
for 16 000 iterations which correspond to 100 epochs. How-
ever, since the network saved weights every 1 000 iterations
and we evaluated the model using these backup weights, we
reported the results for each one of this evaluation. So, the
YOLO results chart displays 16 evaluation steps.

3.3. Evaluation protocol

To evaluate the model we trained, we mainly used mean aver-
age precision and intersection over union.

3.3.1. Mean average precision

Mean average precision is the average of the AP or average
precision. To explain this, we have to introduce three ele-
ments: precision, recall and the precision-recall curve. Preci-
sion is the measurement of how accurate is our classifier. It
reports how many true positives we found in our results and
is calculated as

precision =
True Positive

True Positive+ False Positive

while recall is the measurement of how successful is our
model in detecting all the positives in the image and is calcu-
lated as

recall =
True Positive

True Positive+ False Negatives

We used these two metrics to generate a precision-recall
curve which is used to observe the trade-off between preci-
sion and recall for different confidence level in a classifier. In
our implementation, we used threshold values ranging from 0
to 1.0 with a 0.1 step for a total of 11 points. For each one
of this threshold values, we evaluated all the predictions with
a confidence level equal to or greater than the threshold. For
each threshold value then, we obtained a precision and a re-
call value which represented one point on the precision-recall
curve, as shown in example figure 9.

Fig. 9: An example of precision-recall points

Having obtained this curve, we used these points to cal-
culate the area under the curve with the formula

n∑
i=1

precisioni × (recalli − recalli−1)

where precisioni and recalli are respectively the preci-
sion and recall values of the ith point on the curve. With the
above-mentioned formula, we would obtain an approximation
of the area under the curve like the one displayed in figure 10.
This approximation is what is used in this filed to calculate
the precision of a classifier.

The area under the curve we just obtained is the AP. If we
repeat this process for each class then we will obtain, in our
specific case, 8 average precisions, one per class. The average
of all of the AP is the mAP.

13

Fig. 10: Example of area under the precision-recall curve

3.3.2. Intersection over union

Intersection over union, or IoU, is a metric used to evaluate
the accuracy of a detector. Specifically, it represents how ac-
curate is the predicted object location versus the ground truth.

To calculate the IoU, as shown in figure 11, we need two
bounding boxes: a predicted one and the actual bounding box.
We first obtain the area of the intersection between these two
and, if it is greater than zero, we divide by the area of the
union of the two boxes.

Fig. 11: IoU equation with graphic representation of mean-
ing. Image taken from here, credit to Adrian Rosebrock

3.3.3. Evaluation procedure

For Faster R-CNN we had to write our evaluation algorithm.
The algorithm consists of these steps:

1. for several threshold values do:

(a) Make inference on a batch of images

(b) For each image, get the predicted bounding box,
label and confidence level

(c) If the confidence level is greater than the current
threshold does:

• If the overlap between the predicted bound-
ing box and the ground truth one is greater
than a certain IoU threshold, add this value
to the list of IoU values. Then check whether
the prediction and ground truth were a true
positive or the prediction was a false pos-
itive and the ground truth a false negative.
If the overlap is less than the IoU threshold,
mark the prediction as a false positive and the
ground truth as a false negative.

(d) Repeat these steps until there are no more batches

(e) Obtain, using the number of true positive, false
positive and true negative, precision and recall
values for each class to be put on the precision-
recall curve.

2. After having obtained all the precision-recall curves,
calculate the AP for each class.

3. Get the average of all the APs

4. Return the mAP and the average IoU

For YOLO, since it runs inside the darknet framework,
we didn’t have to write our algorithm but we could
use command-line arguments that would calculate the
mAP, IoU, false negatives and AP per class on their
own.

For both models, we set the IoU threshold at 21%.

4. RESULTS

4.1. Faster R-CNN

In table 3 we report the results of the Faster R-CNN experi-
ments.

In figures 12(a) and 12(b) we can find the results of the
first experiment we ran. We just fed all the images, once
per epoch, to the model and collected the results while using
Adam[49]. If we look at the results evaluated on the train set
We can observe how the loss decreases before stabilizing in
the last thirty epochs. Furthermore, we can also see how the
mean average precision, or mAP, and the intersect over union,
IoU, are increasing but at a very slow rate except, again, for
the last epochs, where they find a steep increase. However, if
we look at the results on the test set, we can see how the mAP
and IoU are behaving slightly worse than previously shown.
If we look at the last epoch, which is the best one, the perfor-
mances on the test set is around half the performances on the
train set.

In the next experiments, we stick with Adam as an op-
timizer and we used the same learning rate while providing
balanced batches to the network. The only difference between

14

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

Augmentation Pre-trained Batches Optimizer Best epoch mAP train mAP test IoU train IoU test

No COCO[40] 2017 unbalanced Adam[49] 110 38% 12% 43% 21%

No No balanced Adam 60 65% 15% 43% 17%

No COCO 2017 balanced Adam 110 79% 19% 77% 22%

Yes COCO 2017 balanced Adam 110 49% 19% 38% 18%

No No balanced SGD[48] 20 1% 0% 2% 0%

No COCO 2017 balanced SGD 10 0% 0% 1% 0%

Table 3: Table reporting all the Faster R-CNN results we obtained

the two images is that in figures 13(a) and 13(b) we used an
untrained backbone while in figures 14(a) and 14(b) we used
a pre-trained backbone. As we can observe, the model with a
pre-trained backbone, in the end, outperformed the untrained
one. In fact, if we look at the evaluation on the test set, we
can see how the experiment with the pre-trained backbone
achieved around 20% for both mAP and IoU, outperforming
the untrained one that was able to reach just around 10% for
both metrics. However, these results will not be able to cor-
rectly classify all the lesions in the dataset. If we compare
the evaluation on the train set, we can see how in figure 13(a)
at exactly epoch 60 the model is able to achieve over 50%
for IoU and over 60% for mAP and this is also visible on the
test set in figure 13(b) with, however, a much smaller mag-
nitude. These values are lost after a handful of epochs as is,
again, also visible on the test set evaluation. If we focus on
the experiment with the pre-trained backbone, we can see that
the model was able to learn to differentiate the lesions on the
train set at a more constant and steadier pace. However, as
already mentioned, the results on the test set are sub-optimal
and cannot be employed in a real-life scenario. In fact, when
we look at the last epoch, which is again the most promising
one, the performances on the test set are around four times
weaker than the performances on the train set.

The results showed in figures 15(a) and 15(b) are the ones
where we resized the images to 240x240 pixels before train-
ing the network. Here we can observe some similarities be-
tween this results and the ones in figures 12(b) and 12(a).
Both models had troubles learning a rule for most of their
run-time and only started learning towards the end. Although
the mAP and IoU evaluated on the train set doubled in the
last 20 epochs, we can only see a small increase in the same
epochs on the test set. Here again, the best epoch is the last
one but looking at the results on the train set, both mAP and
IoU were lower than 50% while the performances on the test
set were around the 10% mark.

At this point we swapped Adam with SGD[48] and tried
training the network as before, with both pre-trained and un-
trained backbones. In figures 16(a) and 16(b) we can find the
results of the untrained backbone while in figures 17(a) and

17(b) the results of the pre-trained one.
In all these figures it’s easy to observe how the loss was,

overall, stationary. It’s observable from the IoU how the
model wasn’t able to learn and detect adequate bounding
boxes for both the train and test set. We noted how the SGD
optimizer was not suited for this problem and these experi-
mental settings.

In the previous experiment, we were able to notice how
all of the results obtained with Adam showed signs of overfit-
ting while the results obtained with SGD weren’t able to learn
anything.

4.2. YOLO

In table 4, we sum up the results of the yolo experiments.
In figures 18(a) and 18(b) we reported the results of the

first experiment with this model. We can observe the same
patterns observed before with the Faster R-CNN experiments:
The loss ha a decreasing trend while the model is able to learn
only to detect and classify the train set. Moreover, we can see
that the oscillation of the mAP and IoU on the test set presents
the same oscillations as the train set but on a much smaller
scale. Here, the loss is met with a more steady descend after
just five epochs with just a small spike at epoch seventy. Also,
the mAP on the test set seems to be three times weaker than
the one on the train set while the IoU seems to be just above
the halfway mark.

In figures, 19(a) and 19(b) we reported the evaluation of
YOLO trained with a resolution of 869x869 but, during infer-
ence, we increased the resolution to 1024x1024. Here we can
observe a slight improvement over the previous results. While
the mAP is overall the same with only an increase of 2%, the
IoU was met with a 10% increase. Although, we have to no-
tice how this last metric was very much fluctuating between
20% and 40% before epoch 70. After this point, the fluctu-
ation persisted but with a much smaller magnitude. On the
other hand, the loss stabilized itself almost immediately after
only twenty epochs. In this experiment, the mAP on the test
set it’s four times smaller than the one on the train set while
the IoU is half the magnitude of the IoU on the train set.

15

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Epochs

(a)

Loss
mAP
IoU

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Epochs

(b)

Loss
mAP
IoU

Fig. 12: Faster R-CNN: Results of training using Adam with a learning rate of 0.0001 and a pre-trained backbone. Training
was performed on unbalanced batches. (a) is evaluated on the train set while (b) is evaluated on the test set.

Pre-trained Batches Training resolution Testing resolution Best epoch mAP train mAP test IoU train IoU test

COCO[40] balanced 416x416 416x416 140 63% 18% 38% 22%

COCO balanced 816x816 1024x1024 140 80% 20% 59% 32%

Table 4: Table reporting the results of the two YOLO experiment we ran.

Method mAP@50 mAP@75

Faster R-CNN[21] + DeepLesion[6] 57% 48%

Faster R-CNN (ours) 15.2% 6.9%

YOLOv4[28] + COCO 65.7% 47.3

YOLOv4 (ours) 16.5% 6.3%

Table 5: Table showing the best results of our experiments
and the one reported in the paper

4.3. Comparison

As we can observe from table 5, our best experiments of both
Faster R-CNN and YOLO are not able to outperform the mean
average precision values reported in their respective papers.
Moreover, it seems that our best experiment with YOLO pro-
vided better results than our best experiment with Faster R-
CNN. We have to note, however, that YOLO trained for a
number of images equivalent to 140 epochs while Faster R-
CNN to just 110 epochs. If we look at the reported mAP
and IoU of epoch 110 of the YOLO experiment in figure
19 (b), we can observe comparable numbers. Our Faster R-
CNN achieved 15.2% mAP@50 and 6.9% mAP@75 while

our YOLO obtained 16.5% mAP@50 and 6.3% mAP@75. If
we look, instead, at the loss of each we can observe how the
trend is similar. They both have a constant decreasing trend
with minor spikes upwards.

Looking at the precision of the two models we employed,
we can see that they have comparable results. YOLO seems
to be better at classifying the found object with a 1.4% ad-
vantage versus Faster R-CNN if we use an IoU threshold of
50% while this last model performed better with a higher IoU
threshold of 75% resulting in a 0.6% increase in precision.
This may be due to two opposite factors: firstly, when spa-
tially locating an object, the corresponding feature on the fea-
ture map may be too small to survive the locating process;
secondly, YOLO uses a grid system to divide the images into
cells where the model performs object detection and location.
Due to this, the object we want to detect may be smaller than
the cell itself and the anchors and therefore the model’s head
may be overestimating the bounding boxes.

5. DISCUSSION

As we observed in the previous sections, all of the experi-
ments weren’t able to provide employable results. Some of

16

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Epochs

(a)

Loss
mAP
IoU

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Epochs

(b)

Loss
mAP
IoU

Fig. 13: Faster R-CNN: Result of training using Adam with a learning rate of 0.0001 and an untrained backbone. Training was
performed on balanced batches and (a) was evaluated on the train set while (b) on the test set.

the models were able to learn a rule on the train set but failed
applying the same rule on the data set. To understand why,
we mainly looked at two things: the Universal Lesion De-
tector presented in the data set paper and the detailed results
we obtained,comprising of number of false negatives and test
predictions.

First of all, with both Faster R-CNN and YOLO, we no-
ticed that there were a staggering amount of false negatives,
around 40% where the model wasn’t able to detect any lesion
at all. With Faster R-CNN we also observed how in some
of the examples the estimation of bounding boxes was prob-
lematic: sometimes, as in figure 20, the network was able to
correctly locate the lesion while slightly overestimating the
bounding box size while other times, as in figure 21, the net-
work failed to locate the issue while predicting a bounding
box double the size of the ground truth one.

Although, this was not always the case: in figures 22 and
23 we can observe how the model is able to correctly lo-
cate the lesions while predicting pretty tight bounding boxes.
These are, however, images from the train set, so this kind of
results was expected with these images.

If we look, instead, at inference on images taken from the
test set in figures 24 and 25 we can see an example of success
and one of missed detection. These images looks normal and,
at a first glance, they don’t give any insight. If we combine
this information with the number of false negatives the model
detected, we can provide an explanation. Throughout all the
epochs, the inference on the test set was able to only generate
bounding box predictions on 40% of the images in the last
epochs. After several epochs, if the model is still unable to

detect certain features, we could claim it could be an issue
with the feature map that gets generated since some features
seems to disappear before the later stages suggesting that the
size of the lesion is strongly influencing detection accuracy.

Secondly, the model presented in the paper is able to
achieve 80% accuracy with a 0.5 IoU threshold. Since the
actual neural network they used was a custom Faster R-CNN
implementation, we had to look at the modification made
to understand the huge gap between our results. One of the
changes that we think was fundamental is the removal of the
last two pooling layers of the VGG16 backbone. This allowed
for smaller features to be identified more easily since a bigger
feature map allowed smaller feature to not being pooled with
a bigger or stronger feature.

Furthermore, the substandard performances on the test set
may also suggest that the train set isn’t representative of the
data set. This is probably due to the high number of non-
detections given the small size of the different lesions. This
thesis is also supported by figure 19(b). In fact, as we in-
creased the network size during both training and detection,
therefor allowing smaller features to be brought forward with
shortcut connections , we observed how the mAP and the IoU
were able to achieve a more constant increase and better per-
formances. The IoU, however, also presented a more noisy
behaviour since it was moving around between 20% and 40%.

If we dwell into more detailed results, we can study the
confusion matrix relative to the last epoch of our best exper-
iment, the one with Adam and the pre-trained backbone. In
fact, in figure 26(a) we can observe the confusion matrix w.r.t.
the last epoch generated on the train set, while in figure 26(b)

17

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Epochs

(a)

Loss
mAP
IoU

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Epochs

(b)

Loss
mAP
IoU

Fig. 14: Faster R-CNN: Results of training using Adam with a learning rate of 0.0001 and a pre-trained backbone. Training
was performed with balanced batches and (a) was evaluated on the train set while (b) was evaluated on the test set.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Epochs

(a)

Loss
mAP
IoU

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Epochs

(b)

Loss
mAP
IoU

Fig. 15: Faster R-CNN: Results of training using Adam with a learning rate of 0.0001 and a pre-trained backbone. During
training, images were resized to 240x240px and data augmentation was used. Trained on balanced batched. (a) was evaluated
on the train set while (b) was evaluated on the test set.

we report the confusion matrix generated on the test set. We
can clearly notice how the diagonal on the train set looks more
sharp. Moreover, If we compare the distribution on the diag-
onal with the distribution of classes in figure 2 we can see a
resemblance: the classes displayed as 1 and 4 in figure 26(a)

are the ones with the most elements followed by class 2 and
three. This is not also present in figure 26(b) where class 1
has around 50% of the elements of class 4 instead of being
fairly similar. On the other hand, the confusion matrix evalu-
ated on the test set doesn’t look that sharp at all. The classes

18

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Epochs

(a)

Loss
mAP
IoU

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Epochs

(b)

Loss
mAP
IoU

Fig. 16: Faster R-CNN: Result of training using SGD with a learning rate of 0.00002 and an untrained backbone. Training was
performed on balanced batched and (a) was evaluated on the train set while (b) was evaluated on the test set.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Epochs

(a)

Loss
mAP
IoU

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Epochs

(b)

Loss
mAP
IoU

Fig. 17: Faster R-CNN: Result of training using SGD with a learning rate of 0.00002 and a pre-trained backbone. Training was
performed on balanced batches. (a) was evaluated on the train set while (b) was evaluated on the test set.

that are more difficult to detect are 0 and 5 since those are the
ones with the fewest elements and less elements imply less
data to utilize for learning. In fact, if we look closely we can
see how class 6 commits very few errors and therefore we can
say that the model has troubles finding this class at all. On the
other hand, if we look at class 0 we can see that half that class

gets correctly recognized but the other half gets mistaken as
class 4, which is a clear sign of overfitting on one of the most
predominant class. We can also understand why the model
overfits on this class instead of the other most predominant
classes: class 4 contains lung lesions while the other classes
represents mediastinum, liver and abdomen lesions. All three

19

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Epochs

(a)

Loss
mAP
IoU

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Epochs

(b)

Loss
mAP
IoU

Fig. 18: YOLOv4: 416x416 with standard anchors. Result of training with a learning rate of 0.001 on balanced batches. (a)
was evaluated on the train set while (b) was evaluated on the test set.

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Epochs

(a)

Loss
mAP
IoU

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Epochs

(b)

Loss
mAP
IoU

Fig. 19: YOLOv4: 869x869 with custom anchors. Result of training with a learning rate of 0.001 on balanced batches. (a) was
evaluated on the train set while (b) was evaluated on the test set.

kind of lesions are smaller than lung lesions since the medi-
astinum and liver are organs way smaller than the lungs and
abdomen lesions are small and sparse lesions. The difference
in size of the lesions, combined with the issue our model has
with small annotations, makes smaller lesions harder to detect
and learn showing the signs of overfitting.

We also investigated the size of the bounding boxes that
were predicted as displayed in table 6. As we can observe,

the model mostly predicted smaller bounding boxes with
a 53.92% rate versus the 46.78% of bigger bounding box
predictions. However, smaller bounding box were just 33%
smaller on average meanwhile the bigger bounding boxes
were two times as big with the biggest being forty-one times
bigger while the smallest was only around twenty times
smaller.

If we look at the predictions obtained with Faster R-

20

Percentage of predictions Mean ratio Median ratio Minimum ratio Maximum ratio

Bigger 46.78% 2.09 1.31 1.0003 41.48

Smaller 53.92% 0.67 0.74 0.056 0.99

Table 6: Table reporting information on the size of the bounding box predicted with YOLO[28] w.r.t. the ground truth boxes.
These values were obtained by first diving the area of each predicted bounding box with the corresponding ground truth box.

Percentage of predictions Mean ratio Median ratio Minimum ratio Maximum ratio

Bigger 60.84% 3.68 1.77 1.002 54.09

Smaller 39.15% 0.58 0.61 0.007 0.99

Table 7: Table reporting information on the size of the predicted bounding box with Faster R-CNN[21] w.r.t. the ground truth
boxes. These values were obtained by first diving the area of each predicted bounding box with the corresponding ground truth
box.

Fig. 20: Example of larger bounding box generation on a train
set image. The model in question was Faster R-CNN with
Adam as optimizer and a pre-trained backbone.

CNN[21] we can observe a small decrease in performances.
Faster R-CNN was able to obtain more prediction but a vast
majority consisted of false negatives. This is also evident in
table 7. In fact, of all the predictions made by Faster R-CNN,
60.84% were bigger than the ground truth one. We encounter
also an increase in the average bounding box that results to be
bigger more than three times and a half while the biggest pre-
diction is fifty-four times bigger. The values relatives to the
proposals that were smaller than the ground truth are mostly
comparable except for the smallest prediction which is now
around ten times smaller than the smallest YOLO prediction.

We can suppose that YOLO obtained better results due
to the changes the authors made with YOLOv3[29]. As
discussed also previously, the shortcut connections allows
smaller object, and therefore their ground truth boxes, to ap-
pear in a later stages feature map. Since this is not present
in our Faster R-CNN implementation, the smallest object our
models find are, therefore, bigger features that present bigger
bounding boxes.

Fig. 21: Example of larger bound box generation on a test set
image. The model in question was Faster R-CNN with Adam
as optimizer and a pre-trained backbone.

6. CONCLUSION

We discussed the technologies chosen for this task, Faster R-
CNN and YOLO, and the DeepLesion data set that has been
the focus of a series of experiments. We have tried to get
closer to the results obtained in [6] with their Universal Le-
sion Detector without modifying the internal structure of the
network but only by adjusting some parameters.

We have observed how this data set contains its own
unique challenges, such as presenting very small lesions and
being heavily imbalanced with bone lesions accounting for
slightly above 1% of total lesion while lung lesions were
around 25% of the whole data set.

While we were not able to recreate the same results the
authors obtained in the paper due to the uniqueness of this

21

Fig. 22: Example of correct detection and classification on a
train set image. Referenced experiment was Faster R-CNN
with Adam optimizer and pre-trained backbone

Fig. 23: Example of correct detection and classification on a
train set image. Referenced experiment was Faster R-CNN
with Adam optimizer and pre-trained backbone

data set, we were able to provide a plausible explanation of
what were the main issue met during this research experiment.

If we had more time on our hands, we would have tried
running another set of experiments with YOLO increasing
ever more the network resolution and observing if in the re-
sults the amount of false negatives would decrease or not.
Also, we also wanted to try and swap the Faster R-CNN back-
bone from ResNet50 to the original VGG16 without the last
two pooling layers, as mentioned in the data set paper. With
this last experiment, we would have wanted to observe what
impact the pooling layers have on the lesions detection.

Fig. 24: Example of correct detection and classification on
a test set image. Referenced experiment was Faster R-CNN
with Adam optimizer and pre-trained backbone

Fig. 25: Example of correct detection and classification on
a test set image. Referenced experiment was Faster R-CNN
with Adam optimizer and pre-trained backbone

7. REFERENCES

[1] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth,
Jie Chen, Xinwang Liu, and Matti Pietikäinen, “Deep
learning for generic object detection: A survey,” Inter-
national journal of computer vision, vol. 128, no. 2, pp.
261–318, 2020.

[2] Stamatia Dasiopoulou, Vasileios Mezaris, Ioannis Kom-
patsiaris, V-K Papastathis, and Michael G Strintzis,
“Knowledge-assisted semantic video object detection,”
IEEE Transactions on Circuits and Systems for Video
Technology, vol. 15, no. 10, pp. 1210–1224, 2005.

[3] Abdul Mueed Hafiz and Ghulam Mohiuddin Bhat, “A

22

(a) Train set confusion (b) Test set confusion

Fig. 26: Confusion matrix w.r.t Faster R-CNN trained with a pre-trained backbone, Adam and balanced batches.

survey on instance segmentation: state of the art,” Inter-
national Journal of Multimedia Information Retrieval,
pp. 1–19, 2020.

[4] Z. Zhao, P. Zheng, S. Xu, and X. Wu, “Object detection
with deep learning: A review,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 30, no. 11,
pp. 3212–3232, 2019.

[5] Zhuoling Li, Minghui Dong, Shiping Wen, Xiang Hu,
Pan Zhou, and Zhigang Zeng, “Clu-cnns: Object de-
tection for medical images,” Neurocomputing, vol. 350,
pp. 53 – 59, 2019.

[6] Ke Yan, Xiaosong Wang, Le Lu, and Ronald M. Sum-
mers, “DeepLesion: automated mining of large-scale
lesion annotations and universal lesion detection with
deep learning,” Journal of Medical Imaging, vol. 5, no.
3, pp. 1 – 11, 2018.

[7] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu,
Mohammadhadi Bagheri, and Ronald M Summers,
“Chestx-ray8: Hospital-scale chest x-ray database and
benchmarks on weakly-supervised classification and lo-
calization of common thorax diseases,” in Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 2097–2106.

[8] Yoav Freund and Robert E Schapire, “A decision-
theoretic generalization of on-line learning and an ap-
plication to boosting,” Journal of Computer and System
Sciences, vol. 55, no. 1, pp. 119 – 139, 1997.

[9] Yoav Freund, “Data filtering and distribution modeling
algorithms for maching learning (ph. d. thesis),” 1993.

[10] Robert E Schapire, “The strength of weak learnability,”
Machine learning, vol. 5, no. 2, pp. 197–227, 1990.

[11] Paul Viola and Michael Jones, “Rapid object detection
using a boosted cascade of simple features,” 2001.

[12] David G Lowe, “Object recognition from local scale-
invariant features,” in Proceedings of the seventh
IEEE international conference on computer vision. Ieee,
1999, vol. 2, pp. 1150–1157.

[13] B. Sirmacek and C. Unsalan, “Urban-area and building
detection using sift keypoints and graph theory,” IEEE
Transactions on Geoscience and Remote Sensing, vol.
47, no. 4, pp. 1156–1167, 2009.

[14] Robert K. McConnell, “Us4567610a,” https://
patents.google.com/patent/US4567610,
1986.

[15] Navneet Dalal and Bill Triggs, “Histograms of oriented
gradients for human detection,” in 2005 IEEE com-
puter society conference on computer vision and pattern
recognition (CVPR’05). IEEE, 2005, vol. 1, pp. 886–
893.

[16] Corinna Cortes and Vladimir Vapnik, “Support-vector
networks,” Machine learning, vol. 20, no. 3, pp. 273–
297, 1995.

[17] G. Azzopardi and N. Petkov, “Trainable cosfire filters
for keypoint detection and pattern recognition,” IEEE

23

https://patents.google.com/patent/US4567610
https://patents.google.com/patent/US4567610

Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 35, no. 2, pp. 490–503, 2013.

[18] John G Daugman, “Uncertainty relation for resolution
in space, spatial frequency, and orientation optimized by
two-dimensional visual cortical filters,” JOSA A, vol. 2,
no. 7, pp. 1160–1169, 1985.

[19] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei, “ImageNet Large Scale Vi-
sual Recognition Challenge,” International Journal of
Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252,
2015.

[20] Koen EA Van de Sande, Jasper RR Uijlings, Theo Gev-
ers, and Arnold WM Smeulders, “Segmentation as se-
lective search for object recognition,” in 2011 Interna-
tional Conference on Computer Vision. IEEE, 2011, pp.
1879–1886.

[21] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks,” 2015.

[22] Ross Girshick, “Fast r-cnn,” 2015.

[23] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” in International Conference on Learning Repre-
sentations, 2015.

[24] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jiten-
dra Malik, “Rich feature hierarchies for accurate object
detection and semantic segmentation,” in Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[25] Dan Ciresan, Alessandro Giusti, Luca M Gambardella,
and Jürgen Schmidhuber, “Deep neural networks seg-
ment neuronal membranes in electron microscopy im-
ages,” in Advances in neural information processing
systems, 2012, pp. 2843–2851.

[26] Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-net: Convolutional networks for biomedical image
segmentation,” 2015.

[27] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.
Berg, “Ssd: Single shot multibox detector,” Lecture
Notes in Computer Science, p. 21–37, 2016.

[28] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao, “Yolov4: Optimal speed and accuracy
of object detection,” 2020.

[29] Joseph Redmon and Ali Farhadi, “Yolov3: An incre-
mental improvement,” 2018.

[30] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi, “You only look once: Unified, real-time
object detection,” 2015.

[31] Joseph Redmon and Ali Farhadi, “Yolo9000: Bet-
ter, faster, stronger,” arXiv preprint arXiv:1612.08242,
2016.

[32] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua
Wu, Ping-Yang Chen, Jun-Wei Hsieh, and I-Hau Yeh,
“Cspnet: A new backbone that can enhance learning
capability of cnn,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion Workshops, 2020, pp. 390–391.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Spatial pyramid pooling in deep convolutional
networks for visual recognition,” IEEE transactions on
pattern analysis and machine intelligence, vol. 37, no.
9, pp. 1904–1916, 2015.

[34] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya
Jia, “Path aggregation network for instance segmenta-
tion,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

[35] Marc D Kohli, Ronald M Summers, and J Raymond
Geis, “Medical image data and datasets in the era of
machine learning—whitepaper from the 2016 c-mimi
meeting dataset session,” Journal of digital imaging,
vol. 30, no. 4, pp. 392–399, 2017.

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei, “Imagenet large scale visual
recognition challenge,” 2014.

[37] “Drive: Digital retinal images for vessel extraction,” .

[38] Xingyi Yang, Xuehai He, Jinyu Zhao, Yichen Zhang,
Shanghang Zhang, and Pengtao Xie, “Covid-ct-dataset:
A ct scan dataset about covid-19,” 2020.

[39] Mark Everingham, Luc Gool, Christopher K. Williams,
John Winn, and Andrew Zisserman, “The pascal visual
object classes (voc) challenge,” Int. J. Comput. Vision,
vol. 88, no. 2, pp. 303–338, June 2010.

[40] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona,
Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár,
“Microsoft coco: Common objects in context,” 2014.

24

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[42] Josef Sivic and Andrew Zisserman, “Video google: A
text retrieval approach to object matching in videos,” in
null. IEEE, 2003, p. 1470.

[43] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie, “Feature pyra-
mid networks for object detection,” in Proceedings of
the IEEE conference on computer vision and pattern
recognition, 2017, pp. 2117–2125.

[44] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick, “Mask r-cnn,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp.
2961–2969.

[45] Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rong-
guang Ye, and Dongwei Ren, “Distance-iou loss: Faster
and better learning for bounding box regression.,” in
AAAI, 2020, pp. 12993–13000.

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala, “Pytorch: An imperative
style, high-performance deep learning library,” in Ad-
vances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-
Buc, E. Fox, and R. Garnett, Eds., pp. 8024–8035. Cur-
ran Associates, Inc., 2019.

[47] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[48] Herbert E. Robbins, “A stochastic approximation
method,” Annals of Mathematical Statistics, vol. 22, pp.
400–407, 2007.

[49] Diederik P. Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization,” 2014.

[50] John Duchi, Elad Hazan, and Yoram Singer, “Adaptive
subgradient methods for online learning and stochastic
optimization,” Journal of Machine Learning Research,
vol. 12, no. 61, pp. 2121–2159, 2011.

[51] Alex Graves, “Generating sequences with recurrent neu-
ral networks,” arXiv preprint arXiv:1308.0850, 2013.

25

	 Introduction
	 Previous work
	 Medical data sets for computer vision
	 Motivation

	 Methodology
	 Data set
	 Convolutional neural networks
	 Object detection using CNNs
	 Faster R-CNN
	 YOLO

	 Experimental framework
	 Faster R-CNN
	 Optimizers
	 Data balancing
	 Data augmentation

	 YOLO
	 Evaluation protocol
	 Mean average precision
	 Intersection over union
	 Evaluation procedure

	 Results
	 Faster R-CNN
	 YOLO
	 Comparison

	 Discussion
	 Conclusion
	 References

