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1 Introduction

In statistical physics one often deals with questions like: “Assume that some liquid is
poured on top of some porous material. Will the liquid be able to make its way from hole
to hole and reach the bottom?”. A commonly used strategy to solve such problems, is to
introduce mathematical models that describe the physical problem in a useful yet simple
way. In this case the problem can be modelled mathematically as a three-dimensional
network of n×n×n vertices, usually called sites. The edges, often referred to as bonds,
between two neighbouring sites may be open or closed. The open bonds let the liquid
flow through, whereas the closed bonds block the path of the liquid. Consider a system
where each edge is declared open with probability p, and closed with probability 1− p.
A natural question then is, for a given p, what is the probability that there exists an
open path from the top to the bottom? This problem is referred to as bond percolation,
and was introduced in mathematical literature by Broadbent and Hammersley [2] in
1957. The problem has been studied intensively by many mathematicians and physicists
since then. In a slightly different model, known as site percolation, sites are occupied
or empty. If a site is empty, all edges incident to the site are closed. Now consider a
system where sites are occupied with probability p, and empty with probability 1 − p.
In this case, one is still interested in the probability that there exists an open path from
the top to the bottom.

These percolation models can be extended to any lattice, or in fact any graph. Instead
of considering a three-dimensional network of n× n× n vertices, mathematicians often
study the d-dimensional lattice Zd. In this case, one is interested in the existence of an
infinite open cluster, so that there is a path of connected points of infinite length in the
network. Another modification that can be made lies in the way sites (edges for bond
percolation) are declared occupied (closed). Classically the sites are declared occupied
independently, all with probability p. For the classical percolation models it has been
shown that there exists a critical value pc so that for p < pc, there almost surely does
not exist an infinite open cluster, and for p > pc, there almost surely exists an infinite
open cluster [2]. Furthermore, it has been shown that in the supercritical case, that is
p > pc, the infinite open cluster is almost surely unique [3].

Interacting particle systems are Markov-processes describing the behaviour of stochas-
tically interacting components. Examples of interacting particle systems are the voter
model, the contact process, the asymmetric simple exclusion process (ASEP), the Glauber
dynamics and the stochastic Ising model. This paper considers a percolation procedure
that is not produced by making independent and identically distributed decisions on
what to declare occupied. Rather, it is made from a highly correlated field on Zd, which
is given by stationary distributions of the voter model and the contact process.

The voter model is an interacting particle system that serves as a rough model for
changes of opinions among social agents. One can imagine that there is a “voter” at
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each vertex of a connected graph, where the connections indicate that some form of
interaction between a pair of voters. The opinions of any given voter changes at random
times under the influence of opinions of their neighbours. A voter’s opinion at any given
time can take one of two values, labelled 0 and 1. At random times, a random individual
is selected and that voter’s opinion is changed according to a stochastic rule. In case
the connected graph is the usual nearest-neighbour lattice on Zd, it has been shown that
the set of extremal stationary distributions of the process is given by {µα : α ∈ [0, 1]}
[8] . Here the measures µα are defined as the distributional limit as time is taken to
infinity of the voter model with the random initial configuration in which the states of
all sites are independent and Bernoulli(α). Problems involving the voter model are often
reformulated in terms of the dual system of coalescing random walks. The measures µα
be expressed in terms of the law of such a system as well.

The contact process is an interacting particle system that serves as a rough model for
the spread of a infectious disease among social agents. One can imagine that there is an
agent at each vertex of a connected graph, where the connections indicate that some form
of interaction between a pair of agents. The healthy agents become infected at a rate
proportional to the number of infected neighbours, while infected agents become healthy
at a constant rate. Therefore, if we denote by λ the proportionality constant, each agent
remains infected for a random time period which is exponentially distributed parameter
1 and infects neighbouring agents at times of events of a Poisson process parameter λ
during this period. All processes are independent of one another and of the random
period of time sites remains occupied. One can define the upper invariant measure µλ
as the distributional limit of the contact process started from an initial configuration
in which every agent is infected. The set of measures {µλ : λ ∈ (0,∞)} can more
easily be found using the self-duality of the contact process, which relates the process
started from an initial configuration in which every agent is infected to a contact pro-
cess started from an initial configuration in which only the agent at the origin is infected.

One can wonder whether vital results for independent percolation still hold in case we
consider the measures µα or µλ instead of the measures associated to a product Bernoulli
distribution on Zd. In 1985 it was already known that the contact process exhibits a
non-trivial phase-transition [8]. That is, there exists a critical value λc so that for λ < λc,
there almost surely does not exist an infinite open cluster, and for λ > λc, there almost
surely exists an infinite open cluster. Recently, Valesin and Ráth have shown that for
d ≥ 5 there exists a phase transition for percolation on the stationary distributions
of the voter model [11]. That is there exists a critical value αc so that for α < αc,
there almost surely does not exist an infinite open cluster, and for α > αc, there almost
surely exists an infinite open cluster. In this paper, we will study percolation on the
stationary distributions of the voter model and the contact process. In particular it will
be shown that in the supercritical phase, the infinite open cluster is almost surely unique.
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1.1 Overview of Markov processes and transition kernels

In this section, a brief overview of Markov processes and transition kernels will be given.
A complete overview can be found in [12].

Definition 1.1. Let (Ω,F ,P) be a probability space and (E, E) a measurable space. A
stochastic process is a family X = (Xt)t∈I of random elements Xt : Ω→ E, for t in some
set I.

In case I ⊆ N the family X is called a discrete-time process, in case I is an interval in
R, X is called a continuous-time process. If the set I consists of the non-negative real
numbers, it is customary to write (Xt)t≥0 for such a process. It will be useful to have a
notion of the distribution of a process.

Definition 1.2. Let X = (Xt)t∈I be a stochastic process taking values in some measur-
able space (E, E). For each n ∈ N and each n-tuple (t1, . . . , tn) of distinct elements of I,
the distribution of (Xt1 , . . . , Xtn) is a probability measure on (En, En), given by:

µ(Xt1 ,...,Xtn)(A) = P ((Xt1 , . . . , Xtn) ∈ A) where A ∈ En.

The set of all measures of this form is called the set of finite-dimensional distributions
of the process X.

An interesting property is the evolution of the process through time, also known as the
trajectories of the process.

Definition 1.3. Let (Ω,F ,P) be a probability space, where we have a stochastic process
X = (Xt)t≥0 taking values in some measurable set (E, E). The trajectories of the process
are the functions

t→ Xt(ω) for ω ∈ Ω

Often-times Markov processes are defined in terms of their transition kernels.

Definition 1.4. Let (E1, E1) and (E2, E2) be measurable spaces. A probability kernel
from the first space to the second is a function K : E1 × E2 → [0, 1] such that

• for each x ∈ E1, the function A→ K(x,A) is a probability measure on E2.

• for each A ∈ E2, the function x→ K(x,A) is measurable function with respect to
E1.

In case (E1, E1) = (E2, E2) = (E, E), we simply say that K is a probability kernel on
(E, E).

Given a probability kernel K and a bounded and measurable function f : E2 → R, define
Kf : E1 → R by

(Kf) (x) =

∫
E2

f(y)K(x,dy)
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It can be shown that Kf is measurable with respect to E1. Additionally, if µ is a
probability measure on E1, define µK : E2 → [0, 1] by

(µK) (A) =

∫
E1

K(x,A)µ(dx)

Note that this gives a probability measure on E2. Finally, given a probability kernel K1

from (E1, E1) to (E2, E2) and a probability kernel K2 from (E2, E2) to (E3, E3), define
K1K2 : E1 × E3 → [0, 1] by

K1K2(x,A) =

∫
E2

K2(y,A)K1(x,dy).

It is then easy to check that K1K2 defines a probability kernel.

Definition 1.5. A Markov semi-group on a measurable space (E, E) is a family (Pt)t≥0

of probability kernels on (E, E) satisfying

PtPs = Pt+s for all s, t ≥ 0. (1)

and
lim
t↓0

Pt = P0 = 1.

Equation (1) is often referred to as the Chapman-Kolmogorov equation.

Definition 1.6. A filtration on a probability space (Ω,F ,P) is a family of σ-algebras
(Ft)t≥0 such that

Ft ⊆ F and Fs ⊆ Ft for all 0 ≤ s ≤ t.

The structure (Ω,F , (Ft)t≥0 ,P) is called a filtered probability space. A process (Xt)t≥0

is said to be adapted to the filtration if

Xt is Ft −measurable for all t ≥ 0.

Intuitively, a process X = (Xt)t≥0 is a Markov process if, to make a prediction at time
s on what is going to happen to the process in the future, it is useless to know anything
more about the whole past up to time s than the present state Xs. Mathematically this
is represented as follows.

Definition 1.7. Let (Ω,F , (Ft)t≥0 ,P) be a filtered probability space, X = (Xt)t≥0 an
adapted process taking values in (E, E), and (Pt)t≥0 a Markov semi-group in (E, E). The
process X is called a Markov process with respect to (Ft)t≥0 with semi-group (Pt)t≥0 if,
for any bounded and measurable function f : E → R and any s < t,

E (f(Xt)|Fs) = Pt−s(Xs) P− almost surely

The probability measure given by the distribution of X0, that is,

µ(A) = P(X0 ∈ A), for A ∈ B(R)

is called the initial distribution of X.
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1.1.1 Examples of Markov processes

The definitions in section 1.1 allow for the formal construction of some important exam-
ples of Markov processes.

Example 1.8 (Discrete-time simple random walk on Zd). Let ei denote the unit vector
in the i-th direction, and define a random element W : Ω→ Rd by

P (W = ei) = P (W = −ei) =
1

2d
for all i ∈ {1, . . . , d}. (2)

Let W1,W2, . . . be an independent and identically distributed sequence of random el-
ements, all with distribution as specified in equation (2). Finally define a stochastic
process Z = (Zn)n∈N by

Z0 = ~0 and for each n ∈ N, Zn =
n∑
i=1

Wi.

The process Z is called a discrete-time simple random walk on Zd. It can be seen that
Z is a Markov process with semi-group (Pn)n∈N defined by

P1(x, y) =
1

2d
for all x, y ∈ Zd such that ||x− y||1 = 1. (3)

To find Pn one can iteratively use

Pn(x, y) =
∑
z∈Zd

Pn−1(x, z)P1(z, y)

With a discrete-time process in mind, one can define a continuous-time analogue. In this
case, the discrete-time process will be used as sequence of states to visit, and another
sequence U1, U2, . . . will be used as holding times. Let c : Zd → [0,∞) be a function
and Ui ∼ Exp(c(Zi)) (with the convention that Exp(0) represents the distribution of a
random variable that is identically equal to ∞). Given a discrete-time process (Zn)n∈N,
the continuous-time analogue (Xt)t≥0 is defined by

Xt = Zi for i ∈ [Ti, Ti+1) where Ti =
n∑
j=1

Uj for each i ∈ {1, 2, . . . }. (4)

Note that in order for the process X to be a Markov process, the random variables
U1, U2, . . . need to be independent and their distributions should have the memoryless
property, whence the exponential distribution. Note that the holding times may depend
on the state of the process through the function c. Formally there are some requirements
to ensure the continuous-time process is properly defined, however these conditions will
not be discussed here. A complete overview can be found in [12].
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Example 1.9. [Continuous-time simple random walk on Zd] Let (Zn)n∈N be a discrete-
time simple random walk as defined in example 1.8. Let c(x) = 1 for all x ∈ Zd, that
is independently of the state, U1, U2, · · · ∼ Exp(1). Define the process (Xt)t≥0 as in
equation (4). This process is referred to as a continuous-time simple random walk on
Zd. Since the exponential distribution is memoryless, the process X is a Markov process.
It can be shown that the Markov semi-group (Pt)t≥0 associated to X is defined by

Pt = etQ, where Q(x, y) = P1(x, y)− 1{x=y}(x, y).

Here P1 is the one-step transition kernel of the discrete-time process as given in equation
(3).
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2 Interacting particle systems

Let S be a finite set, Λ be a countable set, and E ⊂ Λ×Λ be the unordered edge set of
the graph (Λ, E). As usual, SΛ denotes the Cartesian product of Λ copies of S, i.e. all
elements η ∈ SΛ are of the form

η = (η(x))x∈Λ where η(x) ∈ S for all x ∈ Λ.

Interacting particle systems are continuous-time Markov processes H = (Ht)t≥0 with a

state space of the form SΛ endowed with the Borel-σ-field on the product topology of
S, that are defined in terms of maps from Λ to S. That is, (Ht)t≥0 is a Markov process
such that at each time t ≥ 0,

Ht = (Ht(x))x∈Λ where Ht(x) ∈ S for all x ∈ Λ.

Ht(x) is often referred to as the local state of H at time t and position x. The set S is
called the local state space, and Λ is called the lattice. The evolution of a continuous-
time Markov process is often characterised by its generator G. A generator is an operator
acting on functions from the state space SΛ to the real line. If the lattice Λ is finite, the
generator is given by,

Gf(η) = lim
t→0

Ptf(η)− f(η)

t
where Ptf(η) =

∑
ξ∈SΛ

Pt(η, ξ)f(η).

Here (Pt)t≥0 denotes the Markov semi-group of the process. For interacting particle
systems the generator takes the form

Gf(η) =
∑
m∈G

rm (f(m(η))− f(η)) ,

where G is a set of local maps m : SΛ → SΛ that affect finitely many coordinates, and
(rm)m∈G is a collection of non-negative constants called rates, that describe with which
Poisson intensity the local map m should be applied to Ht.

In the following subsections, formal constructions of interacting particle systems will be
given using generators as well as Poisson point processes. Sections 2.1, 2.2, and 2.3 are
based on Chapter 2 from “A course in interacting particle systems” by J.M. Swart [13].

2.1 Examples of interacting particle systems

2.1.1 The voter model

For each x, y ∈ Λ the voter model map votxy : SΛ → SΛ is defined as

votxy(η) = η′ where η′(z) =

{
η(x) if z = y

η(z) if z 6= y
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Applying votxy to a configuration η has as result that the local state of site x is copied
onto site y. The generator for the nearest neighbour voter model on Λ is given by

Gvotf(η) =
∑

(x,y)∈E

1

|Ny|
[f(votxy(η))− f(η)] . (5)

Here E denotes the set of all ordered pairs (x, y) that correspond to an edge. That is

E := {(x, y) : {x, y} ∈ E},

where E is the edge set corresponding to the lattice Λ. The set Ny denotes the neigh-
bourhood of the vertex y, and is defined by

Ny := {x ∈ Λ : {x, y} ∈ E}.

The interpretation that has given the voter model its name describes the spread of
opinions among a population. In this case, with rate one, an individual (site) becomes
unsure what their opinion is, and asks for a randomly chosen neighbour to copy their
opinion.

2.1.2 The contact process

The contact process is an interacting particle system with local state space S = {0, 1}.
The process can be seen as a model for the spread of an infection. In this interpretation
sites with local state 1 are said to be infected, whereas sites with local state 0 are said
to be healthy. The dynamics of the contact process can be defined using two collections
of maps. Firstly, for each x, y ∈ Λ define an transmission map traxy : {0, 1}Λ → {0, 1}Λ
as

traxy(η) = η′ where η′(z) =

{
max{η(x), η(y)} if z = y

η(z) if z 6= y

For each x ∈ Λ define a healing map heax : {0, 1}Λ → {0, 1}Λ as

heax(η) = η′ where η′(z) =

{
0 if z = x

η(z) if z 6= x

It can be seen that if site x is infected prior to the application of the map traxy, the
site y will also be infected after applying traxy. The map heax can be seen as a healing
potion for site x. That is, independent of the local state at x prior to applying heax,
after the application of heax, the local state at x will be healthy. The generator for the
nearest neighbour contact process on Λ with infection rate λ ≥ 0 and healing rate δ ≥ 0
is given by

Gf(η) = λ
∑

(x,y)∈E

[f(traxy(η))− f(η)] + δ
∑
x∈Λ

[f(heax(η))− f(η)] .

9



Note that the ratio between λ and δ determines the behaviour of the process. Therefore
the generator in the equation above is often reformulated with δ = 1. That is,

Gcontf(η) = λ
∑

(x,y)∈E

[f(traxy(η))− f(η)] +
∑
x∈Λ

[f(heax(η))− f(η)] . (6)

The formal construction of interacting particle systems as given above is not easy to deal
with mathematically. Fortunately both systems can equivalently be defined in terms of
Poisson point processes, which are better known objects.

2.2 Poisson point sets

Let (Ω,F ,P) be a probability space, and S = R×Λ be a state space. Furthermore let S
denote the Borel-σ-field on the product topology of S. A locally finite measure on (S,S)
is a measure µ such that µ (C) <∞ for all compact sets C ∈ S. A random measure on S
is a function ξ : Ω×S → [0,∞] such that for fixed ω ∈ Ω, the function ξ (ω, ·) is a locally
finite measure on (S,S), and for fixed A ∈ S, the function ξ (·, A) is measurable. Note
that for all measurable functions f : S → [0,∞], the integral

∫
f dξ defines a random

variable. It can be seen that there exists a unique measure ν so that∫
S
f(s) dν(s) = E

(∫
f dξ

)
=

∫
Ω

∫
S
f(s) dξ (ω, s) dP(ω).

The measure ν is often denoted by E (ξ) and is called the intensity of ξ. Let Ŝ denote
the set of measurable sets A such that the closure of A is compact.

Proposition 2.1. Let µ be a locally finite measure on (S,S). Then there exists a random
measure ξ, unique in distribution, such that for any disjoint A1, . . . , An ∈ Ŝ, the random
variables ξ (A1) , . . . , ξ (An) are independent and ξ (Ai) is Poisson distributed with mean
µ (Ai).

Proof. The result follows from combining Lemma 10.1 and Proposition 10.4 in “Foun-
dations of modern probability” by Olav Kallenberg [6].

The random measure ξ as in proposition 2.1 is called a Poisson point measure with
intensity µ. Note that for each ω ∈ Ω, ξ (ω,A) ∈ N for each A ∈ Ŝ. Therefore for each
ω ∈ Ω, ξ (ω, ) is a locally finite counting measure. Note that each locally finite counting
measure is of the form

ν =
∑

x∈supp(ν)

nxδx. (7)

Here supp(ν) denotes the support of the measure ν, which is a locally finite subset of S.
nx are positive integers and δx denotes the measure giving density one to x.

Definition 2.2. Let ν be a counting measure. Then ν is said to be simple if nx = 1 for
all x ∈ supp(ν) in equation (7).
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A measure µ has an atom at x if µ({x}) > 0. The measure is called atomless if it has
no atoms. The aforementioned Proposition 10.4 in [6] shows the following.

Lemma 2.3. Let ξ be a Poisson point measure with locally finite intensity µ. Then ξ is
almost surely simple if and only if µ is atomless.

Lemma 2.3 implies that if µ is atomless, the Poisson point measure ξ with intensity µ
is completely characterised by its support D = supp(ξ). The set D is a random set and
is called a Poisson point set with intensity µ. The following lemma shows that Poisson
point sets on the half-line can be constructed using exponentially distributed random
variables.

Lemma 2.4. Let (τk)k∈N0
be real-valued random variables such that τ0 = 0 and σk =

τk − τk−1 > 0 for k ≥ 1. Then D = {τk : k ≥ 1} is a Poisson point set on [0,∞)
with intensity c` if and only if the random variables (σk)k∈N are i.i.d. exponentially
distributed with mean c−1.

Proof. See Lemma 10.17 from [6].

Note that Lemma 2.4 provides a connection between Poisson point sets and the continuous-
time simple random walk as defined in example 1.9.

2.3 Poisson construction of interacting particle systems

Recall that interacting particle systems are Markov processes on a state space of the
form SΛ where S is a finite set. In this subsection a Poisson construction of interacting
particle systems will be given in case Λ is finite too. In this case, it is known that SΛ is
a finite state space. Conditions under which interacting particle systems with countable
possibly infinite lattices can be defined in terms of Poisson point sets will also be given.

Assume Λ is finite, denote by G a set whose elements are maps m : SΛ → SΛ, and
let (rm)m∈G be non-negative constants. In addition, consider the measurable space
(G × R, σ ({{m} : m ∈ G})⊗ B (R)), and equip it with the measure defined by

ρ ({m} ×A) = rm` (A) for A ∈ B(R).

Let D be a Poisson point set with intensity measure ρ. It can be seen that ν =∑
(m,t)∈D δt is a Poisson point measure on R with intensity r`, where r =

∑
m∈G rm.

Since the Lebesgue measure ` is atomless, the Poisson point measure ν is simple by
lemma 2.3. That is, for each t ∈ R there exists at most one map m such that (m, t) ∈ D.
If r <∞, the Poisson point measure ν is locally finite as well. Then, the set

Ds,u = {(m, t) ∈ D : t ∈ (s, u]}

can be ordered as

Ds,u = {(m1, t1), . . . , (mn, tn)} with t1 < · · · < tn.

11



The ordering of maps can be used to define a collection of random maps (Xs,u)s≤u by

Xs,u = mn ◦ · · · ◦m1.

In case the set Ds,u is empty, define Xs,u to be the identity map. It can be seen that

lim
t↓s

Xs,t = Xs,s
a.s.
= id.

Furthermore, for any real numbers s ≤ t ≤ u,

Xt,u ◦Xs,t = Xs,u.

That is, the collection of maps (Xs,t)s≤t is a stochastic flow. It can be seen that by defi-
nition, Xs,t is right-continuous in both s and t. Furthermore, (Xs,t)s≤t has independent
increments.

Proposition 2.5. Let (Xs,t)s≤t be a stochastic flow associated to a Poisson point set

D. Let H0 be an SΛ-valued random variable, independent of D. Then,

Ht = X0,t(H0) for t ≥ 0 (8)

defines a Markov process H = (Ht)t≥0 with generator

Gf(η) =
∑
m∈G

rm [f(m(η))− f(η)] .

Proof. Since SΛ is finite one can define,

Pt(η, η
′) = P

(
Xs,s+t(η) = η′

)
for t ≥ 0.

Since the law of the Poisson point set D is invariant under translations in time, the defi-
nition of Pt does not depend on s ∈ R. Using that (Xs,t)s≤t has independent increments
and H0 is independent of D, it can be seen that the finite-dimensional distributions of
H satisfy, for each sequence t0 = 0 < t1 < · · · < tn,

P (H0 = η0, . . . ,Htn = ηn) = P (H0 = η0)Pt1(η0, η1) · · ·Ptn−tn−1(ηn−1, ηn)

In other words, the stochastic process (Ht)t≥0 is a Markov process with semi-group
(Pt)t≥0. By the properties of the Poisson point set,

P (|D0,t| ≥ 2) = O(t2) as t ↓ 0

Furthermore,

P (D0,t = {(m, s)} for some s ∈ (0, t]) = rmt+O(t2) as t ↓ 0.

Combining these observations, it follows that for any f : SΛ → R, as t ↓ 0,

Ptf(η) = E (f(X0,t(η))) = f(η) + t
∑
m∈G

rm (f(m(η))− f(η)) +O(t2).
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This shows that,∑
m∈G

rm (f(m(η))− f(η)) = lim
t→0

Ptf(η)− f(η)

t
= Gf(η).

Therefore, the Markov process defined by equation (8) has the generator,

Gf(η) =
∑
m∈G

rm (f(m(η))− f(η)) .

Note that the theory provided relies on the finiteness of the lattice Λ. Under some
conditions, the theory can be extended to infinite lattices. A brief summary will be
given here. For full details please consult section 4.3 of “A course in interacting particle
systems” by J. M. Swart [13]. Consider processes whose generator can be represented
in terms of local maps, i.e., maps that change the local state of finitely many sites only,
using only information about finitely many sites. For any map m : SΛ → SΛ let

D(m) := {x ∈ Λ : There exists η ∈ SΛ s.t. m(η)(x) 6= η(x)}

denote the set of lattice points whose values can possibly be changed by m. A point
y ∈ Λ is said to be m-relevant for some x ∈ Λ if there exist η, η′ ∈ SΛ such that

m(η)(x) 6= m(η′)(y) and η(z) = η′(z) for all z 6= y,

i.e., changing the value of η in y may change the value of m(η) in x. For x ∈ Λ, define

Rx(m) := {y ∈ Λ : y is m− relevant for x}.

Observe that if x /∈ D(m), then m(η)(x) = η(x) for all x ∈ Λ, and hence

Rx(m) = {x} if x /∈ D(m).

Definition 2.6. A map m : SΛ → SΛ is said to be local if it satisfies the following three
conditions.

1. D(m) is finite

2. Rx(m) is finite for all x ∈ Λ

3. For each x ∈ Λ, if η(y) = η′(y) for all y ∈ Rx(m), then m(η)(x) = m(η′)(y).

Note that it is possible that D(m) is non-empty but Rx(m) = ∅ for all x ∈ D(m). The
following theorem gives sufficient conditions under which the Poisson point construction
of interacting particle systems holds for countably infinite lattices.

13



Theorem 2.7. Let G be a countable set whose elements are local maps m : SΛ → SΛ,
let (rm)m∈G be non-negative constants satisfying

sup
x∈Λ

∑
m∈G

rm (|Rx(m)|+ 1) · 1D(m)(x) <∞,

and let D be a Poisson point set on G × R with intensity rmdt. Then, for each η ∈ SΛ

and s ≤ u, the pointwise limit

Xs,u(η) := lim
D̄n↑Ds,u

XD̄n
s,u (η)

exists a.s. and does not depend on the choice of the finite sets D̄n ↑ Ds,u. If H0 is an
SΛ-valued random variable, independent of D, then

Ht := X0,t(H0) for t ≥ 0

defines a Feller process with semi-group (Pt)t≥0 given by

Pt (η, ·) := P (X0,t(η) ∈ ·) for η ∈ SΛ and t ≥ 0.

Proof. See Theorem 4.14 from “A course in interacting particle systems” by J.M. Swart
[13].

2.3.1 Poisson construction of the voter model

Recall that the generator of the voter model is given by equation (5). That is, each map
votxy is applied with Poisson intensity 1

|Ny | . Note that the maps votxy are local as

D(votxy) = {y} and Ry(votxy) = {x},

since only the local state at y changes, and it suffices to know the type at x to predict the
new local state of y. For each (x, y) ∈ E , let Dx,y be a Poisson point set on {votxy} ×R
with intensity ρ given by

ρ ({votxy} ×A) =
1

|Ny|
`(A) for all A ∈ B (R) .

Note that Dx,y contains all the times that the local state of x is copied onto y. Let
Λ1 ⊂ Λ2 ⊂ . . . be an increasing sequence of sub-lattices of Λ such that Λn ↑ Λ. Then,
let

D̄n =
⋃

(x,y)∈En

Dx,y,

where En denotes the ordered edge set induced by the sub-lattice Λn. It can be seen
that D̄n ↑ D = ∪(x,y)∈ED

x,y. Theorem 2.7 guarantees that the point-wise limit of the
stochastic flow associated to D̄n exists and defines a Feller process. A visual representa-
tion of the Poisson construction of the voter model is given in figure 1. In this figure, an

14



Λ

TIME

η0 : 0 1 1 1 0 0 1 1 0

TIME = t

Figure 1: Poisson point set construction of the voter model on {0, 1}Λ given initial
configuration η0. Local state 0 is represented in black and local state 1 in red.

arrow from x to y should be interpreted as the local state of x is copied onto y, or equiv-
alently applying the map votxy. Given an initial configuration η0, one can determine
the configuration for any time t by following the arrows; i.e. the process is completely
determined by the collection of Poisson point sets (Dx,y)(x,y)∈E .

The local state of a vertex x at time t can be traced back to the initial configuration by
following the process in the reverse-time direction. That is, one follows the arrows in the
opposite direction whenever possible. This creates paths in Λ× [0,∞) space, which will
be referred to as trajectories. Graphical examples are highlighted in Figure 2. These
trajectories are local state preserving in a sense that for any two points (y, s), (y′, s′)
contained in the trajectory, the local state of y at time s equals the local state of y′ at
time s′. The local state of all the points in a trajectory is determined by η0(y). Note that
the rate at which a vertex y loses its opinion equals one, as each of the |Ny| neighbours
imposes its opinion to y at rate 1

|Ny | . Lemma 2.4 guarantees that trajectories spend

an exponentially distributed (with mean one) amount of time at each vertex they visit.
Therefore, they are trajectories of a continuous-time simple random walk on Λ.

In Figure 2, it can be seen that the configuration at time t, Ht, can be determined by the
initial configuration of the three vertices x, y, and z. In Figure 1, an initial configuration
with η0(y) = η0(z) = 1 and η0(x) = 0 was used to determine the evolution of the local
states 0 and 1. It can be seen that the vertices that connect to either y or z (in Figure
2) indeed have local state 1 at time t, whereas vertices that connect to x have local
state 0 at time t. Trajectories as in Figure 2 can be generated by a system of coalescing
random walks. That is, a continuous-time simple random walk is started at each vertex.
Whenever two of these walks collide, i.e. they are in the same place at the same time,
they will join and continue as one.

15



Λ

TIME
TIME = t

η0 : η0(x) η0(y) η0(z)

Figure 2: Reversed-time trajectories for the realisation of the voter model given in Figure
1.

Definition 2.8. A system of coalescing random walks on a lattice Λ is a collection of
stochastic processes

{(Y x
t )t≥0 : x ∈ Λ}

That satisfy

1. For each x ∈ Λ, (Y x
t )t≥0 is a continuous-time simple random walk on Λ started in

x.

2. If there exist a t ≥ 0 such that Y x
t = Y y

t for some x, y ∈ Λ, then Y x
t′ = Y y

t′ for all
t′ ≥ t.

The voter model process (Ht)t≥0 can equivalently be defined in terms of a system of
coalescing random walks by

Ht(x) = η0(Y x
t ) for all x ∈ Λ and t ∈ [0,∞).

This relation is known as the coalescing duality. Another way to construct a system of
coalescing random walks on Zd will be given in section 2.4.1.

2.3.2 Poisson construction of the contact process

Recall that the generator of the contact process is given by equation (6). That is, each
map traxy is applied with Poisson intensity λ, and each map heax is applied with Poisson
intensity one. Note that the maps traxy are local as

D(traxy) = {y} and Ry(traxy) = {x, y},

since only the local state at y changes, but we need to know both the local states of x
and y to predict the new local state of y. Furthermore, the maps heax are local as

D(heax) = {x} and Rx(heax) = ∅,

16



Λ

TIME

η0 : 0 1 1 1 0 0 1 0 1

Figure 3: Poisson point set construction of the contact process given initial configuration
η0. Infected sites are represented in red and healthy sites are represented in black.

since only the local state at x changes, and the new local state of x is 0 regardless of η.
For each (x, y) ∈ E , let Dx,y be a Poisson point set on {traxy}×R with intensity ρ given
by

ρ ({traxy} ×A) = λ`(A) for all A ∈ B (R) .

For each x ∈ Λ, let Dx be a Poisson point set on {heax} × R with intensity ρ given by

ρ ({heax} ×A) = `(A) for all A ∈ B (R) .

Note that Dx,y contains all the times that x is infects vertex y, and Dx contains all the
times that x is healed. Let Λ1 ⊂ Λ2 ⊂ . . . be an increasing sequence of sub-lattices of Λ
such that Λn ↑ Λ. Then, let

D̄n =

 ⋃
(x,y)∈En

Dx,y

⋃( ⋃
x∈Λn

Dx

)
.

It can be seen that D̄n ↑ D =
(
∪(x,y)∈ED

x,y
)
∪ (∪x∈ΛD

x). Theorem 2.7 guarantees
that the point-wise limit of the stochastic flow associated to D̄n exists and defines a
Feller process. A visual representation of the Poisson construction is given in figure
3. In this figure, an arrow from x to y should be interpreted as x infects y, and a
cross at x corresponds to x is healed. Similar to the voter model, one can determine
the configuration for any time t by following the arrows and crosses; i.e. the process is
completely determined by the collections of Poisson point sets (Dx,y)(x,y)∈E and (Dx)x∈Λ.
An infection path in Λ× [0,∞) is a connected oriented path which moves along the time
lines in the increasing t direction without passing through a recovery symbol, and along
infection arrows in the direction of the arrow. If x, y ∈ Λ and 0 ≤ s ≤ t then denote by
(x, s) (y, t) the event that there is an infection path connecting (x, s) to (y, t).
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Definition 2.9. A path in Λ× [0,∞) is said to be an infection path if there exist

s = s0 < s1 < · · · < sn+1 = t and z = x0, x1, x2, . . . , xn = x ∈ Λ

such that the following two conditions hold:

1. for i = 1, 2, ..., n, there is an arrow xi−1 → xi at time si and

2. for i = 0, 1, ..., n, there is no cross on the segment {xi} × (si, si+1).

If x, y ∈ Λ and 0 ≤ s ≤ t then denote by (x, s)  (y, t) the event that there is an
infection path connecting (x, s) to (y, t). If this holds, we also say that there is a dual
path (y, t)  (x, s). In other words, dual paths are defined as paths except that they
evolve backward in time and follow the arrows of the graphical representation in the
opposite direction.

Definition 2.10. Define the {0, 1}-valued random variables, called infection path indi-
cators

Ξt(x, y) =: 1[(x,0) (y,t)], where x, y ∈ Λ and t ≥ 0.

For any η0 ∈ {0, 1}Λ, the contact process (Ht)t≥0 with infection rate λ and initial state
η0 can be constructed by letting

Ht(y) = max
x∈Λ
{η0(x) · Ξt(x, y)}, for y ∈ Λ and t ≥ 0.

Note that this definition is equivalent to the definition in terms of stochastic flows.

2.4 Stationary distribution of interacting particle systems

Let H be an interacting particle system with transition kernel (Pt)t≥0 given by

Pt (η, ·) = P (Ht ∈ ·|H0 = η) = Pη (Ht ∈ ·)

A measure µ on SΛ is said to be stationary if

µPt(·) :=

∫
SΛ

Pt(η, ·)dµ(η) = µ(·) for all t ≥ 0.

Denote by Zd the usual nearest-neighbor lattice on Zd, i.e., two points of Zd are adjacent
if they differ only in one coordinate, by 1. In the following sections, we are particularly
interested in the stationary distributions of the given interacting particle systems on the
state space {0, 1}Zd

.
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2.4.1 System of coalescing random walks

To construct a system of coalescing walks, the set of vertices needs to be ordered. Note
that there are many ways to orderer the vertices of Zd, however the chosen ordering does
not affect the law of the system. For each vertex x ∈ Zd process of coalescing random
walks (Y x

t )t≥0 should comply with the following rules.

1. For each x ∈ Zd, Y x
0 = x

2. If there exist a t ≥ 0 such that Y x
t = Y y

t for some x, y ∈ Zd, then Y x
t′ = Y y

t′ for all
t′ ≥ t.

A way to construct this process (Yt)t≥0 is to use independent random walks started
from each vertex, and revealing the paths of the random walks following the order of
the vertices. Then, in each iteration, a path is revealed until it has met with one of
the already known random walks. From this point on, it will simply follow (the already
known) path of this random walk. Algorithm 1 gives a more mathematical definition
of the process Y . In this algorithm the independent random walks started from each
vertex x are denoted by Xx.

Algorithm 1 Coalescing Random walks

Input: (Xx)x∈Zd with ordering {x1, x2, . . . }
Set Y x1

t = Xx1
t .

for i in {1, 2, . . . } do
Find σ = min{t ≥ 0 : Xxi

t = Y x
t for some x ∈ {x1, . . . , xi−1}}

Find y = argminx∈{x1,...,xi−1}{t ≥ 0 : Xxi
t = Y x

t }

Let Y xi
t =

{
Xxi
t if t < σ

Y y
t if t ≥ σ

end for

2.4.2 Stationary distribution of the voter model

For fixed d ≥ 1 and α ∈ [0, 1], one defines a probability measure µα on {0, 1}Zd
as the

distributional limit as time is taken to infinity, of the voter model with the random initial
configuration in which the states of all sites are independent and Bernoulli(α). It has
been shown that this distributional limit exists, see e.g. Lemma 1.15 in Chapter V from
“Interacting particle systems” by T.M. Liggett [8]. The measure µα is then stationary
for the voter model dynamics. It can be shown that each measure µα is invariant and
ergodic with respect to translations of Zd, see Theorem 2.5 of Chapter V and Corollary
4.14 of Chapter I from [8].

Definition 2.11. Definition 4.10 Chapter I [8]. Let τx denote a shift in Zd. A translation
invariant measure µ is called ergodic if τxf = f for all x ∈ Zd and f measurable implies
that f is almost surely constant with respect to µ.
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Note that the measures δ0 and δ1, i.e. the measures giving density one to the configu-
ration zero (respectively one) everywhere, are stationary measures. It can also be seen
that any convex combination of stationary measures defines another stationary measure.
One is often interested in stationary distributions that are extremal, i.e. that cannot be
expressed as non-trivial convex combinations of other stationary distributions. It has
been shown that the set of extremal stationary distributions is exactly the family

{µα : α ∈ [0, 1]}.

Note that in case d = 1 or 2, this set consists only of δ0 and δ1, as the simple random
walks on Z and Z2 are recurrent. Furthermore,

µα

(
{η ∈ {0, 1}Zd

: η(0) = 1}
)

= α,

so that α is a density parameter. The duality between the voter model and continuous-
time simple random walks can be used to construct the measures µα. Given a realisation
of a system of coalescing random walks {(Y x

t )t≥0 : x ∈ Zd}, define the equivalence
relation

x ∼ y ⇐⇒ There exists t > 0 such that Y x
t = Y y

t .

An equivalence relation induces a partition of Zd into equivalence classes. Instead of
equivalence classes, they will be referred to as coalescence classes. For each coalescence
class [x] ∈ Zd/ ∼, let β[x] be a Bernoulli trial with parameter α.

Claim 2.12. Define
η(x) := β[x] for x ∈ Zd.

Then (η(x))x∈Zd has the law µα.

Proof. Note that
lim
t→∞

Ht(x) = lim
t→∞

η0 (Y x
t ) = β[x]

A way to perform Bernoulli trials per coalescence class uses of the order of the ver-
tices. Let (βx)x∈Zd denote a collection of independent Bernoulli trials with parameter
α. For each coalescence class [x], let x∗ ∈ [x] denote the element of highest order in the
equivalence class [x], then let

η(x) = βx
∗

for all x ∈ [x∗] (9)

so that the Bernoulli trial of the highest ordered element acts as the Bernoulli trial for
the whole equivalence class, β[x].
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2.4.3 Stationary distribution of the contact process

The upper invariant measure of the contact process, denoted µλ, is defined as

µλ := lim
t→∞

H
1
t

where
(
H

1
t

)
t≥0

is the contact process started from the identically-one configuration, and

the limit in distribution can be shown to exist using Theorem 2.3 from Chapter III in
[8]. This distribution is invariant and ergodic with respect to translations of Zd, see

Theorem 1.5 in Chapter VI in [8]. Note that the identically-zero element of {0, 1}Zd
,

denoted 0, is an absorbing state for the contact process. The following claim from [9] is
useful to construct the stationary distribution of the contact process.

Claim 2.13. Define

η(x) =: lim
t→∞

max
y∈Zd

Ξt(x, y), for x ∈ Zd.

Then (η(x))x∈Zd has the law µλ of the upper invariant measure of the process with in-
fection rate λ.

Proof of Claim 2.13. The claim can be proven via the dual process.

Definition 2.14. The dual process starting at (y, t) is defined in terms of dual paths as

Ĥs(x, t) = max
y∈Λ

1[(y,t) (x,t−s)] for all 0 ≤ s ≤ t.

It follows from the definition of paths and dual paths and from the construction of the
contact process from the graphical representation that we have the following important
property called duality relationship:

H
1
t (x) = 1 ⇐⇒ H

1
0 (y) ·max

y∈Λ
1[(y,0) (x,t)] = 1

⇐⇒ H
1
0 (y) ·max

y∈Λ
1[(x,t) (y,0)] = 1

⇐⇒ Ĥt(x, t) = 1

Therefore, H
1
t = maxy∈Λ Ξt(x, y), and hence η defined by

η(x) := lim
t→∞

max
y∈Zd

Ξt(x, y), for x ∈ Zd.

has the law µλ of the upper invariant measure of the process with infection rate λ.
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3 Percolation theory

Percolation theory is a branch of probability theory that studies the process of removing
edges, known as bond percolation, or vertices, known as site percolation, at random from
a given graph, and studying the connected components that remain. In this thesis the
focus will be on site percolation. Classically, this process is carried out on the infinite
lattice Zd and the vertices are declared open independently, all with probability p ∈ [0, 1].

Define the event Perc ⊂ {0, 1}Zd
which consists of those configurations η ∈ {0, 1}Zd

for
which the sub-graph of the lattice Zd spanned by the set of open sites {x : η(x) = 1}
has an infinite connected component. A principle quantity of interest is the percolation
probability, being the probability that a given vertex belongs to an infinite open cluster
[4]. For percolation on Zd where the vertices are declared open independently with
probability p, the percolation probability θ(p) can be defined by

θ(p) = Pp(|C(0)| =∞),

where C(x) denotes the open cluster containing the vertex x, and Pp is the measure
associated to a product Bernoulli distribution with parameter p. It is fundamental to
percolation theory that there exists a critical value pc = pc(d) of p such that

θ(p)

{
= 0 if p < pc

> 0 if p > pc.

pc is called the critical probability and is formally defined by

pc = sup{p : θ(p) = 0}.

Note that for d = 1, the critical probability pc(1) = 1. This can be seen by assuming
p < 1, and noting that this implies that there exist infinitely many closed vertices to the
left and to the right of the origin almost surely, implying that θ(p) = 0. For dimension
two and higher, the situation is quite different.

Theorem 3.1. If d ≥ 2 then pc(d) ∈ (0, 1).

This theorem shows that in two or more dimensions, there are two phases of the process.
In the sub-critical phase where p < pc(d), every vertex is almost surely in a finite open
cluster, hence all open clusters are almost surely finite. In the super-critical phase where
p > pc(d), each vertex has a strictly positive probability of being in an infinite open
cluster, hence there exists almost surely at least one open cluster.

Theorem 3.2. The probability Pp(Perc) that there exists an infinite open cluster satisfies

Pp(Perc) =

{
0 if θ(p) = 0,

1 if θ(p) > 0.
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Proof. Note that the event Perc does not depend on the states of any finite collection of
vertices. By the usual zero-one law, Pp(Perc) takes the values 0 and 1 only. If θ(p) = 0
then

Pp(Perc) ≤
∑
x∈Zd

Pp(|C(x)| =∞) = 0

In case there exists an infinite component, that is, Pp(Perc) = 1, it can also be shown

to be unique. Let N : {0, 1}Zd → {0, 1, 2, . . . ,∞} be a random variable denoting the
number of infinite open clusters.

Theorem 3.3. If p is such that θ(p) > 0, then

Pp({η ∈ {0, 1}Z
d

: N(η) = 1}) = 1

This theorem is a vital result in percolation theory and was shown by Burton and Keane
[3].

Instead of considering the event Perc, one can also be interested in the infinite connected
component of the vacant set. Define the event Perc∗ ⊂ {0, 1}Zd

which consists of those

configurations η ∈ {0, 1}Zd
for which the sub-graph of the lattice Zd spanned by the

set of closed sites {x : η(x) = 0} has an infinite connected component. In case of i.i.d.
percolation, it can be seen that there exists a critical probability p∗c = 1− pc so that

Pp(Perc∗) =

{
0 if p > p∗c ,

1 if p < p∗c .

Here we used the symmetric nature of the Bernoulli trials that decide whether or not a
site is closed. Also, for p < p∗c ,

Pp({η ∈ {0, 1}Z
d

: N∗(η) = 1}) = 1

where N∗ : {0, 1}Zd → {0, 1, 2, . . . ,∞} is a random variable denoting the number of
infinite closed clusters.

3.1 Percolation on stationary distributions of interacting particle sys-
tems

Rather than by making independent and identically distributed decisions on which ver-
tices to declare closed, one can use other methods to distribute the open and closed
vertices. One of these methods uses the stationary distributions of interacting particle
systems, which gives a highly correlated field on Zd.
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3.1.1 Percolation on the stationary distributions of the voter model

Let µα denote the stationary distribution of the voter model with the random initial
configuration in which the states of all sites are independent and Bernoulli(α) distributed.
The value of interest is the probability that the event Perc occurs. Note that the family
{µα} is stochastically increasing: in the partial order on {0, 1}Zd

induced by the order
0 < 1 on the coordinates, µα is stochastically dominated by µα′ when α < α′. By this
stochastic ordering, µα(Perc) is non-decreasing in α. Define the critical probability αc
as the supremum of all the values of α for which µα(Perc) = 0. It has been shown that
in dimension five or higher, the family of measures {µα : α ∈ [0, 1]} exhibits a non-trivial
percolation phase transition, see Theorem 1.1 in [11].

Theorem 3.4. If d ≥ 5, there exists αc ∈ (0, 1) such that for α < αc, µα(Perc) = 0,
and for α > αc, µα(Perc) = 1.

Due to the symmetric nature of the Bernoulli trials, it can be seen that if d ≥ 5, there
exists α∗c = 1− αc such that for α < α∗c , µα (Perc∗) = 1 and for α > α∗c , µα (Perc∗) = 0

3.1.2 Percolation on the stationary distributions of the contact process

Let µλ denote the stationary distribution of the contact process with infection rate λ
and initial configuration η0(x) = 1 for all x ∈ Zd. The value of interest is again the
probability that the event Perc occurs. The survival probability of the infection is

ρ(λ) =: Pλ
(
H
{0}
t 6= 0 for all t ≥ 0

)
,

where Pλ is a probability measure under which the contact process on Zd with infection

rate λ is defined and
(
H
{0}
t

)
t≥0

is the contact process started with a single infected site

at the origin. It can be seen that the function λ → ρ(λ) is non-decreasing. Using this
observation, one then defines the critical infection rate λc as

λc =: sup{λ > 0 : ρ(λ) = 0}

It is also known that
ρ (λc) = 0 and lim

λ↓λc
ρ(λ) = 0

The first equality is the celebrated result by Bezuidenhout and Grimmett [1]. The second
equality is a consequence of the first and the fact that λ→ ρ(λ) is continuous on [λc,∞)
[8]. Moreover,

µλ({η ∈ {0, 1}Zd
: η(0) = 1}) = ρ(λ)

It has been shown (see Theorem 1.6 in Chapter VI of [8]) that the contact process
exhibits a non-trivial phase transition.

Theorem 3.5. There exists λc ∈ (0,∞) such that for λ < λc, µλ(Perc) = 0, and for
λ > λc, µλ(Perc) = 1.
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For λ ≤ λc, the measure µλ is the Dirac measure concentrated on the identically-zero
configuration denoted by δ0. For λ > λc, the measure µλ is a non-trivial measure sup-
ported on configurations with infinitely many infected sites.

The contact process does not have a symmetry like the voter model, therefore some
work is required to show the vacant set (i.e. the closed sites) exhibits a non-trivial phase
transition. Note that for λ ≤ λc,

µλ (Perc∗) = δ0 (Perc∗) = 1.
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4 Uniqueness of the infinite open cluster

4.1 Uniqueness of the infinite open cluster for percolation on station-
ary distributions of the voter model

Let {µα : α ∈ [0, 1]} denote the family of stationary distributions of the voter model. In
this section it will be shown that for any α ∈ [0, 1] there exists at most one infinite open
cluster.

Theorem 4.1. For any α ∈ [0, 1] there exists µα-almost surely at most one infinite open
component in Zd.

By combining Theorem 4.1 with Theorem 3.4 it can be seen that

Corollary 4.2. If d ≥ 5, for any α > αc, there exists µα-almost surely a unique infinite
open component in Zd.

Furthermore the symmetry in Bernoulli trials can be used to obtain

Corollary 4.3. If d ≥ 5, for any α < α∗c , there exists µα-almost surely a unique infinite
closed component in Zd.

Let N be the number of infinite open components in Zd. Since µα is ergodic and invariant
under translations of {0, 1}Zd

, it can be seen that N is µα-almost surely constant. That
is

µα (N = k) = 1 for some k ∈ {0, 1, . . . ,∞}. (10)

The value of k is dependent on the choice of α. This result allows us to rule out certain
values of k. We will prove Theorem 4.1 with the aid of the following two lemmas

Lemma 4.4. For any α ∈ (0, 1),

µα (N = k) = 0 for all 2 ≤ k <∞.

Lemma 4.5. For any α ∈ (0, 1),

µα (N =∞) = 0.

Proof of Theorem 4.1. If α = 0 it can easily be deduced that

µ0 (N = 0) = δ0 (N = 0) = 1.

Similarly if α = 1 it can be seen that

µ1 (N = 1) = δ1 (N = 1) = 1.

By Lemma 4.4, the value of k in equation 10 satisfies k ∈ {0, 1,∞}. By Lemma 4.5 we
also have that k 6=∞, hence for any α ∈ [0, 1],

µα (N = k) = 1 for some k ∈ {0, 1}.

That is there exists µα-almost surely at most one infinite open component in Zd.
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Proof of Lemma 4.4. For any finite set of vertices let NB(0) denote the number of infinite
open clusters if all vertices in B are declared to be closed. Similarly let NB(1) denote
the number of infinite open clusters if all vertices in B are declared to be open.

Claim 4.6. Let B be a finite subset of Zd and let 0 < α < 1. Then,

µα

(
{η ∈ {0, 1}Zd

: η(x) = 0 for all x ∈ B}
)
> 0.

Similarly,

µα

(
{η ∈ {0, 1}Zd

: η(x) = 1 for all x ∈ B}
)
> 0.

Proof of Claim 4.6. This claim will be proven via the coalescence duality. Recall that
for the system of coalescing random walks, an ordering of the vertices is needed, and the
choice of ordering does not influence the distribution. Pick an ordering of vertices in Zd
such that any vertex in B has higher order than any vertex in Zd \B. Note that

Pα (βx = 0 for all x ∈ B) = (1− α)|B| ,

where |B| denotes the cardinality of the set B, and Pα denotes the measure associated to
a product Bernoulli distribution with parameter α. Let x ∈ B, as the vertices in B have
priority over vertices outside of B, the highest ordered element x∗ of the coalescence
class [x] is an element of B. Therefore,

βx = 0 for all x ∈ B =⇒ βx
∗

= 0 for all x ∈ B

By equation 9,

βx
∗

= 0 for all x ∈ B ⇐⇒ η(x) = 0 for all x ∈ B

Therefore for 0 < α < 1,

µα

(
{η ∈ {0, 1}Zd

: η(x) = 0 for all x ∈ B}
)
≥ (1− α)|B| > 0

By a similar argument for 0 < α < 1,

µα

(
{η ∈ {0, 1}Zd

: η(x) = 1 for all x ∈ B}
)
≥ α|B| > 0.

From Claim 4.6 and the almost sure constantness of N (Equation (10)), it also follows
that

µα (NB(0) = NB(1) = k) = 1 for some k ∈ {0, 1, . . . ,∞}.

Note that under the assumption that k < ∞, NB(0) = NB(1) = k if and only if B
intersects at most one infinite open cluster. Therefore,

µα (MB ≥ 2) = 0.
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Here MB denotes the amount of clusters intersecting B. It can be seen that MB is
non-decreasing in B, and MB grows to N as B grows towards Zd. By taking B to be
the diamond S(n) = {x ∈ Zd : |x| ≤ n} and taking the limit as n tends to infinity, it
can be seen that

0 = µα
(
MS(n) ≥ 2

)
→ µα (N ≥ 2) .

Therefore, µα (N ≥ 2) = 0.

Proof of Lemma 4.5. Assume that k in equation (10) satisfies k =∞. That is

µα (N =∞) = 1.

A contradiction will be derived using a geometrical argument. The following definition
will be useful for the argument.

Definition 4.7. A point y ∈ Zd is said to be a trifurcation if it belongs to an infinite open
component of {x ∈ Zd; η(x) = 1} which is split into three disjoint infinite components
by the removal of y.

For x ∈ Zd, let Tx denote the event that x is a trifurcation. Note that µα (Tx) is constant
for all x ∈ Zd, and therefore

1

|S(n)|
Eα

 ∑
x∈S(n)

1Tx

 = µα (T0) , (11)

where T0 denotes the event that the origin is a trifurcation. It will be useful to show
that the origin is a trifurcation with positive probability. Let MB be the number of
infinite open clusters that intersect B, and let MB(0) denote the number of infinite open
clusters that intersect B if all vertices in B are closed. Note that under the assumption
that k =∞,

µα
(
MS(n)(0) ≥ 3

)
≥ µα

(
MS(n) ≥ 3

) n→∞−−−→ µα (N ≥ 3) = 1.

Therefore we can fix n ∈ N such that

µα
(
MS(n)(0) ≥ 3

)
≥ 1

2

The exterior boundary of S(n) is defined by

∂extS(n) = {x /∈ S(n) : x ∈ Ny for some y ∈ S(n)}.

Note that if the event {MS(n)(0) ≥ 3} occurs, there exist z1, z2, z3 ∈ ∂extS(n), lying in

distinct open infinite clusters of Zd. It can be seen that there exist paths γ1, γ2 and γ3

such that ⋃
i∈{1,2,3}

range γi ⊂ S(n) ∪ {z1, z2, z3},
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and for each i 6= j

range γi
⋂

range γj = {0},

and for all i ∈ {1, 2, 3}, γi is a path starting at the origin and ending in zi. Let Jz denote
the event that all the vertices in these paths are open, and that all other vertices in S(n)
are closed. Note that

µα (T0) ≥ µα
(
Jz|MS(n)(0) ≥ 3

)
· µα

(
MS(n)(0) ≥ 3

)
≥ 1

2
µα
(
Jz|MS(n)(0) ≥ 3

)
Therefore, we aim to show that µα

(
Jz|MS(n)(0) ≥ 3

)
is positive. This will be done via

the coalescence duality. Note that we can choose any order of the vertices of Zd. We
choose an order � on Zd satisfying,

x ∈ ∂extS(n) =⇒ x � y for all y /∈ ∂extS(n)

and
x /∈ S̄(n) =⇒ x � y for all y ∈ S(n)

here S̄(n) = S(n)∪∂extS(n). Note that by choosing this ordering, the event {MS(n)(0) ≥
3} can be decided by the collection of random walks (Xx

t )x/∈S(n), and the Bernoulli trials
(βx)x/∈S(n). For each z ∈ ∂extS(n) define,

Aδz = {Xz
t = z for all t ≤ δ}

Let P denote the measure under which the random walks (Xz
t )z∈Zd are defined and note

that for each z ∈ Zd, P (Xz
t = z)

t→0−−→ 1. Therefore, there exists a δ > 0 such that

P

 ⋂
z∈∂extS(n)

Aδz

 >
1

2
.

Therefore, there exists a δ > 0 so that the event {MS(n)(0) ≥ 3} and ∩z∈∂extS(n)A
δ
z

happen simultaneously with positive probability. Since z1, z2, z3 is lie in distinct open
clusters of Zd, there exists x ∈ ∂extS(n) such that x is closed. Let

H = S(n) \

 ⋃
i∈{1,2,3}

range (γi)

 .

Then, for each z ∈ S(n) \ {0} define

Aδz =


{Xz

t ∈ range γ1 for all t ≤ δ} ∩ {∃t ≤ δ : Xz
t = z1} if z ∈ range γ1

{Xz
t ∈ range γ2 for all t ≤ δ} ∩ {∃t ≤ δ : Xz

t = z2} if z ∈ range γ2

{Xz
t ∈ range γ3 for all t ≤ δ} ∩ {∃t ≤ δ : Xz

t = z3} if z ∈ range γ3

{Xz
t ∈ H ∪ {x} for all t ≤ δ} ∩ {∃t ≤ δ : Xz

t = x} if z ∈ H
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For the origin, we define

Aδ0 = {X0
t ∈ range γ1 ∪ {z1} for all t ≤ δ} ∩ {∃t ≤ δ : X0

t = z1}.

The events
(
Aδz
)
z∈S(n)

are independent, as they can be decided using the independent

continuous time random walks (Xz
t )z∈S(n). Therefore,

P

 ⋂
z∈S(n)

Aδz

 =
∏

z∈S(n)

P
(
Aδz

)
> 0,

as for all δ > 0 and any z ∈ S(n), P
(
Aδz
)
> 0. Note that the events

(
Aδz
)
z∈S(n)

are also

independent of
(
Aδz
)
z∈∂extS(n)

and {MS(n)(0) ≥ 3}. Therefore,

µα
(
Jz|MS(n)(0) ≥ 3

)
> 0.

This implies that the origin is a trifurcation with positive probability. It follows from
11 that the expected number of trifurcations inside S(n) grows similarly as |S(n)| as
n→∞. Select a trifurcation t1 in S(n), and choose a vertex y1 ∈ ∂extS(n) such that t1
and y1 in are in the same infinite open component. Then, select another trifurcation t2
in S(n). Using the definition of a trifurcation, it can be seen that there exists y2 ∈ ∂S(n)
such that y2 6= y1 and t2 and y2 are in the same infinite open component. Continuing
this process, that is at each stage pick a new trifurcation tk ∈ S(n) and a new vertex
yk ∈ ∂extS(n). If there exist K trifurcations in S(n), K distinct vertices yk ∈ ∂extS(n)
are obtained. Hence, |∂extS(n)| ≥ K. However, Eα(K) is comparable to |S(n)|. Since
|∂extS(n)| grows like nd−1 and |S(n)| grows like nd, this is a contradiction.

The result of Theorem 4.1 has some interesting consequences for the system of coalescing
random walks.

Corollary 4.8. Let B denote the set of infinite connected components of coalescence
classes of the system of coalescing random walks. Then the following statements hold:

• P (|B| ≥ 2) = 0

• For d ≥ 5, P (|B| = 1) = 0

Proof. Suppose P (|B| ≥ 2) > 0, then it can be seen that

µα (N ≥ 2) ≥ α2 · P (|B| ≥ 2) > 0.

This contradicts Lemma 4.4, therefore P (|B| ≥ 2) = 0. Now suppose d ≥ 5 and
P (|B| = 1) > 0, then, for any α ∈ (0, 1),

µα (N = 1) ≥ α · P (|B| = 1) > 0.

Hence, there exists 0 < α < αc such that,

µα (N = 1) > 0.

Since this contradicts Theorem 3.4, P (|B| = 1) = 0.
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From the corollary, one can conclude that in dimensions five and higher, there are almost
surely no infinite connected components of coalescence classes. The following lemma will
be proven as it is closely related to corollary 4.8, however the result is of independent
interest.

Lemma 4.9. All coalescence classes of the system of coalescing random walks are almost
surely infinite.

Proof. For each t > 0 define the equivalence relation ∼t by

x ∼t y ⇐⇒ There exists t′ ≤ t such that Y x
t′ = Y y

t′ .

The equivalence classes related to the equivalence relation ∼t will be denoted by [·]t.
Assume the coalescence class of the origin is finite with positive probability, i.e.

P (|[0]| <∞) > 0.

This implies that with positive probability, there exists some t0 such that the coalescence
class does not change after time t0. That is,

δ := P(∃t0 ≥ 0 : [0]t = [0]t0 for all t ≥ t0) > 0;

we will derive a contradiction from this assumption. Note that

δ = lim
t0→∞

P([0]t = [0]t0 for all t ≥ t0),

we can fix t0 > 0 such that

P([0]t = [0]t0 for all t ≥ t0) > 0.

By the union bound, the probability on the left-hand side is bounded from above by∑
y∈Zd

P([0]t = [0]t0 for all t ≥ t0, Y 0
t0 = y),

so there exists a site y for which the probability inside the above sum is strictly positive.
That is,

P([0]t = [0]t0 for all t ≥ t0, Y 0
t0 = y) > 0.

This also gives

δ′ := P(∃x : [x]t = [x]t0 for all t ≥ t0, Y x
t0 = y) > 0.

By translation invariance, the value of δ′ does not depend on y, so

P(∃x : [x]t = [x]t0 for all t ≥ t0, Y x
t0 = 0) = δ′. (12)
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Now, fix t1 > t0 and define the events

Ax,y,z :=
{

[x]t = [x]t0 for all t ≥ t0, Y x
t0 = y, Y x

t1 = z
}
, x, y, z ∈ Zd,

A′y,z = ∪xAx,y,z, y, z ∈ Zd.

Note that we can now rewrite equation (12) as:

P (∪x,zAx,0,z) = P(∪zA′0, z) = δ′. (13)

Moreover, it is easy to check that

y1 6= y2 =⇒ A′y1,z ∩A
′
y2,z = ∅, (14)

z1 6= z2 =⇒ A′y,z1 ∩A
′
y,z2 = ∅. (15)

We are now ready to estimate:

ρt1 = P(∃x ∈ Zd Y x
t1 = 0) ≥ P(∪yA′(y, 0)).

Using equation (14), it can be seen that

P(∪yA′(y, 0)) =
∑
y∈Zd

P(A′(y, 0)).

By translation invariance, the right-hand side equals∑
z

P(A′(0, z))
(15)
= P(∪zA′(0, z)) = P(∪x,zA(x, 0, z))

(13)
= δ′.

This implies that ρt1 > δ′ > 0 for all t1 > 0, which contradicts Van den Berg and Kesten
[15] who have shown that ρt → 0.

4.2 Uniqueness of the infinite open cluster for percolation on station-
ary distributions of the contact process

In this section it will be shown that in the supercritical phase of percolation on the
stationary distribution of the contact process there exists at most one infinite open
cluster.

Theorem 4.10. For any λ > λc there exists µλ-almost surely a unique infinite open
component in Zd.

Let N be the number of infinite open components in Zd. Since µλ is ergodic and invariant
under translations on {0, 1}Zd

, it can be seen that N is µλ-almost surely constant. That
is

µλ (N = k) = 1 for some k ∈ {0, 1, . . . ,∞}. (16)

Naturally the value of k is dependent on the choice of λ. Similar to the proof of Theorem
4.1, we will use the following to lemmas to proof Theorem 4.10.
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Lemma 4.11. For any λ ∈ (λc,∞),

µλ (N = k) = 0 for all k ∈ {2, 3, . . . }.

Lemma 4.12. For any λ ∈ (λc,∞),

µλ (N =∞) = 0.

Proof of Theorem 4.10. Suppose λ > λc. By Lemma 4.11, the value of k in equation 16
satisfies k ∈ {1,∞}. By Lemma 4.12 we also have that k 6=∞, hence for any λ ∈ (λc,∞),

µλ (N = 1) = 1,

that is, there exists µλ-almost surely a unique infinite open component in Zd.

The proof of lemma 4.11 is quite similar to the proof of lemma 4.4. The only part that
needs revision, it the proof of the claim.

Claim 4.13. Let B be a finite subset of Zd. Then for any λ ∈ [0,∞),

µλ

(
{η ∈ {0, 1}Zd

: η(x) = 0 for all x ∈ B}
)
> 0.

For any λ > λc,

µλ

(
{η ∈ {0, 1}Zd

: η(x) = 1 for all x ∈ B}
)
> 0.

Proof of Claim 4.13. Note that for λ ≤ λc, the µλ equals δ0, so that in this case

µλ

(
{η ∈ {0, 1}Zd

: η(x) = 0 for all x ∈ Zd}
)

= 1

As {η : η(x) = 0 for all x ∈ B} is a subset of {η : η(x) = 0 for all x ∈ Zd}, it is clear
that

µλ

(
{η ∈ {0, 1}Zd

: η(x) = 0 for all x ∈ B}
)

= 1 > 0

Recall that the survival probability ρ(λ) gives the probability that the infection survives
given it started in one vertex. Therefore,

µλ

(
{η ∈ {0, 1}Zd

: η(x) = 0 for all x ∈ B}
)
≥ (1− ρ(λ))|B|

and
µλ

(
{η ∈ {0, 1}Zd

: η(x) = 1 for all x ∈ B}
)
≥ ρ(λ)|B|

Noting that for λ > λc, ρ(λ) > 0 gives the desired result.
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Proof of Lemma 4.12. Assume that k in equation (16) satisfies k =∞. That is

µλ (N =∞) = 1.

Similar to the proof of lemma 4.5, a geometrical argument will be used to derive a
contradiction. Recall that Tx denotes the event that x is a trifurcation and note that
µλ (Tx) is constant for all x ∈ Zd, and therefore

1

|S(n)|
Eλ

 ∑
x∈S(n)

1Tx

 = µλ (T0) , (17)

This suggest we can use the same geometrical argument as for the voter model, if we
manage to show that the origin is a trifurcation with positive probability. Note that also
for the contact process we can pick n ∈ N such that

µλ
(
MS(n)(0) ≥ 3

)
≥ 1

2

Furthermore,

µλ (T0) ≥ µλ
(
Jz|MS(n)(0) ≥ 3

)
· µλ

(
MS(n)(0) ≥ 3

)
≥ 1

2
µλ
(
Jz|MS(n)(0) ≥ 3

)
Therefore, we aim to show that µλ

(
Jz|MS(n)(0) ≥ 3

)
is positive. The self-duality of

the contact process will be used to proof this. Recall the Poisson point constuction of
the contact process, where the process is defined in terms of random sets (Dx)x∈Λ and
(Dx,y)(x,y)∈E . For z ∈ ∂extS(n) define the events

Aδz = {Dz
0,δ = ∅} ∩ {Dz,y

0,δ = ∅ for all y ∈ Nz}

Note that

P

 ⋂
z∈∂extS(n)

Aδz

 =
∏

z∈∂extS(n)

P
(
Dz

0,δ = ∅
)
· P
(
Dz,y

0,δ = ∅ for all y ∈ Nz
)

For all z ∈ ∂extS(n),

P
(
Dz

0,δ = ∅
) δ→0−−−→ 1 and P

(
Dz,y

0,δ = ∅ for all y ∈ Nz
)

δ→0−−−→ 1

Therefore, there exists a δ > 0 such that

P

 ⋂
z∈∂extS(n)

Aδz

 ≥ 1

2
,

34



So that the events ∩z∈∂extS(n)A
δ
z and {MS(n)(0) ≥ 3} occur simultaneously with positive

probability. For z ∈ H define the events

Aδz = {Dz
0,δ 6= ∅} ∩ {D

z,y
0,δ = ∅ for all y ∈ Nz}

Since S(n) is finite, γ1, γ2, and γ3 are finite paths. For i ∈ {1, 2, 3} let

Li := |range(γi)| and L = max
i∈{1,2,3}

Li

For i ∈ {1, 2, 3} we write {0 = xi1, x
i
2, . . . x

i
Li

= zi} for the collection of ordered vertices

in the range of γi. For xij , i ∈ {1, 2, 3} and j ∈ {2, 3, . . . , Li − 1} define the events

Aδxij
= {D

xij
0,δ = ∅} ∩ {D

xij ,x
i
j+1

jε,(j+1)ε}.

where ε = δ/L. For the origin we define the event

Aδ0 = {D0
0,δ = ∅} ∩ {D0,x1

2
0,ε } ∩ {D

0,x2
2

0,ε } ∩ {D
0,x3

2
0,ε }

Note that the events
(
Aδz
)
z∈S(n)

are independent, as they are determined by independent

Poisson point sets. By noting that all these events have positive probability as well we
obtain that

P

 ⋂
z∈S(n)

Aδz

 =
∏

z∈S(n)

P
(
Aδz

)
> 0.

Therefore,
µλ
(
Jz|MS(n)(0) ≥ 3

)
> 0.

The proof can now be completed using the same geometrical argument as in the proof
of Lemma 4.5.
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