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Abstract

At least two proof systems for modal hybrid intuitionistic logic have been shown to be complete,
which is a promising direction of research. However, there has not yet been developed a complete proof
system for non-modal hybrid intuitionistic logic. In this thesis I prove the soundness of a proof system for
such a propositional hybrid intuitionistic logic, which provides the necessary axioms and proof rules for
proving completeness of propositional hybrid intuitionistic logic. This is accomplished by first introducing
modal logic, intuitionistic logic, classical hybrid logic, and the Kripke semantics for each of them. Some
derivable formulas and generally interesting results about HIpL are noted and discussed throughout the
latter half of the text.
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1 Introduction: Scope and Aim of Research

The aim of this thesis is to prove the soundness of a proof for system hybrid intuitionistic propositional logic
(HIpL) by considering the axioms and proof rules identified by professor Renardel de Lavalette as being
necessary for completeness. I assume familiarity with classical logic.

A preliminary overview of the research in this article is as follows. First, I will give a brief introduction
of modal logic, specializing that to the modal logic S4, and introducing the Kripke semantics for it. Then, I
will give a brief introduction to intuitionistic logic and note the differences in Kripke semantics that accord
with this change. I will then present the classic translation between intuitionistic logic and S4, and explain
the significance in terms of Kripke semantics. The last major survey point will be the introduction of hybrid
modal logic. This having been done, I will overview IHpL and prove the soundness of the proof system
presented for it.

The value of this research is potentially twofold. Firstly, it attempts to further a line of research discussed
in the literature but not yet pursued (to the author’s knowledge): the development of a truly non-modal
intuitionistic hybrid logic. The prevalence of intuitionistic hybrid modal logics is very helpful for the present
research. However, the construction of these logics largely proceeds by substituting an intuitionistic basis for
the classical basis in ordinary hybrid modal logics. This necessitates reaxiomatization, as will be seen later,
but typically retains the modal operators 2 and 3. This retention of modal operators is generally sensible:
not only is their use intuitive in the Kripke Semantics that will be introduced shortly, but their loss could
at best leave the expressivity of a logic unchanged, and at worst severely weakened, as seen by comparing
the proof-theoretic properties of classical logic with classical modal logic. Nevertheless, the second potential
point of worth lies in that deriving an IHL in this way may lead to a significantly different logical system ([8]),
and this new logical system seems plausible given the compatibility of hybrid operators with intuitionistic
logic regardless of the presence of modal operators ([7]). As will become presently clear, for such a new
system to be investigated as to its properties, it would first have to be axiomatized within the context of a
specified semantics. In this thesis, the necessary Kripke semantics and a proof system for which completeness
was derived during the course of my research by professor Renardel de Lavalette, relying heavily on work
already present in the literature, followed my proof of the soundness lemma for this proof system.

It should be noted that important results such as completeness will not be investigated in this text,
since that would be beyond the scope of this paper. Moreover, first-order intuitionistic hybrid logic will not
be treated, only propositional. As such, the goal of this paper is laying some groundwork on the already
established foundations.

2 Preliminary Notation

Throughout this text the elements of the (potentially infinite) set of propositional variables, which we denote
PROP, will be denoted by letters p, q, r. In the case of >, ⊥ and the usual binary connectives →, ↔, ∧, ∨,
and ¬ the meanings are as usually defined in classical logic, except when in the intuitionistic context. This
will be explained in section 5.

Formulae will be denoted by capital letters close to the start of the alphabet: A,B,C, and so on.
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3 Modal Logic: The Basics

In [11] the definition of the modal logic language is given as

A ::= p | > | ⊥ | ¬A | A ∧A | A ∨A | A→ A | A↔ A | 2A | 3A

The only operators that are new here, relative to non-modal propositional logic, are the modal operators
2 and 3. Interpretations of what these operators mean abound, which in turn enables modal logic to be
used in many contexts, both mathematical and philosophical (see for instance [12]).

For the purposes of mathematical logic as dealt with here, the meaning imposed on 2 is ‘necessary,’ and
that on 3 is ‘possible.’ Naturally, these meanings must be in turn given logical translations for them to
be applied usefully, which we shall define hereafter in section 4. However, the meanings may intuitively be
understood as follows. 2A, pronounced ‘box A,’ means that A is necessarily true everywhere in the logical
context where A is being considered, no matter what rules may be applied. How this is distinct from an
axiom will be examined by the end of section 4. On the other hand, 3A, pronounced ‘diamond A,’ means
that somewhere in the context being considered A is true, though it may also be the case that somewhere
in the given context A is false.

It is useful to note for comparison to the intuitionistic case, where this does not hold, in classical logic 2

and 3 are dual. Consequently, 2A ⇐⇒ ¬3¬A. This makes intuitive sense: if A is necessarily true, then
it is not possible that A is not true somewhere. Similar reasoning applies when considering duality from the
perspective of 3A.

In order to make precise sense of the above, and of a logic in general, semantics are needed. We present
and justify the use of Kripke semantics in the next section.

4 Kripke Semantics for Modal Logic

Below follows a brief overview of the thinking behind Kripke semantics, the formal inductive definition of
the semantics, and then an explanation of each of the components thereof.

4.1 The Idea and Definitions of Kripke Semantics

It is first important to understand the distinction between a logical language and a semantics for it. What
we have without a semantics is solely the ability to express formulae. Semantics give meaning to formulae
by specifying when a statement is valid and when it is true, terms that will be defined shortly though they
are fairly intuitively understandable.

Such a semantics may be constructed in myriad ways, but the one that has dominated the field of modal
logic for the past decades has been Kripke’s ‘possible worlds’ semantics, which built on some earlier work
by, especially, Hintikka and Prior (see [14]).

The following are the key ideas of Kripke semantics. Introduce a set S of states s ∈ S, also known as
possible worlds and points, which makes the ‘somewhere’ and ‘everywhere’ referred to in the previous section
quantifiable. The set of states becomes the context, and the individual states become the places to which the
assertions of the 2 and 3 operators refer. Kripke’s great breakthrough was formalizing the idea of context
using this concept of states. This is achieved via the accessibility relation R, in some cases denoted ≤, where
if s, t ∈ S, then sRt means t is accessible from s. This naturally leads to the informal definition that if 2A
holds at s, and sRt, then A is true at t. On the other hand, if 3A holds at s, then there is some state
accessible via R such that A holds at that state.

This enables the defining of a frame F ≡ 〈S,R〉, where we require that S be non-empty and R be an
accessibility relation on S2. Clearly, frames provide the context within we might say e.g. ‘A is everywhere
true.’

However, such an assertion also requires a means of determining the validity of an assertion such as 3p.
As it is always possible to reduce the process of checking whether an arbitrary sentence holds at a particular
state to that of checking whether the individual propositions in the sentence hold at that state in such a
manner as would make the sentence true, it is only necessary to be able to evaluate the truth values at
particular states (this will be formalized shortly, after also introducing the concept of models). This leads
us to the valuation V , which, for any p ∈ PROP, gives the set of states in which p holds.
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This enables the definition of a model M≡ 〈F , V 〉, which gives us both the context in which assertions
can be made, the frame, and the means of evaluating the truth of those assertions at various points in this
context.

The above gives meaning to any atom at a particular state. To be able to have the same capacity for
parsing formulae and operators, and in order to be able to precisely denote what we described above, we
define double turnstile |=, which is the validity operator, whereM, s |= A means A is true at state s in model
M, and M |= A means A is valid in M. We define the meaning of this inductively as follows (I follow both
[11] and [5] closely).

M, s |= p ⇐⇒ s ∈ V (p)
M, s |= >
M, s 6|= ⊥
M, s |= ¬A ⇐⇒ not M, s |= A, denoted M, s 6|= A
M, s |= A ∧B ⇐⇒ M, s |= A and M, s |= B
M, s |= A ∨B ⇐⇒ M, s |= A or M, s |= B
M, s |= A→ B ⇐⇒ if M, s |= A then M, s |= B
M, s |= A↔ B ⇐⇒ M, s |= A if and only if M, s |= B
M, s |= 2A ⇐⇒ for all t ∈ S, if sRt then M, t |= A
M, s |= 3A ⇐⇒ for some t ∈ S, sRt and M, t |= A

This brings the semantics to the point where it is possible to speak of the truth of formulas at specific,
some, or all states. Moreover, restrictions can be imposed on where a given formula will be true through
the valuation V , and on which states are accessible from given states through the accessibility relation R.
Some last definitions are then in order, at which point a suitable level of generality is reached for this text.
Firstly, validity in a model and validity:

M |= A ⇐⇒ for all s ∈ S, M, s |= A (A is valid in model M)

|= A ⇐⇒ for all models M, M |= A (A is valid)

Secondly, validity of a set in a model and a set holding in a state in a model is defined as

M, s |= Γ ⇐⇒ M, s |= A for all A ∈ Γ (Γ holds at s in M)

M |= Γ ⇐⇒ for all s ∈ S, M, s |= Γ (Γ is valid in M)

Lastly, it is further useful to define validity relative to a set of formulae Γ, where Γ validates A is defined
by

Γ |= A ⇐⇒ for all models M and all states s ∈ S, if M, s |= Γ, then M, s |= A

The above gives a sufficiently detailed overview for the purposes of this text. What remains are some
remarks on the relation between frame properties and accessibility relations and introducing the modal logics
K and S4.

4.2 R and F : The Accessibility Relation and Defining Frame Properties

It is possible to induce various different (combinations of) properties on a frame. These properties charac-
terize how the states belonging to the frame relate to each other, and this can only affected by restrictions
imposed, in turn, on the accessibility relation. Two frame properties that will be important in the sense of
being properties of the frames eventually studied in this paper are reflexivity and transitivity.

If a frame is reflexive, then for any state s ∈ S, s is accessible from s. This principally effects the meaning
of 2A: considering the semantics given in subsection 4.1, we see that such a frame relation requires that if
2A hold at state s, then A holds at s.

On the other hand, if a frame is transitive, then if for s, t, u ∈ S we have both sRt and tRu, then sRu.
Again, 2A is key to understanding the effect of this property. For, if 2A holds at state s, then A not only
holds at all the states A would have held at without transitivity, but also at every state in the whole network
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Axioms

(All propositional tautologies) ` A
(Identity) A ` A
(Distribution) ` 2(A→ B)→ (2A→ 2B)

Rules

(Necessitation) ` A =⇒ ` 2A

(Weakening) Γ ` A =⇒ Γ,∆ ` A
(Cut) (Γ ` A & Γ ` A→ B) =⇒ Γ ` B
(Deduction) Γ, A ` B =⇒ Γ ` A→ B

Figure 1: A proof system for modal logic K

of states related to each other without transitivity. At every state in this network it becomes possible to
assert the validity of 2A, since A will hold at every accessible state. This then also justifies the assertion
that 22A holds at all accessible states, since it follows that 2A will hold at every accessible state.

As such, frame properties affect the validity of assertions made at individual states. At the same time,
it is possible to examine when requiring that certain forms of assertions hold, like 2A → A, forces certain
frame properties to be part of the semantics in order for it to accurately render the meaning of the logic
in which such assertions hold. These assertions then form part of the axiomatization of the logic (see [13]
and [7]). This will be elaborated in the next section, where the modal logics K and S4 are defined, with the
axiom restricting S4.

4.3 The Most Basic Modal Logic: K

The minimal definition of a modal logic is known as K, which has the operators introduced in the above
paragraphs, but is further restricted by one rule and one axiom (see [13]).

The necessitation rule, if A is valid then 2A is valid, states that if formula A is true in all states in all
models, then it must also be true that 2A is valid in all states in all models.

The distribution axiom, 2(A→ B)→ (2A→ 2B), states that if it is true that in all accessible states A
implies B, then if A is true at all accessible states, B must be also be true at all accessible states.

A proof system for K is presented in figure 1.
Many modal logics are extensions of K (see [13]), where the logic is extended through the addition of

axioms and/or proof rules, as seen in the next section.

4.4 The Modal Logic S4

The modal logic S4 results from adding two axioms to K. We present these alongside the proof rules and
axioms of K in the proof system of S4. Note that the frames in the semantics of S4 are reflexive, such that
sRt holds if and only if tRs holds, and transitive, such that if sRt and tRu hold then sRu holds.

In order to construct a proof system, it is first necessary to have a notion of derivability, because the
proof system will determine what derivation steps are possible. In this text we make use of sequent calculus,
following [11], with Γ ` A pronounced ‘gamma proves A’ and meaning that a formula A is derivable from
the set of formulae Γ.

We further note that Γ,∆ ` Ameans that A is provable from the union of the set of Γ and ∆. Additionally,
Γ, A ` B means the union of Γ and the singleton set containing A proves B. Furthermore, ` A means that
A may be derived from the empty set and is therefore a tautology.

A last point to note is that when sequents appear in logical reasoning they are syntactic units such that
the necessitation rule in sequent notation, Γ ` A =⇒ Γ ` 2A, is composed of Γ ` A, =⇒ , and Γ ` 2A.
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Axioms

(All propositional tautologies) ` A
(Identity) A ` A
(Distribution) ` 2(A→ B)→ (2A→ 2B)

(Axiom S) ` 2A→ A

(Axiom 4) ` 2A→ 22A

Rules

(Necessitation) ` A =⇒ ` 2A

(Strong Necessitation) Γ ` A =⇒ 2Γ ` 2A

(Weakening) Γ ` A =⇒ Γ,∆ ` A
(Cut) (Γ ` A & Γ ` A→ B) =⇒ Γ ` B
(Deduction) Γ, A ` B =⇒ Γ ` A→ B

Figure 2: A proof system for modal logic S4

This avoids potential confusion, since e.g. Γ ` (A =⇒ Γ) ` 2A would be notationally erroneous (and
meaningless). Additionally, we define 2Γ ≡ {2A|A ∈ Γ}.

A proof system for S4 is presented in figure 2. Note that contrary to typical best practice in axiomati-
zation, there is significant redundancy included in this proof system. Specifically, the proof system in [11]
is already complete, making use of e.g. the fact that the necessitation rule is a special case of the strong
necessitation rule (see [17]). As such, the particular format of this proof system serves to highlight the
lineage of S4 by including the axioms and rules of K and the axioms specific to S4 rather than aiming for
conciseness.

Now, as anticipated earlier, the presence of 2A → A and 2A → 22A means that the semantics for S4
requires reflexive and transitive frames. Two things of note then follow.

Firstly, the widely known fact of S4’s completeness depends on the proper correspondence between the
frame properties and these axioms ([13]). It is therefore of paramount importance when axiomatizing a logic
that the frame properties and axioms concur.

Secondly, these frame properties reflect important properties of the semantics of intuitionistic logic,
which we will discuss in the next section. This fact enables a fascinating correspondence between S4 and
intuitionistic logic first noted by Gödel in 1933. We shall review this in section 5.2.

5 Intuitionistic Logic: The Basics

5.1 An Overview of the Distinctive of Intuitionistic Logic

Intuitionism, or intuitionistic style logics under the cover term constructivism, is a philosophical approach to
mathematics that is fundamentally different from the one reflected by classical logic. At its core, the logical
consequences of a intuitionistic framework come down to what the statement ‘A is true’ is understood to
mean. In illustrating this and further points in this section, I will rely heavily on the work of Troelstra and
van Dalen in [21]. They specify that

A statement is true if we have proof of it, and false if we can show that the assumption that
there is a proof for the statement leads to a contradiction.

As a consequence, proof by contradiction is not considered a proof of any sentence, for reasons that will
become clear shortly. Such a definition of truth and falsity has immediate consequences in what may and
may not be asserted as valid.
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A first consequence of this definition is that A ∨ ¬A, which is valid for any formula A in classical logic,
may be impossible to state at a given moment: A ∨ ¬A means that it is case that either a proof of A exists
or the assumption that a proof of A exists leads to a contradiction (see e.g. [18]). Consequently, the validity
of A ∨ ¬A cannot be asserted for any theorem that has not been either proven or disproven.

In fact, as is well-known, the law of the excluded middle (represented by the axiom A ∨ ¬A) may be
seen as the fundamental difference between classical and intuitionistic logic, since adding this axiom to
intuitionistic logic will give you back classical logic, as the other rules such as ¬¬A→ A would be derivable
from a complete proof system (see, for instance, [16]).

This shift in understanding is so fundamental it necessitates a redefinition of the logical operators→, ↔,
∧, ∨, and ¬ (since we limit ourselves to propositional logic), with all logical operators taken as primitives.
The operators must be taken as primitives since there is no reason think that a sentence such as ‘A ∧ B’
could be intuitionistically expressed using → and ¬.

The definition of intuitionistic logical operators has some variation across the literature (see e.g. [18],
[21], [2]), but all boil down to which proofs should be known in order for an assertion to be made, and how
they relate to the sentences involved. They are as follows (with ¬A repeated for convenience):

• A ∧B means that both a proof of A and a proof of B is known

• A ∨B means that either a proof A or a proof of B is known

• A→ B means that a method is known that turns any proof of A into a proof of B

• A↔ B means that a method is known that turns any proof of A into a proof of B, and vice versa.

• ¬A means that any proof of A will lead to a contradiction

Naturally, the above makes any proof rule of the form ¬¬A → A highly unlikely, since proving that it
is not the case that any proof of A leads to a contradiction is not the same as having a proof for A, since
A ∨ ¬A is not assumed in intuitionistic logic. Therefore, all that might be said for a sentence A of which it
is only known that ¬¬A is valid in a model (or true at a state) is that in at least one of the states of the
model (or in at least one of the states reachable from the state where ¬¬A holds) it is also the case that A
holds.

5.2 Translating intuitionistic Propositional Logic to the Modal Logic S4: When,
How, and then Why

This background material having been covered, we note before going on to present the semantics for intu-
itionistic logic a very useful means of motivating the use of Kripke semantics for intuitionistic logic: the
translation that exists between classical modal and intuitionistic propositional logic.

The idea of a translation from intuitionistic (for interest’s sake: specifically Brouwerian intuitionistic)
logic to modal logic was first proffered by Gödel in 1933. The translation centers around the fact that to
assert the validity of p in a intuitionistic context has an effectively identical meaning to asserting the validity
of 2p in the context of modal S4: everywhere in the given context, p holds.

The following translation relies heavily on Goldblatt’s presentation in [14]. It is worth noting that he
also shortly discusses proofs of its correctness and the impact that the translation had. Notably, it inspired
Kripke to formulate Kripke semantics for intuitionistic logic, which is explored in the next section.

This translation T from intuitionistic logic to modal S4 logic of an arbitrary atom p and formulae A,B
is defined as

T (p) = 2p

T (¬A) = 2¬T (A)

T (A→ B) = 2(T (A)→ T (B))

T (A ∧B) = T (A) ∧ T (B)

T (A ∨B) = T (A) ∨ T (B)

7



with the co-domain of map T being equipped with Kripke semantics for classical modal logic rather than
for intuitionistic logic. What makes this translation a good one is that it manages to preserve validity while
reducing intuitionistic logic to S4. Consequently, this translation inspired a Kripke semantics for intuitionistic
logic by demonstrating the compatibility of intuitionistic validity and Kripke states since intuitionistic validity
can be reduced to S4 validity. Moreover, it highlights that there is a sense in which asserting A in the
intuitionistic logic context is equivalent to both asserting that no proof of ¬A is possible and that you have
a proof of A. Therefore, no matter how much information may be additionally considered or proof rules
applied, A will always hold. This constitutes the implicit assumption that contradictory information would
never be found in such an expansion of available information. This naturally leads to considering accessible
states with as much or more information than is available at the current state, which is what is considered
in the next section.

5.3 The Semantics of Intuitionistic Logic

Again defining a modelM as a set of states S with an accessibility relation R and a valuation V , but impose
the following two specifications.

Firstly, the following is a condition imposed on the accessibility relation.

(M, s |= p & sRt)⇒M, t |= p

where p is an atomic proposition. This condition is known as monotonicity of atoms. A direct consequence
is an epistemic ordering imposed on the frame 〈S,R〉, since it requires that each successive state has at least
enough information, in the sense of atoms and sentences, to validate all the same atoms as in the previous
state.

Monotonicity of atoms and the consequent epistemic ordering also require an adjustment to the valuation
V . To reflect the monotonicity of atoms (which is extended to formulae at the end of this section) in the
valuation, we require that if s ∈ V (p) and sRt hold, then t ∈ V (p) ([19]). Formally, following [10], let
V : P → ℘R(S), where

℘R(S) = {V ⊆ S | ∀s ∈ V ∀t ∈ S(sRt⇒ t ∈ V )}

meaning ℘R(S) is the collection of all R-upwards closed sets of accessible states, such that R is upwards
closed.

We are now equipped to paraphrase [21] in giving the inductive definition of validity for intuitionistic
propositional logic as follows.

M, s |= >
M, s 6|= ⊥
M, s |= p ⇐⇒ s ∈ V (p)
M, s |= ¬A ⇐⇒ for all t ∈ S with sRt, M, t 6|= A
M, s |= A ∧B ⇐⇒ M, s |= A and M, s |= B
M, s |= A ∨B ⇐⇒ M, s |= A or M, s |= B
M, s |= A→ B ⇐⇒ for all t ∈ S with sRt, M, t |= A⇒M, t |= B
M, s |= A↔ B ⇐⇒ for all t ∈ S with sRt, M, t |= A⇔M, t |= B

Additionally, a derivable and useful rule is

M, s |= ¬¬A ⇐⇒ for all t ∈ S with sRt, there exists a u ∈ S such that tRu and M, u |= A

Note that the frames are again reflexive and transitive. This was anticipated by the translation to S4,
since the semantics of S4 is obtained by restricting to reflexive, transitive frames.

A last point to note is that of the monotonicity result, which extends the monotonicity of atoms to
formulas, and which is also a direct consequence of assuming monotonicity of atoms. The proof is a simple
formula induction (see for instance [21]).

For any formula A, and all states s, t ∈ S:

M, s |= A and sRt⇒M, t |= A

8



Axioms

A ` A
` A→ (B → A)

` (A→ (B → C))→ ((A→ B)→ (A→ C))

` (A ∧B)→ A

` (A ∧B)→ B

` A→ (A ∨B)

` B → (A ∨B)

` (A→ B)→ ((C → B)→ ((A ∨ C)→ B))

` ⊥ → A

Rules

(Cut) (Γ ` A ∧ Γ ` A→ B) =⇒ Γ ` B
(Deduction) Γ, A ` B =⇒ Γ ` A→ B

(Weakening) Γ ` A =⇒ Γ,∆ ` A

Figure 3: A proof system for intuitionistic logic

5.4 Proof System for Intuitionistic Logic

We present in figure 3 the proof system for propositional logic that appears in [3], which is in turn a
fairly well-known proof system for Hilbert type systems of intuitionistic propositional logics. Its usefulness
and the body of research on it make it fairly representative choice, though there are of course other proof
systems available (see [3] again). Note that, unlike in the modal case, a sequent calculus such as Gentzen’s
is noticeably less discussed in the literature, and the presentation of this axiomatization is a bit more to
the point for the purposes of this text. We also include the provable deduction theorem as a proof rule for
simplicity.

6 Going Further: Hybrid Modal Logic

Hybridizing a logic involves the addition of some concepts. Firstly, the set of nominals NOM with elements
denoted i, j, k, and so on. A nominal names a state as follows: M, s |= i holds for only the state s named by
i andM, t 6|= i for all states t 6= s. In other words, V (i) = s is a singleton set. Furthermore, the satisfaction
operator @ and also the down arrow binder ↓ are both typically added, though one may restrict to adding
only one (see [4]). @iA means that A is true at the state denoted by i, and that ↓iA as A is true when the
state i is taken to denote the current state, with all occurrences of i in A bound. Note that we particularly
have the treatment in mind presented in [15] in the above and in what follows, since this deviates in a manner
that enables a fair bit of detail unimportant to the purposes of this text to be elided. This includes multiple
accessibility relations with corresponding levels of states of knowledge (see e.g. [1] and [9]).

In this understanding of nominals, they are variable. This means that we may ‘manually’ name an
arbitrary state t such that it is identifiable after the fact. In this case we will speak of a nominal being
bound to a state to name it, and this will be done using the ↓ operator. This requires defining a nominal
assignment g: NOM → S that maps a nominal to a state, such that for any i ∈ NOM that has been bound
to a state s to name it, we have g(i) = s, and so state s is named i. We also define locally modified variable
assignments g[i := s] which behave firstly such that for all j ∈ NOM such that i 6= j, we have g[i := s](j) =
g(j), and secondly require that g[i := s](i) = s. The locally modified nominal assignment is therefore used
to implement the meaning of nominal binding at the semantic level, while it is implented at the syntactic
level by ↓ ([4]). A model M remains defined as before, meaning that when defining validity the assignment
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variable is an additional element of the definition and enables the same models with different assignment
variables to be compared.

Additionally, let nom(A) be the set of nominals occurring in A, and fnom(A) the set of free nominals in
A, with defining cases

nom(↓iA) = nom(A) ∪ nom(i)

fnom(↓iA) = fnom(A)− {i}

A substitution is then defined to be a function σ: NOM → NOM, which may be redefined locally such that
the substitution σ[i := j] is identical to σ on NOM except at i, where σ[i := j](i) = j. The application
of a substitution σ to a formula is denoted Aσ, and the definition of such an application is straightforward
except for the following case:

(↓iA)σ =↓j(Aσ[i := j])

where j 6∈ σ[nom(A)] = {σ(k)|k ∈ nom(A)}, such that j is not one of the variables substituted by σ. Here,
equivalence results from replacing every occurrence of i in A by j, such that the effect of binding i is identical
to that of binding j. We then denote the application of a substitution that maps all nominals to themselves
except for mapping a nominal i to j in a formula A by A[i := j]. Furthermore, the substitution property
given in [15] states that

M, g, s |= Aσ ⇐⇒ M, g ◦ σ, s |= A

Validity for hybrid logic in a Kripke semantics is then defined by

M, g, s 6|=⊥
M, g, s |= p ⇐⇒ s ∈ V (p)
M, g, s |= i ⇐⇒ g(i) = s
M, g, s |= ¬A ⇐⇒ M, g, s 6|= A
M, g, s |= A ∧B ⇐⇒ M, g, s |= A and M, g, s |= B
M, g, s |= 2A ⇐⇒ for all t ∈ S, if sRt, then M, g, t |= A
M, g, s |= @iA ⇐⇒ M, g, g(i) |= A
M, g, s |=↓iA ⇐⇒ M, g[i := s], s |= A

which enables the definition of the proof system in figure 4 given in [15] to be repeated here, though without
the infinitary proof rule that is beyond the scope of this text and with some notational changes. Note that
the axioms and proof rules have both names and proof rules repeated as presented in [15] for the sake of
completeness.

A last important result to repeat here is that one regarding the J-equivalence of nominal assignments,
given as lemma 2.5 in [15], which shall be referred to here as free nominal equivalence. Defining J-equivalence
first: two sets of models, M = 〈S,R, V 〉 and M′ = 〈S′, R′, V ′〉, with nominal assignments g and g′ respec-
tively, are J-equivalent on a set of nominals J when S = S′, R = R′, V = V ′, and g = g′ for all j ∈ J . The
free nominal equivalence result then states that if 〈M, g〉 and 〈M′, g′〉 are J-equivalent on fnom(A), then

M, g, s |= A ⇐⇒ M′, g′, s |= A

which will be of use in investigating the validity of axioms and proof rules.
The benefit of hybridizing a logic is that greater expressivity and proof-theoretic behaviour is obtained

without going all the way to the realm of first-order logic. For instance, hybrid modal logic is for instance
better behaved proof-theoretically than modal logic, meaning that the added expressivity enables more
properties of first-order logic to be enjoyed in the modal propositional context without losing important
properties like e.g. completeness ([20]). Moreover, it enables further exploitation of Kripke semantics by
providing more tools with which to work with in the context of states in models. It is for instance shown in
[4] that a version of the above hybrid logic is as expressive as the bounded fragment of first-order logic.

At minimum, if hybrid modal logic has its classical base switched for an intuitionistic one, with all the
requisite changes in semantics and axiomatization, then a complete proof system may be constructed (see,
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Axioms

Taut ` A (all propositional tautologies)

MP A,A→ B ` B (modus ponens)

K2 ` 2(A→ B)→ (2A→ 2B) (distribution)

K@ ` @i(A→ B)→ (@iA→ @iB) (distribution)

SD@ ` @iA→ ¬@i¬A (self-dual)

Intr ` i ∧A→ @iA (introduction)

T@ ` @ii (reflexivity)

Agree ` @i@jA↔ @jA (agree)

Back ` 3@iA→ @iA (back)

DA ` @i(↓jA↔ A[j := i]) (downarrow)

Name `↓i@iA→ A, provided i is not free in A (name)

BG ` @i2 ↓j@i3j provided i 6= j (bounded generalization)

Proof Rules

SNec2 if Γ ` A, then 2Γ ` 2A (strong necessitation)

SNec@ if Γ ` A then @iΓ ` @iA (strong necessitation)

SNec↓ if Γ ` A then ↓iΓ `↓iA (strong necessitation)

Ded if Γ, A ` B then Γ ` A→ B (deduction)

W if Γ ` A then Γ,∆ ` A (weakening)

Figure 4: A proof system for classical hybrid modal logic
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for instance, [6]). As such, at least some of the benefits of increased expressivity may be expected to be
enjoyed by hybridizing intuitionistic logic, as is further suggested by the increase in expressivity arising
from hybridizing intuitionistic modal logic. A proof system for hybrid intuitionistic modal logic in the next
section, and then research into propositional IHL will be presented.
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7 Hybrid Intuitionistic Propositional Logic

7.1 Semantics, Proof System, and Some Notes

The following relies heavily on [10], with the axiomatization and list of derivable rules repeated by the kind
permission of Professor Renardel de Lavalette.

The language of HIpL is simply that of intuitionistic propositional logic with the hybrid operators and
set of nominals added and defined as before. As such, the formulae of HIpL are defined by

A ::= ⊥ | p | A ∧A | A ∨A | A→ A | i | @iA | ↓iA | 3i

with all operators defined as before, and the only innovation being 3i, which means that the state named
by nominal i is accessible from the current state.

However, differences in semantics and results such as monotonicity exist and are explained below. Firstly,
the interpretation M, g, s |= A of HIpL formula A in state s of Kripke model M with nominal assignment g
is defined as follows.

M, g, s 6|=⊥
M, g, s |= p iff s ∈ V (p)
M, g, s |= ¬A iff for all t ∈ S with sRt, M, g, t 6|= A
M, g, s |= A ∧B iff M, g, s |= A and M, g, s |= B
M, g, s |= A ∨B iff M, g, s |= A or M, g, s |= B
M, g, s |= A→ B iff ∀t ∈ S(sRt &M, g, t |= A⇒M, g, t |= B)
M, g, s |= A↔ B iff ∀t ∈ S with sRt, M, g, t |= A⇔M, g, t |= B
M, g, s |= i iff g(i) = s
M, g, s |= @iA iff M, g, g(i) |= A
M, g, s |=↓iA iff M, g[i := s], s |= A
M, g, s |= 3i iff sRg(i) holds

Note that in binding a nominal j, the specific choice of j is irrelevant, since we have, for all j1, j2 6∈
σ[nom(A)] that ↓j1(A[i := j1]) and ↓j2(A[i := j2]) are semantically equal: for any M, g, s we have

M, g, s |= ↓j1(A[i := j1]) iff M, g, s |=↓j2(A[i := j2]).

Let some sound and complete proof system for IpL be given, formulated with sequents Γ ` A where Γ is
a collection of formulae. It can then be extended to an axiomatization for HIpL by adding the following
axioms and proof rules in figure 5.

It is worth noting that in section 7.5 that I show that the version of Nom I show to be derivable, Nom
denotes ` (@ij ∧ @iA) ↔ @jA, which has both the forward and the reverse direction as opposed to only
the forward as in the case of the Nom in the list of derivable formulas from [10]. Inspiration for the reverse
direction came from [6].

Further, note that monotonicity breaks down in this semantics. As most other logicians that have studied
modal hybrid intuitionistic logic, Braüner and de Paiva impose various further restrictions, orderings, and (see
[8], and also [9]) as compared with the semantics given here. As such, they are able to retain monotonicity,
which is a feature lost in this IHpL due to its comparative simplicity. On the other hand, this simplicity
greatly helps the comprehensibility of the semantics of IHpL as compared to these other logics. An example
of where monotonicity doesn’t hold is M, g, s |= i, since we have

M, g, s |= i ⇐⇒ g(i) = s

so assuming g(i) = s, we have that ∀t such that sRt and s 6= t holds, M, g, t 6|= i. This means that
monotonicity of atoms fails, which will naturally also eliminate monotonicity of formulae.

Before verifying validity of axioms and proof rules, first some preliminary ground will be covered in the
following subsections.

13



refl A ` A (reflexivity)

⊥ L ⊥ ` A (⊥ left)

∧R A,B ` A ∧B (∧ right)

∧L A ∧B ` A and A ∧B ` B (∧ left)

∨R A ` A ∨B and B ` A ∨B (∨ right)

∨L if Γ, A ` C and Γ, B ` C then Γ, A ∨B ` C (∨ left)

→ R if A ` B then ` A→ B (→ right)

→ L A,A→ B ` B (→ left)

⊥@ @i⊥ ` ⊥ (falsity)

Dec@ ` @iA ∨ ¬@iA (decidability)

∨@ @i(A ∨B) ` @iA ∨@iB (@-distributivity)

Intr i, A ` @iA and i,@iA ` A (introduction)

T@ ` @ii (reflexivity)

Agree ` @i@jA↔ @jA

refl3 ` @i3i (reflexivity)

trans3 3i,@i3j ` 3j (transitivity)

mon3 p,3i ` @ip and A→ B,3i ` @i(A→ B) (monotonicity)

DA i, ↓jA ` A[j := i] and i, A[j := i] `↓jA (downarrow)

bindAt `↓i@iA↔↓iA (bind at)

vacBind `↓iA↔ A, provided i 6∈ fnom(A) (vacuous bind)

PR if Γ,@i3j,@jA ` @jB and j 6∈ fnom(Γ, A,B)
then Γ ` @i(A→ B) (paste rule)

SNec@ if Γ ` A then @iΓ ` @iA (strong necessitation)

SNec↓ if Γ ` A then ↓iΓ `↓iA (strong necessitation)

W if Γ ` A then Γ,∆ ` A (weakening)

Cut if Γ ` A and ∆, A ` B then Γ,∆ ` B (cut)

Figure 5: A proof system for HIpL
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7.2 Defining Validity of a Sequent

An additional definition must be given for M, g, s |= (Γ ` A), since this is necessitated by the use of a
sequent calculus and will enable us to define soundness shortly.

I define validity of sequents by

|= (Γ ` A) ⇐⇒ ∀M, g, s(M, g, s |= Γ⇒M, g, s |= A)

with M, g, t |= Γ as defined before in subsection 4.1, and I claim

|= (Γ ` A) ⇐⇒ ∀M, g, s∀t ∈ S(sRt & M, g, t |= Γ⇒M, g, t |= A)

which is another definition of validity of sequents that occasionally occurs in the literature. Consequently,
we can use the simpler and more concise definition without any loss of generality.

The proof is as follows:

∀M, g, s∀t ∈ S(sRt & M, g, t |= Γ⇒M, g, t |= A)

⇐⇒ (use that (∀x(A(x)→ B(x)) ⇐⇒ (∀x∀y(xRy ∧A(y)→ B(y))) as proven in subsection 7.4)

∀M, g, s(M, g, s |= Γ⇒M, g, s |= A)

⇐⇒ (Definition of validity of a sequent)

|= (Γ ` A)

We now arrive at the central claim of this thesis.

7.3 The Soundness Lemma to be Proven

The rest of this thesis is aimed at developing the tools needed to prove the following lemma, proving the
lemma in subsections 7.6 and 7.7, and showing why this proof does not accommodate certain classical axioms.

First, we must extend the definition of validity of a formula A in a set of formulae Γ to the hybrid context.
We do this by defining

Γ |= A ⇐⇒ ∀M, g, s(M, g, s |= Γ =⇒ M, g, s |= A)

This enables us to define the notion central to this thesis: soundness.

Definition (Soundness) A proof system is sound if and only if it holds that if Γ ` A then Γ |= A

This enables the central claim of this thesis to be stated as follows.

Lemma (Soundness) The proof system in figure 5 is sound.

Two initial results are immediately available to us. Firstly, I claim

|= A→ B ⇐⇒ ∀M, g, s(M, g, s |= A =⇒ M, g, s |= B) (1)

The proof is achieved by noting

|= A→ B

⇐⇒ (Definition of |=)

∀M, g, s[∀t ∈ S(sRt &M, g, t |= A⇒M, g, t |= B)]

⇐⇒ (result in subsection 7.2)

∀M, g, s(M, g, s |= A⇒M, g, s |= B)
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which proves the claim. Note that this means A |= B ⇐⇒ |= A → B, by definition of validity of a
formula in a set of formulae (in this case the singleton set {A}).

Secondly, let
∧

Γ be the conjunction of all formulas in Γ. Then the claim of (1) can be extended to the
following.

Γ |= A ⇐⇒ |= (
∧

Γ→ A) (2)

The proof requires extending the definition of the truth of a set at a state, M, s |= Γ in subsection 4.1,
to the hybrid context, which is done trivially as by defining:

M, g, s |= Γ ⇐⇒ M, g, s |= A, for all A ∈ Γ

with the other definitions such as validity in a set being extended in the same way: simply adding the
nominal assignment g as above.

The proof is as follows.

|= (
∧

Γ→ A)

⇐⇒ (Definition of |=)

∀M, g, s[∀t ∈ S(sRt &M, g, t |=
∧

Γ⇒M, g, t |= A)]

⇐⇒ (Result in subsection 7.2)

∀M, g, s(M, g, s |=
∧

Γ =⇒ M, g, s |= A)

⇐⇒ (Definition of |=, denoting by B, . . . , C all the sets in Γ)

∀M, g, s([M, g, s |= B & . . . & M, g, s |= C] =⇒ M, g, s |= A)

⇐⇒ (Definition of M, g, s |= Γ)

∀M, g, s(M, g, s |= Γ =⇒ M, g, s |= A)

⇐⇒ (Definition of Γ |= A)

Γ |= A

which proves the claim. This also enables us to simplify our reasoning regarding axioms and proof rules.
Consider for example the axiom mon3 which states in part that p,3i ` @ip. In order to take this as an
axiom, it must not corrupt the (potential) soundness of the proof system. Therefore, we must prove that
p,3i |= @ip which is equivalent by claim (2) to |= (p∧3i)→ @ip, which will be used in subsubsection 7.6.7
to show the validity of this axiom.

This lays the groundwork for the general reasoning to be conducted. Some rules of predicate logic will
now be overviewed to enable careful logical reasoning, and the use of these will then be demonstrated in
subsection 7.5.

7.4 Some Rules of Inference in Predicate Logic

Some rules of inference from predicate logic will be needed in the process of proving validity of proof rules
and axioms. Some of these are simply noted and others are proven.

Note first the classical rule of inference, universal instantiation:

∀xA(x) =⇒ A(t/x)

where A(t/x) has all occurrences of x in A replaced by t, and where t is a term.

16



Another proof rule that will be useful is what will be referred to as the universal-existential rule in this
text:

∀x(A(x)→ B) ⇐⇒ ∃xA(x)→ B

of which there is the following proof:

∀x(A(x)→ B)

⇐⇒

∀x(¬A(x) ∨B)

⇐⇒

∀x(¬(A(x) ∧ ¬B))

⇐⇒

¬∃x(A(x) ∧ ¬B)

⇐⇒

¬(∃xA(x) ∧ ∃x¬B)

⇐⇒ (since x not free in B)

¬(∃xA(x) ∧ ¬B)

⇐⇒

¬¬(¬∃xA(x) ∨B))

⇐⇒

∃xA(x)→ B

Note additionally that, if ∃xA(x) is assumed, we have

∀x(A(x)→ B) ⇐⇒ ∃xA(x)→ B ⇐⇒ B

meaning that this is also valid predicate logic rule of inference, provided ∃xA(x) is assumed.
To simplify justifying several reasoning steps, I will refer to the following simple rule as ∧-instantiation/

elimination: if A and B are both assumed to hold, then

A ⇐⇒ A ∧B

and

B ⇐⇒ A ∧B

Note also the following proof rule:

∀x(A(x)→ B(x)) ⇐⇒ ∀x∀y(xRy ∧A(y)→ B(y))

The =⇒ direction is proven as follows. Assume ∀x(A(x)→ B(x)) and let x, y be arbitrary such that both
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xRy and A(y) hold. Then

xRy & A(y)

=⇒ (∀x(A(x)→ B(x)) holds, so ∧-instantiation/elimination permitted)

xRy & A(y) & ∀x(A(x)→ B(x))

=⇒ (universal instantiation)

xRy & A(y) & (A(y)→ B(y))

=⇒ (modus ponens)

xRy & B(y)

=⇒

B(y)

Since x, y were arbitrary, we conclude that the =⇒ direction of the rule holds as indicated. The ⇐=
direction is proven as follows. Assume ∀x∀y(xRy & A(y) → B(y)) and let y be arbitrary such that A(y)
holds. Then,

A(y)

=⇒ (Assumption is assumed to hold, so ∧-instantiation/elimination permitted)

A(y) & [∀x∀y(xRy & A(y)→ B(y))]

=⇒ (using universal instantiation on assumption twice)

A(y) & [yRy & A(y)→ B(y)]

=⇒ (modus ponens)

yRy & B(y)

=⇒ (yRy always holds, so ∧-elimination permitted)

B(y)

Since y was arbitrary, we conclude that ∀x(A(x)→ B(x)) ⇐= ∀x∀y(xRy ∧A(y)→ B(y)) holds as well,
and so the rule holds as given before.

7.5 Derivable formulas

I use the following derivation of the derivable formulas denoted K@ and Nom as examples of precise reasoning
in predicate logic, which I will often use in the following sections. Note, however, that more informal reasoning
is sufficient for the purposes of this text in mathematical logic, and so will also be deployed.

By derivable formulas I mean formulas that are valid and that may be derived using the proof system
given.

Nota bene: throughout this text, if the justification of a reasoning step is simply the application of the
definition of validity, then I will not provide the justification for that step. As such, please take blank spaces
besides the ⇐⇒ symbol to indicate that the definition of validity is being applied. Additionally, note that
in all proofs of axiom, proof rule, and formula validity, M, g, s is taken to be arbitrary.

7.5.1 Derivable Formula K@

The formula named K@ is ` @i(A→ B)→ (@iA→ @iB). Validity is confirmed as follows. Take M, g, s to
be arbitrary.
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|= @i(A→ B) ` (@iA→ @iB)

⇐⇒ (Result in section 7.3)

∀M, g, s(M, g, s |= @i(A→ B) =⇒ M, g, s |= (@iA→ @iB))

⇐⇒

∀M, g, s(M, g, g(i) |= (A→ B) =⇒ M, g, s |= (@iA→ @iB))

⇐⇒

∀M, g, s[∀u ∈ S(g(i)Ru & M, g, u |= A⇒M, g, u |= B) =⇒ M, g, s |= (@iA→ @iB)]

⇐⇒ (∀x ∈ S[∀y ∈ S[A(y)]] ⇐⇒ ∀x ∈ S[A(x)])

∀M, g, s[(g(i)Rs & M, g, s |= A⇒M, g, s |= B) =⇒ M, g, s |= (@iA→ @iB)]

Considering M, g, t |= @iA→ @iB separately to help clarity:

M, g, t |= @iA→ @iB

⇐⇒

∀u ∈ S(tRu & M, g, u |= @iA⇒M, g, u |= @iB)

⇐⇒

∀u ∈ S(tRu & M, g, g(i) |= A⇒M, g, g(i) |= B)

⇐⇒ (since u no longer free in consequent, use A(x)→ B ⇐⇒ ∃xA(x)→ B)

∃u ∈ S(tRu & M, g, g(i) |= A)⇒M, g, g(i) |= B

⇐⇒ (use the logical law [∃x(A(x) ∧B) ⇐⇒ ∃xA(x) ∧B])

[∃u ∈ S(tRu) & M, g, g(i) |= A]⇒M, g, g(i) |= B

⇐⇒ (since tRt, ∃u ∈ S(tRu) holds so ∧-instantiation/elimination permitted)

M, g, g(i) |= A⇒M, g, g(i) |= B

This simplifies the last line of the previous block of reasoning to

∀M, g, s[(g(i)Rs & M, g, s |= A⇒M, g, s |= B) =⇒ (M, g, g(i) |= A⇒M, g, g(i) |= B)]

⇐⇒ (∀x(A(x)→ B) ⇐⇒ ∃xA(x)→ B)

∃M, g, s[g(i)Rs & M, g, s |= A⇒M, g, s |= B] =⇒ (M, g, g(i) |= A⇒M, g, g(i) |= B)

⇐⇒ (g(i)Rg(i) and M, g, g(i) |= A⇒M, g, g(i) |= B from 2nd block: use ∃xA(x)→ B ⇐⇒ B)

M, g, g(i) |= A⇒M, g, g(i) |= B

which is clearly valid, so K@ is a valid formula.

7.5.2 Nom

Nom denotes the potential axiom ` (@ij ∧@iA)↔ @jA, which was identified as a derivable formula in [10].
The derivation is as follows.
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M, g, s |= (@ij ∧@iA)↔ @jA

⇐⇒

∀t ∈ S[sRt =⇒ (M, g, t |= (@ij ∧@iA)⇔M, g, t |= @jA)]

⇐⇒

∀t ∈ S[sRt =⇒ (M, g, s |= (@ij ∧@iA)⇔M, g, g(j) |= A)]

⇐⇒

∀t ∈ S[sRt =⇒ ((M, g, s |= @ij and M, g, s |= @iA)⇔M, g, g(j) |= A)]

⇐⇒

∀t ∈ S[sRt =⇒ ((M, g, g(i) |= j and M, g, g(i) |= A)⇔M, g, g(j) |= A)]

⇐⇒ (since sRs holds, use ∀x(A(x)→ B) ⇐⇒ ∃xA(x)→ B ⇐⇒ B)

(M, g, g(i) |= j and M, g, g(i) |= A)⇔M, g, g(j) |= A

which is valid since M, g, g(i) |= j if and only if g(i) = g(j) so using substitution we get both directions of
the equivalence above.

Therefore, ` (@ij ∧@iA)↔ @jA is a valid formula.

7.5.3 Axiom Name

Another classical axiom that turns out to be a derivable formula is Name, which denotes ‘`↓i@iA → A,
provided i 6∈ fnom(A)’. This turns out to be the combination of the bindAt and vacBind axioms, which are
proven to be valid in the section below. It expresses that if the current state is named i and A is then shown
to hold at i, then A holds in all accessible states. This is because the state named with ↓i was arbitrary, so
showing @iA is then showing A holds at an arbitrary state. The validity of this axioms is shown as follows.

M, g, s |=↓i@iA→ A

⇐⇒

∀u ∈ S([sRu & M, g, u |=↓i@iA]⇒M, g, u |= A)

⇐⇒

∀u ∈ S([sRu & M, g[i := u], u |= @iA]⇒M, g, u |= A)

⇐⇒

∀u ∈ S([sRu & M, g[i := u], g[i := u](i) |= A]⇒M, g, u |= A)

⇐⇒ (definition of locally changed nominal assignment)

∀u ∈ S([sRu & M, g[i := u], u |= A]⇒M, g, u |= A)

Now, consider that i is not free in A means g = g[i := u] on fnom(A). It is then clear that for any u ∈ S
such sRu andM, g[i := u], u |= A both hold, it follows from J-equivalence thatM, g, u |= A. Therefore, the
last line in the above block of reasoning is always valid and so Name may be taken as an axiom.
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7.6 Validity of Axioms

I proceed by examining the axioms presented in professor Renardel de Lavalette in [10] and repeated in
subsection 7.1, in no particular order.

7.6.1 Axiom Dec@

The Dec@ axiom, ` @iA ∨ ¬@iA, which expresses the decidability of satisfaction operators, is shown to be
valid as follows.

M, g, s |= @iA ∨ ¬@iA

⇐⇒

M, g, s |= @iA or M, g, s |= ¬@iA

⇐⇒

M, g, g(i) |= A or ∀t ∈ S(sRt⇒M, g, t 6|= @iA)

⇐⇒

M, g, g(i) |= A or ∀t ∈ S(sRt⇒M, g, g(i) 6|= A)

⇐⇒ (universal-existential rule)

M, g, g(i) |= A or ([∃t ∈ S(sRt)]⇒M, g, g(i) 6|= A)

⇐⇒ (since sRs, so use ∃xA(x)→ B ⇐⇒ B)

M, g, g(i) |= A or M, g, g(i) 6|= A

which is a tautology and so @iA ∨ ¬@iA is valid and Dec@ may be taken as an axiom.

7.6.2 Axiom Intr

The proposed axiom Intr has the two parts of ` (i ∧ A) → @iA and ` (i ∧ @iA) → A. The first is proven
as follows.

M, g, s |= i ∧A→ @iA

⇐⇒

∀t ∈ S([sRt & M, g, t |= i ∧A]⇒M, g, t |= @iA)

⇐⇒

∀t ∈ S([sRt & (M, g, t |= i & M, g, t |= A)]⇒M, g, g(i) |= A)

⇐⇒

∀t ∈ S([sRt & g(i) = t & M, g, t |= A]⇒M, g, g(i) |= A)

⇐⇒ (using substitution)

∀t ∈ S([sRt & g(i) = t & M, g, g(i) |= A]⇒M, g, g(i) |= A)

which is valid as may be checked by a simple truth table.
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Likewise, the second is proven by the following reasoning. Firstly, by definition, for arbitrary M, g, s it
is the case that

|= (i ∧@iA)→ A

⇐⇒

∀M, g, s(M, g, s |= (i ∧@iA) =⇒ M, g, s |= A)

⇐⇒

∀M, g, s([M, g, s |= i and M, g, g(i) |= A] =⇒ M, g, s |= A)

⇐⇒

∀M, g, s([s = g(i) and M, g, g(i) |= A] =⇒ M, g, s |= A)

which is again clearly valid.
As such, Intr may be taken as an axiom.

7.6.3 Axiom T@

The reflexivity axiom T@, ` @ii, which expresses the reflexivity of frames in terms of the satisfaction operator
@, is shown to be an axiom as follows.

M, g, s |= @ii

⇐⇒

M, g, g(i) |= i

⇐⇒

g(i) = g(i)

which is valid, so T@ may be taken as an axiom.

7.6.4 Axiom Agree

The Agree axiom, ` @i@jA↔ @jA, expresses that if it can be proven that a formula holds at a particular
state named j, then that formula can also be proven to hold at that state named j at another state named
i. It’s validity is demonstrated as follows.

M, g, s |= @i@jA↔ @jA

⇐⇒

∀t ∈ S(sRt & M, g, s |= @i@jA ⇐⇒ sRt & M, g, s |= @jA)

⇐⇒

∀t ∈ S(sRt & M, g, g(i) |= @jA ⇐⇒ sRt & M, g, s |= @jA)

⇐⇒

∀t ∈ S(sRt & M, g, g(j) |= A ⇐⇒ sRt & M, g, g(j) |= A)

which is valid. Therefore, @i@jA ⇐⇒ @jA is valid. and so Agree may be taken as an axiom
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7.6.5 Axiom ⊥@

The potential axiom ` @i⊥ → ⊥, denoted by ⊥@, expresses that if falsity is derivable at any state, then it is
derivable at all accessible states. This is consistent with the semantics of HIpL that permits no validation of
⊥ at any state, which in turn overlaps with the intuitionistic background assumption mentioned by Troelstra
and van Dale in [21], which states that it is assumed that no information leading to a contradiction will be
found as one moves from state to state. Consequently, if a contradiction would hold at a particular state, it
is indicative of a model in which a state without contradiction cannot be expected to exist.

M, g, s |= @i⊥ → ⊥

⇐⇒

M, g, s |= @i⊥ ⇒M, g, s |= ⊥

⇐⇒

M, g[i := s], s |= ⊥ ⇒M, g, s |= ⊥

Now, since by the definition of semantics it is known that M, g[i := s], s 6|= ⊥, it follows that M, g[i :=
s], s |= ⊥ gives a contradiction, and since anything follows from a contradiction, M, g[i := s], s |= ⊥ ⇒
M, g, s |= ⊥ is valid. This in turn means @i⊥ → ⊥ is valid, and so may be taken as an axiom.

7.6.6 Axiom refl3

The reflexivity axiom ` @i3i expresses the reflexivity of frames in HIpL in terms of reachability of a state
named i from that same state named i. It’s validity is shown as follows.

First, for arbitraryM, g, s and by the definition of |=, we have that |= @i3i if and only ifM, g, g(i) |= 3i,
which by definition holds if and only if g(i)Rg(i), which always holds by the reflexivity of HIpL frames.
Therefore, |= @i3i is implied by a valid expression, and is therefore valid.

As such, the refl3 may be taken as an axiom.

7.6.7 Axiom mon3

The monotonicity axiom mon3 has two parts. Firstly, p,3i ` @ip, and secondly, A→ B,3i ` @i(A→ B).
This expresses that HIpL retains partial monotonicity. The first part of the axiom expresses that if a
propositional variable p holds at a state where the state named i is accessible from, then p holds at the
state named i also, such that we have monotonicity of propositional variables in the set of accessible states.
The second part expresses that this same result holds for implication with formulae, which is by no means
full-fledged monotonicity of formulae, but does give monotonicity of formulae in this subcase. The validity
of this axiom is shown as follows.

For the first part, recall that in subsection 7.3 it was noted that p,3i |= @ip if and only if |= (p∧i)→ @ip,
which by the definition of |= is equivalent to asserting that for arbitrary M, g, s, we have

(M, g, s |= p & M, g, s |= 3i) implies M, g, g(i) |= p (3)

Now, the definition |= gives thatM, g, s |= p if and only s ∈ V (p), which by the definition of the intuitionistic
valuation function is the set {V ⊆ S | ∀s ∈ V ∀t ∈ S(sRt ⇒ t ∈ V )}. Note further that by definition of |=,
M, g, s |= 3i if and only if sRg(i) holds. Therefore, g(i) ∈ V (p), meaning that if the antecedent of (3) holds,
then M, g, g(i) |= p. As such, |= (p ∧ i)→ @ip is valid.

For the second part, it is necessary to show validity of |= ([A → B] ∧ 3i) → @i(A → B). As this is
equivalent by the definition of |= to asserting that for arbitrary M, g, s we have

([M, g, s |= A =⇒ M, g, s |= B] & M, g, s |= 3i) implies M, g, g(i) |= A =⇒ M, g, g(i) |= B (4)
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By the definition of |=, if M, g, s |= A =⇒ M, g, s |= B holds then ∀t ∈ S(sRt & M, g, t |= A ⇒
M, g, t |= B). Since sRg(i) holds as in the reasoning for the first part of mon3, it immediately follows that
the antecedent implies M, g, g(i) |= A =⇒ M, g, g(i) |= B and so |= ([A→ B] ∧3i)→ @i(A→ B) is also
valid.

Therefore, since both parts of mon3 is valid, it may be taken as an axiom.

7.6.8 Axiom bindAt

The bindAt axiom, `↓i@iA ↔↓iA, expresses that if the current state is named i using ↓i, then to shift the
point of evaluation to the state named i by using @i is vacuous: @i then shifts the point of evaluation from
the current state to the current state. What is to be demonstrated is that |=↓i@iA if and only if |=↓iA. This
is proven as follows. For arbitrary M, g, s we have

M, g, s |=↓i@iA

⇐⇒

M, g[i := s], g[i := s](i) |= A

⇐⇒ (Using g[i := s](i) = s)

M, g[i := s], s |= A

⇐⇒

M, g, s |=↓iA

meaning that the validity of one implies the validity of the other, and so we have that the bindAt may be
taken as an axiom.

7.6.9 Axiom vacBind

The axiom vacBind denotes `↓iA ↔ A, provided i 6∈ fnom(A). This expresses that binding a formula in
which the nominal being used for binding is not free in, is equivalent to not binding it, since whether A holds
at the state named i is not influenced by the occurence of i in A precisely because i 6∈ fnom(A). Now, it is
to be demonstrated that |=↓iA if and only if |= A, provided i 6∈ fnom(A).

Assume i 6∈ fnom(A), and note for arbitrary M, g, s we have that M, g, s |=↓iA if and only if M, g[i :=
s], s |= A by definition. Now, consider that i is not free in A means g = g[i := u] on fnom(A). It then follows
from J-equivalence that M, g[i := s], s |= A if and only if M, g, s |= A. As such, the equivalence |=↓iA if
and only if |= A holds, provided i 6∈ fnom(A).

Consequently, vacBind may be taken as an axiom.

7.7 Validity of Proof Rules

7.7.1 Proof Rule →R

The proof rule denoted by →R states that ‘if A ` B then ` A → B’, so we must demonstrate ‘if A |= B
then |= A→ B.’ Assume A |= B. Then, by the reasoning in subsection 7.3, A |= B ⇐⇒ |= A→ B and so
the validity of A→ B follows from the validity of proof rule holds.

7.7.2 Proof Rule Cut

The Cut rule states that ‘if Γ ` A and ∆, A ` B then Γ,∆ ` B’, so it must be demonstrated that if Γ |= A
and ∆, A |= B, then Γ,∆ |= B.

Assume Γ |= A and ∆, A |= B. By definition, this is equivalent to assuming that for arbitrary M, g, s,
we have

M, g, s |= Γ implies M, g, s |= A (5)
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and

M, g, s |= ∆ ∧A implies M, g, s |= B (6)

Now, Γ,∆ |= B if and only ifM, g, s |= Γ∧∆ implies M, g, s |= B, by the definition of Γ |= A and claim
(2) in subsection 7.3. This enables us to reason as follows.

M, g, s |= Γ ∧∆

⇐⇒
M, g, s |= Γ & M, g, s |= ∆

=⇒ (Using (5))

M, g, s |= A & M, g, s |= ∆

⇐⇒
M, g, s |= A ∧∆

=⇒ (Using (6))

M, g, s |= B

Therefore, the consequent of the proof rule has been shown to hold using the assumptions in the an-
tecedent. I conclude that the cut rule is valid.

7.7.3 Proof Rule SNec@

The satisfaction strong necessitation proof rule is stated as ‘if Γ ` A then @iΓ ` @iA.’ As such, it must be
demonstrated that ‘if Γ |= A then @iΓ |= @iA’ is a valid inference.

Assume Γ |= A. Observe the following equivalence:

@iΓ |= @iA

⇐⇒ (Definition of Γ |= A)

∀M, g, s(M, g, s |= @iΓ⇒M, g, s |= @iA)

⇐⇒

∀M, g, s(M, g, g(i) |= Γ⇒M, g, g(i) |= A)

⇐⇒ (since s is not free in any term, it maybe eliminated and introduced freely)

∀M, g(M, g, g(i) |= Γ⇒M, g, g(i) |= A)

We now use the assumption as follows:
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Γ |= A

⇐⇒ (Definition of Γ |= A)

∀M, g, s(M, g, s |= Γ⇒M, g, s |= A)

=⇒ (since g(i) ∈ S we may instantiate)

∀M, g(M, g, g(i) |= Γ⇒M, g, g(i) |= A)

⇐⇒ (by the first block of reasoning)

@iΓ |= @iA

Therefore, since the validity of @iΓ |= @iA follows from the validity of Γ |= A, this is a valid proof rule.

7.7.4 Proof Rule SNec↓

The SNec↓proof rule asserts that if Γ ` A then ↓iΓ `↓iA. What is to be demonstrated is that Γ |= A implies
↓iΓ |=↓iA. Assume Γ |= A. Note the following.

↓iΓ |=↓iA

⇐⇒ (Definition of |=)

∀M, g, s(M, g[i := s], s |= Γ =⇒ M, g[i := s], s |= A)

The assumption can then be used as follows.

Γ |= A

⇐⇒ (Definition of Γ |= A)

∀M, g, s(M, g, s |= Γ⇒M, g, s |= A)

This gives rise to a case distinction. Firstly, if i 6∈ fnom(Γ, A) then, by the same reasoning as in the
proof of validity of the vacBind axiom, it follows from J-equivalence that M, g[i := s], s |= A if and only if
M, g, s |= A and the desired implication is therefore obtained directly.

Secondly, if i ∈ fnom(Γ, A) then binding Γ and A simultaneously by ↓i means the state mapped to by
g(i) is simply changed in both M, g[i := s], s |= A and M, g[i := s], s |= Γ to state s, which preserves
the M, g, s |= Γ ⇒ M, g, s |= A implication. As such, in this case M, g, s |= Γ ⇒ M, g, s |= A implies
M, g[i := s], s |= Γ⇒M, g[i = s], s |= A.
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As such, we conclude

Γ |= A

⇐⇒ (Definition of Γ |= A)

∀M, g, s(M, g, s |= Γ⇒M, g, s |= A)

=⇒ (Above reasoning)

∀M, g, s(M, g[i := s], s |= Γ⇒M, g[i := s], s |= A)

⇐⇒

↓iΓ |=↓iA

Therefore, the validity of Γ |= A implies the validity of ↓iΓ |=↓iA, and so the SNec↓is a valid proof rule.

7.7.5 Proof Rule PR

The paste rule PR for HIpL is as follows: ‘if Γ,@i3j,@jA ` @jB and j 6∈ fnom(Γ, A,B) then
Γ ` @i(A→ B).’ As such, it must be demonstrated that if Γ,@i3j,@jA |= @jB then Γ |= @i(A→ B) with
j 6∈ fnom(Γ, A,B). Firstly, assume Γ,@i3j,@jA |= @jB. Note that j either does not occur in Γ, A, or B, or
is bound by ↓ in them, since j 6∈ fnom(Γ, A,B). We have by claim (2) that
Γ,@i3j,@jA |= @jB ⇐⇒ |= (Γ ∧@i3j ∧@jA)→ @jB.

Simple reasoning shows the following equivalence.

Γ |= @i(A→ B)

⇐⇒ (Definition of Γ |= A and |=)

∀M, g, s(M, g, s |= Γ =⇒ ∀t ∈ S(g(i)Rt & M, g, s |= A⇒M, g, t |= B))

We now use the assumption as follows.

|= (Γ ∧@i3j ∧@jA)→ @jB

⇐⇒ (Definition of |=)

∀M, g, s([M, g, s |= Γ & M, g, g(i) |= 3j & M, g, g(j) |= A] =⇒ M, g, g(j) |= B)

⇐⇒

∀M, g, s([M, g, s |= Γ & g(i)Rg(j) & M, g, g(j) |= A] =⇒ M, g, g(j) |= B)

⇐⇒ (Using x→ y ⇐⇒ ¬x ∨ y twice with rearrangement)

∀M, g, s(M, g, s |= Γ =⇒ (¬g(i)Rg(j) or ¬M, g, g(j) |= A or M, g, g(j) |= B)

⇐⇒ (Using x→ y ⇐⇒ ¬x ∨ y)

∀M, g, s(M, g, s |= Γ =⇒ (g(i)Rg(j) & M, g, g(j) |= A⇒M, g, g(j) |= B)
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=⇒ (i 6∈ fnom(Γ, A,B))

∀M, g, s(M, g, s |= Γ =⇒ ∀t ∈ S(g(i)Rt & M, g, t |= A⇒M, g, t |= B)

⇐⇒ (Using first block of reasoning)

Γ |= @i(A→ B)

where the implication justified by i 6∈ fnom(Γ, A,B) is justified in this way since this means that j names
an arbitrary accessible state (relative to g(i)) named j, and as such replacing j by another nominal naming
another accessible state is permissible, but this is the same as ranging over all accessible states, as is done.

Consequently, the paste rule PR may be taken as a valid proof rule in the proof system.

7.8 Lemma Proven

Similar reasoning shows the soundness of the remaining axioms and proof rules as well. As such, this
completes the proof of the soundness of the proof system presented in subsection 7.1.

8 Counterexamples

In this section I overview some formulas and rules which one might expect could be potential axioms and
proof rules and yet fail to be such in the current semantics.

8.0.1 Classical DA

This version of the downarrow axiom came from [15] but does not survive the transition from a classical to
intuitionistic context. Classical DA denotes ` @i(↓jA↔ A[j := i]).

M, g, s |= @i(↓jA↔ A[j := i])

⇐⇒

M, g, g(i) |=↓jA↔ A[j := i]

⇐⇒

∀t ∈ S(g(i)Rt & M, g, t |=↓jA ⇐⇒ g(i)Rt & M, g, t |= A[j := i])

⇐⇒

∀t ∈ S(g(i)Rt & M, g[j := t], t |= A ⇐⇒ g(i)Rt & M, g, t |= A[j := i])

⇐⇒ (by substitution property)

∀t ∈ S(g(i)Rt & M, g[j := t], t |= A ⇐⇒ g(i)Rt & M, g ◦ [j := i], t |= A)

Now, consider that if A = j, then

M, g ◦ [j := i], t |= j ⇐⇒ g ◦ [j := i](j) = g(i) = t

On the other hand,

M, g[j := t], t |= j ⇐⇒ g[j := t](j) = t

where the second always holds, and the first only holds if g(i) = t. As such, the equivalence in the last line
of the above block of reasoning does not hold for all t in S.

As such, ` @i(↓jA↔ A[j := i]) cannot be taken as an axiom.
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9 Conclusion

Introductions to modal, intuitionistic, and hybrid modal logic were all presented, with necessary concepts and
results such as Kripke semantics and complete proof systems included. The semantics of hybrid intuitionistic
logic was then presented, followed by a sufficient number of proofs of validity of various axioms and proof
rules in the axiomatization presented in subsection 7.1 to conclude soundness of this axiomatization. Various
additional results regarding HIpL were also noted, as well as a discussion of potential axioms that were found
to be derivable, and a discussion of classical DA which turned out to be invalid in the context of the semantics
presented in this thesis. To sum up, soundness of a proof system for HIpL was proven and various aspects
of the logic explored.
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