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Abstract

This thesis describes and proves the correctness of an algorithm that computes the rational torsion subgroup for

the Jacobian of any hyperelliptic curve, and describes the explicit theory that is required by this algorithm. It

does not require a procedure that performs the group law on the rational points of the Jacobian. Furthermore,

all the required procedures are explicitly described and implemented for Jacobians of hyperelliptic curves of

genus 3. Both the design of the algorithm and many required procedures are based on work by Michael Stoll.

The rational torsion structures of many Jacobians of hyperelliptic curves of genus 3 with low discriminant

have been computed for the LMFDB.
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1 Introduction

In arithmetic geometry, techniques that aim to solve Diophantine equations often involve exploring the group

structure of the Jacobian of a given curve defined over a number field k. A classical example is an elliptic

curve E, for which the Jacobian is equal to the curve. The set of rational points E(k) is a finitely generated

abelian group, so one can find E(k) by finding generators and relations of E(k).

For elliptic curves, all possible rational torsion structures are determined [33]. The rational torsion

structures of higher-dimensional abelian varieties (such as Jacobians of hyperelliptic curves) are not known in

general, and are tied to the uniform boundedness conjecture, stating that the order of the k-rational torsion

subgroup of an abelian variety A defined over a number field k is bounded in terms of the dimension of A

and the number field k [48, Chapter 2]. Several authors have tried to construct curves corresponding to

Jacobians that have a rational torsion point with large order [29] [43], but, so far, complete algorithms for the

computation of J(Q)tors have only been known for Jacobians of hyperelliptic curves of genus 1 and 2. Having

a method to compute J(Q)tors could give more insight on the possible torsion structures that can be found.

Finding J(Q)tors is also a first step ro compute J(Q)tors. By the theorem of Mordell-Weil, J(Q)tors is

a finite abelian group. J(Q)tors can be used to gain experimental insight on the behavior of the rank of J ,

which is connected to conjectures such as the Birch and Swinnerton-Dyer conjecture for abelian varieties

[2]. In refined versions of the Birch and Swinnerton-Dyer conjecture, the cardinality of J(Q)tors is directly

considered [58]. Furthermore, if one has obtained enough information on J(Q), one can attempt to determine

C(Q) using the method of Chabauty and Coleman [34], provided that the rank of J(Q) is strictly less than

the genus of C.

Given an elliptic curve E defined over Q, one can use reduction modulo p (where p is a suitable prime)

[49, §VII.2, VII.3] and Nagell-Lutz Theorem [49, Corollary VIII.7.2] to determine E(Q)tors. Techniques using

reduction modulo p generalize for higher-dimensional abelian varieties, but no analogue for the Nagell-Lutz

theorem is known. For genus 2 hyperelliptic curves, an algorithm that computes the rational torsion subgroup

of Jacobians of hyperelliptic curves of genus 2 is proposed as an application to the height difference bound

between the canonical and naive height on the Jacobian by Michael Stoll in [52, §11]. This thesis contains a

detailed proof of correctness of the generalization of this algorithm to any genus. Also, the necessary objects

that are required to make this generalization practical are described. Furthermore, this thesis contains a

generalization of a lifting procedure used in [52, §11]. In practice, this allows us to speed up the lifting

procedure.

Given the Jacobian J , most of the computations are performed on the Kummer variety K := J/{±1}
corresponding to the Jacobian. Using a generalization of the Montgomery ladder for elliptic curves, one

can perform multiplication-by-n on the Kummer variety, provided that certain doubling formulae and

biquadratic forms are known. These doubling formulae and biquadratic forms are nontrivial to compute. Our

generalization of the lifting procedure allows us to compute J(Q)tors for many curves without using these

biquadratic forms. Hence, an explicit computation of the biquadratic forms is less essential compared to the

original design.

A recent paper by Stoll [55] shows how to find a height difference bound on Jacobians for hyperelliptic

curves of genus 3, together with an algebraic description of its corresponding Kummer variety. Also, doubling

formulae and biquadratic forms that give the sum-and-difference-laws on the Kummer variety are introduced

and made available on Michael Stoll’s web page [51]. Developing an algorithm that computes J(Q)tors

for Jacobians of hyperelliptic curves of genus 3 is a natural next step. In fact, an implementation of such

an algorithm is requested by Andrew Sutherland in the workshop ”Arithmetic aspects of explicit moduli

problems” held in Banff, 2017 [1, final report: 3.10].

This thesis finishes the description of the quotient map κ : J → K for the special cases that are not

explicitly described in [55]. Using this, we give a method to test whether the pre-image of a given point on K

under κ is rational. This explicit description of κ is important because most of the actual computations are

done on K. For example, the arithmetic on J(Q) can be replaced entirely by arithmetic on K(Q), hence we
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do not do not require arithmetic on J(Q). This is one of the strengths of the algorithm because in general,

no algorithm for arithmetic on J(k) is known if no rational point on C(k) is known. However, we do need an

implementation of the arithmetic on J̃(Fp), where J̃ is a reduced Jacobian over Fp. By choosing particular

reduced Jacobians J̃ , we can always find a rational point P̃ ∈ C̃(Fp) for the corresponding curve C̃, hence an

algorithm for arithmetic on these J̃ is known.

A complete implementation of the algorithm for genus 3 hyperelliptic curves is constructed and made

available via https://github.com/bernoreitsma/g3hyptorsion. The code is based on the file G3Hyp.m in

[51] (containing base code for the case where C has the model y2 = f(x) where f is of odd degree) and the

implementation for genus 2 hyperelliptic curves in MAGMA [4] due to Stoll.

We also applied this algorithm to 67879 genus 3 hyperelliptic curves over Q of low discriminant. This

database is maintained by Andrew V. Sutherland and will be added to the L-functions and Modular Forms

Database (LMFDB) [3]. Some example computations are showcased in this thesis.

Chapter 2 introduces preliminary theory on hyperelliptic curves, the Jacobian, and the Kummer variety.

Chapter 3 discusses the strategy of the algorithm and introduces the specific background theory that is

relevant for the algorithm. A complete description and proof of correctness of the algorithm is given in

Chapter 4, together with a small discussion on applications of the generalization of the lifting procedure.

Chapter 5 discusses the explicit formulae and algorithms that are necessary to make the algorithm work on

genus 3 hyperelliptic curves. After that, results and examples of the computations on genus 3 hyperelliptic

curves are discussed in Chapter 6.
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2 Hyperelliptic curves, Jacobians and the Kummer variety

This chapter introduces preliminary theory on hyperelliptic curves, Jacobians, and the Kummer variety. If the

reader is familiar with elliptic curves, but not very familiar with hyperelliptic curves, they are recommended

to keep the case of elliptic curves in mind and note that often, the theory here is a generalization of the

theory on elliptic curves.

2.1 Hyperelliptic curves

The main goals of this section are to provide a definition of hyperelliptic curves, and introduce some basic

theory. We often restrict ourselves to what is relevant to this thesis. For a more elaborate introduction, we

refer to [23], which is also one of the main references used in this section.

2.1.1 Hyperelliptic curves and rational points

Before we define hyperelliptic curves, we first define a suitable ambient space. Then, we define hyperelliptic

curves.

Definition 2.1. Let k be a field and let g ∈ Z≥0. The weighted projective plane P2
g = P2

1,g+1,1 is the geometric

object whose points over a given field k are elements of

(A3(k) \ {0})/ ∼ (2.2)

where ∼ is the equivalence relation such that (ρ, η, ζ) ∼ (ρ′, η′, ζ ′) if and only if there exists a λ ∈ k× such

that (ρ, η, ζ) = (λρ′, λg+1η′, λζ ′).

The coordinate ring k[P2
g] over k of P2

g is the ring k[x, y, z] together with the grading such that x and z

have degree 1, and y has degree g + 1. A polynomial in the coordinate ring of P2
g is homogeneous of degree d

if it consists of a combination of monomials of degree d.

For a point (ρ, η, ζ) ∈ A3 \ {0}, we denote its equivalence class in P2
g by (ρ : η : ζ).

Definition 2.3. Let k be a perfect field of characteristic 6= 2, and let g ∈ Z≥1. A hyperelliptic curve of genus

g is a subvariety C of P2
g defined by the equation

y2 = F (x, z) := f2g+2x
2g+2 + · · ·+ f0z

2g+2 (2.4)

where F ∈ k[x, z] is squarefree and homogeneous of degree 2g + 2.

Remark 2.5. An elliptic curve defined over k can be defined as a hyperelliptic curve of genus 1 that contains

a k-rational point.

Indeed, C is a subvariety of P2
g because the polynomial y2 − F (x, z) is homogeneous of degree 2g + 2 in

the coordinate ring of P2
g. The coordinate ring k[C] of C is the ring k[x, y, z]/(y2 − F (x, z)) with its induced

grading.

Hyperelliptic curves and points on hyperelliptic curves are also often described using an affine equation

for practical reasons. It is important to clarify how these two descriptions interact precisely, so we derive the

affine description here. The intersection of C with the affine patch of P2
g defined by z = 1 is the affine variety

Caff defined by

y2 = F (x, 1) := f(x) = f2g+2x
2g+2 + · · ·+ f0. (2.6)

Since F is squarefree, we must have that f ∈ k[x] is squarefree and deg f is equal to 2g + 1 or 2g + 2. The

coordinate ring k[Caff] of Caff is then k[x, y]/(y2 − f(x)) with its induced grading, i.e., deg(x) = 1 and

deg(y) = g + 1.
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The points at infinity C inf of C consist of the intersection of C with the line z = 0 in P2
g. We observe

that C = Caff ∪C inf. If (ρ : ζ : η) ∈ C inf, then ζ2 = f2g+2ρ
2g+2, hence C inf = {(1 : α : 0), (1 : −α : 0)}, where

α2 = f2g+2. It follows that C has one point at infinity if f2g+2 = 0 and two points at infinity otherwise. Also,

C has two k-rational points at infinity if f2g+2 ∈ k2 \ {0}, where k2 denotes the set of squares in k. The

curve C contains precisely one k-rational point at infinity if f2g+2 = 0 and no k-rational points at infinity if

f2g+2 6∈ k2.

Theorem 2.7. Let k be a perfect field of characteristic 6= 2, and let C be a hyperelliptic curve of genus g.

Then, C is a smooth, geometrically irreducible curve.

Proof. Besides proving smoothness and geometric irreducibility, we also prove that C is, in fact, a curve, i.e.,

C has dimension 1.

First, we observe that, ∂(y2−f(x))
∂x = −f ′(x) and ∂(y2−f(x))

∂y = 2y, hence (using char(k) 6= 2) a singular

point on Caff must be of the form (α, 0), such that f(α) = f ′(α) = 0. This contradicts f being squarefree.

The points at infinity are nonsingular by [23, Lemma 10.1.11]. We conclude that C is smooth.

Following the strategy of [23, Lemma 10.1.2], Caff is not geometrically irreducible if and only if y2 = f(x)

factors as an element of k̄[x, y]. Equivalently, y2 − f(x) = (y − a(x))(y − b(x)) for some a, b ∈ k̄[x], which

can only be true if a(x) = −b(x), equivalently f = −a2, contradicting f being squarefree. The lemma [23,

Lemma 10.1.2] also proves that Caff has dimension 1. We conclude using [23, Theorem 10.1.14] that C is

geometrically irreducible and has dimension 1.

Throughout this thesis, C denotes a hyperelliptic curve defined over a perfect field k of characteristic

6= 2, and g denotes the genus of that hyperelliptic curve. With f , we denote the polynomial defining Caff in

Equation (2.6), and F denotes its homogenization as described in Equation (2.4). Also, k denotes a perfect

field of characteristic 6= 2, and k̄ denotes its separable closure, which is also its algebraic closure since k is

assumed to be perfect. Furthermore, we denote ` ⊃ k to be a separable field extension of k. If we consider

k-rational points on a curve defined over k, we often refer to k-rational points by simply calling them rational

points if k is clear from the context.

Many results that follow hold more generally, but we will state them for C instead. If k has characteristic

2, the defining equation 2.6 always leads to a singular curve (see the singularity conditions on points in the

proof of Theorem 2.7). For hyperelliptic curves over fields of general characteristic, we refer to [23, Chapter

10].

Remark 2.8. One might wonder why a weighted projective plane is necessary for the homogenization of

affine curves with defining equation y2 = f(x). In P2, for g ∈ Z≥1, homogenization would lead to the

projective algebraic equation y2z2g = F (x, z). This gives the point (0 : 1 : 0). By taking an affine patch

defined by y = 1. We can observe that the partial derivatives in the coordinates x and z are both zero, hence

this point is always singular. The weighted projective space is not necessary in the case of an elliptic curve.

An elliptic curve can be defined by y2z = F (x, z) where F has degree 3. Similarly using an affine patch

defined by y = 1 and taking partial derivatives, we see check that the point at infinity (0 : 1 : 0) is nonsingular

in this case: The partial derivative ∂(z−f(x))
∂z = 1− f ′(x) evaluates to 1 at the point (x, z) = (0, 0).

Definition 2.9. The function field `(C) of C ×k ` is the subfield of the field of fractions of `[C] defined as

`(C) := {h1/h2 : h1, h2 ∈ `[C] are homogeneous of equal degree}

An element of the function field is called a rational function of C over `. A rational function described

as the quotient h1/h2 with h1 and h2 in `[x, y, z] is called regular at a point (ρ : ζ : η) if h2(ρ, ζ, η) 6= 0.

For a point P = (ρ : ζ : η) such that φ = h1/h2 is regular at P , the evaluation of φ at P is defined as

φ(P ) := h1(ρ, ζ, η)/h2(ρ, ζ, η). The value of φ(P ) does not depend on the choice of h1, h2.

The following is useful to describe rational functions in an affine context.
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Lemma 2.10. The function field k(Caff) of Caff, defined as the field of fractions of k[Caff], is isomorphic to

k(C).

Proof. See [23, Corollary 5.4.9].

2.1.2 The Galois action on hyperelliptic curves

The action of the Galois group on points on C gives an alternative definition of rational points on C, and is

later also used to define an action of the Galois group on points on the Jacobian, which eventually describes

rational points on the Jacobian. Let Gk := G(k̄/k) be the absolute Galois group of k. An automorphism

σ ∈ Gk acts on a point in Pg2 via its coordinates, i.e., if P = (ρ : ζ : η), then σ(P ) = (σ(ρ) : σ(ζ) : σ(η)).

Lemma 2.11. The following equation of sets holds.

P2
g(k) = {P ∈ P2

g(k̄) : σ(P ) = P for all σ ∈ Gk}. (2.12)

Proof. This is proven using Hilbert’s Theorem 90 [47, Chapter X, Proposition 2], a proof for general (non-

weighted) projective spaces is described in [23, Lemma 5.2.5]. Using that σ is an automorphism, this proof

can be generalized to weighted projective spaces.

Lemma 2.11 tells us that for fields k ⊆ ` ⊆ k̄, we have that `-rational points are the points in C(k̄) fixed

by Gal(`/k). In particular, we can find the smallest field ` for which a point P ∈ P2
g(k̄) is `-rational by finding

the smallest field extension such that Gal(`/k) fixes P .

2.1.3 Weierstrass points

Weierstrass points are special points that are used throughout this thesis. In essence, the existence of a

rational Weierstrass point gives us a canonical representation of rational points on the Jacobian, which is

also important for implementing arithmetic on the Jacobian. We use the hyperelliptic involution to define

Weierstrass points because it generalizes better if one wants to work in characteristic 2.

Definition 2.13. The map ι : C → C defined (x : y : z) 7→ (x : −y : z) is the hyperelliptic involution of C.

The map π : C → P1 defined by (x : y : z) 7→ (x : z) is the quotient map of C.

Definition 2.14. A point P ∈ C is called a Weierstrass point if ι(P ) = P .

We see immediately that P := (ρ : ζ : η) is a Weierstrass point if and only if ζ = 0. The Weierstrass

points are also the ramification points of the quotient map.

If k is algebraically closed, C always has rational Weierstrass points. If a rational Weierstrass point exists,

it is usually fixed to be at infinity (see Section 2.6). Most literature that assumes k to be algebraically closed

only considers curves of odd degree due to the following observation.

Example 2.15. If f2g+2 = 0 then the point at infinity is a Weierstrass point. If f2g+2 6= 0, then the points

at infinity are not Weierstrass points. This follows immediately from the discussion of C inf above.

2.2 Divisors and the Picard Group

Before we define the Jacobian, it is important to introduce the divisor group and `-rational divisors. The

Picard group is a group of divisors modulo an equivalence relation. The `-rational equivalence classes

in the Picard group correspond to `-rational points on the Jacobian. This allows us to create a divisor

representation of `-rational points on the Jacobian. In this section, we introduce divisors and the Picard

group. Creating divisor representatives for the equivalence classes in the Picard group is done in Section 2.4,

after we introduced the Jacobian variety itself in Section 2.3.
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2.2.1 Divisors

Definition 2.16. A divisor D on C is a Z-linear combination of the form

D =
∑

P∈C(k̄)

αPP

such that αP = 0 for all but finitely many points P ∈ C(k̄). The support of the divisor is the set of points

P ∈ C(k̄) that have nonzero coefficient. For two divisors D =
∑
P∈C(k̄) αPP and D′ =

∑
P∈C(k̄) α

′
PP , we

say that D ≥ D′ if αP ≥ α′P for all P ∈ C(k̄). Here, ”≥” clearly defines a partial order. A divisor D is called

effective if all coefficients are nonnegative, i.e., D ≥ 0. The degree of a divisor is the sum of its coefficients,

i.e., deg(D) :=
∑
P∈C(k̄) αP .

The set of divisors is denoted by DivC . Considering addition as operator, DivC is a free abelian group.

We denote the set of divisors of degree d ∈ Z by DivdC . Clearly, the degree of divisors is additive, hence Div0
C

is a subgroup of DivC .

Let Gk be the absolute Galois group of k. The action of Gk on DivC is defined by its induced action on

its points, i.e., if σ ∈ Gk, then

σ

 ∑
P∈C(k̄)

αPP

 =
∑

P∈C(k̄)

αPσ(P ).

A divisor D is called k-rational if D is fixed under Gk. Clearly, adding two rational divisors results in a

rational divisor. Note that this does not require all the points in the support to be rational. We demonstrate

this in the following example.

Example 2.17. We will provide an example of a rational divisor D that has no rational points on C in

its support. Let C be defined over Q such that f2g+2 = −1. Consider the divisor D = (1 : i : 0) + (1 : −i :

0) ∈ DivC where i2 = −1. We have that i 6∈ Q lives in the quadratic number field Q(i). Any σ ∈ GQ fixes

coordinates in Q, and either fixes i or sends i to −i. In both cases, we can check that σ(D) = D, hence D is

rational.

2.2.2 Principal divisors

Principal divisors are a particular kind of divisors that can be obtained by considering the roots and poles of

a rational function. We consider them because they define the equivalence relation on the Picard group.

Definition 2.18. Let P ∈ C(k̄), then the map vP : k[C] \ {0} → Z≥0 is defined such that vP (h) = 0 if P is

not a root of h, and vP (h) = m ≥ 1 if P is a root of multiplicity m in h. We extend vP to k(C)× defining

vP (h1/h2) = vP (h1)− vP (h2).

Since any element in k(C) has finitely many roots and poles (poles are the zeros of the denominator), vP
is well-defined for all P ∈ C(k̄). We usually denote rational functions in k(C) in an affine way, i.e., since

rational functions in k(Caff) using Lemma 2.10.

Definition 2.19. Let φ ∈ k̄(C)×. We define a divisor of the function φ to be

div(φ) =
∑

P∈C(k̄)

vP (φ) · P.

A divisor of a function is said to be a principal divisor. The set of principal divisors is denoted by PrincC .

The set of `-rational principal divisors are denoted by PrincC(`).
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It is clear that div(φ1) + div(φ2) = div(φ1φ2) for functions φ1, φ2 ∈ k̄(C)×. Therefore, the map

div: k̄(C)× → DivC is a group homomorphism, hence PrincC is a subgroup of DivC . Subsequently, PrincC(k)

is a subgroup of DivC(k). The degree of a principal divisor is always equal to zero [54, Lemma 4.7], so

PrincC ⊆ Div0
C . Another important property of the map div is Galois-equivariance:

Lemma 2.20. Let σ ∈ Gk, let C be defined over k. For any φ ∈ k̄(C)×,

σ(div(φ)) = div(σ(φ)).

Proof. From [23, Lemma 7.4.14], we know that vP (φ) = vσ(P )(σ(φ)). Hence,

σ(div(φ)) = σ

 ∑
P∈C(k̄)

vP (φ)P


=

∑
P∈C(k̄)

vP (φ)σ(P )

=
∑

P∈C(k̄)

vσ(P )(σ(φ))σ(P )

=
∑

P∈C(k̄)

vP (σ(φ))P.

= div(σ(φ)).

2.2.3 The Picard group

Now, we can define the Picard group using the divisor theory that is introduced before. We will introduce it

shortly here, and its connection to representing rational points on the Jacobian is stated after introducing

the Jacobian in Section 2.3.

Definition 2.21. The Picard group of C is the abelian group

PicC = DivC/PrincC .

Two divisors are called linearly equivalent if they differ only by a divisor of a function, i.e., if they are in the

same divisor class in PicC .

Recall that principal divisors have degree 0. Hence, the degree of a divisor class in PicC is well-defined.

For d ∈ Z, we denote PicdC to be the divisor classes of degree d in PicC . We observe that Pic0
C is a subgroup

of PicC .

Consider any automorphism σ ∈ Gk and divisor D ∈ PicC . By construction, we can write any divisor

in [D] to be D′ = D + div(φ) for some function φ ∈ k̄(C)×. It follows from Lemma 2.20 that σ(D′) =

σ(D + div(φ)) = σ(D) + div(σ(φ)). Hence, we can define a group action of Gk by setting

σ([D]) := [σ(D)].

We define the group of `-rational points on PicC to be

PicC(`) := {[D] ∈ PicC : σ([D]) = [D] for all σ ∈ G`}.

Remark 2.22. Note that it is possible that a divisor class is rational, but no rational divisor in this class

exists. Examples can be found in [13, Appendix: Ch. 4]. If C contains a rational point, then a rational

divisor class always contains a rational divisor, also explained in [13, Ch. 4: Appendix]. Further discussion

can be found in [15] and [44].
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2.3 The Jacobian

The central object of study in our thesis will be the Jacobian variety corresponding to a hyperelliptic curve.

Before we introduce the Jacobian, we define abelian varieties and introduce some important properties.

Definition 2.23. An abelian variety A over a field k is a projective algebraic variety over k that is also an

algebraic group, i.e., there exists a group law on A that is defined by regular functions.

For a detailed introduction, we refer to [25, §A.7]. We note some relevant properties of abelian varieties

here.

Observation 2.24. The following properties are satisfied for an abelian variety A defined over a field k

1. A is a smooth variety.

2. The group structure of A is abelian.

3. The set A(k) of k-rational points on A forms an abelian group.

Proof. 1) See [25, §A.7.1].

2) See [25, Lemma A.7.1.3].

3) This follows from the fact that a regular function is also a rational map, and that the group law consists of

regular functions.

Elliptic curves are abelian varieties, hence there exists an abelian group law on rational points of elliptic

curves, which consists of chord-and-tangent addition, see, e.g., [49, III.2]. Hyperelliptic curves C of genus

g ≥ 2 are not abelian varieties in general. Instead, we use an embedding into an abelian variety: the Jacobian

of C.

Theorem 2.25. Given C/k of genus g, there exists an abelian variety over k with dimension g such that,

for each field extension ` ⊇ k, J(`) = Pic0
C(`).

This theorem is further described in [25, §A.8].

Definition 2.26. The abelian variety J described in Theorem 2.25 is called the Jacobian of C.

The (geometric) dimension of the Jacobian J corresponding to a curve of genus g is equal to g [25,

A.8.1.ii]. One way of defining the geometric dimension of a variety is that it is the transcendence degree of its

coordinate ring. (This is already used in the proof of Theorem 2.7). Since this theory is not explicitly used in

this thesis, we will simply refer for more details to [25].

The following theorem, called the Mordell-Weil Theorem is a foundational theorem in arithmetic geometry.

Theorem 2.27. (Mordell-Weil) For a number field k ⊇ Q and an abelian variety A over k, A(k) is a

finitely generated group.

This theorem has been proven for elliptic curves over Q by Louis Mordell [37], and later generalized to

Jacobians of curves of higher genus by André Weil [59]. The theorem in the current form, assuming k to

be any number field and A to be any abelian variety, is later proven: for a brief survey of the history of

Mordell-Weil Theorem, see [12]. For an elaborate discussion, see also [25, Part C].

Remark 2.28. Using [25, A.8.1], there exists a natural embedding C ↪→ J that maps P 7→ [P −D], where

D is a fixed divisor of degree 1. This map restricts to C(`) ↪→ J(`) if D ∈ DivC(`). In particular, if there

exists a point P0 ∈ C(`), one can choose D = P0 as rational divisor.

Since the goal of our thesis is to search the rational torsion points of the Jacobian, we can use the

Mordell-Weil Theorem to conclude that
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Corollary 2.29. The rational torsion subgroup J(Q)tors is finite.

Note that this particular result does not need Mordell-Weil theorem to be proven, one can use height

theory to show that for a bound B, only finitely many points have a height less than B, and the height of a

rational torsion point is always bounded. See Theorem 3.13 and [25, Chapter B.5].

2.4 The Riemann-Roch Theorem, representing divisor classes

In order to perform arithmetic on the Jacobian, one has to find a way to represent points on J . A natural

first attempt would be to observe that J is a projective variety, hence one could embed J into some projective

space PN . One such embedding exists for N = 4g − 1 [39, Chapter III]. For genus 2, such a basis is explicitly

constructed in [13, §2.1].

Considering J as a projective variety using an embedding in P4g−1 becomes difficult very quickly when

larger g are considered. It is much easier to describe points on J(k) as divisor classes in the Picard group

using Theorem 2.25. We will construct a way to use divisors to represent a class on Pic0
C(k). For this, we use

Riemann-Roch spaces and the Riemann-Roch Theorem.

Definition 2.30. Given C defined over k, we define the Riemann-Roch Space as the k-linear space

L(D) = {φ ∈ k̄(C)× : div(φ) +D ≥ 0} ∪ {0}.

Theorem 2.31. (Riemann-Roch) Let C be of genus g, defined over k. For every divisor D ∈ DivC(k), we

have that dimkL(D) is finite. Moreover, there exists a divisor M ∈ Div(k) such that

dimkL(D) = deg(D)− g + 1 + dimkL(M −D).

The class of M is unique, it is called the canonical class. A divisor in the canonical class is called a canonical

divisor.

Proof. For the proof of C defined over algebraically closed fields, we refer to [30, Theorem 2.7]. Then,

a generalization to general k is described just underneath [25, Theorem A.4.2.1], using [25, Proposition

A.2.2.10].

The Riemann-Roch Theorem was first proven for k = C by Bernhard Riemann [45] and Gustav Roch [46].

Later, the theorem was generalized to algebraic curves.

Recall that a divisor D ∈ DivC is effective if D ≥ 0. Given D ∈ DivC(k), the Riemann-Roch Theorem

gives us information about the space of rational functions whose corresponding principal divisors can be

added to D to result in an effective divisor. This gives us information on linearly equivalent effective divisors

on D. In order to create a divisor representation of points in J(kf), we consider effective divisors and subtract

a certain fixed divisor an appropriate number of times in order to create a divisor representation in Pic0
C . We

use the Riemann-Roch Theorem to find an effective divisor such that, when subtracting a fixed divisor, we

land in Pic0
C , and no linearly equivalent effective divisors in this form exist.

Another condition we impose on our divisor representation is that the divisor is in general position.

Definition 2.32. A divisor D ∈ DivC is in general position if it is effective and there is no point P ∈ C such

that D ≥ P + ιP , and, in case the degree of f is odd, the point at infinity P∞ is not in the support of D.

In this section, we only create a divisor representation for curves C where f has odd degree. The case

where f has even degree is more complicated, especially when g is odd. For genus 3, this case is treated in

Section 5.2. Before we describe a divisor representation, we will make some useful observations on divisors.

Lemma 2.33. Let D and D′ be divisors of C, let M be a canonical divisor.

1. If D′ ≥ D, then L(D) ⊆ L(D′).
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2. If deg(D) < 0, then L(D) = 0.

3. If D′ ≥ D and degD′ = degD + 1, then dimkL(D′)− dimkL(D) ∈ {0, 1}.

4. We have dimkL(M) = g and degM = 2g − 2.

5. If degD ≥ 2g − 1, then dimkL(D) = deg(D)− g + 1.

Proof. Within this proof, φ ∈ k̄(C)×.

1. If D′ ≥ D, then div(φ) +D ≥ 0 implies that div(φ) +D′ ≥ 0.

2. Recall that the degree of a principal divisor is equal to 0. Hence, deg(D) < 0 implies that D+div(φ) < 0

for any φ ∈ k̄(C)×.

3. Assume D′ ≥ D and degD′ = degD+1. Using the Riemann-Roch Theorem, dimkL(D′)−dimkL(D) =

1− dimkL(M −D′) + dimkL(M −D). Using (1), we have −dimkL(M −D′) + dimkL(M −D) ≥ 0 and

using D′ ≥ D, we have dimkL(D′)− dimkL(D) ≥ 0, hence dimkL(D′)− dimkL(D) ∈ {0, 1}.

4. Note that dimkL(0) = dimk(k) = 1 = 1− g + dimkL(M), hence dimkL(M) = g, and using this fact, it

follows that degM = dimkL(M)− 1 + g − dimkL(0) = 2g − 2.

5. If deg(D) ≥ 2g − 1, then deg(M −D) < 0 using (4), hence dimkL(M −D) = 0, using (2). The result

follows from the Riemann-Roch Theorem.

Now, we are ready to introduce a divisor representation for J(k) corresponding to C defined over k where

f has odd degree.

Theorem 2.34. Let C be a hyperelliptic curve defined over k such that f has odd degree. Let P∞ ∈ C(k)

be the unique point at infinity and let Q ∈ J(k). Then, there exists a unique effective divisor DQ ∈ DivC(k)

in general position and of minimal degree such that Q = [DQ − deg(DQ)P∞].

Proof. First, we prove the existence of an effective divisor DQ of minimal degree, this is also written in [54,

Corollary 4.14].

Let D be any divisor such that Q = [D]. Define Lm = L(D + mP∞) for m ∈ Z≥0. Since deg(D) = 0,

Lm = {0} for m < 0 using (2) of Lemma 2.33, and from (3) it follows that 0 ≤ dimk Lm+1 − dimk Lm ≤ 1.

For sufficiently large m, part (5) of Lemma 2.33 implies that dimLm = deg(D+mP∞)−g+ 1 > 0. Hence,

there exists an n ∈ N such that dimkLn+1 − dimkLn = 1. We can now conclude that there exists a minimal

n such that dimk Ln = 1. From now on within this proof, we fix this n.

Let φ ∈ Ln. Define DQ = div(φ) + D + nP∞ ≥ 0. Then, Q = [D] = [D + div(φ)] = [DQ − nP∞], and

deg(DQ) = n. Since φ is unique up to scaling, DQ is unique and of minimal degree.

To show that DQ ∈ DivC(k), we take an arbitrary σ ∈ Gk, and observe that

[DQ − nP∞] = Q

= σ(Q) because Q is k-rational

= σ([DQ − nP∞])

= [σ(DQ − nP∞)] Galois-action on Pic0
C(k̄)

Since P∞ is rational, Q = [σ(DQ) − nP∞]. Note that σ(DQ) is effective and in general position. Since

DQ is the unique effective divisor in general position of minimal degree such that Q = [DQ − nP∞] and

deg(DQ) = deg(σ(DQ)), we conclude that σ(DQ) = DQ.

The proof that DQ is in general position and of minimal degree can be found in [54, Lemma 4.17].
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An important, immediate observation is that deg(DQ) can be bounded.

Corollary 2.35. For DQ as found in Theorem 2.34, degDQ ≤ g.

Proof. Using the Riemann-Roch Theorem, dimk Lm ≥ deg(D+mP∞)−g+1 = 1 if m = g. Hence n ≤ g.

With this divisor representation, one practical observation is that applying the hyperelliptic involution to

a point in the support of DQ corresponds to negation in Pic0
C .

Lemma 2.36. Let C be defined over k where f has odd degree. As divisors, P + ι(P ) ∼ 2P∞. Hence,

applying ι to DQ corresponds to negation on J in the divisor representation given in Theorem 2.34

Proof. This is a particular case of [54, Example 4.5].

As an example, if DQ = P1 + P2 in general position, and we add a point on J(k) represented by the

divisor ι(P1) in general position, then we can reduce P1 + P2 + ι(P1) to P2 in the divisor representation.

2.5 Mumford representation

Provided that deg(f) is odd, we can now represent a point in J(k) using a divisor on its corresponding curve

C in general position of minimal degree. The next step is to find a procedure that performs arithmetic on

J(k). More precisely, given divisors in general position D,D′ on C that represent points Q and Q′ in J(k),

we can see that [D +D′] = Q+Q′, but generally D +D′ is not in general position, and is not of minimal

degree. Therefore, a method to find a linearly equivalent divisor in general position of minimal degree is

necessary. We introduce the Mumford representation, which is a way to represent divisors in general position.

The Mumford representation is then used to create a procedure that performs addition as described above.

Moreover, the Mumford representation is also a conveniently compact way of representing divisors in general

position using polynomials.

Theorem 2.37. Let C be a hyperelliptic curve. Let D be an effective divisor on C in general position such

that all points in its support are affine. Write D =
∑
P∈C(k̄) αPP . Define a tuple 〈a, b〉 where a, b ∈ k[x] such

that the following conditions hold:

1. The polynomial a is monic of degree degD =: d.

2. For all P ∈ Caff, P ∈ Supp(D) if and only if αP > 0. Moreover, vP (D) is the multiplicity of x(P ) as a

root of a.

3. We have deg(b) < deg(a), and for all P in the support of D, we have b(x(P )) = y(P )

4. As polynomials, a|(f − b2).

Then, there exists a bijection between the set of such polynomial tuples 〈a, b〉 and divisors D in general

position.

Proof. See [54, Lemma 4.16]

Mumford representation was first introduced by by David Mumford in [39, §3, page 3.25]. In order to

perform arithmetic on J(k), one first takes two divisors in general position D and D′ and adds them together

to a divisor in general position (but not of minimal degree). This is called Cantor’s composition algorithm.

Then, one finds the linearly equivalent divisor in general position that is of minimal degree, so that we get

the unique divisor in general position as described in Theorem 2.34. This step is called Cantor’s reduction

algorithm. These algorithms work very well in the case where f has odd degree.
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Algorithm 2.38. Let C be defined over k of genus g such that f has odd degree. Let D1, D
′
2 be k-rational

divisors on C in general position of minimal degree, and let 〈a1, b1〉, 〈a2, b2〉 be the Mumford representations

of D1 and D2, respectively. Then, we can compute the divisor D in general position of minimal degree such

that D ∈ [D1 +D2] as follows.

1. Composition: Find a divisor in [D1 +D2] in general position.

1.1. Set d := gcd(a1, a2, b1 + b2)

1.2. Set a := a1a2/d
2

1.3. Set b to be the unique polynomial of degree < deg(a), such that b ≡ b1 mod a1/d, b ≡ b2
mod a2/d, f ≡ b2 mod a

2. Reduction: Reduce the divisor with Mumford representation 〈a, b〉 to minimal degree.

Repeat the following steps while deg(a) > g:

2.1. Write f − λac such that λ ∈ k×, c ∈ k[x] monic.

2.2. Replace a by c

2.3. Replace b by the remainder of −b mod a

We conclude that the divisor D corresponding to the Mumford representation of 〈a, b〉 is in general position,

of minimal degree, and D − deg(D)P∞ ∼ D1 +D2 ∈ Pic0
C(k).

Proof. See [54, Theorem 4.18].

One can also implement addition of points on the Jacobian in the more general case, where f has even

degree and/or where k may have characteristic 2. A detailed description can be found in [23, §10.3 - §10.4].

In the case where C has odd genus and f has even degree, it is not always possible to find an obvious addition

algorithm. Section 5.2 describes the cases where generalizations of Cantor’s algorithms can be implemented

for the case where g = 3.

2.6 Transformations

This section introduces isomorphisms on hyperelliptic curves. Since we do explicit computations with many

objects corresponding to a hyperelliptic curve, it is useful to use isomorphisms to fix certain models : one can

think of a hyperelliptic curve as an isomorphism class, and a model as a curve defined by a specific algebraic

equation of the form (2.4). Throughout this thesis, we will refer to hyperelliptic curves assuming a fixed

model, but isomorphisms are sometimes applied to obtain a desired model.

2.6.1 Isomorphisms of hyperelliptic curves

Let C1 and C2 be hyperelliptic curves defined over k. An isomorphism over ` of hyperelliptic curves C1 → C2

is a map φ : C1 → C2 that is an isomorphism of varieties defined over `. Instead of introducing the notion of

isomorphisms of varieties, we refer to [49, §I.3]. This chapter gives an elementary introduction to rational

maps, using rational functions as defined in Definition 2.9, and the notion of a regular function at a point P as

described in the same definition. We will rewrite the alternative definition of a rational map and regularity in

[49, Remark I.3.2] to fit the definition of a weighted projective variety: This only changes a few homogeneity

conditions.

Remark 2.39. The alternative definition of a rational map in [49, Remark I.3.2] can be written for

hyperelliptic curves in P2
g as follows: Let C1 and C2 be hyperelliptic curves, both of genus g, defined over k,

defined by the equations y2 − F1(x, z) and y2 − F2(x, z), respectively. A rational map φ : C1 → C2 is a map

of the form φ(x, y, z) = [φ1(x, y, z), φ2(x, y, z), φ3(x, y, z)] where φi ∈ k̄[C] are homogeneous (in the weighted

sense) polynomials in k[C1], such that the following conditions hold:
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(i) deg(φ2) = (g + 1) deg(φ1) = (g + 1) deg(φ3),

(ii) for every h in the ideal (y2 − F2(x, z)), h(φ1(x, y, z), φ2(x, y, z), φ3(x, y, z)) ∈ (y2 − F1(x, y, z)).

Such a rational map is regular at P ∈ C1 if there exist homogeneous (in the P2
g-weighted sense) polynomials

ϕ1, ϕ2, ϕ3 ∈ k̄(C) such that the following conditions hold:

(i) deg(ϕ2) = (g + 1) deg(ϕ1) = (g + 1) deg(ϕ3),

(ii) φiϕj ≡ φjϕi mod y2 − F1(x, z) for all 1 ≤ i, j ≤ 3,

(iii) ϕi(P ) 6= 0 for some 1 ≤ i ≤ 3.

2.6.2 An explicit description of isomorphisms of hyperelliptic curves

There is a general description for isomorphisms of hyperelliptic curves defined over k.

Theorem 2.40. Let C1, C2 be hyperelliptic curves over k. Any isomorphism of hyperelliptic curves φ : C1 →
C2 defined over ` ⊇ k can be described as

(x : y : z) 7→ (ax+ bz : ey : cx+ dz)

where

A :=

(
a b

c d

)
∈ GL2(`)

and 0 6= e ∈ `×.

Proof. Apply [23, Theorem 10.2.1], and note that if we consider curves defined by y2 + h(x)y = f(x) where

h = 0, then the polynomial t in the cited theorem is also equal to 0. Furthermore, the maps that do not

fix the point at infinity must map a point (x0, y0) ∈ Caff
1 to infinity. It can be checked that these maps are

described by (x : y : z) 7→ (z : ey : z − x1).

Corollary 2.41. An isomorphism of hyperelliptic curves sends Weierstrass points to Weierstrass points (and

hence, non-Weierstrass points to non-Weierstrass points.)

Proof. This follows immediately from Theorem 2.40 and noting that ι sends y to −y, but fixes the coordinates

x and z.

2.6.3 Isomorphisms between Jacobians induced by isomorphisms between hyperelliptic curves.

The search for the torsion structure of J(k) is made easier by observing that the group structure of J(k)

is preserved under an isomorphism of hyperelliptic curves. This produces the main motivation to apply

isomorphisms in this thesis.

Theorem 2.42. Let C1 and C2 be hyperelliptic curves defined over k. Let φ : C1 → C2 be an isomorphism

of hyperelliptic curves over ` ⊇ k. Then, the induced map φ∗ : Pic0
C1

(`) → Pic0
C1

(`) defined by mapping a

divisor P to φ(P ) is a group isomorphism.

Proof. Apply [23, Corollary 8.3.10] and observe that such an induced change of coordinates identifies divisors

that are fixed under actions of the absolute Galois group Gk.

Corollary 2.43. If C1 and C2 are two hyperelliptic curves that are isomorphic over k, then for their

corresponding Jacobians J1, J2, it follows that J1(k) ∼= J2(k).

Lemma 2.44. Let C1 be a hyperelliptic curve defined over k. Then, C1 contains a rational Weierstrass point

if and only if C1 is isomorphic over k to a curve C2 that is defined by y2 = f(x), such that f has odd degree.
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Proof. If C1 has odd degree, then the statement is trivial, using that P∞ is a Weierstrass point. Otherwise, if

C1 has no rational Weierstrass points, then Corollary 2.41 implies no isomorphism to C2 exists such that

C2 does have a rational Weierstrass point, so in particular f cannot have odd degree. In the case that C1

has a rational Weierstrass point, then an isomorphism that maps this rational Weierstrass point to infinity

has a codomain with a Weierstrass point at infinity using Corollary 2.41. It follows that the polynomial f

corresponding to Caff
2 has odd degree. This isomorphism exists by the following explicit construction. We can

use the change of coordinates corresponding to the matrix(
0 1

1 −x1

)
. (2.45)

in the notation of Theorem 2.40, where (x1, 0) is a rational Weierstrass point in C1(k)

Within this thesis, it is useful to apply certain isomorphisms to fix a model of a hyperelliptic curve. One

example where we can use this is found in Theorem 2.34: Recall from Example 2.15 that P∞ is a Weierstrass

point. In the divisor representation [DQ − P∞] = Q ∈ J(k), one can replace P∞ with any Weierstrass point

instead. We can fix a rational Weierstrass point at infinity by using a change of coordinates that maps the

point to infinity.

Another application is the quadratic twist of a curve C. At a certain point in the algorithm, we want

to reduce the discriminant of f , here defined over Z, for optimization. (See Remark 3.16.) Hence, if the

coefficients of f share a factor c such that c is a square in k, then one can apply the isomorphism (x : ey : z)

where e = 1/
√
c ∈ Q, that is defined over Q.

2.7 The Kummer variety

Recall from Section 2.4 that the Jacobian variety is a very complicated variety to work with. This is motivation

to construct procedures that describe points using divisor representations and perform arithmetic in terms of

Mumford representations in Sections 2.4 and 2.5, respectively. For operations such as reduction and Hensel

lifting (described later in Sections 3.2 and 3.3), it is better to work on a projective variety. To avoid working

on the very complicated variety J , we introduce its corresponding Kummer variety. It turns out that much

of the coordinates of J in P4g−1 are simply necessary to encode the ”sign” of a point, i.e., to distinguish

between P and −P on J . By identifying group inverses on J , we essentially stop tracking a large amount of

data that conveys only a small amount of information.

2.7.1 Definition, general properties

Definition 2.46. The Kummer variety is defined as K := J/{−1}. We denote the corresponding quotient

map by κ : J → K.

A reader that is familiar with elliptic curves may note the analogy of the Kummer variety in the following

way: An elliptic curve E is an abelian variety, and the quotient map π : E → P1 that maps P to x(P ) loses

the distinction between P and −P . by only looking at the x-coordinate. For an elliptic curve P1 = K is the

Kummer variety.

The construction of the Kummer variety is based on theory that we will not introduce here. Instead, we

will summarize important properties in one theorem. For this theorem, and also later in the thesis, we use

the following notational convention: For a given abelian group G and an integer n ∈ Z≥1, we denote G[n] to

be the subgroup of G that consists of points of order n, which is called the n-torsion subgroup.

Theorem 2.47. The Kummer variety K satisfies the following conditions.

1. K is an algebraic variety.
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2. A point R ∈ K is singular if and only if R ∈ κ(J [2]).

3. We have that κ is 2 : 1 except at points of order 2 in J , where it is injective.

4. K can be embedded in P2g−1 such that the image of this embedding is defined by quartic relations.

5. If we fix the embedding K ⊆ P2g−1, then the map κ : J → K ⊆ P2g−1 is a rational map.

Proof. For (1) and (2), we refer to [38]. (See also [8, §4.8] for the complex case). We also use this to conclude

that we can embed K into P2g−1. Property (3) follows by construction: κ is a degree 2 map that ramifies on

J [2]. Properties (4) and (5) follow from [40, Proposition 3.1].

From now on, we denote the Kummer variety of a Jacobian by K, and its corresponding quotient map

is denoted by κ : J → K. Since K can be embedded into P2g−1, we treat K as a fixed subvariety of P2g−1.

When considering κ, we refer to a fixed map κ : J → K ⊆ P2g−1 such that κ(J) corresponds to K as fixed in

P2g−1 as above. Throughout this thesis, we always work with a coordinate system in K that maps 0 ∈ J to

κ(0) = (0 : . . . : 0 : 1). This is called the origin of the Kummer.

An explicit construction of the defining equations of K for genus g ≥ 2 is nontrivial. Moreover, for C over

k algebraically closed, C always contains k-rational Weierstrass points, so f can be assumed to be of odd

degree using Lemma 2.44. In an arithmetic context, we often work with k not algebraically closed, hence for

our purpose, we may not assume f has odd degree. For genus 2, a generic construction is given in [13, §3.1].

For the corresponding map κ, see, e.g., [21]. For genus 3, [55, §2] develops the defining equations of K in the

general case. For a summary, see also Section 5.3. The corresponding map κ is also given in [55, §2], except

in a few special cases. This thesis describes these special cases in Section 5.4.

2.7.2 Pseudo-arithmetic on the Kummer

Cantor’s Algorithm as described in Algorithm 2.38 allows us to perform arithmetic on the Jacobian J if f

has odd degree. In this thesis, most of the procedures are done on the Kummer variety. Since K identifies

inverses on J by definition, the group structure is lost, but enough information remains such that we can

replace the necessary arithmetic of J by certain steps on K.

For a given J , n ∈ Z the multiplication-by-n-map is the map [n] : J → J such that

[n]P : P 7→ P + · · ·+ P︸ ︷︷ ︸
n times

.

Clearly, [−1] ◦ [n] = [n] ◦ [−1] because J has an abelian group structure, so we can define multiplication-by-n

(denoted here by [[n]]) on K such that the following diagram commutes:

J J

K K

[n]

κ κ

[[n]]

(2.48)

Now, the goal is to find a procedure that takes R ∈ K as input, and gives [[n]]R as output.

The first ingredient is a procedure that doubles a point: given R, the output is [[2]]R. For genus 2 [19] and

3 [55, §7], doubling formulae are developed to do this: explicit polynomials δi, homogeneous and of degree 4,

are developed such that the following holds: given R ∈ K,

(δ1(R) : . . . : δk(R)) = [[2]]R.

If we assume a scaling (r1 : . . . : r2g) = R such that the first nonzero coordinate is equal to 1, then

δi ∈ Z[f1, . . . fd][r1, . . . , r2g ].
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Remark 2.49. Doubling formulae are also used to develop a height difference bound for genus 2 and 3. This

is discussed in Section 3.4.

The second ingredient, pseudo-addition, tries to replicate addition of two points on J . Replicating addition

on K is not completely possible because we lost information. Suppose that we are only given κ(Q1) and

κ(Q2) on K (we do not know Q1, Q2 ∈ J). Then, it is impossible to determine κ(Q1 +Q2). The best we can

do, given this information, is to find an unordered pair {κ(Q1 +Q2), κ(Q1 −Q2)}. Hence, addition is not

possible on K. However, pseudo-addition requires a bit more input: if we get κ(Q1), κ(Q2), κ(Q1 −Q2) as

input, we can determine κ(Q1 +Q2) as output.

Consider κ(Q1), κ(Q2) ∈ K, denote κ := (κ1 : . . . : κ2g). For genus 2 [13, §3.4] and genus 3 [55, §8],

biquadratic forms Bij are developed such that, projectively, for all 0 ≤ i ≤ j ≤ 2g,

Bij(κ(Q1), κ(Q2)) = κi(Q1 +Q2)κj(Q1 −Q2) + κi(Q1 −Q2)κj(Q1 +Q2). (2.50)

If we normalize the coordinates κ(Q) such that the first nonzero coordinate is equal to 1, then the coefficients

of Bij are in Z[f0, . . . f2g+2]. For 1 ≤ i, j ≤ 2g,

Bjj(κ(Q1), κ(Q2)) = 2κj(Q1 −Q2)κj(Q1 +Q2) (2.51)

and

κj(Q1 −Q2)Bij(κ(Q1), κ(Q2)) = κi(Q1 +Q2)κj(Q1 −Q2)2 + κj(Q1 −Q2)κi(Q1 −Q2)κj(Q1 +Q2). (2.52)

From (2.51) and (2.52), we see that

2κj(Q1 −Q2)Bij(κ(Q1), κ(Q2))− κi(Q1 −Q2)Bjj(κ(Q1), κ(Q2)) = 2κi(Q1 +Q2)κj(Q1 −Q2)2. (2.53)

Now, we perform pseudo-addition as follows: fix j such that κj(Q1 − Q2) 6= 0. Then, compute 2κi(Q1 +

Q2)κj(Q1 −Q2)2 by substituting the input κ(Q1), κ(Q2), κ(Q1 −Q2) in the left-hand side of Equation (2.53)

for each 1 ≤ i ≤ 2g. This produces coordinates for κ(Q1 +Q2).

We conclude that, if doubling formulae and biquadratic forms are explicitly known for C, then one can

perform the procedures that are given as the following functions.

• Double: Given input κ(Q) for Q ∈ J(k), the output is [[2]]κ(Q) = κ([2]Q).

• PseudoAdd: Given input κ(Q1), κ(Q2), κ(Q1 −Q2) for Q1, Q2 ∈ J(k), the output is κ(Q1 +Q2).

This leads to the following procedure for computing [[n]]R.

Algorithm 2.54. Multiplication-by-n on the Kummer

Input: R where R ∈ K(k), n ∈ Z
Output: [[n]]R

Requirements: doubling formulae and biquadratic Forms for K as described above.

1. x = (0 : . . . : 0 : 1), y = R,z = R. Set m := |n|.

2. Repeat the following steps while m 6= 0

2.1. If m is odd, then set x := PseudoAdd(x, z,y). Else, set y := PseudoAdd(y, z,x),

2.2. Set z := Double(z),.

2.3. Set m :=
⌊
m
2

⌋
.

3. Conclude: x = [[m]]R.
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proof of correctness. In order to prove the correctness of the algorithm, we first note that since n is finite,

the iteration terminates.

We can see this iteration as a deconstruction of m into its binary expansion, where each iteration treats

and deletes the most right coefficient. Denote

m = m1 + 2m2 + · · · 2rmr

for some r ∈ N, mi ∈ {0, 1} for 0 ≤ i ≤ r. Let Q ∈ κ−1(R) ⊂ J . Then, after the algorithm, we want to arrive

at

x = κ([m]Q = [m1]Q+ [2m2]Q+ · · ·+ [2rmr]Q),

using that [−1] commutes with [n] on J . Examining step 2.3, in the i-th iteration, m is odd if mi = 1 and m

is even if mi = 0.

The variable z governs the order of magnitude we consider, hence the iteration starts with z = κ([1]Q),

and doubles z after each iteration on K. Before the first iteration, if i = 0,

z = κ([2i]Q) = R

x = κ([m1]Q · · · [mi]Q) = κ(0)

y = κ([2i]Q− [m1]Q · · · [mi]Q) = R.

Given that the above is true before the i-th iteration, then for the i+ 1-th iteration, clearly z = κ([2i+1]Q) =

Double(κ([2i]Q)). In the case m is odd, mi+1 = 1, hence

x = κ([m1]Q · · · [mi+1]Q) = PseudoAdd(x, z,y).

In the case m is even, mi+1 = 0, hence

y = κ([2i+1]Q− [m1]Q− · · · [mi]Q) = κ([2i]Q− [m1]Q− · · · − [mi]Q+ [2i+1]Q) = PseudoAdd(y, z,x)

By induction, we conclude that, after iteration i = r,

x = κ([m1]Q · · · [mr]Q) = κ([m]Q) = [[m]]Q ∈ K.

Remark 2.55. For elliptic curves, Algorithm 2.54 is equivalent to the Montgomery Ladder, introduced by

Peter L. Montgomery, finding many applications in cryptography [36]. This procedure turns out to be very

useful for cryptographic applications. For genus 2, fast arithmetic on the Kummer surface has also proven

useful for cryptographic applications. See for example [9].

Explicit defining equations for K, the biquadratic forms and the doubling formulae have been computed

for genus 2 and 3. For hyperelliptic curves of genus 4, this is work in progress by Ludwig Fürst.

2.8 The action of the 2-torsion subgroup on K

In some parts of the theory used throughout this thesis, it is useful to examine the action of points of order

2 on K. Most of the theory is not directly considered or applied in this thesis, but several results use this

theory as referenced, so it is useful to briefly introduce some of the results here. First, the doubling formulae

δ that yield the function Double on K as described in Section 2.7 must be invariant under J [2], see, e.g., [55,

Lemma 7.1]. In Section 4.7, the problem of trying to find a way to compute the pre-image of the doubling

function comes up. The difference between two points in this pre-image is a 2-torsion point, and some of the

theory introduced here is used for a theoretical strategy for ”halving a point”, that is, given R ∈ K, we try

to find R′ ∈ K such that 2R′ = R.
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For elliptic curves, an introduction can be found in [42, §2], for genus 2 hyperelliptic curves, we refer to

[52, §3-5] and for genus 3 hyperelliptic curves, we refer to [55, §5-7].

Recall that the 2-torsion subgroup is denoted by J [2]. We consider the action of T ∈ J [2] on K ⊂ P2g−1.

Let R ∈ K and fix Q be one point in κ−1(R) (The other point in κ−1(R) is then −Q if Q 6= −Q). Then, for

T ∈ J [2],

κ(Q+ T ) = κ(−Q− T ) = κ(−Q+ T ),

hence we can define the action of T on K to be the map R 7→ κ(Q+ T ), and this action is well-defined. If

we denote R = (r1 : . . . : r2g), then we can represent this action as a linear projective transformation in

PGL(2g, k̄). We take the coordinates (r1 : . . . : r2g ) and examine homogeneous forms in k̄[r1, . . . , r2g ]. Now,

we can define an action of J [2] on such homogeneous forms as the induced action of J [2] on the coordinates

r1, . . . , r2g . For a point R ∈ K and a form y ∈ k̄[r1, . . . , r2g ], we denote the action of T ∈ J [2] by T ·R and

T · y, respectively.

Let kspl be the splitting field of f , and let R be the set of roots of f in kspl. Let {S, S′} be a partition of

R into two subsets, both of cardinality g+ 1. Note that, in the case of g = 3, these two subsets correspond to

all even 2-torsion points, as introduced in [55, §5].

Lemma 2.56. For C, J,K where C has genus g = 1, 2 or 3, there exists a quadratic form y{S,S′} ∈
kspl[r1, . . . r2g ] such that for any T ∈ J [2]

T · y{S,S′} = ε(T, T ′)y{S,S′}

where ε(T, T ′) = ±1 is the Weil pairing of T and T ′. (The Weil pairing is described in [42, §2], [52, §3], [55,

§5] for genus 1,2,3, respectively)

proof. For genus 1, this is constructed in the proof of [42, Proposition 2.1]. For genus 2, see [52, §4], and for

genus 3, see [55, §6].

We can now express these quadratic forms in terms of δi.

Theorem 2.57. For C of genus g = 1, 2, 3, there exist constants b{S,S′} such that for R ∈ K, and the

δi-polynomials as introduced in Section 2.7,

y{S,S′}(R)2 =

2g∑
i=1

b{S,S′}δi(R) (2.58)

proof. This follows from the fact that y2
{S,S′} is a quartic form in kspl[r1, . . . , r2g ] that is T -invariant due to

Lemma 2.56, together with the observation that the δi form a basis for the linear space of quartic, T -invariant

forms in kspl[r1, . . . r2g ]: this result is given in the proof of [42, Proposition 2.1] for genus 1, [52, Lemma 5.1]

for genus 2, and [55, Lemma 7.1] for genus 3.

There is also an explicit way of computing r2
i and rirj in terms of y{S,S′}.

Theorem 2.59. For C of genus g = 1, 2, 3, There exists constants ai,j,{S,S′} such that for R := (r1 : . . . :

r2g ) ∈ K,

rirj =
∑
{S,S′}

ai,j,{S,S′}y{S,S′}(R) (2.60)

and

r2
i =

∑
{S,S′}

ai,i,{S,S′}y{S,S′}(R). (2.61)

proof. See [42, Proposition 2.1] for genus 1, and note that, in the notation of the referenced material, a similar

argument for x2
i also holds for x1x2 because x1x2 ∈ Sym2V , where V is the vector space of k-linear forms in

x1, x2 as used in the proof of the referenced proposition. See [52, Formula 10.3, 10.4] for genus 2, and [55,

Lemma 6.8] for genus 3.
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3 The theory of computing J(Q)tors.

3.1 Goal and motivation

In the previous chapter, we have introduced the preliminary theory on hyperelliptic curves, its Jacobian and

the Kummer variety. We will now focus more on the strategy involved in finding J(Q)tors if C is defined

over Q. Before we go into the more detailed preliminaries for the algorithm to compute this object, we will

motivate this goal by providing some reasons why one may be interested in the J(Q)tors.

Arithmetic geometry uses geometry to find rational solutions of certain polynomial equations over number

fields. Solving such polynomial equations is, in general, difficult. For many types of algebraic equations over

Q, an algorithm to compute the solution, or supply a description of their structure, is still an open problem.

We apply the Mordell-Weil Theorem (Theorem 2.27), for an abelian variety A defined over Q, and observe

that

A(Q) ∼= A(Q)tors × Zr

in which r ∈ Z≥0 is called the rank of A. Suppose r = 0, then A(Q) = A(Q)tors, hence finding A(Q)tors gives

us a method to find A(Q), i.e., all solutions to a defining set of polynomial equations of A over Q.

For example, an elliptic curve E is an abelian variety, and if we find generators for E(Q), a complete set

of solutions of the curve equation over Q can be described. A general method for finding the rank of an

elliptic curve is an open problem [49, VIII.10], but for specific cases, one can compute the rank of an elliptic

curve, see for example [49, X.6]. In the case where r = 0, we have E(Q) = E(Q)tors, and we can solve the

defining equation of E over Q by only computing E(Q)tors.

Hyperelliptic curves of genus g ≥ 2 are not, in general, abelian varieties. However, it is proven (in

particular) in [17] that C defined over Q of genus ≥ 2 contain finitely many rational points. In order to

find these points explicitly, we often inject a point P ∈ C(Q) into its Jacobian J(Q). (See Remark 2.28).

Similarly to the elliptic curves case, if the rank of J can be proven to be 0, one can completely determine

C(Q) using J(Q)tors. If r > 0, then there are infinitely many points on J(Q), hence it is harder to find the

points that have a pre-image in C(Q) precisely. One attempt to decide if certain curves have any rational

point, the Mordell-Weil sieve, requires the computation of generators for J(Q), hence in particular also the

generators for J(Q)tors [11]. Provided that the rank is strictly less than the genus of C, another method

method to find rational points uses p-adic integrals, the Chabauty-Coleman method. This also uses the fact

that these integrals vanish on torsion points, see for example [34].

The rank of an abelian variety is, in general, difficult to compute, even for elliptic curves. The Birch

and Swinnerton-Dyer conjecture [7] is a conjecture that would imply a method for computing the rank of

E(Q) [50, Proposition 2.2]. This conjecture is an open problem, and in fact one of the seven Millennium

problems of the Clay Mathematics Institute [2]. In §3 of the problem description written by Andrew Wiles in

the given reference, a generalization to higher dimensional abelian varieties can be found. Also, a refinement

is discussed that directly considers the order of the rational torsion subgroup of an abelian variety, see also

[58]. To gather numerical evidence for the full conjecture, we need to compute #A(Q)tors.

On elliptic curves, all possible rational torsion structures are determined in [33]. For Jacobians of

hyperelliptic curves of genus g ≥ 2, this is still an open problem. Some research has been done by producing

Jacobians with large torsion points (see [29], [43]). Clearly, having a decisive method that computes the

rational torsion structure (even if this is done implicitly, i.e., without computing generators) can give insight

into what rational torsion structures exist in higher dimensional abelian varieties.

The strategy for computing J(Q)tors can be summarized as follows. One first uses reduction modulo p for

certain primes p to find a small set of reduced points that could potentially lift to a rational torsion point

on J . This a generalization of the approach in elliptic curves described in [49, §VII.2, VII.3]. Then, one

applies Hensel lifting on the Kummer variety to find a rational lift of the reduced point. We use the theory of

heights to determine a precision of this Hensel lifting at which we can conclude whether a reduced point lifts

to J(Q)tors or not.
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3.2 Reduction

The first step in finding the Jacobian is to look at the reduction of its Jacobian. Essentially, we reduce points

on J modulo a suitable prime number p to a corresponding Jacobian J̃ over Fp. This interacts well with the

curve C, and gives us useful information on the rational torsion subgroup of J(Q).

3.2.1 A brief introduction to p-adics

Reduction can be defined over Q, but we introduce this theory in the setting of p-adic numbers. This is

necessary because we will use Hensel lifting, a p-adic analytic method, in Section 3.3. Usually, p-adics are

defined by introducing the p-adic valuation. A valuation is a function defined on a field k that behaves

logarithmitically in the sense that multiplication of elements in k corresponds to addition on the image under

the valuation. A valuation can be used to define an absolute value on k. Instead of thoroughly introducing

notions such as local fields and valuations, we refer to two sources. For an introduction of the theory involved

that is closely related to this thesis, we refer to [54, §3]. For a more general and elaborate introduction, we

refer to [35, Chapter 7].

Definition 3.1. Let a ∈ Z and p be a prime number. The p-adic valuation vp(a) is the valuation defined by

vp(a) =

{
∞ if a = 0

max{n : pn|a} otherwise.

Using that vp is a valuation, we can extend it to Q. Let us say q := a/b ∈ Q, then we can define

vp(q) := vp(a)− vp(b).
Now, we define the p-adic absolute value.

Definition 3.2. For a prime number p, the p-adic absolute value is the absolute value ‖ · ‖p : Q→ R≥0 that

is defined by

‖q‖p =

{
0 if q = 0

p−vp(q) if q 6= 0.

An absolute value induces a metric, which induces a topology. Similarly to the real numbers R ⊃ Q, the

p-adic numbers are the topological completion Qp ⊃ Q with respect to the topology induced by ‖ · ‖p. One

can then extend vp, hence ‖ · ‖p to Qp. A construction is described in [35, Chapter 7]. A point α ∈ Qp can

be approximated by the series · · ·α−1p
−1 + α0 + α1p+ α2p

2 + · · · such that αi ∈ Z and 0 ≤ αi < p. The

ring of p-adic integers Zp is the subring {a ∈ Qp : vp(a) ≥ 0}. If α ∈ Zp, then αi = 0 for all i < 0 (i.e., Zp is

the closure of Z in Qp). For Q, all absolute values are equivalent to the real absolute value denoted by ‖ · ‖∞
or ‖ · ‖p for a prime p. This is Ostrowski’s theorem, see [35, Theorem 7.12].

3.2.2 Qp-rational curves and reduction modulo p

Definition 3.3. Let C be defined over Qp such that F has coefficients in Zp. Then, its reduction modulo

p is the curve C̃ defined by y2 = F̃ (x, z), where F̃ ∈ Zp[x, z] is obtained by reducing the coefficients of F

modulo p.

Its corresponding reduction map, ρC,p : C(Qp)→ C̃(Fp) maps a point P ∈ C to its reduction modulo p in

the following way. Let P be represented by coordinates (ρ : η : ζ) in the weighted projective plane P2
g such

that ρ, η, ζ ∈ Zp and at least one of ρ, η, ζ is a unit. Then, we map P to C̃ by reducing its coordinates to

(ρ̃ : η̃ : ζ̃).

If, for a prime p, the corresponding reduced curve C̃ is nonsingular, then C̃ is a hyperelliptic curve. In

this case, p is called a prime of good reduction for p. If p is not a prime of good reduction for C, then p is

called a prime of bad reduction for C. Using Section 2.1, clearly C̃ is singular if and only if F̃ has repeated
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roots, or p = 2. Hence, p is a prime of bad reduction for C if and only if p|2Disc(F ). It follows immediately

that there are only finitely many primes of bad reduction for C.

Now, we will introduce reduction on J(Qp), and show that reduction on J interacts with reduction on C

in a nice way.

Theorem 3.4. Let p be a prime of good reduction of C. Let C̃ be the reduced curve corresponding to C and

p. Let J̃ be the Jacobian (defined over Fp) of C̃. Then, there exists a reduction map ρJ,p : J(Qp)→ J̃(Fp)
that is a group homomorphism. If C(Qp) is nonempty, consider the embedding j : C ↪→ J introduced in

Remark 2.28 for a fixed base point P0 ∈ C(Qp), and the embedding j̃ : C̃ ↪→ J̃ for the base point P̃0. Then,

the following diagram commutes:

C(Qp) J(Qp)

C̃(Fp) J̃(Fp)

j

ρC,p ρJ,p

j̃

proof. From [54, Lemma 4.20], we show this by noting that we can extend ρC,p to a group homomorphism

on DivC(Qp) by linearity. Note that the degree is fixed under ρC,p. Given a function h = h1/h2 ∈ Q̄p(C),

we can see for i ∈ {1, 2} that the roots and poles of h map to roots and poles of h̃1/h̃2 under ρJ,p with

corresponding multiplicities. Hence, principal divisors map to principal divisors under reduction, so ρJ,p is a

well-defined group homomorphism. The commutativity of the diagram follows by construction.

Note that if C(Qp) = ∅, then the commutative diagram is vacuously true. Hence, for any C and prime of

good reduction p, reducing modulo p and considering the corresponding Jacobian commutes with considering

J and then reducing modulo p.

3.2.3 Reduction on the torsion subgroup

Now that we have introduced reduction modulo p, we will introduce theory that gives us further information

on J(Q)tors.

Theorem 3.5. Let p be a prime of good reduction for C defined over Qp. For any integer m coprime to p,

the restriction of ρJ,p to J(Qp)[m] is injective.

proof. See [25, Theorem C.1.4]. The proof is given in Section C.2 of the given reference.

Now, the following procedure gives us a lot of insight on J(Q)tors. From now on, for a given prime q and

finite abelian group G, we consider the q-part of G to be the subgroup of G consisting of points of order qn

such that n ∈ Z≥0, i.e. the q-part of G is the q-Sylow subgroup of G.

1. Select a few primes of good reduction for C.

2. Determine a finite set S of primes q such that the q-part of J̃(Fp) is nontrivial for a certain number of

primes p 6= q. For each such q, we compute the largest subgroup Gq that is contained in the q-parts of

all J̃(Fp) considered where p 6= q. Using Theorem 3.5, we then conclude that J(Q)tors ⊆ ∩q∈SGq =: G.

In step 2, we consider J̃(Fp). If we have C̃(Fp) 6= ∅, then using the commutative diagram in Theorem 3.4

and the discussion in Section 2.5, one can consider J̃(Fp) and perform arithmetic using Mumford representation.

Hence, one can determine J̃(Fp). A weaker method is to simply look at #J̃(Fp). For hyperelliptic curves of

genus 2, a simple combinatorial approach [13, §8.2] gives

#J̃(Fp) =
1

2
#C̃(Fp2) +

1

2
(#C̃(Fp))2 − p.

For higher genus, counting formulae are constructed using Frobenius endomorphisms [5, Corollary 5.70].
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Example 3.6. Let

C : y2 = x7 − 4.

The discriminant of x7 − 4 is 212 · 77, hence we avoid the bad primes 2 and 7. (In fact, 2 is always a bad

prime when using the form y2 = f(x).) Since f has odd degree, f̃ , the polynomial with reduced coefficients

modulo a prime p, has odd degree, so arithmetic is implemented for each Jacobian J̃ reduced modulo a prime

of good reduction.

We compute that J̃(F11) ∼= Z/2Z × Z/688Z. Also, J̃(F29)) ∼= Z/26957Z. Note that 688 = 24 · 43, and

26957 = 7 · 3851. We can see that no nontrivial group can embed into both Z/2Z× Z/688Z and Z/26957Z,

so we conclude using Theorem 3.5 that J(Q)tors is trivial.

Example 3.7. This example shows why we prefer to use the group structure on reduced Jacobians instead

of just counting points. Let

C : y2 = x8 + 2x7 + 3x6 + 4x5 + 9x4 + 8x3 + 7x2 + 2x+ 1.

Let p be a prime of good reduction for C. Since f8 = 1 is always a square in Fp, arithmetic is implemented

on any reduced J̃ by fixing one such point, following from the discussion in Section 2.5. The primes of bad

reduction for C are 2, 3 and 13177. We examine the reduced Jacobians modulo the good primes 5 and 7 and

observe that

J̃(F5) ∼= Z/3Z× Z/60Z

J̃(F7) ∼= Z/666Z.

Using Theorem 3.5, we conclude that J(Q)tors is a subgroup of Z/2Z × Z/3Z. It is easily observed that

J(Q)[2] is trivial (this will be discussed in Remark 4.19). Had we not been able to consider the group structure

of the two reduced Jacobians, then we would merely know that #J̃(F5) = 180, #J̃(F7) = 666, hence also

points of order 9 would still have to be considered.

In fact, a point of order 3 shows up on all reduced Jacobians. This leads us to believe that there might, in

fact, be a point of order 3 in J(Q)tors. Therefore, we focus on approximating the pre-image of the ρJ,p in

J(Qp) in Section 3.3. In this case, if p 6= 3, then Theorem 3.5 tells us that a reduced point has as unique

pre-image in J(Qp)[3]. This is called the lift of a reduced point.

3.3 Hensel Lifting

Using Section 3.2, we have a (usually small) finite abelian group G such that J(Q)tors must be isomorphic to

a subgroup of G. We know from Theorem 3.5 that, given a reduced point Q̃ of order m on J̃(Fp) for a prime

of good reduction p that is coprime to m, we have a unique pre-image on ρJ,p in J(Qp)tors. Hence, the core

question we need to ask is whether ρ−1
J,p(J̃(Fp)) is in J(Q)tors ⊆ J(Qp)tors.

As discussed in Section 3.2, we can write α ∈ Zp as

α = α0 + α1p+ α2p
2 + · · ·

where αi ∈ Z such that 0 ≤ αi < p. Using the p-adic absolute value, a rational approximation of α of p-adic

precision O(pn), where n ∈ Z≥0, consists of the first n terms of this formal power series.

The absolute value ‖ · ‖p produces a norm on vector spaces Qdp for d ∈ Z≥0, hence we can use some p-adic

analytic strategies to do this rational approximation. A point is on an affine variety if it solves a system of

polynomial equations. Since a reduced point modulo p in Fdp satisfies these equations up to precision O(p),

we can use Newton iteration p-adically. This approach is called Hensel’s Lemma. We refer to [14] for general

results. Since we work on projective varieties, we need to find affine patches to work with coordinates in the

vector space Qdp. Another remark is that in our situation, we do not have to check the existence of a unique

root that we approximate: we simply know that by Theorem 3.5.

We now consider J(Qp) as an object in p-adic analysis.
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Lemma 3.8. The group J(Qp) is a p-adic abelian Lie group.

proof. By [10, III, §8, Corollary 2]. we check that J(Qp) is a topological group that is locally analytic around

0 ∈ J(Qp). This follows from the construction of the p-adic topology on J , see [32].

Since J ⊆ P4g−1 is a coordinate system that is too complicated to work with in practice (at least for

genus g ≥ 3), we perform the lifting procedure on K ⊆ P2g−1. The precise method is proven in Lemma 4.5.

For this lemma, we first need to find any lift. In other words, given an affine patch Kaff of K, and any point

R ∈ Kaff(Z/pnZ) such that there exists a lift of R in K(Qp), we need to find a point R′ ∈ Kaff(Z/p2nZ) such

that in Q2g−1
p , R ≡ R′ mod pn. If DK(R) is the Jacobian matrix of Kaff evaluated at R, and Keq(R) is the

vector of equations of Kaff evaluated at R, and v is a solution to the linear system DK(R)v = Keq(R) up to

O(p2n), then we can take R′ = R− v using Newton iteration. If R is nonsingular, or equivalently R does not

come from a point of order 2 on J(Qp) (see Theorem 2.47), and R is a p-adic approximation of its unique lift

up to O(pn), then this system is always solvable, using the assumption that a lift of R always exists.

Given any lift, Lemma 4.5 yields a p-adic approximation to precision p2n for κ(Q), where Q ∈ J(Qp)tors

is the unique lift, i.e., ρ−1
J,p(Q̃).

Example 3.9. In Example 3.7, we considered the curve

C : y2 = x8 + 2x7 + 3x6 + 4x5 + 9x4 + 8x3 + 7x2 + 2x+ 1,

and collected evidence that there might be a point of order 3 in J(Q)tors because such a point shows up on

all reduced Jacobians we considered. We pick p = 17 because the 3-part of J̃(F17) is isomorphic to Z/3Z.

We map the reduced point Q̃ of order 3 to the reduced Kummer variety. If its lift Q ∈ J(Qp) is indeed in

J(Q), then κ(Q) ∈ K(Q). After a few iterations of the Hensel lifting, we can check whether the coordinates

define a point on K(Q). Indeed, after computing the power series up to p4, we arrive at a point in K(Q)

such that [[3]]R = κ(0), and we check that κ−1(Q) ⊆ J(Q)tors. Using theory introduced in Chapter 5, we

can find a point Q in J(Q) represented by the divisor class [2(0,−1) − 2P∞,1] where (0,−1) ∈ Caff and

P∞,1 := (1 : 1 : 0).

Note that this approach does not always work! The approximation we used is not guaranteed to terminate.

In fact, a rational lift of a reduced point may not exist at all. Section 3.4 introduces the theory of heights on

J : using the height bound for rational torsion points, we can determine a termination point for the Hensel

lifting introduced in this section such that we are sure that the rational coordinates of this approximation is

a ”last candidate” that may lift. Hence, if this point is not a rational lift, we can conclude that no rational

lift exists.

3.4 Heights

The theory of heights is used to find a point at which we can terminate our p-adic approximation using Hensel

lifting and be certain we have not missed any rational torsion points. The height gives us a measure of the

arithmetic complexity of a point on an abelian variety with respect to a rational map to a projective space.

Most of the literature defines heights over a number field k ⊃ Q. Since we are specifically interested in heights

of points over Q, we restrict our definitions to Q. The main reference used in this section is [25, Chapter B].

We can define the height function on projective spaces. In the context of abelian varieties that have, by

definition, a map to projective space, this is often called the naive height. Recall that ‖ · ‖∞ is the usual

(real) absolute value.

Definition 3.10. Let d ∈ Z≥1. Let P := (x0 : . . . : xd) ∈ Pd(Q) with x0, . . . , xd ∈ Z and gcd(x0, . . . , xd) = 1.

Then, the naive height H : Pd(Q)→ R≥0 is defined by mapping P to

H(P ) := max(‖x0‖∞, . . . , ‖xd‖∞).
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Furthermore, the logarithmic naive height is defined by

h(P ) := logH(P ).

By simply considering all possible coordinates, we can immediately observe that for a given B > 0, the set

{R ∈ Pd(Q) : H(R) < B}

is finite.

Since the lifting procedure discussed in Section 3.3 takes place on K instead of J , we define the height of a

point Q in J(Q) using its image on K(Q), which is a generalization of [49, VIII.6], noting that κ is surjective

by construction and a rational map to K ⊆ P2g−1, using Theorem 2.47.

Definition 3.11. For Q ∈ J(Q), we define the height relative to κ of Q to be the height function Hκ : J(Q)→
R≥0 defined by Hκ(Q) := H(κ(Q)). Again, we say that the logarithmic height relative to κ is hκ(Q) :=

logHκ(Q).

Since our work with heights is always considered on K, we simply refer to Hκ and hκ by H,h : J(Q)→ R≥0

respectively. It follows from [25, Theorem B.3.2(d)] that heights defined by rational functions only differ

up to a constant. We now define the canonical height. The canonical height function is well-defined using

Theorem [25, Corollary B.3.4] together with the fact that κ is a symmetric function, meaning κ(Q) = κ(−Q)

for all Q ∈ J(Q).

Definition 3.12. We define the canonical height to be the map J(Q)→ R≥0 defined by

Ĥ(Q) = lim
n→∞

h([n]Q)

n2
.

Similarly to earlier definitions, we define ĥ(Q) := log Ĥ(Q).

The canonical height has several interesting and useful properties.

Theorem 3.13. (Néron–Tate) For Q ∈ J(Q), the following properties are satisfied.

1. ĥ([n]Q) = n2ĥ(Q) for all n ∈ Z.

2. ĥ(Q) = 0 if and only if Q ∈ J(Q)tors.

3. The set {Q ∈ J(Q) : ĥ(Q) ≤ B} is finite for any constant B ≥ 0.

4. The height difference |ĥ(Q)− h(Q)| is bounded.

proof. For (1), see [25, Theorem B.5.1]. (2) follows from [25, Proposition B.5.3], (3) follows from [25, Corollary

B.5.4.1], and (4) follows from [25, Theorem B.5.5].

Suppose that we can explicitly compute the height difference bound in (4), i.e., suppose we find a β ≥ 0

such that

|ĥ(Q)− h(Q)| < β (3.14)

for all Q ∈ J(Q). In particular, by (2), h(Q) < β for Q ∈ J(Q)tors. The strategy to compute J(Q)tors is then

as follows: Hensel lifting as described in Section 3.3 can be performed for arbitrary finite p-adic precision.

Given a certain approximation Q̃, we can embed all possible lifts in a 2g-dimensional integer lattice L. Using

LLL-reduction, we can obtain a necessary condition for the shortest vector of L to correspond to a lift that

has projective height less than β. This is all described in detail in Section 4.4.

For genus 1, 2 and 3, a method for computing the height bound is found by decomposing the difference

between the naive height and the canonical height into local components (see [21, Theorem 4]), and using

the relations in Theorem 2.57 and Theorem 2.59 to obtain estimates for these bounds. For genus 2, this is

described in [52], and for genus 3, this is described in [55].
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Theorem 3.15. Let g ∈ {2, 3}. Define

β =

{
24/3|λ|−2|disc(f)|1/3c−1/3

∞ if g = 2

22|disc(f)|c−1/3
∞ if g = 3

where c∞ is the height constant at infinity. Then, for all Q ∈ J(Q)tors, we have H(Q) < β.

proof. For genus 2, see [52, Corollary 8.2]. For genus 3, see [55, Corollary 10.3].

We call β as in Theorem 3.15 the torsion height bound. For genus g = 1, 2, 3, there is an iterative method

to estimate the height constant at infinity c∞. This is described in [42, §4], [41, §16] and [55, Lemma 10.5] for

genus 1, 2 and 3 respectively. This iterative method makes use of the quadratic form yS,S′ and the relations

as given in (2.58) and (2.61). Recall that for a partition {S, S′} of the roots of f there exist coordinates

ai,j,{S,S′}, b{S,S′} such that

r2
i =

∑
{S,S′}

ai,i{S,S′}y{S,S′}(R).

and

y{S,S′}(R)2 =

2g∑
i=1

b{S,S′}δi(R)

where R := (r1 : . . . : r2g ) ∈ K is scaled such that first nonzero coordinate of R is equal to 1. We introduce

the function

ϕ : C2g → C2g

R 7→


√√√√√ ∑
{S,S′}

|ai,i,{S,S′}|

√√√√k+1∑
j=1

|b{S,S′},j |rj


1≤i≤2g

.

It is proven by the aforementioned sources that the sequence

cn :=
4n

4n − 1
log(‖φ◦n(1, 1)‖)

converges to a limit c̃ such that c∞ ≤ c̃, where c∞ is the height constant of c at infinity. This allows us to

estimate c∞, and hence gives a complete torsion height bound β via Theorem 3.15.

Remark 3.16. One could use quadratic twists defined over k as described in Section 2.6 to reduce the

discriminant of F such that F ∈ Z[x, z]. This gives a refinement of the height bound β.
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4 A generalized algorithm for finding J(Q)tors.

4.1 Description and required procedures

In this chapter, we give a complete description and proof of the algorithm that computes the rational

torsion subgroup of a Jacobian of a hyperelliptic curves. We identify all objects and procedures that are

required to carry out this algorithm. The original design of the algorithm can be found in [52, §11]. This

chapter generalizes the algorithm to general genus, gives a proof of correctness and also generalizes the

lifting procedure slightly. The input of the algorithm is the definition of the curve C, and its output is the

torsion structure of J(Q) and explicit generators. Without a unique, explicit representation of points on

J(Q), one can still describe the torsion structure implicitly. This is discussed at the appropriate parts within

the chapter.

We fix a hyperelliptic curve C of genus g ∈ Z≥1 defined over Q, and we assume a model of the form

y2 = f(x) where f has coefficients in Z. Using changes of coordinates described in Section 2.6, we can always

find such a model. We denote the Jacobian of C by J , and we fix an embedding of its Kummer variety K in

P2g−1, together with a corresponding quotient map κ : J → K ⊆ P2g−1.

The strategy of the algorithm can be described as follows: using reduction modulo good primes p, one

can identify a finite amount of potential reduced points of finite order. Then, using Hensel lifting on K, one

can lift these points in J(Qp). Finally, we use the torsion height bound to decide whether such a reduced

point lifts to J(Q) ⊂ J(Qp) or not.

The nontrivial procedures that are required are:

• An implementation of the group law on J̃(Fp) for primes of good reduction p.

• Equations for K ⊆ P2g−1; an explicit description of κ : J → K

• A way to compute κ−1(R) ⊆ J(Q) for R ∈ K(Q).

• Doubling formulae; biquadratic forms that allow us to use sum-and-difference laws on K as described

in Section 2.7.

• A way to compute a height bound β for J(Q)tors.

Remark 4.1. If one is only interested in the torsion structure of J(Q), one can simply check whether

κ−1(R) ⊂ J(Q). No explicit computations on J(Q) are needed to compute its torsion structure.

4.2 Checking whether reduced points lift

The central, most challenging part of the algorithm is to check whether a reduced point lifts or not. More

specifically, given a prime of good reduction p and a point Q̃ ∈ J̃(Fp) of order m coprime to p, we know,

using Theorem 3.5, that there exists a unique lift Q ∈ J(Qp)[m] such that ρJ,p(Q) = Q̃. This algorithm

decides whether Q ∈ J(Q) ⊆ J(Qp). Also, if Q ∈ J(Q), we will try to compute Q, but do not distinguish

between Q and −Q for the following reason:

Since we ultimately search for generators of J(Q)[m], arbitrarily selecting one point from Q and −Q
suffices, there is no need to precisely distinguish which point is the actual lift of Q̃. This allows us to perform

the actual computations on the Kummer variety. Instead of lifting Q̃ to Q on J(Qp), we consider κ̃(Q̃) := R̃,

where κ̃ : J̃(Fp) → K(Z/pZ). We search for a lift R of R̃ such that [[m]]R = κ(0). If such a lift exists, we

have κ−1(R) = {Q,−Q}. The following algorithm uses this strategy to determine whether Q is a point in

J(Q) ⊆ J(Qp) or not, and if Q ∈ J(Q), we return Q or −Q.

Algorithm 4.2. Lifting Torsion Points

Given a point Q̃ ∈ J(Fp) of order m > 2, a height bound β such that H(Q) < β for any Q ∈ J(Q)tors,

and an integer N such that pN ≥ 2(2g+g)β2, this algorithm determines whether the point Q̃ lifts to a point

Q ∈ J(Q)tors ⊆ J(Qp)tors, and computes Q or −Q in the case where Q ∈ J(Q)tors.
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1. Choose M = 1 + am such that M 6≡ 1 mod p

2. Let R̃0 be κ̃(Q̃) considered on an affine patch in A2g(Z/pZ) normalized such that the first nonzero

coordinate is equal to 1. Set r = 1, n = 0.

3. While r < N , repeat the following steps:

3.1. Replace r by min{2r,N}.
3.2. Let R̃′n be any lifting of R̃n in A2g (Z/prZ).

3.3. Set R̃n+1 = 1
M−1 (MR̃′n − [[M ]]R̃′n), where MR̃′n is obtained by multiplying the coordinates of R̃′n

by M .

3.4. Replace n by n+ 1.

4. Now, consider R̃n =: (r̃1 : . . . : r̃2g) in K(Z/pNZ) again. Let (r1, . . . , r2g) ∈ Z2g be such that its

coordinates reduce to (r̃1, . . . , r̃2g) modulo pN and 0 ≤ ri < pN . Let L be the lattice generated by

(r1, . . . , r2g) and pNe1, . . . , p
Ne2g , where ei are the standard basis vectors in Z2g . Let R′ be the first

basis vector of an LLL-reduced basis of L. Now, set R to be the point in P2g−1(Q) whose coordinates

are the coordinates of R′.

5. If R /∈ K(Q) or H(R) > B, conclude ”Q̃ does not lift to J(Q)tors”.

6. If [[m]]R is not the origin of K(Q), conclude ”Q̃ does not lift to J(Q)tors”.

7. If κ−1(R) ⊆ J(Q), conclude ”Q̃ lifts to J(Q)tors” and return κ−1(R). Otherwise conclude ”Q̃ does not

lift to J(Q)tors”.

The first goal of this chapter is to prove the correctness of the algorithm. This is done using results that

are proven in the upcoming sections.

Theorem 4.3. Algorithm 4.2 terminates and returns the expected output as described in the algorithm.

proof. It is clear to see that the algorithm terminates. The proof of correctness of the output follows from a

combination of Theorem 4.4, Theorem 4.12 and Proposition 4.16 as proven in the next sections.

4.3 The lifting procedure

This section will prove that the lifting procedure as described in step 3 of Algorithm 4.2 lifts to the m-torsion

point we want to approximate.

Theorem 4.4. After step 3 of Algorithm 4.2, R̃n is the unique m-torsion point in K(Z/pNZ) that reduces

to κ(Q̃).

In order to prove Theorem 4.4, we first prove that the approximation we use in step 3.3 approximates

Q with m-torsion lifts to the required p-adic precision pN . Recall from Lemma 3.8 that J(Qp) is a p-adic

abelian Lie group, whose topology is the local product topology: a neighborhood of a point Q ∈ J(Qp) is a

neighborhood U of Q contained in an affine space. see [32, §6], and the p-adic topology on Ad(Qp) = Qdp for

a given d ∈ Z≥1 is induced by the norm

‖Q‖p = max(‖q1‖p, . . . , ‖qd‖p),

where Q = (q1, . . . , qd) ∈ Qdp [28, §2].
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Lemma 4.5. Let Q ∈ J(Qp) be a torsion point of order m, not divisible by p. Given n ∈ N, let φ : J → An be

a rational, differentiable map defined over Qp that is a p-adic immersion near Q, and let a ∈ Z. If U ⊆ J(Qp)
is a neighborhood of Q, then for any Q′ ∈ U , the following identity holds:

φ([1 + am]Q′)− φ(Q) = (1 + am)(φ(Q′)− φ(Q)) +O(‖φ(Q′)− φ(Q)‖2p). (4.6)

Intuitively, one can interpret φ as a map providing local affine coordinates of Q, in such a way that we

can find a best linear approximation of the multiplication-by-(1 + am)-map in a p-adic sense.

proof. For the proof, we use M := 1 + am, hence [M ]Q = Q. By [10, Chapter III, §2.2] the differential of the

multiplication-by-M -map [M ] is scalar multiplication on the tangent space.

Let us define [[M ]] to be the map that makes the following diagram commute.

J(Qp) J(Qp)

φ(J(Qp)) φ(J(Qp))

[M ]

φ φ

[[M ]]

(4.7)

Near Q, the map [[M ]] = φ ◦ [M ] ◦ φ−1 is well-defined because φ is an immersion, hence locally injective.

Note that since φ is a rational mapping, we have that φ(J(Qp)) consists of the Qp-rational points on a variety

over Qp. Since φ maps to An, it is an affine variety.

To arrive at the approximation described in the lemma, we want to prove that the differential of [[M ]] at

φ(Q) is scalar multiplication by M . For p-adic manifolds A and B and a differentiable map h : A→ B and

Q ∈ J , we now denote Th(Q) to be the differential of h around Q. In this notation,

T[[M ]](φ(Q)) = Tφ◦[M ]◦φ−1(φ(Q))

= Tφ([M ]Q) ◦ T[M ](Q) ◦ Tφ−1(φ(Q))

= Tφ(Q) ◦ T[M ](Q) ◦ Tφ−1(φ(Q)).

Let v ∈ Tφ(J(Qp)), Then, using linearity and composition laws,

T[[M ]](φ(Q))(v) = Tφ(Q) ◦ T[M ](Q) ◦ Tφ−1(φ(Q))(v)

= (Tφ(Q) ◦ (M · Tφ−1(φ(Q)))(v))

= M · (Tφ(Q) ◦ Tφ−1(φ(Q)))(v))

= M · v

Note that [[M ]] is a map from the Qp-rational points of an affine variety φ(J) to itself. Hence, its

differential T[[M ]](φ(P )) is the best linear approximation of [[M ]] around φ(P ) with respect to the p-adic

metric, i.e., it consists of the linear terms of the Taylor expansion of [[M ]] around φ(Q).

Let Q′ be p-adically near Q. Then. using that φ is an immersion, φ(Q′) is p-adically near φ(Q), hence

[[1 + am]]φ(Q′)− [[1 + am]]φ(Q) = (1 + am) · (φ(Q′)− φ(Q)) +O(‖φ(Q′)− φ(Q)‖2p).

Using (4.7), we have [[1 + am]]φ(Q) = φ([1 + am]Q) = φ(Q). The approximation (4.6) follows.

We now apply Lemma 4.5 to κ : J → K.
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proof of Theorem 4.4. Note that κ : J 7→ K is rational, smooth and 2:1 on points outside J [2], hence κ is

differentiable outside J [2]. Since ρJ,p is a group homomorphism by Theorem 3.4, it follows that for any

Q ∈ J(Qp) \ J(Qp)[2], we have that ρJ,p(Q) 6= ρJ,p(−Q), hence we can find a neighborhood U ⊆ J(Qp) such

that κ is injective at U , and we obtain the commutative diagram

J(Qp) J̃(Fp)

K(Qp) K̃(Fp),

ρJ,p

κ κ̃

ρK,p

(4.8)

where ρK,p : K(Qp)→ K̃(Fp) is the map that reduces the coefficients of K modulo p, and κ̃ is the quotient

map J̃ → K̃.

Since all these properties are local, composing κ with a map that projects onto an affine patch still results

in a differentiable map that is a local immersion. Hence, if κ(i) is the map κ composed with the projection

onto an affine patch in the i-th coordinate, then κ(i) satisfies all the conditions of Lemma 4.5. Substituting

an appropriate κ(i) in Equation (4.6) results in

[[M ]]R̃′n − R̃n+1 = M(R̃′n − R̃n+1) +O(‖R̃n+1 − R̃′n‖2p).

Therefore, using that ‖R̃n+1 − R̃′n‖2p = r in the context of step 3 of Algorithm 4.2,

R̃n+1 =
1

M − 1
(MR̃′n − [[M ]]R̃′n) +O(pr)

is the m-torsion point on K(Z/prZ) that reduces to κ(Q̃). Theorem 4.4 follows from the iteration in step 3

until r = N .

Remark 4.9. For elliptic curves and hyperelliptic curves of genus 2, applying Hensel lifting as in step 3.2

(explained in Section 3.3) is less complicated because the Kummer variety is defined by at most one equation.

For genus 3, a system of equations defines the Kummer variety, hence we need to use multivariate Hensel

lifting in the lifting procedure.

Remark 4.10. In [52, §11], it is assumed that p divides M . Here, this assumption is being replaced by

the assumption M 6≡ 1 mod p. This is a generalization that allows for more flexibility in choosing M . One

way to utilize this in practice is to choose M to be a power of 2 because doubling is slightly faster than

pseudo-addition. In case we need M to be quite large to be a power of 2, it is usually more efficient to pick

M as small as possible.

In Section 4.7, we see that if m is odd, we can always find an M that is a power of 2. In Section 4.8, we

explore alternative methods for finding J(Q)[2n] for n ∈ Z≥1, and conclude that for most curves, J(Q) can

be found entirely without the need for the biquadratic forms on K as described in Section 2.7.

Remark 4.11. The approximation in step 3.3 can use a different projection onto A2g in every iteration of

step 3. This ensures that we do not encounter problems when we change i in our map κ(i) in every iteration,

which could be necessary if, for example, the first coordinate of R is ≡ 0 mod pr, but 6≡ 0 mod p2r for a

certain r ∈ Z≥1.

4.4 Computing a p-adic precision that allows us to terminate the lifting proce-
dure conclusively

Theorem 4.4 allows us to create a p-adic approximation of κ(Q̃) to precision O(pN ) of arbitrary N ∈ Z≥1.

This section proves that we can find a p-adic precision such that the corresponding rational approximation

R̃n is either the rational lift R = κ(Q) such that Q ∈ J(Q), or no such rational lift exists.
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Theorem 4.12. Let N ∈ Z be such that pN > 2(g+2g)β2. Let R̃n, (r1, . . . , r2g ), L, R′ and R be as computed

in step 4 of Algorithm 4.2. Then, the following statements hold.

1. If H(R) ≤ β, then R is the unique point in P2g−1(Q) of height ≤ β reducing to R̃n.

2. If H(R) > β, then no point on P2g−1(Q) with height ≤ β exists that reduces to R̃n.

Before we prove this theorem, we observe a simple injection.

Lemma 4.13. Let B ∈ Z≥1. For d ∈ Z≥1, let

S = {R ∈ Pd(Q) : H(R) ≤ B}.

Let n ∈ Z≥1 such that pn ≥ 2B2. For r ∈ Z, write r̃ := r mod pn. We define the map

ϕ : S → Pd(Z/pnZ)

as follows: Write R := (r1 : . . . : rd) such that all ri ∈ Z and gcd(r1, . . . , rd) = 1. Then, we set

ϕ(R) = (r̃1 : . . . : r̃d).

Then, the map ϕ is injective.

proof. Let R := (r1 : . . . : rd+1) ∈ S and T := (t1 : . . . : td+1) ∈ S scaled such that all ri, ti ∈ Z, and

gcd(r1, . . . rd+1) = gcd(t1, . . . , td+1) = 1. Suppose ϕ(R) = ϕ(T ). Then, there exists a λ̃ ∈ (Z/pnZ)× such

that λ̃r̃i = t̃i for all i ∈ {1, . . . , d + 1}. In particular, for a fixed 1 ≤ i ≤ d + 1 such that r̃i ∈ (Z/pnZ)×,

λ̃ = t̃ir̃i
−1. Hence, for any j ∈ {1, . . . d+ 1}

t̃ir̃j = t̃j r̃i.

Note that R, T ∈ S, and the coordinates are normalized in such a way that

r̃i, t̃i, r̃j , t̃j ∈ {−B̃, . . . , 0, . . . , B̃}.

It follows that

t̃ir̃j , t̃j r̃i ∈ {−B̃2, . . . , 0, . . . , B̃2}.

Since pn ≥ 2B2, we have tirj = tjri for all j, hence we can take

λ =
ti
ri
,

well-defined because ri 6= 0, and we see that λrj = tj for all j ∈ {1, . . . , d+ 1}, hence R = T ∈ S.

This lemma tells us that, given B ∈ Z≥1, we can determine a p-adic precision O(pn) for which there is

at most one rational R ∈ P2g−1(Q) of height H(R) < B that reduces to a point R̃ ∈ P2g−1(Z/pnZ). Hence,

for sufficiently large p-adic precision, we know that a lift within a given height bound is unique. The next

challenge is to actually find this lift.

Lemma 4.14. Let n, d ∈ Z≥1 and R̃ ∈ Pd(Z/pnZ). Let R := (r1 : . . . : rd+1) ∈ Pd(Q) be scaled such that

ri ∈ Z and gcd(r1, . . . , rd+1) = 1. Let

v := (r1, . . . rd+1) ∈ Zd+1.

Then, the lattice L generated by {v} ∪ {eipn : 0 ≤ i ≤ d} contains all vectors whose coordinates taken as a

point in Pd(Q) reduce modulo pn to R̃n. Moreover, write

w = a0v + pna1e1 + · · · pnad+1ed+1 ∈ L

where ai ∈ Z. If w has the property that a0 6= 0, the point in Pd(Q) corresponding to w reduces modulo pn

to R̃ ∈ Pd(Z/pnZ).
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proof. We can obtain all vectors corresponding to points reducing modulo pn to R̃ by considering v0 := v,

and following a combination of either of the following steps iteratively:

• obtaining vj+1 := avj for an integer a 6= 0

• obtaining vj+1 := vj + pnei for 1 ≤ i ≤ d+ 1.

The resulting vectors are clearly in L, and of the form w = a0v + pna1e1 + · · · pnad+1ed+1 with ai ∈ Z and

a0 6= 0.

Consider R̃n ∈ P2g−1(Z/pNZ) as obtained after step 3 of Algorithm 4.2. Using Lemma 4.14, the lattice L

in step 4 is the integer lattice that contains all vectors that are integer representatives of points in P2g−1(Q)

reducing to R̃n. Moreover, any vector that corresponds to a lift of R̃n is of the form a0v+pna1e1 + · · · pna2ge2g

with a0 6= 0.

Finding the unique lift within a given height bound is then achieved by finding a short vector in the lattice

L. It is known that finding the shortest vector (in the euclidean sense) in a lattice is a difficult problem.

The Lenstra-Lenstra-Lovász-reduction algorithm (LLL-reduction) finds relatively short vectors efficiently.

Assuming a parameter δ = 3/4, the first basis vector of an LLL-reduced basis has euclidean length less than

or equal to

2(2g−1)/2‖λ‖ (4.15)

in which λ is the shortest nonzero vector. LLL-reduction was invented in [31]. See also [23, §17.2].

Using LLL-reduction, we can determine the p-adic precision that makes the short vector obtained by

LLL-reduction represent a possible ”last candidate” for a rational lift in P2g−1(Q). The precise determination

uses that vectors with a certain euclidean length give estimates on the heights of the points in P2g−1(Q) they

represent. These computations prove Theorem 4.12.

proof of Theorem 4.12.

In this proof, we use the correspondence between a point R′ ∈ P2g (Q) and a vector v ∈ Z2g as in Lemma

4.14: a point R′ ∈ P2g(Q) with coordinates (r′1 : . . . : r′2g) scaled such that r′i ∈ Z and gcd(r′1, . . . , r
′
2g) = 1

corresponds uniquely to a vector v′ = (r′1, . . . , r
′
2g ) ∈ Z2g .

Proof of 1): If H(R) ≤ β, then R is the unique point in P2g−1(Q) of height ≤ β reducing to R̃n.

Suppose H(R) ≤ β. Then, H(R) ≤ 2(2+2g)β2 < pN . Let R correspond to the vector

w = a0v + pNa1e1 + · · ·+ pNad+1ed+1 ∈ L.

By design of the algorithm, R 6= 0, hence if a0 = 0, then H(R) ≥ pN , which is a contradiction. Hence, a0 6= 0,

so R reduces to Q̃ using Lemma 4.14. The uniqueness follows from the injectivity of the map in Lemma 4.13,

using that pN ≥ 2(2+2g)β2 > 2β2.

Proof of 2): If H(R) > β, then no point on P2g−1(Q) with height ≤ β exists that reduces to R̃n.

Suppose H(R) > β. Let

S0 = {T ∈ P2g−1(Q) : H(T ) ≤ β} ⊆ P2g−1(Q).

Hence, R 6∈ S0. For any T ∈ S0, we can create the corresponding integer vector v0 ∈ Z2g . Since the maximal

absolute value of each coordinate of v0 is ≤ β, v0 has euclidean length at most
√

(2g)β2 =
√

2gβ. Hence, the

vector v0 lies in the 2g-dimensional sphere of radius
√

2gβ

D0 := {w ∈ R2g : ‖w‖ ≤
√

2gβ} ⊆ R2g

centered at the origin of R2g .
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Now, let D1 be the sphere of radius 2(2g−1)/2
√

2gβ, i.e.,

D1 := {w ∈ R2g : ‖w‖ ≤ 2(2g−1)/2
√

2gβ}.

Using the bound (4.15), if an LLL-reduced short nonzero vector v of L is not in D1, then the shortest

nonzero vector of L cannot be in D0. Finally, define

S1 := {T ∈ P2g−1(Q) : H(T ) ≤ 2(2g−1)/2
√

2gβ}.

The points in P2g−1(Q) corresponding to all vectors in D1 are contained in S1. Note that

2 · (2(2g−1)/2
√

2gβ)2 = 22g (2g)β2 = N , hence S1 injects into Pk(Z/pNZ) using Lemma 4.13. We now consider

two cases.

Case 1: If R ∈ S1 (but recall R 6∈ S0), then R is the unique lift in S1, using that S1 maps injectively

into Pk(Z/pNZ). Since H(R) > β, no point R′ exists such that H(R′) ≤ β and R′ reduces to R̃.

Case 2: If R 6∈ S1, it follows that its corresponding vector v ∈ L obtained by LLL-reduction is not in

D1. Hence, the shortest vector of L cannot be in D0. Therefore, no vector in L corresponds to a point in S0.

Since all possible lifts of R̃ are contained in L, there does not exist a point in S0 (i.e., of height ≤ β) that

reduces to R̃.

4.5 The conclusions of the lift-checking algorithm

Since we obtain a ”last candidate” R using Theorem 4.12, steps 5-7 of Algorithm 4.2 determine whether

R ∈ P2g−1(Q) is actually a point on K(Q) such that κ−1(R) ⊆ J(Q)[m]. Recall that we use Theorem 3.5 to

obtain Q̃ ∈ J̃(Fp) such that there exists a unique lift Q ∈ J(Qp) of order m. To conclude Algorithm 4.2, we

determine whether Q ∈ J(Q)[m] or not.

Proposition 4.16. Let R ∈ P2g−1(Q) be as obtained after step 4 in Algorithm 4.2. Then, the unique lift

Q ∈ J(Qp)[m] of Q̃ ∈ J̃(Fp) is a point in J(Q)[m] if and only if

• R ∈ K(Q),

• [[m]]R = κ(0),

• κ−1(R) ⊆ J(Q).

proof. Using Theorem 4.5 and Theorem 4.12, Q ∈ J(Q)[m] if and only if R = κ(Q) and Q ∈ J(Q). Clearly,

R = κ(Q) and Q ∈ J(Q) implies that R ∈ K(Q), [[m]]R = κ(0), and κ−1(R) = {Q,−Q} ⊆ J(Q).

To prove the converse, we assume that all three conditions described in steps 5-7 are satisfied. It follows

that κ−1(R) ⊆ J(Q)[m]. The commutative diagram (4.8) implies that κ−1(R) contains the unique point

Q ∈ J(Q)[m] that reduces to Q̃.

Remark 4.17. In practice, when the necessary precision is not yet reached in step 3, one can already

determine R, and try if the conditions of steps 5-7 are satisfied. If they are, we have already found a point

Q ∈ J(Q)[m] that reduces to Q̃. However, if no such point is found, it is not guaranteed that no other

candidate exists.

Remark 4.18. The algorithm does not require a procedure that performs the group law on J(Q). This is

completely replaced by the arithmetic on K, which is performed in step 3.3 and step 6 of Algorithm 4.2. It

turns out that in most cases, we can restrict ourselves to doubling on K, so we do not require the biquadratic

forms as described in Section 2.7. This is described in detail in Section 4.7.
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4.6 Computing the rational torsion subgroup

Now that we can conclusively say whether a reduced point on a nonsingular reduced Jacobian J̃(Fp) lifts

to J(Q) or not, we can construct a procedure that computes the rational torsion subgroup of Jacobians of

hyperelliptic curves.

Remark 4.19. Since κ(J [2]) consists of singular points, we cannot use the lifting procedure as described in

Algorithm 4.2 when we lift points of order 2. Therefore, we need a different approach for computing J(Q)[2].

This is not difficult: it is well known that the nontrivial elements of J(Q)[2] can be found using the prime

factorization of f in Q[x], see [53, Lemma 4.3, Lemma 5.6]. The case where g = 3 is discussed in Section 5.6.

Using Theorem 3.5, the reduction map ρJ,p is injective on q-parts of J(Q)tors where q 6= p is a prime

number. We take several primes of good reduction p, compute J̃(Fp), and determine a finite (and usually

small) amount of reduced points that may potentially lift to J(Q), together with their order. This has

been implemented using the function TorsionBound in MAGMA [4]. We will introduce the algorithm that

describes how to compute J(Q)tors. This is again a generalized version of the idea proposed in [52, §11].

Algorithm 4.20. Computing the q-part of a Torsion Subgroup

Given a hyperelliptic curve C and a prime q > 3, compute the q-part of J(Q)tors.

1. Set G0 to be the q-part of J̃(Fp), where p is a good prime not equal to q (for a strategy on choosing p,

see Remark 4.23). Set T0 = {0} ⊂ G0, S0 = G0 \ {0}, S′0 = {0}. (Gi and Ti are groups, Si and S′i are

sets throughout the procedure)

2. Set n = 0, repeat the following steps until Sn = ∅.

2.1. Let g ∈ Sn, then g is an element of G (preferably a primitive element).

2.2. Compute the smallest m such that qmg lifts to J(Q).

2.3. Set

Tn+1 = 〈Tn, qm · g〉
Gn+1 = Gn/〈qm · g〉
S′n+1 = S′n ∪ 〈g〉
Sn+1 = Gn+1 \ S′n+1

2.4. Replace n with n+ 1

3. Return Tn.

In the algorithm, each Gn represents the group of points that do not lift or are yet to be checked. Tn is

the group of points that we have found to lift so far, Sn is the set of points that are yet to be checked, and

S′n are points that have been checked.

Remark 4.21. Algorithm 4.2 excludes the case q = 2. This is necessary because the image κ(J [2]) consists

of singular points (see Theorem 2.47), hence the lifting procedure proven in Theorem 4.4 does not work on

points of order 2. However, we can adjust Algorithm 4.20 to compute all points of J(Q)[2s] for an integer

s ≥ 2. In step 2.2, if qmg ∈ J̃(Fp), then one sets m := m+ 1 and proceeds to step 2.3. By computing J(Q)[2]

as in Remark 4.19, one can compute the 2-part of J(Q) entirely by finding relations. Arithmetic on J(Q) is

not necessary: for a 4-torsion point Q ∈ J(Q) and a 2-torsion point Q′ ∈ J(Q), we have 2Q = Q′ if and only

if δ(κ(Q)) = κ(Q′), where δ is the system of doubling formulae that maps R ∈ K to [[2]]R ∈ K as described

in Section 2.7.
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Algorithm 4.22. Computing the Torsion Subgroup

Given a hyperelliptic curve C of genus g, this algorithm computes the rational torsion subgroup of the Jacobian

J(Q)tors.

1. Compute an upper bound for the height constant at infinity c∞ as described in Section 3.4.

2. Compute a torsion height bound β.

3. Compute a multiplicative upper bound t for the size of the torsion subgroup by using a reasonable

number of good primes and computing the structure of J(Fp).

4. For each prime factor q > 3 of t, compute the q-part of J(Q)tors using algorithm 4.20.

5. Compute J(Q)[2] as discussed above, and use Remark 4.21 to compute the 2-part of J(Q).

6. For q 6= 2, use the generators of q-parts of J(Q) to compute generators for J(Q)tors.

Remark 4.23. In step 3, we typically choose the 10 smallest primes of good reduction p and compute J̃(Fp).
In step 4, we choose a particular prime p 6= q to compute the q-part of J̃(Fp). Hence, we prefer to pick a

prime p such that the q-part of J̃(Fp) is the smallest, so Algorithm 4.20 needs to test fewer reduced points.

Remark 4.24. If one is simply interested in the torsion structure or a unique representation of points on

J(Q) is unknown, one can simply check whether a reduced point in J̃(Fp) lifts to J(Q) or not, without

explicitly computing κ−1(R) in step 7 of Algorithm 4.2. By counting the rational points of order 2 and

finding the structure of the q-parts of J(Q)tors, one can use the Chinese Remainder Theorem to construct

elementary divisors of J(Q) in step 6 of Algorithm 4.22.

4.7 Avoiding the use of sum-and-difference-laws

Recall from Section 2.54 that an implementation of the multiplication-by-n-map [[n]] is based on doubling

formulae and biquadratic forms that allow us to perform Algorithm 2.54. In this section, we refer to ”the

biquadratic forms” as the biquadratic forms specifically designed to perform the PseudoAdd-function as

described in Section 2.7.

The biquadratic forms are nontrivial to compute for Jacobians of hyperelliptic curves. They are also more

memory-intensive compared to the doubling formulae. Computing [[n]]κ(Q) for Q ∈ J(Q) and n ∈ Z using

the multiplication algorithm as described in Algorithm 2.54 is typically more efficient when n is small and of

the form n = ±2s for an integer s. In this case, we can simply repeatedly apply the doubling formulae. In

the algorithm that computes J(Q)tors, one applies [[M ]] in step 3.3 in Algorithm 4.2, and one applies [[m]] in

step 6 of the same algorithm.

The discovery that prompted this research is described in Remark 4.10: the original design for genus 2

hyperelliptic curves in [52, §11] requires in step 3.3 that p divides M . This algorithm is a generalization in

the sense that we only require that M 6≡ 1 mod p. This gives more freedom in choosing M . In practice, it

turns out that it is more efficient to choose M to be an integer such that |M | is small, that is preferably of

the form ±2s.

We first focus on step 3.3. Let us be given a reduced point Q̃ ∈ J̃(Fp) of order m. By design of Algorithm

4.20, this m is always a prime power qt for a prime q ≥ 2 (we consider q = 2 using Remark 4.21). We require

M to satisfy M ≡ 1 mod m and M 6≡ 1 mod p. The smallest such M is obtained by setting M = 1−m. In

this case, M 6≡ 1 mod p because gcd(m, p) 6= 1 in the algorithm. Now, we consider the cases where M can

be chosen to be of the form 2s for an integer s.

Assume that m is odd. We must now find M of the form M = 2s and M = 1 + am, i.e., M ≡ 1 mod m.

Since m is odd, we can set s to be the order of 2 ∈ (Z/mZ)×, and we find M = 2s ≡ 1 mod m. (In fact, one

can also take s such that 2s = −1 ∈ (Z/mZ)×) and take M = −2s to increase efficiency in some cases.)
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Assume that m is even. Then, clearly no M = ±2s exists such that M ≡ 1 mod m. Recall that we can

already compute J(Q)[2] as discussed in Remark 4.19. Since the doubling formulae consist of a system of

polynomials in δ for the coordinates in K (see Section 2.54), one can try to solve such a system directly.

Given a point R ∈ K(Q), it turns out that we can compute all R′ ∈ K(Q) such that

[[2]]R′ = R, (4.25)

this is discussed in Section 4.8. This idea results in the following algorithm.

Algorithm 4.26. Computing the 2-part of J(Q)tors without employing biquadratic forms.

Given a hyperelliptic curve C, computes the 2-part of J(Q)tors.

Requirements: A procedure that, given R, computes all R′ as in Equation (4.25). An algorithm to compute

κ(J(Q)[2]).

1. Set T, S2 to κ(J(Q)[2]) as a set, set n = 2.

2. Repeat until Sn is empty:

2.1. Set S2n = ∅
2.2. For each R ∈ Sn, compute all R′ ∈ K(Q) such that [[2]]R′ = R, and append them to S2n.

2.3. Delete every item R in S2n where κ−1(R) 6⊆ J(Q).

2.4. Set T to T ∪ S2n.

2.5. Replace n by 2n.

3. Conclude that T is the 2-part of J(Q)tors, and Sn = J(Q)[n].

Based on some tests in genus 3 in practice, computing R′ such that [[2]]R′ = R in K(Q) makes the

computations slow enough that using the original method to compute the 2-part of J(Q) is more efficient.

Hence, it seems better in practice to use biquadratic forms if they are available. However, if no biquadratic

forms are available, we can still find points the 2-part of J(Q).

The other step where arithmetic on K is used to compute J(Q)tors is at step 6 in Algorithm 4.2. Here, we

check whether a point R ∈ K(Q) satisfies [[m]]R = 0. If arithmetic on J(Q) is implemented, we can replace

step 6 by computing κ−1(R) first (i.e., step 7), and in the case κ−1(R) ⊆ J(Q), we can pick one of its two

points Q in the pre-image, and directly check whether [m]Q = 0 ∈ J(Q). Here, we simply replace arithmetic

on K(Q) by arithmetic on J(Q).

Suppose that no arithmetic is implemented on J(Q). We try to check that [[m]]R = 0 using only doubling

formulae on K. Here, the order of the prime factors q in step 4 of Algorithm 4.22 must be taken carefully in

such a way that we already have some information on other parts of J(Q)tors. The following observations

help us check whether a point R = κ(Q) ∈ K maps to the origin of K under [[m]].

• [4]Q = 0 ⇐⇒ [[4]]R = 0.

• [8]Q = 0 ⇐⇒ [[8]]R = 0.

• [3]Q = 0 ⇐⇒ [[2]]R = R and R 6= κ(0).

• [9]Q = 0 ⇐⇒ [[8]]R = R and Q 6∈ J(Q)[7].

• [5]Q = 0 ⇐⇒ [[4]]R = R and Q 6∈ J(Q)[3].

• [7]Q = 0 ⇐⇒ [[8]]R = R and Q 6∈ J(Q)[9].
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Note that computing J(Q)[7] depends on knowing J(Q)[9] and computing J(Q)[9] depends on knowing

J(Q)[7]. Therefore, we cannot avoid using the biquadratic forms this way if the torsion bound used in step

3 of Algorithm 4.22 divides both 7 and 9. For prime powers 11 ≤ m ≤ 60, the only cases where m can be

written as a sum or difference of 2-powers are 17 and 31 (and obviously 32 gives no problems).

We summarize this section by describing the precise conditions for which we can compute J(Q)tors without

the use of the biquadratic forms. Given a hyperelliptic curve C of genus g such that the required explicit

theory as discussed in Section 4.1 except the biquadratic forms is known, we can compute generators for

J(Q)tors if one of the following conditions is satisfied:

• we have an implementation of the group law on J(Q),

• all points that we find in step 3 of Algorithm 4.22 have orders that divide prime powers in {2u : u ∈
Z≥1} ∪ {3, 9, 5, 7, 17, 31}, and a point of order 7 and a point of order 9 are not both found.

Considering that most of the torsion points on J(Q) have a small order, we expect that for a large amount

of curves C of genus g, we can compute J(Q)tors without requiring the biquadratic forms. For genus 4

hyperelliptic curves, the doubling formulae are computed by Ludwig Fürst. Since an algorithm for arithmetic

on hyperelliptic curves of genus 4 is known (in fact, it is easier than the genus 3 cases due to [57, Remark

2.5]), one does not need the biquadratic forms to compute J(Q)tors.

4.8 Halving a rational point on K.

In the previous section, we have explored options to compute J(Q)tors without requiring biquadratic forms

as described in Section 2.54. We described how a procedure that computes the pre-image of the doubling

formulae δ for a certain point R ∈ K(Q) gives a way to compute J(Q)tors without such biquadratic forms.

Here, we propose two methods to compute the pre-image of δ on K. Given a point R ∈ K(Q), we try to

find R′ such that

δ(R′) = R.

Lemma 4.27. Let C be defined over a perfect field k of characteristic 6= 2, and R ∈ K, then #δ−1(R) =

#J [2] = 22g.

proof. Since δ(R+R′) = δ(R) if and only if δ(R′) = κ(0) for a point R ∈ K, the δ-polynomials are precisely

invariant under the action of J [2], as defined in Section 2.8. Therefore, #δ−1(R) = #J [2]. The fact that

#J [2] = 22g is well-known, see [25, Theorem A.7.2.7(ii)].

The first approach for computing δ−1(R) is a direct approach. We observe that given R, we can simply

try to solve the system of homogeneous polynomial equations δ(R′) = R projectively. Since this system has

finitely many solutions, its corresponding variety has dimension 0. MAGMA [4] provides an algorithm that

finds all solutions using Points(X) : Sch -> SetIndx, which gives all points on a zero-dimensional scheme

using Gröbner Basis computations, see [16, Chapter 2] This approach works, but computing such pre-images

is, in practice, significantly slower than simply using the lifting methods.

For genus 3 hyperelliptic curves, the CPU time of computing the pre-image of δ on K on an Intel(R)

Core(TM) i7-6600U CPU @ 2.60GHz is tested for 254 randomly selected rational 2-torsion points. The

average CPU time required was ≈ 74 seconds. The fastest computation took 13.38 seconds, and the slowest

computation took 279.38 seconds. The points R ∈ K(Q) that have a larger height H(R) seem to require a

larger computational effort, see Figure 1.
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Figure 1: Computational effort of computing δ−1(R) compared to H(R) on 254 points.

An alternative approach is proposed in [52, §5] for genus 2 hyperelliptic curves. Let Qspl
f be the splitting

field of f over Q. Using Theorem 2.57, for a partition {S, S′} of roots of f in Qspl
f , we can find the squares of

quadratic forms (y{S,S′}(R))2 in terms of ri = δi(R
′). Then, we take square roots of (y{S,S′}(R))2 to find

±y{S,S′}(R). Suppose that we can determine the sign of y{S,S′}(R). Then, Theorem 2.59 yields r′ir
′
j for

1 ≤ i ≤ j ≤ 2g, so by finding a nonzero r′2i , one can compute R′ = (r′1ri : . . . : r′2gr
′
i).

For genus 2 hyperelliptic curves, relations that determine the signs of y{S,S′} are given in [52, Formula

10.5]. This method can be generalized to genus 3 hyperelliptic curves if similar relations are explicitly

computed for genus 3 hyperelliptic curves. Note that one works over a quadratic extension of Qspl
f , hence if f

does not split completely over Q, then computations could slow down significantly. This method may not be

very efficient in practice.
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5 Computing J(Q)tors for Jacobians of genus 3 hyperelliptic curves

5.1 Overview

Chapter 4 gives a complete procedure that computes the torsion subgroup for hyperelliptic curves of genus

g, assuming certain objects and procedures exist. This chapter discusses the work that must be done in

order to compute J(Q)tors for Jacobians of hyperelliptic curves of genus 3. Throughout this chapter, we fix a

hyperelliptic curve C of genus 3 defined over a perfect field k of characteristic 6= 2, and denote J to be its

Jacobian.

Recall from Section 4.1 that the required procedures for applying the algorithm to compute J(Q)tors are

the following:

• An implementation of the group law on J̃(Fp) for primes of good reduction p.

• Equations for K ⊆ P2g−1; an explicit description of κ : J → K

• A way to compute κ−1(R) ⊆ J(Q) for R ∈ K(Q).

• Doubling formulae; biquadratic forms that allow us to use sum-and-difference laws on K as described

in Section 2.7.

• A way to compute a height bound β for J(Q)tors.

5.1.1 Explicit theory known in the literature

In the literature, explicit theory on hyperelliptic curves C of genus 3 is usually first developed for the case

where the polynomial f in the defining equation y2 = f(x) has odd degree: if C contains a rational Weierstrass

point, then we can map this point to infinity under an isomorphism, see Section 2.6. This results in a model

y2 = f(x) such that deg(f) = 7. In this case, points in J(k) can be represented by a divisor representation

as discussed in Section 2.4, and arithmetic is implemented using Mumford representation and Cantor’s

addition algorithm as introduced in Section 2.5. An embedding κ : J → K ⊆ P7 and an explicit description

of K = κ(J) ⊆ P7 is found in [40].

If k is algebraically closed, it follows by construction (see Section 2.1.3) that there exist precisely 2g + 2

rational Weierstrass points. Since we consider the base field Q, we need to consider curves that do not

contain a rational Weierstrass point. Hence, we need a more general description of κ : J → P7 such that

κ(J) ∼= K, where we do not assume deg(f) = 7. Such a description is given in [55] and summarized in Section

5.3. Defining equations of κ(J) ∼= K in P7 are computed. We now fix this K := κ(J) ⊆ P7, and we fix

κ : J → K ⊆ P7. Although κ is computed for generic points, some special cases are not explicitly considered.

Since we need a complete explicit description of κ, we will finish this description in Section 5.4. It is useful to

note that the Kummer variety constructed in [55] directly generalizes the construction of the Kummer variety

in [40]: if we assume f8 = 0, then K ⊆ P7 corresponds precisely to the explicit embedding of the Kummer

variety in P7 as given in [40], see [55, §3].

Moreover, the doubling formulae and biquadratic forms that allow us to perform arithmetic on K are

developed in [55] and made available on Michael Stoll’s web page [51] in the file G3HypHelp.m. More precisely,

the duplication map δ is given in [55, Theorem 7.3] and introduced in the same section. The biquadratic

forms Bij as introduced in (2.50) are constructed in [55, Section 8]. The same reference also provides a

method to compute the torsion height bound β in [55, Corollary 10.3], recall from Theorem 3.15 that

β = 22|disc(f)|c−1/3
∞ .

Remark 5.1. As a result of the explicit description of K, we can consider a naive method to compute

J(Q)tors: a procedure that considers a reduced point R̃ ∈ K̃(Fp) for a prime of good reduction p, and finds all
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possible lifts within the height bound β in P7(Q) by considering a lattice L of vectors in Z8 that correspond

to all possible lifts of R̃.

This approach can be performed using the function FindRationalPoints() in the file [51, G3Hyp.m].

To be precise, the input of the function is a hyperelliptic curve C, a reduced point R̃ ∈ K̃ for a prime of good

reduction p, and a real number B that gives the maximal height considered. The approach is as follows: for

any R ∈ P7(Q), write coordinates R := (r1 : . . . : r8) such that all ri ∈ Z and gcd(r1, . . . , r8) = 1. Consider a

lattice L of vectors (r1, . . . , r8) in Z8, corresponding to the coordinates of possible rational lifts R ∈ K(Q).

Then, one searches for a shortest vector sv ∈ L, projects onto a quotient lattice L′ = L/〈sv〉 and searches for

short vectors v′ that lift to a vector v := svn+ v′ ∈ L with H(v) < B. This search is performed recursively,

through these sublattices. The number of layers of recursion is then determined by the optional paramter

count (default: 3).

Hence, one could execute FindRationalPoints() and check whether the rational lifts of reduced points

are torsion points. However, there are some issues with this approach. Computing the vector sv is a difficult

problem that is very time-consuming. Moreover, this process is executed recursively. For an 8-dimensional

lattice, this procedure is conclusive if we apply 7 layers of recursion, reducing to a 1-dimensional lattice.

However, this is not feasible in practice. The parameter count is put at 3 by default. Increasing the parameter

count increases the computational effort. If one wants to make an educated guess, the function is a simple tool

to find some points. However, if one wants to compute J(Q)tors completely, this method uses a computational

effort that is not feasible in practice.

5.1.2 Explicit theory previously unknown

In order to make the algorithm work, some explicit theory still needs to be computed. We need to finish

a description of κ : J → K for all cases. Then, we need to find a way to check whether κ−1(R) ⊆ J(k) for

R ∈ K(k). Moreover, we need to consider an implementation of arithmetic on reduced Jacobians J̃(Fp) for

primes of good reduction p.

In order to describe κ : J → K completely, we first discuss how we can represent points in J(k) using

divisors in Section 5.2. Then, we summarize the theory on the computing κ explicitly in Section 5.3. Section

5.4 then finishes the description of κ.

Recall that the algorithm in Chapter 4 does not require an implementation of arithmetic in J(Q). We do

apply arithmetic on reduced Jacobians J̃(Fp) for primes of good reduction p in step 3 of Algorithm 4.22 and

step 2.2 of Algorithm 4.20, called in step 4 of Algorithm 4.22. In MAGMA, arithmetic on J(k) is implemented

if C inf consists of rational points. Using a change of coordinates, we can map any rational point to infinity.

Therefore, we can use arithmetic on J(k) if any rational point on C(k) is known. In Section 5.5, we describe

how we can always find primes p such that C̃(Fp) contains a rational point, and how the algorithm can be

adjusted precisely.

The final thing we need is a way to determine whether κ−1(R) ⊆ J(k) for R ∈ K(k). For generic points,

this test is described in [55, §4], but for some special cases, we describe a test using the explicit description of

κ in Section 5.4.

5.2 Describing points on the Jacobian

5.2.1 Finding a divisor representation

In order to give an explicit map κ : J → P7 such that κ(J) is a model of K, we need an explicit description

of points on J . If deg(f) = 7, then we simply refer to Section 2.4 for a representation of rational points in

terms of a rational divisor. If we can find any rational Weierstrass point, then we use Lemma 2.44 to find a

model such that deg(f) = 7. However, if no rational Weierstrass point exists, then we need to consider a

model with deg(f) = 8. We will now show that we can represent points Q on J using divisors of degree 4,

but we cannot generally expect uniqueness anymore.
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Suppose deg(f) = 8. Write P∞,1, P∞,2 for the two points at infinity. We follow arguments that are found

in [55, §2] to find a divisor that represents a point Q ∈ J(k). Recall from Definition 2.32 that a divisor D on

C is in general position if D is effective and there is no point P ∈ C such that D ≥ P + ιP . An approach

similar to Theorem 2.34 is now harder because, in the notation of the proof of Theorem 2.34, we now consider

the vector space Lk = L(D + k(P∞,1 + P∞,2)). It follows that DQ must have even degree, hence we need to

consider divisors of degree 4 = g + 1. From now on, we denote D∞ to be the divisor D∞ = P∞,1 + P∞,2.

Theorem 5.2. Consider a nontrivial point Q ∈ J together with its corresponding divisor class in Pic0
C .

There exists an effective divisor DQ that has degree 4 such that Q = [DQ − 2D∞], and DQ has exactly one

of the following properties:

1. DQ is in general position,

2. DQ ≥ D∞ such that DQ −D∞ is in general position.

Moreover, any divisor D of degree 4 in general position cannot be linearly equivalent to a divisor D′ ≥ D∞
of degree 4 such that D′ −D∞ is in general position.

Sketch of proof. From [55, §2], we know that the map Pic0
C → Pic4

C that maps [D] 7→ [D] + [2D∞] is a

canonical isomorphism. Then, it is argued that, for a given point Q ∈ J , we can find divisors DQ ∈ Pic4
C

that are either in general position or uniquely of the form P1 + P2 + P + ι(P ) such that P1 6= ι(P2). Since

the map induced by ι on Pic4
C corresponds to multiplication by −1 on J , we can fix P = P1,∞ without loss

of generality, hence P + ι(P ) = D∞. Using Riemann-Roch Theorem, one can observe that a divisor of the

form (2) cannot be linearly equivalent to a divisor in the form (1).

From now on, we say that Q is of degree 4 if Q is represented by a divisor DQ of degree 4 in general

position, and we say that Q is of degree 2 if Q is represented by a divisor DQ such that DQ−D∞ is in general

position. The neutral point 0 ∈ J is defined to have degree 0, one defines the divisor representation on Pic4
C

to be 2D∞.

5.2.2 Determining uniqueness of a divisor representation

The next step is to fix a unique divisor of the form DQ in the cases where we are able to. We can immediately

make the following observation.

Lemma 5.3. For any Q ∈ J of degree 2, the corresponding divisor DQ of the form DQ = P1 + P2 +D∞ as

in Theorem 5.2 is uniquely determined.

Sketch of proof. This is also mentioned in [55, §2]. Using Riemann-Roch Theorem, we can conclude that all

divisors D in the class [P1 + P2 +D∞] ∈ Pic4
C with ι(P1) 6= P2 are of the form P1 + P2 + P + ι(P ) for an

arbitrary point P ∈ C. Hence, fixing P = P1,∞ gives the unique effective divisor DQ = P1 + P2 + D∞ of

degree 4 such that DQ ≥ D∞ and DQ −D∞ is in general position.

Now, we consider the case where Q ∈ J has degree 4. Using Mumford representation as introduced in

Theorem 2.37, we can uniquely represent affine divisors D =
∑
P∈C(k̄) αPP of degree 4 in general position

using the polynomial tuple 〈a, b〉, with a, b ∈ k[x] such that

1. a is monic and has degree 4.

2. for all P ∈ Caff, P ∈ Supp(D) if and only if αP > 0. Moreover, vP (D) is the multiplicity of x(P ) as a

root of a.

3. deg(b) < deg(a), and for all P in the support of D, b(x(P )) = y(P )

4. a|(f − b2).
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Now, we can generalize this Mumford representation to include points in C inf by taking the homogenization

of degree 4 of a and b. This is also done in [55].

To be precise, we create a triple of homogeneous polynomials (A,B,C), each of degree 4 such that

A,B,C ∈ k[x, z] where A is the degree 4 homogenization of a, B is the degree 4 homogenization of b, and C

satisfies

B(x, z)2 − F (x, z) = A(x, z)C(x, z). (5.4)

This ”projective Mumford representation” has some properties that we expect: The image of points P in the

support of DQ under the quotient map π : C → P1 corresponds to the roots of A with the correct multiplicity,

and we obtain y(P ) by evaluating B(π(P )). However, we may have A(x, 1) be a non-monic polynomial in

k[x]. This Mumford representation uniquely represents a divisor in general position, but note that if Q has

degree 4, then a corresponding divisor DQ as in Theorem 5.2 is generally not unique. We identify precisely

which divisors represent one point of degree 4 in the following Lemma.

Lemma 5.5. Let the group Γ ⊂ SO(3) be generated by

tλ =

λ 0 0

0 1 0

0 0 λ−1

 , nµ =

1 µ µ2

0 1 2µ

0 0 1

 , w =

0 0 1

0 −1 0

1 0 0


for any 0 6= λ, µ ∈ k. Two triples (A,B,C) and (A′, B′, C ′) represent the same point on J if and only if there

exists a γ ∈ Γ such that (A,B,C) = (A′, B′, C ′)γ, and they represent opposite points if and only if there

exists a γ ∈ −Γ such that (A,B,C) = (A′, B′, C ′)γ.

proof. See [55, Lemma 2.1].

Now, we will try to find a unique divisor representation of a given point Q ∈ J of degree 4. The strategy

is to apply the group action of Γ to obtain a triple (A,B,C) such that A(0, 1) = 0. We know from Theorem

2.37 that having a Weierstrass point at infinity (equivalently, f8 = 0) results in a unique divisor in general

position that represents a k-rational point on J . This argument can be generalized if we have that P∞,1, P∞,2
are k-rational (equivalently, f8 is a nonzero square in k) and arbitrarily fix one of these two points at infinity,

see for example [57]. Here, we will provide the analogous argument in terms of the parametrization of degree

4 divisors in general position using the homogeneous polynomial triple (A,B,C).

Suppose that Q ∈ J(k) is of degree 4 and consider a corresponding divisor DQ of degree 4 in general

position that corresponds to a homogeneous polynomial triple (A,B,C). For a binary form S(x, z), we define

the notion leading coefficient to be the leading coefficient of the polynomial s(x) := S(x, 1). Now, we apply

actions of Γ to find a triple (A′, B′, C ′) such that A′(0, 1) = 0 and A has leading coefficient 1.

Note that the matrix tλ ∈ Γ scales A, hence we can assume without loss of generality that A is monic.

Let a4, b4, c4 be the leading coefficients of A,B,C, respectively, and similarly let a′4, b
′
4, c
′
4 be the leading

coefficients of A′, B′, C ′, respectively. We multiply (A,B,C) with

wnµw =

 1 0 0

−2µ 1 0

µ2 −µ 1


and obtain (A,B,C)tλ = (A′, B′, C ′) such that

a′4 = c4µ
2 − 2µb4 + a4.

The right-hand side of this equation is a polynomial in k[µ] with discriminant 4(b24 − a4c4) = 4f8, using

equation (5.4). It follows that we can fix A such that A(0, 1) = 0 uniquely if f8 = 0. Also, if 4f8 is a nonzero

square in k, then one can fix µ ∈ k arbitrarily such that c4µ
2 − 2µb4 + a4 = 0, and we fix A such that

A(0, 1) = 0.
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In this approach, the roots of A correspond to the points in the support of its corresponding divisor.

Hence, requiring A(0, 1) = 0 fixes one such point to infinity. Analogously to [57], if we have one rational point

at infinity, we can fix it to obtain a unique, canonical divisor representation, and if we have two rational

points at infinity, we can arbitrarily fix one of these two points to obtain a unique divisor representation.

Remark 5.6. Note that if f8 is not a square in k, then for points Q ∈ J(k) of degree 4, no obvious divisor

representation exists. However, for points Q ∈ J(k) of degree 2, the divisor DQ as constructed above is

unique.

5.2.3 Representing divisors in a Mumford representation

We now find a Mumford representation of points Q ∈ J(k), provided that C has rational points at infinity.

If Q has degree 4, then DQ is a divisor of degree 4 in general position, hence a Mumford representation is

established above. If Q has degree 2, then we can use Mumford representation to represent DQ −D∞. This

is precisely how MAGMA [4] represents points Q ∈ J(k) if C inf consists of k-rational points, and to make the

Mumford Representation unique, certain coefficients in B are required to be zero [4, Points on the Jacobian].

To distinguish between a point of degree 2 and a point of degree 4, an additional parameter that tracks the

degree of the divisor is stored alongside the polynomial tuple of the Mumford representation 〈a, b〉.
If C inf consists of rational points, then Cantor’s Algorithm as described in Theorem 2.38 can be generalized

in order to perform arithmetic on J(k) in the case where deg(f) = 8. An implementation in MAGMA

keeps track of the points at infinity that contribute to the representation on Pic4
C directly [4, Points on the

Jacobian], and [57] describes Jacobian arithmetic in a specific normalization in detail. If we need to perform

the group law on J(k), we only need C to have some k-rational point, and we can fix this point by mapping it

to infinity under a change of coordinates. However, note that if k = Q, many curves have no rational points

[6]. A strength of our algorithm is that we do not actually need to perform arithmetic on J(Q) because we

can replace it by arithmetic on the Kummer completely. Hence, only arithmetic on reduced Jacobians J̃(Fp)
for a suitable prime p is required. This is discussed more elaborately in Section 5.5.

5.3 The Kummer variety

The Kummer variety of the Jacobian of a hyperelliptic curve of genus 3 is explicitly constructed in [55, §2].

The defining equations of K are constructed by explicitly describing κ for any point Q ∈ J of degree 4. This

section summarizes the construction in [55, §2].

Consider a point Q ∈ J of degree 4. Let the corresponding triple of homogeneous degree 4 polynomials be

(A,B,C), and write

A(x, z) = a4x
4 + a3x

3z + a2x
2z2 + a1xz

3 + a0z
4

B(x, z) = b4x
4 + b3x

3z + b2x
2z2 + b1xz

3 + b0z
4

C(x, z) = c4x
4 + c3x

3z + c2x
2z2 + c1xz

3 + c0z
4.

Consider the affine variety V ⊂ (A5)3 = A15 defined by equation (5.4). In other words, we consider the

coefficients of these polynomials as the coordinates of V . Let Γ be the group as defined in Lemma 5.5. Then,

we can consider the action of Γ on V to be the induced action on the coefficients of (A,B,C) on V.

Now, we want to find a map V → P7 that is precisely invariant under ±Γ. Using Lemma 5.5, it follows

that this map is well-defined on the subset of points of J of degree 4, and it is precisely invariant under

negation, i.e., multiplication by −1 on J .

First, we make some observations on Γ-invariant polynomials in the coefficients of the polynomials

(A,B,C). Then, we will restrict to V ⊂ A15. Consider all Γ-invariant (homogeneous) polynomials of degree 2.
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In order to make such polynomials invariant under tλ and w, we need that any monomial of such a Γ-invariant

polynomial is, up to scaling, of the form bibj or aicj for some i or j.

In order to be invariant under nµ, we specifically require our polynomial to consist of linear combinations

of ηij , where

ηij =

{
b2ii − aici if i = j

2b2ij − aicj − ajci if i < j.

If i < j, then

ηij
nµ7−−→2(µai + bi)(µaj + bj)− ai(µ2aj + 2µbj + cj)− aj(µ2 + 2µbi + ci)

=2bibj + 2µ(aibj + ajbi) + 2µ2aiaj − 2µ2aiaj − 2µ(aibj + ajbi)− aicj − ajci
=ηij ,

and ηii is nµ-invariant under a similar argument.

The ηij can be written as the coefficients of the quadratic form B2
l − AlCl ∈ Sym2〈x0, x1, x2, x3, x4〉,

where

Al = a0x0 + a1x1 + a2x2 + a3x3 + a4x4

Bl = b0x0 + b1x1 + b2x2 + b3x3 + b4x4

Cl = c0x0 + c1x1 + c2x2 + c3x3 + c4x4,

so

B2
l −AlCl =

∑
i≤j

ηijxixj .

Hence, we can define a map q : A15 → Sym2(A5) that maps the coefficients of (A,B,C) to the quadratic form

B2
l −AlCl.

It is important to note that, although this quadratic form looks similar to equation (2.37), we have not

restricted to V ∈ A15 yet: this is a characterization of homogeneous Γ-invariant polynomials of degree 2 over

points in A15.

Now, we consider the image of V ⊂ A15 under q by requiring the relation described in (5.4). It follows

from this relation that we can express the coefficients of f in terms of ηij .

f0 = η00

f1 = η01

f2 = η02 + η11

f3 = η03 + η12

f4 = η04 + η13 + η22

f5 = η14 + η23

f6 = η24 + η33

f7 = η34

f8 = η44

Each ηij consists of linear combinations of monomials of degree 2 of the form aicj or bibj (up to scaling).

Therefore, negating all coefficients of B will not change this polynomial. It follows that these polynomials are

(±Γ)-invariant.

Now, we consider such (±Γ)-invariant polynomials as projective coordinates in P7. We construct such

coordinates in terms of functions because, canonically, a basis for the Riemann-Roch space L(2Θ), where Θ

47



is the Theta Divisor, gives a projective embedding in P7. Further details are beyond the scope of this thesis,

references can be found in the proof of Theorem 2.47 and Theorem 5.10.

We take six functions

η02, η03, η04, η13, η14, η23,

together with the constant function 1. The last function is found using an approximation

Qλ
λ→∞−−−−→ Q,

where Qλ ∈ J are points of degree 4 and

Q = [(x1 : y1 : 1) + (x2 : y2 : 1)−D∞]

is of degree 2 such that (x1 : y1 : 1) 6= (x2 : y2 : 1) and (x1 : y1 : 1) 6= ι((x2 : y2 : 1)). For details on this

approximation, see [55, pg. 8]. The functions η
(λ)
ij corresponding to Qλ via the coefficients of the triple

(A,B.C) grow like

η
(λ)
02 = −(x1x2)λ2 +O(λ)

η
(λ)
03 = (x1 + x2)x1x2λ

2 +O(λ)

η
(λ)
04 = −(x1x2)λ2 +O(λ)

η
(λ)
13 = (x2

1 + x2
2)λ2 +O(λ)

η
(λ)
14 = (x1 + x2)λ2 +O(λ)

η
(λ)
24 = −λ2 +O(1).

(5.7)

Since the function

η = η02η24 − η03η14 + η2
04 + η04η13 (5.8)

also grows like λ2 and is linearly independent of the other 7 functions considered, we use η to be the last

function to define the embedding κ : J → P7.

In order to keep the relations simple, we replace the function η13 with η04 + η13:

ξ̄ = (1 : η24 : η14 : η04 + η13 : η03 : η02 : η)

:= (ξ1 : ξ2 : ξ3 : ξ4 : ξ5 : ξ6 : ξ7 : ξ8).

Now, (5.8) translates to the quadratic equation

ξ1ξ8 − ξ2ξ7 + ξ3ξ6 − ξ4ξ5 = 0. (5.9)

Recall from Theorem 2.47 that K is always defined by quartic relations. In fact, the quadratic (5.9) divides

36 defining quartic relations on K [55, Theorem 2.5]. In genus 2, no quadratic relation is found: in this

case, the Kummer variety is a hypersurface defined by one quartic relation[21, Eq. (1)]. Due to work by

Ludwig Fürst, we now know that many quadratic relations show up for the Kummer variety of Jacobians of

hyperelliptic curves of genus 4.

We now have found a map κ : J → P7 defined by

κ : Q 7→ (ξ1 : ξ2 : ξ3 : ξ4 : ξ5 : ξ6 : ξ7 : ξ8).

that is precisely invariant under multiplication by −1 on J .

Theorem 5.10. The image of the map κ describes an embedding of the Kummer variety K ⊆ P7 that is

well-defined. Furthermore, K is defined by 70 quartics, of which 36 are multiples of the quadratic (5.9).
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proof. Since all coordinates ξi are Γ-invariant, κ is well-defined, and since all coordinates ξi are (−Γ)-invariant,

κ maps to K ⊆ P7. Now, we want to prove that the image of κ is equal to K.

There exists a canonical Theta Divisor Θ (see [8, Theorem 4.8.1] for the complex case, and [38] for an

algebraic construction) such that an 8-dimensional basis of the (generalized) Riemann-Roch Space L(2Θ)

gives an embedding K → P7. Since ξ1, . . . ξ8 are k̄-linearly independent by construction, the image of κ

indeed forms a basis of L(2Θ).

The fact that K is defined by 70 quartics for which 36 are multiples of the quadratic (5.9) follows from

the proof of [55, Theorem 2.5].

Remark 5.11. The 70 quartics are found in [55, pg. 9-10]. 15 of those quartics are found by observing that

the rank of the symmetric matrix corresponding to the quadratic form B2
l − AlCl is at most 3, hence 15

quartics can be found by determining the 4× 4-minors and requiring them to vanish. The symmetric matrix

corresponding to this quadratic form is

M =


2η00 η01 η02 η03 η04

η01 2η11 η12 η13 η14

η02 η12 2η22 η23 η24

η03 η13 η23 2η33 η34

η04 η14 η24 η34 2η33

 (5.12)

and can be described in terms of ξ1, . . . ξ7 [55, eq. (2.7)]:

M =


2f0ξ1 f1ξ1 ξ7 ξ6 ξ4
f1ξ1 2(f2ξ1 − ξ7) f3ξ1 − ξ6 ξ5 − ξ4 ξ3
ξ7 f3ξ1 − ξ6 2(f4ξ1 − ξ5) f5ξ1 − ξ3 f7ξ1
ξ6 ξ5 − ξ4 f5ξ1 − ξ3 2(f6ξ1 − ξ2) f7ξ1
ξ4 ξ3 ξ2 f7ξ1 2f8ξ1

 (5.13)

5.4 An explicit description of κ for points of degree 2.

In the end of [55, §2], an explicit mapping for κ is introduced for all points Q ∈ J of degree 4. Also, using

the approximation (5.7), for Q = [P1 + P2 −D∞], the image of κ is described for the case where P1 and P2

are in Caff and P1 6= P2. This section provides a description of κ for all other possible cases.

Let Q ∈ J be of degree 2; hence we can write

Q = [(x1 : y1 : z1) + (x2 : y2 : z2)−D∞],

and we denote Pi = (xi : yi : zi) for 1 ≤ i ≤ 2.

Case 1: z1 = z2 = 1, x1 6= x2

This is the case we have treated already in (5.7), see also [55, pg. 8]. Using the approximation (5.7), it is

clear that ξ1 vanishes as we approach such a point. We approach the point

κ(Q) =

(
0 : 1 : −(x1 + x2) : x1x2 : x2

1 + x1x2 + x2
2 : −(x1 + x2)x1x2 : (x1x2)2 :

2y1y2 −G(x1, x2)

(x1 − x2)2

)
(5.14)

where

G(x1, x2) = 2

4∑
j=0

f2j(x1x2)j + (x1 + x2)

3∑
j=0

f2j+1(x1x2)j . (5.15)

Case 2: P1 = P2, z1 = z2 = 1
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The approximation used to achieve (5.14) does not work in an affine way since `(x) in the approximation

[55, pg. 8] is undefined. We use the following expansion: let A(x, z) = x2 + σ1xz + σ0z
2 = (x− x1z)(x− x2z)

as introduced in [55, pg. 11-12]. We can describe κ(Q) by

κ(Q) = (0 : σ2
0 : σ0σ1 : σ0σ2 : σ2

1 − σ0σ2 : σ1σ2 : σ2
2 : ξ8), (5.16)

where ξ8 is expressed by expanding

((x1 − x2)2ξ8 −G(x1, x2))2 − 4f(x1)f(x2) = 0 (5.17)

in terms of ξ8, dividing every coefficient by (x1 − x2)2 = σ2
1 − σ0σ2. The full expansion can be found in [55,

§2] and is included in the appendices, in Equation (A.1). We denote si to be the coefficients of the expansion

(A.1) so the expansion is written

s2ξ
2
8 + s1ξ8 + s0 = 0. (5.18)

We have (x1 − x2)2 = s2 = 0. Also,

s1 = −2G(x1, x1) = −4f(x1),

hence if s1 = 0, then f(x1) = 0, hence P1 is a Weierstrass point, so the divisor P1 +P2 = 2P1 is not in general

position. (In fact, we obtain Q = 0 ∈ J). It follows that we may assume that s1 6= 0, hence we have that ξ8
is uniquely determined as −s0/s1.

We conclude that in this case,

κ(Q) = (0 : 1 : −2x1 : x2
1 : 3x2

1 : −2x3
1 : x4

1 : −s0/s1). (5.19)

Case 3: P1 ∈ Caff, P2 = (1 : w : 0) for some w ∈ k̄.

We observe that w2 = f8. We use the following approximation. Let Qλ = (x1, y1) + (λ,wλ)−D∞ such

that w2
λ = f(λ). Then, note that

wλ = (±w)λ4 +O(λ7/2).

We choose wλ such that wλ → w (and not wλ → −w) as λ→∞.

Using (5.14), we get that the coordinates of κ(Qλ) grow like

ξ1 = O(1)

ξ2 = O(1)

ξ3 = −λ+O(1)

ξ4 = x1λ+O(1)

ξ5 = λ2 +O(λ)

ξ6 = −x1λ
2 +O(λ)

ξ7 = x2
1 +O(λ)

ξ8 = (y1w − 2f8x
2
1 − f7x

3
1)λ2 +O(λ)

(To justify ξ8, note that G(x1, λ) = (2f8x
4
1 + f7x

3
1)λ4 + O(λ3), and its denominator is λ2 + O(1). It is

important to remember that the projective model is given in the weighted projective plane P2
3 = P2

1,4,1.)

We conclude, using this approximation, that

κ(Q) = (0 : 0 : 0 : 0 : 1 : −x1 : x2
1 : 2y1w − 2f8x

4
1 − f7x

3
1). (5.20)

Case 4: P1 = P2 = (1 : w : 0) for a w ∈ k̄.

Note that [2P∞,1 −D∞] = −[2P∞,2 −D∞], hence κ([2P∞,1 −D∞) = κ([2P∞,2 −D∞]), therefore we have a

unique point on K whose pre-image under κ consists of these two points.
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Similarly to case 2, we take the expansion (5.18) and remark that in our case, σ1 = σ2 = 0, which reduces

equation (A.1) to

4f8ξ8 − 4f6f8 + f2
7 = 0,

hence

κ(Q) = (0 : 0 : 0 : 0 : 0 : 0 : 4f8 : 4f6f8 − f2
7 ). (5.21)

Lastly, [55] describes that the origin of J can be found by approximating 0 = [(x1, y1) + (x1,−y1)−D∞].

This will give the point

κ(0) = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 1). (5.22)

Remark 5.23. One might wonder why the expansion (5.18) is not immediately used for points represented

by one affine point. The issue here is that s2 = (x1 − x2)2 6= 0, which gives us two options for ξ8. Hence, this

expansion does not take into account which point at infinity is in the support of DQ.

Remark 5.24. In [40, §2], the explicit map κ is given for the case where f has degree 7, using the

corresponding divisor representation on Pic3
C .

5.5 Using arithmetic on reduced Jacobians to compute rational torsion points

Recall from Section 5.2 that we can represent every point Q ∈ J(k) uniquely in terms of a divisor in general

position if C inf consists of rational points, and that the Mumford representation of Q induces a generalization

of Cantor’s Algorithm; an implementation is found in [4]. A description and corresponding implementation is

found in [57]. If we find any rational point P ∈ C(k), then we can use a change of coordinates that maps

P to infinity, using the transformation defined by the matrix in (2.45). Hence, there is a known algorithm

to perform arithmetic on J(k) if we know a rational point in C(k), but no algorithm is known for the case

where we do not know a rational point in C(k).

As discussed in Section 4.1 and in Section 5.1, we do not need to perform arithmetic on J(Q) in order to

find J(Q)tors. We only need to perform arithmetic on the reduced Jacobians J̃(Fp) for certain primes of good

reduction p. Specifically, in step 3 of Algorithm 4.22 we compute the structure of reduced Jacobians J̃(Fp)
for some primes of good reduction p, and in step 2.2 of Algorithm 4.20, which is called in step 4 of Algorithm

4.22, we search for elements g of the q-parts of J̃(Fp) and find the smallest m ≥ 1 such that qm · g lifts to

J(Q).

In both steps, we select the primes p to be primes of good reduction p, and when considering q-parts of

J̃(Fp), we require p 6= q. This still allows us to choose from an infinite amount of primes p. Therefore, we can

adjust the procedure in a way that we pick primes that have particularly nice properties in the context of

reduction modulo p.

Recall from Section 4.1 that we use a model such that f ∈ Z[x].

Case 1: If f8 is a square in Z, then f̃8 ≡ f8 mod p is a square in Fp for any prime p. Hence, the points

in C̃ inf are rational and arithmetic on J̃(Fp) is already implemented.

Case 2: If f8 is not a square in Z, but a naive search for points on C(Q) gives us some rational point

P = (x1, y1) ∈ C(Q), we can simply use the transformation defined by the matrix (2.45) to map P to C inf,

and we proceed as in case 1.

Case 3.1: If f8 is not a square in Z, and no rational point P ∈ C(Q) is found, then in step 2 of Algorithm

4.22, we try to consider primes of good reduction p such that f̃8 ≡ f8 mod p is a square in Fp.
Case 3.2: If primes of good reduction p such that f̃8 is a square in Fp are not easily found, we search for

primes p such that C̃(Fp) contains any rational points. The Hasse-Weil bound gives us a guarantee that we

can always find such primes:

Theorem 5.25. Hasse-Weil Let C be a smooth, projective, absolutely irreducible curve of genus g over a

finite field Fp. Then,

|#C(Fp)− p+ 1| ≤ 2g
√
p.
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proof. This is a particular case of the first part of [23, Exercise 10.7.9]. We show that it follows by using the

notation of the referenced book. This identity follows directly from the Weil bound [23, Theorem 10.7.5], the

fact that |αi| ≤
√
q, and the triangle inequality on C.

Applying this to our case gives

#C̃(Fp) ≥ p− 1− 6
√
p,

hence #C̃(Fp) ≥ 1 if p ≥ 41. Therefore, we can always find primes of good reduction p such that a rational

point on C̃(Fp) exists, and it is easy to find such a rational point.

We perform arithmetic on J̃(Fp) as follows. We fix p, and take P̃ ∈ C̃(Fp). Let φ : C̃ → C̃ ′ be a change of

coordinates such that φ(P̃ ) is a point at infinity. If J̃ ′ is the Jacobian of C̃ ′, then we have an algorithm for

arithmetic on J̃ ′(Fp). Since J̃ ′(Fp) ∼= J̃(Fp), we use this to do arithmetic on J̃(Fp).
Now, one has to be careful. Although an isomorphism φ∗ : J̃ → J̃ ′ exists, we still need to lift original

points Q̃ ∈ J̃(Fp). To make the strategy precise, we adjust step 3 and 4 of Algorithm 4.22 in the following

way. Here, by K̃ and K̃ ′, we denote the Kummer varieties of J̃ and J̃ ′, respectively.

• In step 3 and 4 of Algorithm 4.22, we find suitable primes p with the extra condition that C̃(Fp) is not

empty. Hence, we have a rational point P̃ ∈ C̃(Fp)

• In Algorithm 4.20 called in step 4 of Algorithm 4.22, set G0 to be the q-part J̃ ′(Fp). In step 2.2, find

the smallest m such that κ(φ−1(qm · g)) lifts to J(Q).

Remark 5.26. Although not necessary, it is convenient to have an induced change of coordinates φK : K → K ′

for a change of coordinates φ : C → C ′. A description is given in Appendix B. In the notation above, we can

replace κ ◦ φ−1
∗ by φ−1

K ◦ κ′ using the commutative diagram (B.1). This is convenient in the implementation

of the algorithm.

5.6 Computing the rational two-torsion points.

As mentioned in Section 4.6, we use a global computation of the structure of J(Q)[2]. This follows from [53,

Lemma 4.3, Lemma 5.6] for any field extension of k ⊇ Q. The structure of J(k)[2] can be found by factorizing

f . Here, we will describe how we find J(k)[2] for genus 3 hyperelliptic curves.

We first treat the case where deg(f) = 7. Using [53, Lemma 4.3], we obtain the prime factorization of

f = g1 · · · gr over k (since f is separable, the gi are pairwise coprime). Then the generators of J(Q)[2] are

represented by divisors corresponding to the Mumford representation (as discussed in Theorem 2.37) of the

form

〈g1, 0〉, . . . , 〈gr−1, 0〉.
Now, suppose deg(f) = 8. Using [53, Lemma 5.6], we find generators of J(Q)[2] by considering all monic,

irreducible polynomials g1, . . . , gr of even degree that divide f . The polynomials gi correspond to points on

J(Q)[2] in the following sense: we use [55, §5] to observe that each point in J [2] (not necessarily k-rational)

is represented by divisors [∑
ω∈Ω1

(ω, 0)

]
− #Ω1

2
[D∞] =

[∑
ω∈Ω2

(ω, 0)

]
− #Ω1

2
[D∞] (5.27)

where {Ω1,Ω2} is a partition of Ω = {roots of f over Q̄}, where both Ω1 and Ω2 have even cardinality.

Now, each gi of degree 2 induces the Mumford representation 〈gi, 0〉, corresponding to a point of degree 2

on J [2] that is k-rational. These points are the odd rational 2-torsion points in [55, §5].

For a factor gi dividing f that has degree 4, the Mumford representation 〈gi, 0〉 corresponds to point of

degree 4 on J [2] that is k-rational. Such points are the even rational 2-torsion points in [55, §5].

Now, we refer back to [53, Lemma 5.6]. We find generators as follows: if f = g1 · · · gr, then J(Q)[2] is

generated by points corresponding to the polynomials g1, . . . gr−1. If g1 . . . gr 6= f , then J(Q)[2] is generated

by points corresponding to the polynomials g1, . . . , gr.
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5.7 Checking whether a rational point on the Kummer has a rational pre-image
on the Jacobian.

This section gives a procedure that decides whether the pre-image in κ of a point

R = (ξ1 : . . . : ξ8) ∈ K(k)

is in J(k) or not. This is performed in step 7 of Algorithm 4.2. Throughout this section, we assume a scaling

such that the first nonzero coordinate of R is equal to 1.

By construction, if Q ∈ J such that κ(Q) = R, then Q is of degree 4 if and only if ξ8 6= 0. Also, Q = 0 if

and only if R = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 1), see (5.22).

5.7.1 Finding a pre-image for degree 4 points

The case where Q ∈ J has degree 4 is treated in [55, §4]. The method can be summarized as follows. For

any nonzero function h on J that is odd (i.e., h(Q′) = −h(−Q′) for all Q′ ∈ J), we have that h2 is an even

function on J (i.e., h2(Q′) = h2(−Q′) for all Q′ ∈ J). Since h2 is even, one can find an induced function h2
k

on K such that h2(Q′) = h2
K(κ(Q′)) for all Q′ ∈ J . Suppose that Q ∈ J is rational, then h2(Q) = h2

K(R) is

a square in k. Conversely, suppose h2
K(R) is a nonzero square in k. Since R = κ(Q) ∈ K(k), we have that

σ(Q) = ±Q for all σ ∈ Gk. If Q is not rational, then σ(Q) = −Q. Hence,

σ(h(Q)) = h(σ(Q)) = h(−Q) 6= h(Q),

but this contradicts with h(Q) ∈ k. It follows that Q must be a rational point in J .

By choosing some particular functions h, an image h2
K(R) is derived to be an expression in 3× 3-minors

of M , where M is the matrix given in (5.13), and one can check whether a point R ∈ K(k) has a pre-image

in J(k). If one of these expressions is not a square in k, then κ−1(R) does not consist of rational points. If

all expressions are squares in k and one of them is nonzero, then κ−1(R) consists of rational points. If all

expressions are equal to 0 ∈ k, then a change of basis implies that Q ∈ J [2]. Hence, the pre-image κ−1(R)

consists of a unique, rational point on J(k).

5.7.2 Finding a pre-image for degree 2 points

If Q has degree 2, or equivalently ξ1 = 0, then [55, §4] suggests to simply consider the map κ explicitly. We

follow this suggestion by using our explicit description of κ for points of degree 2 on J . From now on, we

assume ξ1 = 0.

Recall that we can fix DQ such that Q = [DQ] of the form

DQ = P1 + P2 −D∞

for points P1, P2 in C. We check whether Q ∈ J(k) using the uniqueness of the divisor DQ.

Lemma 5.28. Let Q be of the form described in Equation (5.29). Then, Q ∈ J(k) if and only if the divisor

DQ corresponding to Q is fixed under Gk.

proof. Q is rational if and only if Gk fixes the divisor class [DQ−D∞] ∈ Pic0
C (see Section 2.2). Using Lemma

5.3, DQ is the unique divisor of degree 4 such that DQ −D∞ is in general position. For any element σ ∈ Gk,

we have that σ(DQ −D∞) = σ(DQ)−D∞ is in general position and of degree 2. If Q ∈ J(k), then it follows

by uniqueness that DQ = σ(DQ). If DQ = σ(DQ), then σ(DQ −D∞) = DQ −D∞, hence DQ −D∞ is a

rational divisor, hence Q is rational.

Using the explicit maps of κ as described in Section 5.4, we can always observe how many of the points

P1, P2 are at infinity. It turns out that the cases where at least one of the points P1, P2 is at infinity are the

easiest to determine.
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First, if ξ3 = ξ4 = 0, but ξ5 6= 0, then we have the form described in Equation (5.20). The pre-image is in

J(k) if and only if the divisor (x1 : y1 : z1) +P∞,1 is rational, which we check by testing whether f(−ξ6) = y2
1

is a square in k and C has rational points at infinity.

Now, if ξ3 = ξ4 = ξ5 = ξ6 = 0, but ξ7 6= 0, then the pre-image of R has the form [2P∞,1 −D∞], and is

rational if and only if C has rational points at infinity.

The case where ξ3 6= 0 is left. Using Equation (5.14), Q ∈ κ−1(R) has the form

Q = [(x1 : y1 : 1) + (x2 : y2 : 1)−D∞] (5.29)

and R has the form(
0 : 1 : −(x1 + x2) : x1x2 : x2

1 + x1x2 + x2
2 : −(x1 + x2)x1x2 : (x1x2)2 :

2y1y2 −G(x1, x2)

(x1 − x2)2

)
∈ K(k),

where

G(x1, x2) = 2

4∑
j=0

f2j(x1x2)j + (x1 + x2)

3∑
j=0

f2j+1(x1x2)j .

We will now give an approach to decide whether κ−1(R) is in J(k) or not. Note that R ∈ K(k), so we

can find x1 + x2, x1x2 and y1y2, and these three expressions are in k.

Using this information, we can find

y2
1 + y2

2 = f(x1) + f(x2)

=

8∑
j=0

fj(x
j
1 + xj2).

(5.30)

given that, using binomial expansion,

xj1 + xj2 =
∑

r+2s=j,
r,s∈Z,
r≥0,s>0

(
s

n

)
(xr1 + xr2)(x1x2)s.

Since we know xj1 + xj2 for 0 ≤ j ≤ 2 using the coordinates of R, we can compute subsequent terms

inductively. Using this, we can compute y2
1 +y2

2 . Knowing y1y2, we now can compute (y1 +y2)2 and (y1−y1)2.

Using Lemma 5.28, Q is a rational point if and only if the divisor DQ is rational. Since D∞ is always

rational, we need to check whether the divisor D := (x1, y1) + (x2, y2) is rational. The divisor D is a rational

divisor if and only if σ(D) = D for all σ ∈ Gk. The first step is to determine whether y1 + y2 is rational.

Lemma 5.31. If (y1 + y2)2 is not a square in k, then Q is not a rational point on J(k).

proof. Assume that (y1 + y2)2 is not a square in k, then y1 + y2 is not in k. Hence, the polynomial

b := (y − y1)(y − y2) = y2 − (y1 + y2)y + y1y2 is not defined over k. Since y1y2 ∈ k, the field extension

k(y1, y2) 6= k is not quadratic. It follows that the minimal polynomial of y1 has roots distinct from y1, y2,

hence there exists a σ ∈ Gk such that σ(y1) 6= y1 and σ(y1) 6= y2. Clearly, σ(D) 6= D, hence Q is not a

rational point.

Now, we can determine whether κ−1(R) is rational or not. For this, we define the polynomials a :=

(x − x1)(x − x2) and b := (y − y1)(y − y2). Since x1 + x2, x1x2 ∈ k, we have that a is defined over k. If

(y1 + y2)2 is a square in k, then we similarly have that b is defined over k.
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Lemma 5.32. Let R be such that y1 + y2 ∈ k. Define the polynomials a := (x − x1)(x − x2) and

b := (y− y1)(y− y2). Then, κ−1(R) consists of rational points if and only if one of the following conditions is

satisfied:

1. Disc(a),Disc(b) are squares in k

2. Disc(a) is not a square in k, Disc(b) = 0

3. Disc(b) is not a square in k, Disc(a) = 0

4. Disc(a) and Disc(b) are both not squares in k, and have the same squarefree part in k.

proof. We prove this lemma using a case distinction.

Clearly, if Disc(a),Disc(b) are squares in k, then x1, x2, y1, y2 ∈ k, hence σ(D) = D for all σ ∈ Gk. Hence,

(1) implies that Q is rational.

If Disc(a) is not a square in k, then the field k(x1, x2) is a quadratic field extension of k, hence Galois

(recall that char(k) 6= 2). The nontrivial automorphism σ ∈ Gal(k(x1, x2)/k) satisfies σ(x1) = x2. In this

case, σ(D) = D if and only if σ(y1) = y2. If we then have that Disc(b) is a square in k, we have y1, y2 ∈ k,

hence σ(y1) = y2 if and only if y1 = y2, equivalently, Disc(b) = 0. Hence, (2) implies that Q is rational.

Analogously, (3) implies that Q is rational.

Conversely, if Disc(a) is a square in k and Q is rational, then (1) or (3) must hold. Similarly, if Disc(b) is

a square in k and Q is rational, then (1) or (2) must hold.

Now, suppose Disc(a) and Disc(b) are both not squares in k, and have the same squarefree part. Then,

` := k(x1, x2) = k(y1, y2) is a quadratic extension of k, hence a Galois extension. The minimal polynomial of

x1 is a, and the minimal polynomial of y1 is b. It follows that the nontrivial automorphism σ ∈ Gal(`/k)

satisfies σ(x1) = x2 and σ(y1) = y2. Hence, (4) implies that Q is rational.

Conversely, suppose Disc(a) and Disc(b) are both not squares in k and have a distinct squarefree part

d. Then, k(x1, x2) 6= k(y1, y2). Since k(x1, x2) and k(y1, y2) are quadratic extensions of k, they are Galois

extensions of k, hence the compositum ` of k(x1, x2) and k(y1, y2) is a Galois extension of k. It follows that

Gal(`/k) is of size 4 with two generators. One of these generators σ then satisfies σ(x1) = x2 and σ(y1) = y1.

For σ(D) = D to hold, we must have σ(y1) = y2. Since Disc(b) is not a square in k, in particular Disc(b) 6= 0,

hence y1 6= y2. It follows that Q cannot be rational in this case.
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6 Examples and results

6.1 Overview

We have implemented the algorithm of Chapter 4 for hyperelliptic curves of genus 3 using the explicit theory

discussed in Chapter 5. The implementation used the MAGMA computational algebra system [4]. The

source code can be found on https://github.com/bernoreitsma/g3hyptorsion. This chapter provides

some examples of curves where J(Q)tors was previously unknown. Furthermore, we have computed rational

torsion subgroup of Jacobians of 67879 hyperelliptic curves of genus 3 with low discriminant, provided in a

database that is maintained by Andrew V. Sutherland [56], which is planned to be put into the LMFDB [3].

Sometimes, some MAGMA-procedures are mentioned, for this we refer to [4].

6.2 Example computations

The following example has been suggested by Andrew V. Sutherland. Since no rational point in C(Q) is

known, this example illustrates how we can compute J(Q)tors without an implementation of the group law

on J(Q).

Example 6.1. Let C be a hyperelliptic curve defined over Q with the model

y2 + (x4 + x3 + 1)y = x8 − 4x7 + 8x6 − 9x5 + 7x4 − 4x2 + 5x− 2.

Using MAGMA, we find a simplified, reduced Weierstrass model

y2 = 5x8 − 14x7 + 33x6 − 36x5 + 30x4 + 2x3 − 16x2 + 20x− 7.

The Jacobian J of C seems to have a point of order 13 locally everywhere, but no rational point on J has

previously been found. Since f8 = 5 is not a square in Q, and C does not appear to have any rational points,

there is no obvious transformation to a curve that has a rational point at infinity: we land in case 3 in Section

5.5, so we have to find suitable primes such that we can find rational points on reduced curves that we can

fix at infinity using transformations.

Indeed, when requesting TorsionBound() in MAGMA, the result is a multiplicative upper bound of 13.

For our reduction, we pick the prime of good reduction p = 3, resulting in the reduced model

ỹ2 = 2x̃8 + x̃7 + 2x̃3 + 2x̃2 + 2x̃+ 2.

Since 2 6∈ F2
3, we map the point (2 : 1 : 1) to infinity using the transformation defined by the matrix

A =

(
0 1

1 1

)
,

the isomorphic image curve D̃ of this transformation is then defined by

ỹ2 = x̃8 + x̃7 + x̃6 + 2x̃3 + x̃2 + 2

which has a a unique Mumford representation since f̃8 = 1 is a square in F3. Using Appendix B with A−1, we

compute the Kummer variety KC̃ of C̃ using KD̃ and create the induced change of coordinates KD̃ → KC̃ .

During the lifting procedure, we indeed find a point of order 13 on K(Q). Explicitly,

R = (0 : 1 : −1 : 1 : 0 : −1 : 1 : 20).

which, using our implementation of Section 5.7, has a pre-image κ−1(R) in J(Q). We will explicitly compute

a divisor representing this rational point.
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We fix Q to be one of the two points in κ−1(R). Using Section 5.4, the unique divisor DQ representing the

point Q has affine support of degree 2, and we can write it in the form Q = [(x1 : y1 : 1) + (x2 : y2 : 1)−D∞].

Equation (5.14) tells us that x1 + x2 = x1x2 = 1, hence a(x) = (x− x1)(x− x2) = x2 − x+ 1. After some

more calculations on ξ8, and computing y2
1 + y2

2 using Equation (5.30), we see that 2y1y2 = 2, y2
1 + y2

2 = −1.

It follows that y1 + y2 = ±1, and, defining b(y) = (y − y1)(y − y2), we compute Disc(b) = −3. Hence,

x1, x2, y1, y2 ∈ Q(
√
−3).

Since a(x) = x2 − x+ 1, we fix (without loss of generality) x1 = 1 + ζ3 and x2 = 1
x1

= 1 + ζ2
3 = 1 + ζ̄3,

where ζ3 =
√
−3−1

2 is the primitive 3rd root of unity, and ζ̄ = −
√
−3−1
2 is the conjugate of ζ3 with respect to

the number field Q(
√
−3). Equivalently, x1 and x2 are primitive 6-th roots of unity. Since y2

1 = f(x1) = ζ3,

y1 is also a 6-th root of unity, and we can conclude the following:

J(Q)tors is a cyclic group of order 13 generated by the point

Q = [(1 + ζ3 : 1 + ζ3 : 1) + (1 + ζ̄3 : 1 + ζ̄3 : 1)−D∞].

We conclude that Q ∈ J(Q) using Lemma 5.28: the nontrivial action σ ∈ Gal(Q(
√
−3)/Q) fixes Q.

The following example is found in [29, Example 3.9].

Example 6.2. The curve C defined by

y2 =
46656

3125
x7 +

407097961

39062500
x6 +

281238453

3906250
x5 − 22959453

312500
x4 − 2767361

15625
x3 +

381951

2500
x2 +

3093

6250
x+

1

2500

has a torsion point of order 41. We use IntegralModel() and ReducedModel() to find a reduced Weierstrass

model with integral coefficients with f equal to

583200000x7+40709761x6+2812384530x5−2869931625x4−6918402500x3+5967984375x2+19331250x+15625.

Indeed, we find a point of order 41. Since the TorsionBound() of the curve is also 41, we have immediately

found J(Q)tors entirely. Since the defining polynomial of C is of degree 7, we have a unique point at infinity,

and hence a canonical divisor representation. The divisor

(0 : 125 : 1)− P∞

represents an explicit point of order 41 with the divisor representation as introduced in Theorem 2.34.

It is also noteworthy that this Jacobian is absolutely irreducible (simple), this is checked by finding a

sufficient condition for absolute irreducibility using [27, §3], as implemented the Steffen Müller. An abelian

variety A defined over k is said to be absolutely irreducible if it has no sub-abelian varieties other than A

itself and the trivial variety over k̄. Hence, it is not possible to decompose J into abelian varieties of lower

dimension. Therefore, this torsion structure cannot be constructed using lower-dimensional varieties such as

the Jacobians of genus 2 hyperelliptic curves or elliptic curves, e.g., along the lines of [26]

One may wonder whether the high complexity of the curves’ coefficients poses a challenge on the compu-

tational aspect of the algorithm. The height bound β for torsion points as computed in Theorem 3.15 is such

that log(β) ≈ 97, hence we need N log(p) ≥ 11 log(2) + 194 in step 3 of Algorithm 4.2. We pick p = 7; this

leads us to the required p-adic precision O(pN ) where N = 128, which is reached in just 7 steps in step 3,

due to our approximation being quadratic.

Moreover, in practice, we check whether a p-adic approximation already lifts to a 41-torsion point after

every iteration using Remark 4.17: if we find a lift R in K(Q) of order 41 and κ−1(R) ⊆ J(Q), then we have

found the unique lift R ∈ K(Q) already. In practice, we reach p-adic precision O(pN ) where N = 32 in the

lifting procedure, and we already find the point generating J(Q)tors.

57



6.3 Results from the database computations

Andrew V. Sutherland has a file with 67879 genus 3 hyperelliptic curves of small discriminant [56], which

is aimed to be provided to the L-functions and Modular Forms Database (LMFDB) [3]. The rational

torsion subgroups of the corresponding Jacobians have been computed using this implementation. For

the complete database corresponding to the 67879 curves, we refer to the file database.txt in https:

//github.com/bernoreitsma/g3hyptorsion. This section provides some statistics on this database, and

also presents some curves that have specific properties.

6.3.1 Statistics

We gathered some statistics from this database. All torsion structures and the frequency of their appearance

can be found in Appendix C. Here, we mention a few statistics.

• 39707 of the 67879 (≈ 58.5%) of the curves yield a trivial rational torsion subgroup.

• 5597 Jacobians (≈ 8.2%) give an odd torsion point.

• 24489 Jacobians (≈ 36.1%) have a nontrivial cyclic rational torsion subgroup, hence 3683 (≈ 5.4%)

have 2 or more generators.

• Of the non-cyclic torsion subgroups found, 3413 have 2 generators, 265 have 3 generators, and 5 torsion

subgroups have 4 generators. The 5 curves that have four generators all have at least 3 of these

generators of order 2.

• From the database, 13 Jacobians have a torsion subgroup such that there are two elementary divisors

that are not equal to 2.

Among the Jacobians found with two elementary divisors not equal to 2 is the Jacobian with the largest

rational torsion found, where J(Q)tors
∼= Z/6Z× Z/6Z× Z/2Z. This case is featured in Example 6.5.

In [43, Section 3.1], a survey of all torsion points of a certain order that have been found for Jacobians of

hyperelliptic curves of genus 2, 3, and 4 is given. Compared to all known orders of torsion points of Jacobians

corresponding to hyperelliptic curves of genus 3, as presented in [43, Table 3.2], we have found the following

points with new orders during our computations:

12, 13, 14, 16, 17, 18, 20, 21, 23, 46, 60.

(Note that a point of order 46 implies that we also found a point of order 23). With the exception of order

60, we were also able to determine an example of a curve that has an absolutely irreducible Jacobian with a

rational torsion point of these orders. Examples of each of these are given in Appendix C. Also, for the torsion

points of order 11, 19, 24, no verified absolutely irreducible Jacobians have been found to date. We were able

to verify irreducible Jacobians with rational points of these orders. Example curves are also included in

Appendix C.

6.3.2 Examples

Example 6.3. (torsion point with large prime order)

The rational point with the largest prime order that we found is of order 37 on the Jacobian J of the curve C

defined by

y2 = −4x7 + 12x6 − 4x5 − 8x4 + 4x2 + 4x+ 1.

The point of order 37 represented by

(0, 1)− P∞
generates J(Q)tors. Using the same check as in Example 6.2, J turns out to be absolutely irreducible.
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Example 6.4. (torsion point with large order)

The rational point with the largest order that we found is of order 60 on the Jacobian J of the curve C

defined by

y2 = x8 − 4x7 + 8x6 − 12x5 + 18x4 − 12x3 + 8x2 − 4x+ 1.

On K, we find the points R1, R2, R3 that have generators of J(Q)tors in the pre-image under κ:

R1 = (0 : 0 : 0 : 0 : 1 : 0 : 0 : 2)

R2 = (1 : 0 : −4 : 2 : 18 : −4 : 0 : 20)

R3 = (1 : 4 : 4 : −2 : −10 : 4 : 4 : 20).

It is easily checked that a point Q1 in κ−1(R1) has order 4 in J(Q). Similarly, Q2 ∈ κ−1(R2) has order 3

in J(Q) and Q3 ∈ κ−1(R3) has order 5 in J(Q). Therefore, Q = Q1 + Q2 + Q3 is a point of order 60 in

J(Q)tors
∼= Z/4Z × Z/3Z × Z/5Z ∼= Z/60Z. Since f8 = 1 is a square in Q, arithmetic on the Jacobian is

implemented.

Using (5.20), we see that Q1 is of degree 2. Hence, it is represented by the unique divisor DQ. From the

coordinates of R1, we conclude that DQ has precisely one affine point P1 := (x1, y1) in its support. Using

(5.20), x1 = −ξ6 = 0. In the notation of (5.20), ξ8 = 2y1w = 2, hence κ−1(R1) = {[(0 : 1 : 1) + (1 : 1 :

0)−D∞], [(0 : −1 : 1) + (1 : −1 : 0)−D∞]}. We pick

Q1 = [(0 : 1 : 1) + (1 : 1 : 0)−D∞] ∈ J(Q).

The pre-image of R2 and R3 are computed using the implementation of [55, §4] in G3Hyp.m. We find a

point Q2 such that κ(Q2) = R2 in the class

Q2 = [(0 : 1 : 1) + (i : 2 : 0) + (−i : 2 : 0) + (1 : 1 : 0)− 2D∞] ∈ J(Q)

where i2 = 1. We see that DQ is invariant under the non-trivial isomorphism in Gal(Q(i)/Q), hence

Q2 ∈ J(Q).

Similarly, a point of order 5 in κ−1(R3) is represented by

Q3 = [2 · (0 : −1 : 1) + 2 · (1 : 1 : 0)− 2D∞]. ∈ J(Q)

Now, we can compute Q = Q1 +Q2 +Q3 using MAGMA, we employ Cantor’s Algorithm to find a point Q

of order 60, represented by the divisor

Q = [(1 : −2 : 1) + (1 : −1 : 0)−D∞] ∈ J(Q).

Example 6.5. (largest torsion subgroup) Let C be defined by

y2 = x8 − 4x7 + 2x6 + 8x5 − 13x4 + 8x3 + 2x2 − 4x+ 1.

Similarly as before, using the coordinates on K, we find two points of order 3,

Q1 = [2 · (0 : −1 : 1) + 2 · (1 : 1 : 0)− 2D∞]

Q2 = [2 · (0 : −1 : 1) + 2 · (1 : −1 : 0)− 2D∞].

The two-torsion points are found using Section 5.6. We find the factorization

f(x) = (x2 − 3x+ 1)(x2 − x− 1)(x2 − x+ 1)(x2 + x− 1) := g1g2g3g4

and pick the three first factors to create the points with Mumford representation Q3 := 〈g1, 0〉, Q4 := 〈g2, 0〉
and Q5 := 〈g3, 0〉, and Q3 +Q4 +Q5 = 〈g4, 0〉. Then, the generators of J(Q)tors can be picked as Q1 +Q3,

Q2 +Q4 and Q5. Hence,

J(Q)tors
∼= Z/6Z× Z/6Z× Z/2Z.
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7 Summary and outlook

7.1 Summary

In this thesis, we explicitly generalized the lifting algorithm that is proposed in [52] to general hyperelliptic

curves, explained how the lifting procedure can be generalized, and gave a detailed proof of correctness of the

algorithm. We explained how the generalization of this lifting procedure makes the algorithm more efficient,

and how one can apply the generalization to compute the rational torsion subgroup of many Jacobians if

biquadratic forms that allow us to apply the sum-and-difference-laws are not computed.

For genus 3, we completed the explicit description of the map κ : J → K for any point in J(k). Furthermore,

for the case k = Q, we created a method to check whether R ∈ K(k) has a pre-image κ−1(R) that consists of

rational points in J(k). For the case where C has no rational points, a method to compute J(Q)tors with the

use of transformations on reduced Jacobians is given. Together with theory in [55], an implementation of the

algorithm for genus 2 hyperelliptic curves in MAGMA and base code for genus 3 hyperelliptic curves [51], we

used the new explicit theory to implement a general method that computes the rational torsion structure of

the Jacobian of any hyperelliptic curve of genus 3. In practice, this method is made more efficient as a result

of the generalization of the lifting procedure.

We used this implementation to compute the rational torsion structure of Jacobians of hyperelliptic

curves of genus 3 of low discriminant from a database of 67879 curves that is planned to be put into the

LMFDB. Since the algorithm does not require an implementation of arithmetic on J , some of these curves

have Jacobians J where no implementation on J(Q) is known, but we can still compute J(Q)tors.

In the database for the LMFDB, we already found an absolutely irreducible Jacobian with a rational

torsion point of order 37, and two Jacobians with torsion order 60 (that may be reducible). Furthermore,

we found absolutely irreducible Jacobians of hyperelliptic curves of genus 3 with rational torsion points of

the following orders: 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 24, 46; such Jacobians seem to be unknown in the

literature.

7.2 Outlook

Computing J(Q)tors for Jacobians of genus 3 hyperelliptic curves and describing and proving a method that

generalizes to genus g hyperelliptic curves makes it easier to search for rational torsion structures on any

Jacobian of any hyperelliptic curve. The possible rational torsion structures of elliptic curves are completely

determined by Mazur [33]. For higher-dimensional abelian varieties for fixed dimension over Q, the uniform

boundedness conjecture predicts that there is a finite list of possible torsion stuctures. This conjecture is

unproven to date, even for dimension 2 [48]. Several authors have constructed certain curves in order to find

rational torsion points of large prime order [29], [43]. By simply computing the torsion structure of large sets

of Jacobians, one can gain more insight on how frequently certain torsion structures appear. Furthermore,

instead of finding a torsion point of large order by design, one can now always compute the complete rational

torsion structure for these Jacobians.

The generalization of the lifting procedure allows us to describe a method that only uses multiplication-by-2

on the Kummer variety, and for many curves we can completely avoid the use of sum-and-difference-laws.

Ludwig Fürst has already computed the doubling formulae for hyperelliptic curves of genus 4. Since a divisor

representation of J(Q) of hyperelliptic curves of genus 4 is less problematic [57, Remark 2.5], one can apply

Cantor’s Algorithm to do arithmetic on J(Q). Hence, our generalization of the lifting procedure implies a

method for finding J(Q)tors of genus 4 hyperelliptic curves that requires doubling on K, but does not need

the full sum-and-difference-laws.

For genus 3, as mentioned in Section 5.2, no unique divisor representation is known for points on J(Q) if

no rational point in C(Q) is known. If a unique representation for points on J(Q) can be found such that

arithmetic on J(Q) can be implemented, for example by considering a number field k such that C(k) 6= ∅,
then one can implement arithmetic on J(k), and one can do explicit computations on J(Q) for all Jacobians
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corresponding to hyperelliptic curves of genus 3. Note that considering a curve C the quadratic number field

k := Q(α) where α2 = f8 always yields two k-rational points at infinity.

Another potential generalization of this algorithm is to consider number fields k and try to find J(k)tors.

For this, one would need to use generalized theory on reduction and Hensel lifting on nonarchimedean p-adic

fields for a prime ideal p of K, see, e.g., [35, Chapter 7]. Note that if p splits in k, then we can still work over

Qp. Then, one needs to apply generalized theory on LLL-reduction (e.g. [18]) for Ok-modules, where Ok is

the order of k, and find a criterion that terminates Algorithm 4.2. The required explicit theory of K does not

depend on k, a way to compute the torsion height bound β is already given for number fields for genus 2, 3

in [52] and [55] respectively.

One application of a generalized algorithm on number fields is to consider geometrically hyperelliptic curves

over Q without a rational point. Let C be a geometrically hyperelliptic curve defined over Q. This means

that C is a double cover of a conic over Q. Hence, the geometrically hyperelliptic curve is a generalization of

the hyperelliptic curve, which is a double cover of P1. Using [24, Section 2], we can find a quadratic number

field k and a hyperelliptic curve C ′ defined over k such that C and C ′ are isomorphic over k. Then, we can

compute J ′(k)tors
∼= J(k)tors where J := Jac(C), J ′ := Jac(C ′). We find J(Q)tors by finding all points on

J(k)tors that are in J(Q). For this approach, we only need the algorithm to work over quadratic number

fields.

A further generalization is to consider general curves C of genus 3 defined over Q. Nonsingular curves

of genus 3 that are not (geometrically) hyperelliptic curves can be described as smooth plane quartics. For

instance, one could first consider Picard curves. If k is a field of characteristic 6= 2, 3, then Picard curves

defined over k have a model

y3z = F (x, z)

in P3 such that F ∈ k[x, z] is homogeneous of degree 4. An embedding into P7 of the Kummer variety of

the Jacobian of C is computed in [43, §4.4]. One would still need a way to compute a torsion height bound

β and explicit arithmetic on the Kummer variety for this embedding. Since P∞ := (0 : 1 : 0) is always a

rational point, we can fix P∞ as a base point and find a unique divisor representation. Then, arithmetic on

J(k) is implemented using an isomorphism between the class group of the integral closure of the ring k[x] in

k(C) and Pic0
C [22, Proposition 3]. Hence, we do not need the full sum-and-difference-laws on K; doubling

formulae δ that double a point on the Kummer variety suffices.
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A Formulas

This is the expansion of Equation (5.18) divided by σ2
1 − 4σ0σ2. This expansion can also be found on [55, §2].

(σ2
1 − 4σ0σ2)ξ2

8

(4f0σ
4
0 − 2f1σ

3
0σ1 + 4f2σ

3
0σ2 − 2f3σ

2
0σ1σ2 + 4f4σ

2
0σ

2
2

− 2f5σ0σ1σ
2
2 + 4f6σ0σ

3
2 − 2f7σ1σ

3
2 + 4f8σ

4
2)ξ8

+ (−4f0f2 + f2
1 )σ6

0 + 4f0f3σ
5
0σ1 − 2f1f3σ

5
0σ2 − 4f0f4σ

4
0σ

2
1

+ (−4f0f5 + 4f1f4)σ4
0σ1σ2 + (−4f0f6 + 2f1f5 − 4f2f4 + f2

3 )σ4
0σ

2
2

+ 4f0f5σ
3
0σ

3
1 + (8f0f6 − 4f1f5)σ3

0σ
2
1σ2 + (8f0f7 − 4f1f6 + 4f2f5)σ3

0σ1σ
2
2

+ (−2f1f7 − 2f3f5)σ3
0σ

3
2 − 4f0f6σ

2
0σ

4
1 + (−12f0f7 + 4f1f6)σ2

0σ
3
1σ2

+ (−16f0f8 + 8f1f7 − 4f2f6)σ2
0σ

2
1σ

2
2 + (8f1f8 − 4f2f7 + 4f3f6)σ2

0σ1σ
3
2

+ (−4f2f8 + 2f3f7 − 4f4f6 + f2
5 )σ2

0σ
4
2 + 4f0f7σ0σ

5
1

+ (16f0f8 − 4f1f7)σ0σ
4
1σ2 + (−12f1f8 + 4f2f7)σ0σ

3
1σ

2
2

+ (8f2f8 − 4f3f7)σ0σ
2
1σ

3
2 + (−4f3f8 + 4f4f7)σ0σ1σ

4
2 − 2f5f7σ0σ

5
2

− 4f0f8σ
6
1 + 4f1f8σ

5
1σ2 − 4f2f8σ

4
1σ

2
2 + 4f3f8σ

3
1σ

3
2 − 4f4f8σ

2
1σ

4
2

+ 4f5f8σ1σ
5
2 + (−4f6f8 + f2

7 )σ6
2

= 0.

(A.1)
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B Explicit change of coordinates on the Kummer variety of Jaco-

bians of genus 3 hyperelliptic curves

In Section 2.6, we introduced a change of coordinates on C. Such a change of coordinates gives an induced

map on the Jacobian. Now that we have described κ completely, we can also give an explicit induced change of

coordinates on the Kummer variety. This is not necessary for the algorithm, but nevertheless very convenient

in practice.

Let φ : C → C ′ be a change of coordinates represented by

A =

(
a b

c d

)
and e = 1 in the notation of Theorem 2.40. Let φ∗ : J → J ′ be the induced map on the Jacobian, denoting J

and J ′ to be the Jacobians of C and C ′ respectively. Also, let C be defined by

C : y2 = f(x) := f8x
8 + · · ·+ f0,

and let C ′ be defined by

C ′ : y2 = g(x) := g8x
8 + · · ·+ g0.

Consider φK to be the map that makes the following diagram commute.

J J ′

K K ′

φ

κ κ′

φK

(B.1)

Here, K and K ′ are the Kummer varieties corresponding to J and J ′ respectively, and κ : J → K, κ′ : J ′ → K ′

are the explicit quotient maps as described above.

This section describes how φK maps a point κ(Q) := (ξ1 : . . . : ξ8) to κ′(Q′) := (ξ′1 : . . . : ξ′8). The main

step in this induced change of coordinates is done by using the coordinate transformation on the matrix M

given in 5.13 representing the ηij-coordinates, this is described in [55, §3]. This method computes ξ′1, . . . , ξ
′
7.

Since ξ′8 is not involved in M , we need to find ξ′8 separately. We do this explicitly using the information on κ

we have obtained.

Case 0: ξ′1 = · · · = ξ′7 = 0.

Obviously, we can choose ξ′8 = 1, and we conclude that we map to the origin of K ′.

Case 1: ξ′1 6= 0.

We use the quadratic equation (5.9) and solve for ξ′8.

Case 2 ξ′1 = 0, ξ′5 = 3ξ′4.

Now, Q′ has the form Q′ = [2P −D∞] because ξ′5 − 3ξ′4 = (x1 − x2)2 = 0 in the notation of Equation

(5.14). We consider two cases:

Case 2.1: ξ′5 = ξ′4 = 0 implies κ′(Q′) has the form of Equation (5.21), hence ξ′8 =
4g6g8−g27

4g8
, scaling such

that ξ7 = 1.

Case 2.2: ξ′5, ξ
′
4 6= 0 gives us the explicit case of Equation (5.19), so the affine support of the divisor

representation is of degree 2. We scale σ2 = 1, and use the form (5.16) to set σ1 = ξ′3 and σ0 = ξ′4, and

compute ξ8 = −s0/s1 in the notation of (5.18), using (A.1).

Case 3: ξ′1 = 0, ξ′5 6= 3ξ′4.

Now, we have Q′ = [P ′1 + P ′2 −D∞], such that P ′1 := (x′1 : y′1 : z′1) and P ′2 := (x′2 : y′2 : z′2) are distinct.

We first determine 2y′1y
′
2. This seems to be obviously equal to 2y1y2 since e = 1. However, the issue is that
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the map as described in Section 5.4 assumes points on C to have their coordinates scaled in a certain way:

for points P := (ρ : η : ζ), we have that if ζ 6= 0, then we scale such that ζ = 1. If ζ = 0, then we scale such

that ρ = 1. This means that we have to take several case distinctions in order to find 2y′1y
′
2 in the way that

P ′1 and P ′2 has coordinates as assumed by describing κ in Section 5.4.

If ξ2 = ξ3 = ξ4 = 0, then κ(Q) is of the form (5.20). The map is based on the coordinates Q = [(x1 : y1 :

1) + (1 : y2 : 0)−D∞], Note that φ∗(Q) = [(ax1 + b : y1 : cx1 + d) + (a : y2 : c)−D∞]. Since ξ′5 6= 3ξ′4, not

both z′1 = cx1 + d = 0 and z′2 = c = 0. Hence, after normalizing,

2y′1y
′
2 =

ξ8 + 2f8x
4
1 + f7x

3
1

ν4
1

=
ξ8 + 2f8ξ

4
6 − f7ξ

3
6

ν4
1

where

ν1 =


c(−cξ6 + d) if c(−cξ6 + d) 6= 0

c(−aξ6 + d) if − cξ6 + d = 0

a(−cξ6 + d) if c = 0.

(B.2)

If at least one of ξ2, ξ3, ξ4 is nonzero, then κ(Q) is of the form (5.14). We assumed ξ′5 6= 3ξ′4, hence

ξ5 6= 3ξ4, otherwise two distinct points are mapped to the same point under an isomorphism. Here, Q is of the

form Q = [(x1 : y1 : 1) + (x2 : y2 : 1)−D∞], so Q′ = [(ax1 + b : y1 : cx1 + d) + (ax2 + b : y2 : cx2 + d)−D∞].

Denote GC(x1, x2) as in (5.15) corresponding to C, then GC(x1, x2) can be rewritten to the form

GC(x1, x2) = 2

4∑
j=0

(x1x2)j + (x1 + x2)

3∑
j=0

(x1x2)j

= 2

4∑
j=0

ξj4 − ξ3
3∑
j=0

ξj4.

(B.3)

Now, we can write, using (5.14),

2y′1y
′
2 =

(ξ8 +GC(x1, x2))(x1 − x2)2

ν4
2

=
(ξ8 +GC(x1, x2))(ξ5 − 3ξ4)

ν4
2

where ν2 is again our scaling factor such that 2y′1y2 respects the scaling of points assumed in Section 5.4.

Computing ν2 depends on whether P1 or P2 map to infinity or not. We first note that not both P1 and

P2 map to infinity: if that were the case, either Q′ = κ(0) or P ′1 = P ′2: both contradict ξ′5 6= 3ξ′4.

Note that the image of z1z2 under φ is

z′1z
′
2 = (cx1 + d)(cx2 + d) = c2ξ4 − cdξ3 + d2

hence if c2ξ4 − cdξ3 + d2 6= 0, then P ′1, P
′
2 are affine and we set D2 = c2ξ4 − cdξ3 + d2 6= 0.

We are left with the case that precisely one of P ′1, P
′
2 is affine. We fix P ′1 to be affine without loss of

generality, so −ξ′6 = x′1 in Equation (5.20). Denote

A−1 =

(
a′ b′

c′ d′

)
and we fix P1 to be the pre-image of P ′1 under φ. Then,

x1 =
a′x′1 + b′

c′x′1 + d′
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and z′1 = cx1 + d, hence we scale the affine point by z′1 = cx1 + d. Now, we also scale y′2 by considering

P ′2 ∈ C inf. We have that (x2 : y2 : 1) maps to a point at infinity, hence we need to scale by x′2 = ax2 + b where

−(x1 − (x1 + x2)) = −(x1 − ξ3).

In summary,

ν2 =

{
c2ξ4 − cdξ3 + d2 if c2ξ4 − cdξ3 + d2 6= 0(
c
−a′ξ′6+b′

−c′ξ′6+d′ + d
)(

a
(
−a′ξ′6+b′

−c′ξ′6+d′ − ξ3
)

+ b
)

otherwise.
(B.4)

From all of the above in case 3, we conclude that

2y′1y
′
2 =


ξ8+2f8ξ

4
6−f7ξ

3
6

ν4
1

if ξ2 = ξ3 = ξ4 = 0
(ξ8+GC(x1,x2))(ξ5−3ξ4)

ν4
2

otherwise
(B.5)

where ν1 is as described in (B.2) and ν2 is as described in (B.4).

Knowing 2y′1y
′
2, we are ready to compute ξ′8 for the following cases.

Case 3.1: In addition to the assumptions of case 3, ξ′2 = ξ′3 = ξ′4 = 0 implies that precisely one of P ′1, P
′
2

is affine, hence κ′(Q′) has the form (5.20). Here,

ξ′8 = 2y′1y
′
2 − 2ξ′46 g8 + ξ′36 g7.

Case 3.2: In addition to the assumptions of case 3, one of ξ′2, ξ
′
3, ξ
′
4 is nonzero. This implies that both

P ′1, P ′2 are affine, hence κ′(Q′) has the form (5.14). Here,

ξ′8 =
2y′1y

′
2 −GC′

ξ′5 − 3ξ′4

where GC′ is the G-function as described in (5.15) corresponding to the curve C ′, which can be computed in

terms of ξ′3 and ξ′4, analogously to B.3.

We now have a complete, explicit description of φK : K → K ′ that is induced from a change of coordinates

(x : y : z) 7→ (ax+ bz : y : cx+ dz) from C to C ′.
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C Torsion structures found

These are all torsion structures found in the database [56].

Elementary divisors Frequency

0 39707

2 15956

2, 2 2399

2, 2, 2 163

2, 2, 2, 2 3

3 1044

3, 3 1

4 2697

4, 2 471

4, 2, 2 43

4, 2, 2, 2 1

4, 4 3

4, 6 2

5 600

6 1259

6, 2 155

6, 2, 2 18

6, 3 1

6, 6 2

6, 6, 2 1

7 701

8 601

8, 2 146

8, 2, 2 21

8, 2, 2, 2 1

9 175

10 453

10, 2 87

10, 2, 2 16

10, 5 1

11 31

12 410

12, 2 84

12, 2, 2 2

12, 4 2

13 24

14 303

Elementary divisors Frequency

14, 2 32

14, 2, 2 1

15 6

16 59

16, 2 7

17 5

18 29

18, 2 2

19 3

20 34

20, 2 6

21 2

22 14

22, 2 1

24 21

24, 2 5

25 4

26 7

27 3

28 16

28, 2 4

30 6

30, 2 1

32 3

33 1

34 1

36 3

37 1

38 2

40 1

42 6

44 1

46 1

49 2

52 2

60 2
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order f(x)

11 −4x8 − 4x7 − 3x6 + 6x5 + 13x4 + 14x3 + 10x2 + 4x+ 1

12 4x7 − 16x6 + 4x5 + 9x4 + 16x3 + 10x2 + 4x+ 1

13 x8 − 2x5 + 2x4 + 4x3 + 5x2 + 2x+ 1 (Also: Example 6.1)

14 12x7 + 64x6 + 120x5 + 104x4 + 36x3 − 3x2 − 4x

16 4x7 + x6 + 32x5 + 80x4 + 98x3 + 52x2 + 12x+ 1

17 4x7 + 16x6 + 24x5 + 28x4 + 20x3 + 12x2 + 4x+ 1

18 4x7 + 8x6 + 16x5 + 17x4 + 16x3 + 10x2 + 4x+ 1

19 x8 − 2x6 − 2x5 − x4 + 2x3 + 7x2 + 2x− 7

20 x8 − 12x6 − 2x5 + 52x4 + 16x3 − 95x2 − 32x+ 60

21 −4x7 + x6 − 4x5 + 6x4 − 2x3 − 3x2 + 2x+ 1

23 4x8 − 4x6 − 3x4 − 4x3 + 2x2 + 4x+ 1 (using the point of order 46 found below.)

24 4x7 − 8x6 + 20x5 − 7x4 + 4x3 + 18x2 + 8x+ 1

46 4x8 − 4x6 − 3x4 − 4x3 + 2x2 + 4x+ 1

Figure 2: Examples of curves whose Jacobian is absolutely irreducible and contains a rational torsion point

of given order.
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