
Predictive maintenance

algorithm design for bus

door systems

Master's design project

December 8, 2020

Student: Emre Özer

Primary supervisor: Prof. Dr. Ir. Ming Cao

Secondary supervisor: Prof. Dr. Ir. Bayu Jayawardhana

Company supervisor: Kevin Visser

Acknowledgements

The last 14 week period was a fairly exciting and fulfilling experience to me.
Being involved in a company, working on my design project for my master ’Me-
chanical Engineering’ at the University of Groningen was a challenging task.
I am grateful to all who were sharing this period with me and showing their
support.

First of all, I would like to thank my official supervisor, Kevin Visser for pro-
viding me with the opportunity to be the part of the Smart Machines project
in Ventura Systems.

I would also like to thank my supervisor from the University of Groningen,
Professor Ming Cao for his continuous guidance through the project.

Similarly, I would like to express my gratitude to Marten Hoekstra, my "unof-
ficial" supervisor in the project for all of his support. Thank you for teaching
me almost everything I have learned during the project and for being in such a
satisfying project in this very limited period with me.

I would also like to present my thanks to my colleagues in Ventura Systems
for having me as a part of the team; to my team leader, Aebe Meindertsma for
introducing me to literally everything about the company, the team and the job
and to Gerrit, Watse, Wytze and Germ for sharing this 14 weeks with me.

Last but not least, I would like to thank my parents and my family, for their
care, support and wisdom. Even though a distance, thank you for helping me
during this entire journey.

Although the project accomplished some important steps, the company still
has a long way to go but the potential within the project is vast. I am proud
to be a part of the basis of the Smart Machines project in Ventura Systems. I
believe the spark we ignited here is a strong foundation to what the company
and the industry plan to achieve in the next decade.

ii

Abstract

The decrease of costs for condition monitoring (CM) equipment created a grand
opportunity to inspect the state of a system for improved operations and in-
creased efficiency. A major application for CM equipment is error detection and
accordingly, error prevention. The enhanced computational power enabled the
engineers to estimate overall effective life span for machines and the knowledge
of the overall failure times resulted in a new maintenance method, preventive
maintenance. The emerging CM technologies promise a more powerful technique
called predictive maintenance. Constantly monitoring the system provides ex-
act information about the operations of the machine and enables to foresee any
kind of failures. Predictive maintenance is useful for both preventing failures
and preventing excessive maintenance.

This study aims to prepare a base algorithm for a predictive maintenance
system, planned to be implemented in bus doors. The data collected by Ven-
tura Systems via an endurance test will be analysed to observe the correlations
between parameters and to detect patterns. Thereafter based on the initial
analysis, a new test set will be designed to gather more useful information. Fi-
nally, when the test is done and the data is collected, a predictive model will
be generated. Three different prediction models will be created by regression,
exponential degradation and neural networks to compare the reliability of all
three designs. SensorCloud will be used for data storage and its MathEngine
extension will be used for data processing. MATLAB’s predictive maintenance
and neural network toolboxes will also be used for design and validation.

The study aims to inspect the data obtained from the endurance test, to
build a predictive model with that data and to investigate the correlations of
the data gathered from different sensors. Performance optimization and external
physical effects are out of the scope of the project and will not be included in
the study.

iii

Table of Contents

Acknowledgements ii

Abstract iii

Table of Contents iv

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Background information on maintenance 1
1.2 Overview on the maintenance market 3
1.3 The Smart Machines project . 4

1.3.1 The company . 5
1.3.2 Plan of the company for the ’Smart Machines’ project . . 5

1.4 The scope and the goals of the design project 6
1.5 Overview of the structure of the report 8

2 Review of literature 10
2.1 Maintenance methods and PdM models 10
2.2 Failure modes . 13
2.3 Successful implementations and case studies 14
2.4 Algorithms and performances . 16
2.5 Programming tools . 18

3 Methodology 20
3.1 Preliminary model . 20

3.1.1 Learning algorithm . 24
3.1.2 Outcomes . 27

3.2 Data collection . 30
3.3 Improved model . 34

3.3.1 Exponential degradation 34
3.3.2 Artificial neural network 35
3.3.3 Preprocessing . 36

4 Results and Discussions 40
4.1 Prediction algorithms . 40

4.1.1 Exponential regression . 40
4.1.2 Exponential degradation 41
4.1.3 Artificial neural network 43

4.2 Comparison of the learning methods 46
4.3 Correlations of the parameters 48
4.4 Cost analysis . 49

5 Conclusions 51
5.1 Limitations of the study . 52

iv

5.2 Recommendations for the company 52
5.3 Future research . 54

A Correlation matrices 57

B Predictions 67

C Regression script 82

D Predictive maintenance toolbox 88

E Neural Network 92

Bibliography 97

v

List of Figures

1.1 Optimummaintenance frequency for PM. (TUV Rheinland, 2019)[22] 4

2.1 Comparison of three maintenance strategies: run to failure, pre-
ventive and predictive. (MATLAB, 2019)[14] 10

2.2 Workflow of a PdM project. (MATLAB, 2018)[13] 11
2.3 Similarity model for RUL estimation. (MATLAB, 2019)[15] . . . 12
2.4 Degradation model for RUL estimation. (MATLAB, 2019)[15] . . 12
2.5 Failure rate patterns. (Jimenez et al., 2020)[11][21] 14
2.6 Expected failure numbers for inner and outer races of the bear-

ings. (Daniyan et al., 2020)[10] 15
2.7 Correlations of estimated and real outputs of the AI-based PdM

model. (Daniyan et al., 2020)[6] 15
2.8 Confusion matrix from the RNN model for PdM (Wu et al.,

2020)[30] . 16
2.9 Architecture of IoT based PdM system. (Killeen et al., 2019)[12] 17

3.1 Sensor placement diagram of the first endurance test. 21
3.2 Signals from the initial endurance test. 22
3.3 Noise dominated signal from the upper door arms strain gauge. . 22
3.4 Pictures of the door during endurance test. 23
3.5 Correlation matrix of the parameters for the initial endurance test. 27
3.6 Machine health predictions of the preliminary model. 29
3.7 Sensor placement diagram for the main endurance test. 31
3.8 Temperature readings for the transient zone. 32
3.9 Sensor signals from the final endurance test. 33
3.10 NAR Neural Network . 35
3.11 Left door accelerometer (X axis) data. 36
3.12 FFT plot of the accelerometer (X axis). 36
3.13 Spectral kurtosis plot of the accelerometer data. (X-axis) 37
3.14 Sorted bar plot of monotonicity indices of the extracted features

for the left door accelerometer, x-axis data. 38
3.15 Results of the PCA. 39

4.1 Predictions of the regression algorithm. 41
4.2 Predictions of the degradation algorithm. 42
4.3 Comparison of predicted and real RUL. 43
4.4 Diagnostic plots of the neural network. 44
4.5 Response of the fit. 45
4.6 Correlation matrix of the frame strain gauge - accelerometer x axis. 49

A.1 Correlation matrix of the frame strain gauge - accelerometer x axis. 57
A.2 Correlation matrix of the frame strain gauge - accelerometer y axis. 58
A.3 Correlation matrix of the frame strain gauge - accelerometer z axis. 59
A.4 Correlation matrix of the accelerometer x axis - accelerometer y

axis. 60

vi

A.5 Correlation matrix of the accelerometer x axis - accelerometer z
axis. 61

A.6 Correlation matrix of the accelerometer y axis - accelerometer z
axis. 62

A.7 Correlation matrix of the frame strain gauge - accelerometer x axis. 63
A.8 Correlation matrix of the underlever strain gauge - accelerometer

y axis. 64
A.9 Correlation matrix of the underlever strain gauge - accelerometer

z axis. 65
A.10 Correlation matrix of the underlever strain gauge - frame strain

gauge. 66

B.1 Right frame condition prediction with regression model. 67
B.2 Right frame condition prediction with degradation model. 67
B.3 Right frame condition prediction with neural network. 68
B.4 Left frame condition prediction with regression model. 68
B.5 Left frame condition prediction with degradation model. 69
B.6 Left frame condition prediction with neural network. 69
B.7 Left underlever condition prediction with regression model. . . . 70
B.8 Left underlever condition prediction with degradation model. . . 70
B.9 Left underlever condition prediction with neural network. 71
B.10 Right accelerometer (X) condition prediction with regression model. 71
B.11 Right accelerometer (X) condition prediction with degradation

model. 72
B.12 Right accelerometer (X) condition prediction with neural network. 72
B.13 Right accelerometer (Y) condition prediction with regression model. 73
B.14 Right accelerometer (Y) condition prediction with degradation

model. 73
B.15 Right accelerometer (Y) condition prediction with neural network. 74
B.16 Right accelerometer (Z) condition prediction with regression model. 74
B.17 Right accelerometer (Z) condition prediction with degradation

model. 75
B.18 Right accelerometer (Z) condition prediction with neural network. 75
B.19 Left accelerometer (X) condition prediction with regression model. 76
B.20 Left accelerometer (X) condition prediction with degradation model. 76
B.21 Left accelerometer (X) condition prediction with neural network. 77
B.22 Left accelerometer (Y) condition prediction with regression model. 77
B.23 Left accelerometer (Y) condition prediction with degradation model. 78
B.24 Left accelerometer (Y) condition prediction with neural network. 78
B.25 Left accelerometer (Z) condition prediction with regression model. 79
B.26 Left accelerometer (Z) condition prediction with degradation model. 79
B.27 Left accelerometer (Z) condition prediction with neural network. 80
B.28 Electric motor condition prediction with regression model. 80
B.29 Electric motor condition prediction with degradation model. . . . 81
B.30 Electric motor condition prediction with neural network. 81

vii

List of Tables

1.1 The comparison of RM, PM and PdM.[3] 3

2.1 Performance comparison of deep learning algorithms.[20] 18

3.1 Positions of the sensors for the preliminary endurance test. . . . 21
3.2 Flowchart of the preliminary prediction algorithm. 24
3.3 Parameters in Equation 3.1. 26
3.4 Positions of the sensors for the main endurance test. 31
3.5 Parameters for Equation 3.4. 35
3.6 Feature table for the left door accelerometer, x axis data. 37

4.1 Results on the train set for regression and degradation algorithms. 47
4.2 Results on the test set for all three algorithms. 48
4.3 Estimated expenses for the project. 50

viii

1. Introduction

The project to be conducted is the design of a predictive maintenance algo-
rithm for the electrical and pneumatic bus doors used mostly in public busses.
The project is conducted in the company Ventura Systems under the name of
Smart Machines Project. The report will include the methods and technolo-
gies that are currently being used to build predictive maintenance systems, the
problem definition and tests that are done by the company, the approach to the
solution of the problem and explanation of the design.

Maintenance is a substantial action in a process to ensure efficiency and
safety. Faulty operation of a component in a system may lead to unexpected
and non-compensable expenses, as well as creating a safety gap. The system
does not have to be a physical or mechanical asset. Processes, actions and even
documents such as laws can require maintenance in time. Depending on the
application and the type of asset, method of maintenance varies greatly. For in-
stance, in a system that does not cause safety risks for its users and economical
lost for its owners, it can be more profitable to wait until the system is inop-
erable and fix the malfunctioning component while in a system that contains
high risk during failures such as aeroplane engines or high-profit loss such as oil
pumps, it is desired to ensure the proper operation of the system.

1.1 Background information on maintenance

With the increased cumulative knowledge and the improvements in the technol-
ogy, it has become possible to build cheaper, larger, faster and smarter main-
tenance systems. Even though advanced maintenance systems have higher ex-
penses due to its requirements for better equipment, the costs of digital and
mechanical equipment are decreasing rapidly. Moore’s law suggests that the
number of transistors in an integrated circuit doubles every two years. [19]
Respectively, the costs of electrical equipment are decreasing constantly. The
decrease in costs made condition monitoring (CM) equipment convenient enough
to be used widely in the industry. Usage of new tools enabled the development
of new techniques for monitoring and maintaining a system.

A mechanical system may need to be fixed due to several reasons such as
environmental forcing, operating conditions or deformation of the material. Cur-
rently, three main maintenance strategies are being used for this purpose. These
are reactive (or run to failure) maintenance (RM), preventive maintenance (PM)
and condition-based maintenance (CBM). [18] A basic knowledge of mainte-
nance methods is required to understand the context of the project.

Run-to-failure maintenance
Also known as reactive or corrective maintenance, run-to-failure maintenance
method is based on the principle as stated by Keith Mobley: “If it is not broken,
don’t fix it”.[18] It is simply letting the system to operate until it breaks down

1

or stops working due to a failure. When a failure occurs, the system is repaired
and continues to operate. This method has two main disadvantages. The first
disadvantage is the lack of safety. Depending on the system, an instant break
down may cause a great threat for the personnel nearby. For example, waiting
for a ship to sink before repairing is not the best way to maintain the machinery.
The second disadvantage is the loss of profit. Unexpected failures may cause
great losses to the user. Especially in industries that short times means a large
amount of profit such as the oil industry, a sudden failure is intolerably expen-
sive.

Preventive maintenance
To ensure that the maintenance is done before anything breaks, PM can be
used as an effective technique. PM depends on setting standard maintenance
periods and inspecting the system no matter if there is a problem or not.[9] The
method includes tests before usage, planning the failure time for the machine
and determining the maintenance period based on that predicted failure time.

The main disadvantage of this method is, it is not possible to predict the ef-
fects of different operation conditions on the system.[3] Several tests can be done
to foresee the results in different conditions but this still does not guarantee that
the system will not fail under extreme conditions. Another disadvantage is the
system is advised to go into maintenance if the predicted usage time is fulfilled
even if there is no problem on the machine. Excessive maintenance is also an
undesired problem since it causes a great loss in efficiency and accordingly, the
profit.

Predictive maintenance
As a type of CBM, PdM aims to adapt the economically convenient schedule
of corrective maintenance while avoiding failures. [18] The difference from PM
is, instead of using general lifetime predictions, PdM uses real-time data of the
system to understand the current condition of and to foresee if a failure is about
to happen. Since the main principle is based on the monitoring of the compo-
nent of interest, it is called condition-based maintenance.

The method requires condition-monitoring equipment to analyse the instan-
taneous situation of the system.[4] The collected data is processed with the PdM
algorithm to identify if the system or a part of the system requires special atten-
tion. There are several techniques used for predictive maintenance.[23] Those
techniques include;

• Vibration monitoring: Used mostly in rotating machines. Very effective
technique but not applicable in every system.

• Performance monitoring: Fluctuations in performance gives a strong in-
sight into the condition of the machine.

• Thermal analysis: Used to detect thermal defects in systems.

• Oil analysis: The lubricant can be inspected for microscopic particles to
predict failures. This technique is mostly used in bearings.

2

• Acoustic emission: The change in the noise of mechanical systems can be
used to gain information about the condition.

• Corrosion monitoring: Ultrasonic measurements are used to investigate
systems under a corrosive environment such as pipelines.[23]

The comparison of maintenance methods
A general comparison of the three mentioned maintenance methods can be seen
in table 1.1. The desired maintenance method can be selected by the maintainer
according to those advantages and disadvantages.

RM PM PdM

Pros -Cheap and simple
-Basic technology

-Reliable
-Low overtime costs

-Reduces waste/energy
-Low unscheduled

downtime

-Low unscheduled
downtime

-Real-time information
-Optimum maintenance

time
-Very high reliability

Cons

-Unscheduled
downtime

-Overtime labour
-Unsafe system

-Excessive maintenance
-More complex than RM
-Long implementation

time

-Requires high technology
-High costs

-Requires high
knowledge and skill

-Long implementation time

Table 1.1: The comparison of RM, PM and PdM.[3]

1.2 Overview on the maintenance market

Despite the fact that more efficient maintenance tools are being developed ev-
eryday, reactive maintenance still occupies the largest share in the industry.
According to United States Department of Energy, the aforementioned mainte-
nance methods have a share in the market for 55%, 31% and 12% for reactive,
preventive and predictive maintenance, respectively. [27] However, with the rel-
atively small percentage in the market, PdM still holds an annual market size
of 3.18 billion dollars by 2018 and it is expected to reach 28.24 billion by the
end of 2025.[1]

It can be seen that due to the expenses of implementing an advanced main-
tenance program, basic methods are still considered as adequate in the majority
of the market albeit the opportunity for maintenance cost savings. PM can re-
duce the maintenance expenses by approximately 12% to 18% relative to RM.
However, it does not mean that PM can be used solely in a system. In spite
it aims to prevent failures before they occur, random failures or infant mor-
talities can still occur, causing a corrective action. The occurrance of random
failures can be limited by decreasing the maintenance intervals, yet this may
cause greater expense.[22] The cost - maintenance diagram for PM is given in
Figure 1.1. As the frequency decreases, more RM actions are needed which will
increase the cost due to failures. As frequency increases, more excessive main-
tenance operations will be done which will increase the cost due to increased

3

downtime. Optimum point is where the combination of PM and RM expenses
are minimum.

Figure 1.1: Optimum maintenance frequency for PM. (TUV Rheinland,
2019)[22]

PdM promises an even higher cost saving. Relative to PM, it can save ap-
proximately 8% - 12% in costs, meaning that 25% - 30% compared to RM. In
addition, it can eliminate breakdowns for up to 75%, reduce downtime for up to
45% and increase production for 25%, promising 10 times of return on invest-
ment. [27]

The costs for PdM are still high due to the expenses for CM equipment and
implementation costs. As the market grows, the equipment costs will decrease
greatly and implementation procedure can be standardized. It is obvious that
by the end of 2025, PdM will have a much larger share in the market.

1.3 The Smart Machines project

Smart Machines project is a mutual project of the companies of Innovation
Cluster Drachten. The ultimate goal is to understand how the system of interest
performs under various conditions and to be able to make predictions about the
state of it.
This report focuses on the initial design step of the Smart Machines project that
will be done within the company Ventura Systems. The company is a bus door
and door mechanism provider. The ’Smart Machines’ project was launched in
2019 and the plan is to fully integrate the predictive maintenance system on
their products by the end of 2021. The company intends to reduce the extra
costs by reducing the downtime and unexpected failures of the product and to
enhance the product quality by predicting the potential failures. This report
covers the 14 weeks of the project starting from September 2020.

4

1.3.1 The company
Ventura Systems is a company that is specialized in the design and manufactur-
ing of doors for bus, tram and metro. The company currently designs inward
swinging (ISD), outward swinging (OSD), plug sliding (PSD) and rapid sliding
doors (RSD).[28]

The company is a member of the Innovation Cluster Drachten since 2017 and it
is currently working on the design of a predictive maintenance system for their
bus doors.

1.3.2 Plan of the company for the ’Smart Machines’ project
The companies plan is to conduct a long term study on the subject. This report
will only focus on a part in the project that will last approximately 4 months.

The company divided the project into two parts. This report will include
the first part of the project. This part includes the "extensive monitoring" tests
meaning that;

• Monitoring an endurance test in the company

• Determining the important parameters and the sensors required to mea-
sure those parameters.

• Local storage of the sensor data

• Analysis of the data

• Design of a preliminary predictive maintenance algorithm

The second part, which will start after the first part ends includes "condition
monitoring". Condition monitoring will include;

• Monitoring on real busses around the world

• Determining the influential parameters in real systems

• Obtaining privacy, safety and location information where no network is
available.

• Design and implementation of the predictive maintenance system

Aim of the company with the "Smart Machines" project

The project expects to obtain valuable data to provide improved experience on
the users. The doors that are manufactured in the company are being used all
over the world, in very different conditions including extreme hot(durable up
to 70oC) and cold(durable up to −30oC). The plan is to gain more insight into
the behaviour of the doors in different conditions to predict and prevent failures.

The second goal of the project is the optimization of the door systems for
better operations. Learning the behaviour of a door under different circum-
stances can provide substantial information for product development.

5

The third goal is to increase the uptime for doors. Understanding door be-
haviour means understanding the reasons for failures, leading to prevent unex-
pected downtimes. This would decrease the cost for the customer by preventing
excessive maintenance and increase income for the company.

Another goal is to collect real-time performance data worldwide from bus
doors, providing more information and also letting the company know exactly
what is happening at any moment.

Finally, the last goal is to adapt to the changing market. In an autonomous
vehicle, a driver will not be there to handle dangerous situations. A smart door
is necessary for this kind of system to ensure user safety.

In conclusion, the main goal of the project is to extend the life cycle of the
product and gain more information to improve the product and processes.

1.4 The scope and the goals of the design project

The purpose of the project is to design an algorithm based on the available data
that decides when the door system requires maintenance. The optimization of
this process includes the elimination of unnecessary(excessive) maintenance pe-
riods of the doors.

The initial data was gathered by the company by an endurance test that was
ended in June 2020. The data will be used to understand the behaviour of the
doors during operation so that it would be possible to predict when a failure is
possible.

The main motivation is to create a smart product that can adapt to severely
varying conditions such as temperature, force, vibrations etc. and increase the
life cycle and uptime for the bus doors since a failure in the door means that the
vehicle itself is unusable until the problem is fixed. Collecting more extensive
data through this project is the key to achieve this purpose.

A clear statement of the expected goal can be made after clarifying the con-
cepts about maintenance and defining the context of the project. The planned
outcome of the project can be described as;

"Designing a predictive maintenance algorithm for bus door
systems."

In order to achieve this goal, the study will be divided into three consecutive
steps. Those steps can be explained briefly as;

1. Preliminary design and research
The question that needs to be answered in this step is, "what are the
required parameters to build an accurate and reliable predictive model?"
The initial step is to investigate the available data within the company
and prepare a design to determine the deficiencies and to have a deeper
understanding of the door mechanism. Most importantly, a clear literature

6

review including case studies and guidelines from software suppliers is
conducted to collect information about the progression of a PdM project.
The results are expected to provide an answer to the question.

2. Design of the endurance test and planning the analysis
After determining the necessary information, the next step is to determine
"how to obtain and process the required information?"
Experimental design based on the required sensor information is explained
in Section 3. The algorithms used in the project are also explained in the
section.

3. Design and validation of the predictive model
Ultimately, the goal is to design a PdM algorithm with high accuracy
and efficiency. To achieve this final goal, the question that needs to be
answered is "how accurate is the algorithm?"
Comparison of the design proposals and results are evaluated in Section 4
to determine the most efficient solution to the given problem.

The three steps that were planned to achieve the ultimate goal contain several
questions within them. Those questions can be considered as substeps of the
project. Searching for answers to those questions enables a more clear vision of
the planning. The sub-questions of the preliminary design and analysis step are;

- When does a mechanism in the door system fail?
An electrical door is a complex system, which is a combination of several
smaller systems. Any of those systems can have failures in time. Inspect-
ing the behaviour of the door on its way to failure gives valuable insight
about the life of a door.

- What indicates a failure?
This question seeks the information of an indication in the data, which
warns the user before a potential failure. Such a parameter can easily be
used for a predictive algorithm.

- What kind of information is required to make accurate predictions?
Besides the data from the door, the lifetime of a component is influenced
strongly by environmental factors. The question inspects the influential
parameters that determine the life of a door.

After acquiring adequate information from the first step by answering those
three questions, the methodology can be planned. Similarly, the study plans to
find answers to several questions in this step.

- How can we measure the necessary data in a test?
After determining important parameters, it is also a tough challenge to de-
sign an experiment that provides the information. Therefore this question
addresses a vital problem in the project.

- What kind of tools can be used for analysis?
After acquiring the data, the next problem is what to do with it. Several
methods are investigated in Section 2 of this report to find a suitable
analysis tool and algorithm for this purpose.

7

The final step aims to solve the problems mentioned at this point. In that sense
the design step of the project is based on the questions;

- Which feature(s) provide information for an efficient model?
Feature selection for a predictive algorithm. The goal is to identify the
parameters that provide a clear indication of the system.

- How to combine the parameters or use them separately for failure predic-
tions?
Since the door contains many systems that can potentially fail, it is im-
portant to understand the indications in the data that point out different
types of failures. Also, understanding the interaction of the parameters is
necessary for improved prediction accuracy.

- What is the correlation between parameters?
The relation between measured properties from sensors such as stress or
acceleration indicates an opportunity to increase the understanding of the
system. This question is also an important step for future works.

- What kind of algorithm gives the most accurate results for this system?
Among several design proposals, the most efficient algorithm must be se-
lected for real applications.

The design steps that lead to the ultimate goal, designing a PdM system, are
planned to be achieved by answering these questions. As aforementioned, the re-
port will be investigating the first part of the "Smart Machines" project. Within
that section, the main goal is to provide a base design and a road map to the
company for the construction of the fully operable PdM system, while capturing
valuable information from the endurance tests.

The initial goal in this context is the identification of the parameters. To
decide what kind of sensors will be used to observe, to measure and to analyse
the data, it is essential to have an insight on the impact of the parameters on
the life of the door system. This information will be used in the design of test
systems in Ventura and in the real busses in the future.

The second goal is to build and to examine a PdM algorithm based on the
limited data. If this goal is achieved successfully, the algorithm can easily be
improved for a more comprehensive model. Since the ultimate goal for the com-
pany is the improve the efficiency of maintenance periods, this step carries vital
importance.

Eventually, selecting the most efficient option among the PdM models will
be the final step. It is not possible to examine all the alternative methods. Yet,
having overall information about the several main types of prediction algorithms
can be a piece of valuable information.

1.5 Overview of the structure of the report

The first chapter introduces the definition and a brief history of predictive main-
tenance and providing general information on maintenance methods. The dif-
ferences between maintenance methods, disadvantages and advantages are also

8

being investigated in the chapter. The current system of the company, their
goal with the project and their current progress on the project is also briefly
explained. One last thing that is mentioned in the first chapter is the scope and
aim of this project and how it will be implemented in the companies long term
’Smart Machines’ project.

The second chapter demonstrates the relevant literature, current technolo-
gies and methods used to build an efficient maintenance algorithm. Similar
works, projects, guides, standards and studies are explained in this chapter to
provide an insight for the upcoming project. Programming and design tools
are also introduced in this chapter with the explanation of the approach to the
design problem.

In the third chapter, the road map of the project is explained in details. The
methods used to build the initial design is given and its results are investigated
for the next step: experimental design. The conclusions made for the design of
the test and the structure of the final design proposal based on the test is given
in this chapter.

The fourth chapter is the explanation of the results of the designed predic-
tive model and the performance comparison of the proposed alternatives, while
explaining the correlations and relations between the statistical features of the
data acquired from the sensors to determine if it is possible to reduce the number
of sensors. The discussion based on the performance analysis and estimation of
costs are included in the chapter.

The fifth chapter contains the conclusions obtained from the analysis of the
data, recommendations to the company and the possibilities of future research
on the topic.

9

2. Review of literature

Within the 4th industrial revolution, smart systems gained importance due
to their ability to greatly increase the performance. Reduced device costs and
increased computation capability enabled the usage of smart systems and in a
very short time, many studies related to Industry 4.0 have been conducted.
One of the most useful results of the smart industry is predictive maintenance
and several companies, institutions and individuals have been trying to under-
stand the concept. Theoretical explanations, base concepts of maintenance, case
studies and proposed solutions and the tools that are being used for this purpose
are investigated in this section.

2.1 Maintenance methods and PdM models

A clear explanation of the issue is given by MATLAB in the documents and
guidelines written for PdM applications. Those documents include guides and
suggestions for a PdM project.

The maintenance strategies which were aforementioned in Section 1.1 were
defined in MATLAB’s introductory document[14] to PdM as;
Reactive maintenance: Waiting for a failure to repair a machine. Generally
used in inexpensive systems but not suitable for complex designs due to safety
and costs.
Preventive maintenance: Most commonly used maintenance method in large
organizations. Inefficient due to early maintenance periods.
Predictive maintenance: Optimum method for planning maintenance oper-
ations and identifying faulty parts.

Comparison of these three methods can be seen in Figure 2.1, similar to
Table 1.1.

Figure 2.1: Comparison of three maintenance strategies: run to failure, preven-
tive and predictive. (MATLAB, 2019)[14]

In addition to definitions, a general plan of approach is suggested by MAT-
LAB. According to their documentation, PdM is a recursive process rather than
a straight line. The model needs to be updated continuously during the train-
ing process. The updated model may require new data and new training. A
representation of the workflow of a PdM project, retrieved from a white paper
of MATLAB is given in Figure 2.2.[13]

10

Figure 2.2: Workflow of a PdM project. (MATLAB, 2018)[13]

The initial step is to access sensor data, obtained from tests or field mea-
surements. Those data may include time-domain, frequency-domain or time-
frequency-domain features. Mean, standard deviation, kurtosis, and skewness of
the data are some of the time-domain features that can be measured. Frequency-
domain data includes vibration frequencies, peak-to-peak values, harmonics.
Frequency-domain data that changes over time can be captured by time-frequency
domain features. The change of vibration frequency as the machine starts to
break down is an example of this kind of data.[16]

The collected data needs to be pre-processed afterwards. Before investigating
the features of interest, the data needs to be cleared of outliers and noise.

The main purpose of investigating those features is, to be able to identify
different types of failures when the machine is running in a certain condition. If
a system starts to show a specific type of behaviour as it tends to break down,
it is possible to estimate the RUL by comparing the current condition and the
failure condition. It also enables to estimate the type of error that can occur so
that the problematic parts can be fixed.[16]

The last step is to train the model with the data. After identifying different
failure models and the condition of the machine when it is close to the failure
points, it is possible to estimate the RUL of a machine by using its current
data.[13]

After identifying the steps, a clear definition of algorithms and models can
be given. Besides categorizing maintenance algorithms, PdM itself can be di-
vided into several categories based on the availability of the data and the desired
method of the prediction algorithm. According to MATLAB, methods to es-
timate the RUL can be divided into three main categories. Similarity model,
survival model and degradation model.[15]

Similarity model is available when a complete test history of a machine
is available. Data set from the initial operation of a machine until the breaking
down point makes it available to generate an estimation model which assumes
the machine will degrade similarly to test data. It is possible to determine
when the machine will need maintenance by comparing the current history of
the machine with pre-recorded histories of tests. Figure 2.3 graphically shows
the comparison of current data with prior information.

11

Figure 2.3: Similarity model for RUL estimation. (MATLAB, 2019)[15]

The yellow line is the current situation of the machine. Blue lines are run-
to-failure histories of tests and red dots are breaking points. It is possible to
predict the degradation trajectory and the time to break down.

Similarity model is divided into three subcategories, hash, pairwise and resid-
ual similarity models. These are methods to connect the data history to the
prediction model. Hash similarity model uses the entire data for prediction by
using their fixes properties such as mean, standard deviation or maximum and
minimum values. Pairwise similarity models use several, most correlated trajec-
tories from the data history to predict the RUL of the machine. Residual simi-
larity model uses ARMA or ARIMA algorithms to fit the data for prediction.[15]

Degradation model is used when there is data for a period of a healthy
state. The trajectory of the condition of the machine can be used to generate a
linear or exponential degradation prediction. Figure 2.4 represents an example
degradation prediction for an aircraft engine.[15]

Figure 2.4: Degradation model for RUL estimation. (MATLAB, 2019)[15]

According to the current situation of the engine(yellow line), an exponential
prediction is generated(blue line) with a confidence interval(orange lines). A
safety threshold is used to determine when the maintenance is required.

Survival model is based on solely failure data. The current condition of
the machine is compared to the condition data at failure from tests. When the
compared data sets are similar enough, it indicates that the machine is close to
failure point and maintenance is required.[15]

12

2.2 Failure modes

To understand the necessity of maintenance on a system, the causes of failures
must be well understood. Nowlan et al. studied the reasons for failure and
classified the failure types. According to this study, 89% of the failures occur
randomly while only 11% failures are related to ageing. [21]
Both random and age-related failures have 3 models depending on their failure
behaviour. Age-related failure models are listed as Bathtub, Wear out and
Fatigue while random failures are Break in period, Random and Infant
mortality. The failure patterns of those models depending on time is given in
Figure 2.5. [11]
Those patterns can be briefly explained as;
Age related

Bathtub Model: High probability of early faults, low-risk region and a
wear-out region after ageing. 4% of the total failures.

Wear out: Slowly increasing failure probability followed by a wear-out
region. 2% of the total failures.

Fatigue: Steady increase in failure probability. 5% of the total failures.
Random

Break-in period: Low failure rate at the start, steep increase to a steady
rate after a short time. 7% of the total failures.

Random: Constant failure rate from the beginning to the end. 14% of the
total failures.

Infant mortality: High risk of failures at the beginning of the operation,
decreasing to a lower steady level after time. Usually seen in electrical systems.
68% of the total failures.

13

Figure 2.5: Failure rate patterns. (Jimenez et al., 2020)[11][21]

2.3 Successful implementations and case studies

There have been several academic studies focused on the complete implemen-
tation of a PdM program. For instance, Jimenez et al. published a case study
where a predictive maintenance algorithm was created for a seismic survey
ship.[11] The study was based on three types of data: lube oil, vibration and
performance. The lube oil data included 624 readings from the test between
2013 and 2018. Several parameters such as additives, viscosity and ratings were
selected as control parameters through time. Vibration data was obtained by
a condition monitoring system. These measurements were used to detect the
problems in rotating parts of the system. Changes of the behaviours of pumps,
shafts, engines, fans and compressors were examined through time using vibra-
tion analysis. Performance data is the main type of data that was used to build
a PdM algorithm.

After the collection phase, the changes in oil, vibration and performance
data were analysed to determine a threshold for maintenance. The study also
included the development of an AI that suggest the corrective action when a
failure is possible.

Daniyan et al. also conducted a similar study for railcars.[10] Wheel accel-
eration data was used as the primary source of data in the study. The accelera-
tion(and the vibration) data was then used to diagnose the faults and estimate
the remaining useful life(RUL) of the wheels. The expected numbers of failures
within the operational cycles were then documented. The predictions made in

14

this study, which gives the estimated RUL for inner and outer bearings can be
seen in Figure 2.6.

Figure 2.6: Expected failure numbers for inner and outer races of the bearings.
(Daniyan et al., 2020)[10]

Following the diagnostic tools for bearings, in another case study by Daniyan
et al. explained the usage of artificial intelligence in learning factories for CBM.
The learning algorithm is based on the Levenberg Marquardt algorithm, used
in foreseeing the change in temperatures and predicting the RUL based on the
temperature data.[6] The comparison graphs of the predicted outcomes and real
outcomes can be seen in Figure 2.7.

Figure 2.7: Correlations of estimated and real outputs of the AI-based PdM
model. (Daniyan et al., 2020)[6]

The figures represent the results in the training set, validation set, test set
and overall progress. A correlation number (R) close to 1 means better predic-
tion. The paper suggests that with larger data, it is possible to improve the

15

correlation accuracy.[6]

2.4 Algorithms and performances

PdM is an application of machine learning and the algorithms used in a model
can be altered. Depending on the application, different learning methods may
provide better performance. The computational power, data availability and
performance criteria are the decision parameters for an algorithm.

It is possible to use simple methods to build a PdM algorithm. Whitaker
et al. demonstrate an application of PCA and LDA for predicting the tool life.
[29] On a simple example based on the power measurements, the study demon-
strated the classification of faulty and healthy operation conditions based on
the PCA performed on the measured data. The analysis enabled the classifica-
tion of failures with 100% accuracy. [29] It is possible to determine if the tools
need maintenance by only adding a threshold on the trajectory of the principal
component. As the health indicator exceeds the threshold, the tools need to
be replaced. The algorithm is relatively simple but effective. Even though this
study was conducted on a simple application, basic methods can be effective in
more complex designs too. Nevertheless, there are complex methods to generate
an algorithm that works with better precision.

As an example, Wu et al. suggested the use of neural networks to create
a prediction algorithm.[30] The recurrent neural network algorithm is modified
with LSTM(long short term memory) cells for computational convenience. A
case study on bearings have been done and the resulting confusion matrix of
the test(30%) and training(70%) sets are given in Figure 2.8.

Figure 2.8: Confusion matrix from the RNNmodel for PdM (Wu et al., 2020)[30]

NI and NII states are the early states and normal working conditions of the
machine, respectively. The matrix suggests that there are not much difference
in those two conditions. Failure (F) and warning (W) states provide almost
perfect accuracy (100% and 94%) for the algorithm. RNN provides higher ac-
curacy than traditional learning algorithms.[30]

16

Another study by Killeen et al. demonstrated the usage of IoT for building
a PdM algorithm.[12] Since the amount of data is enormous, the predictive
model was divided into three sections referred to as an embedded system, the
fog and the cloud. Embedded system contains perception systems including
vehicle nodes to receive information. Server leader nodes are placed in the fog
for local computations and the central management tool, which is referred to
as the root node is in the cloud. The architectural representation of this IoT
based system is given in Figure 2.9

Figure 2.9: Architecture of IoT based PdM system. (Killeen et al., 2019)[12]

The perception layer sends information to the middleware layer for com-
putation, which also exchanges data with the application layer for structural
executions.

The successful application of neural networks is recognized in other studies
as well. Namuduri et al. stated in a review paper for deep learning methods that
long-short term memory-based neural network algorithms present superior pre-
diction accuracy. [20] The algorithms that were tested in the review are logistic
regression, fully connected neural network, support vector machine, ensemble
and long-short term memory. [20] Those methods can be briefly explained as;

• Logistic regression: LR is a similar method to linear regression with
a difference of binarising the response variable. It is basically estimating
the parameters of a logistic function to model the response.[26]

• ANN: Artificial neural networks have a wide application in predictive
maintenance. The structure is formed of layers of computational nodes,

17

which receives the output of the previous layer as the input. [30]

• SVM: The algorithm presented by Vapnik et al. proposes an efficient
classification in high dimensional data by finding hyperplane(s) that has
the largest margin from the nearest data point. [2]

• Ensemble model: Ensemble model is simply the usage of multiple algo-
rithms rather than a single one to get better accuracy.

• LSTM: A type of recurrent neural networks, LSTM contains feedback
loops in addition to its feedforward structure. It can be used to analyse
an entire data set as well as analysing single data points. [30]

Comparing those algorithms proposed a clear result. LSTM demonstrated ab-
solutely superior performance compared to other methods.[20] The results can
be seen in Table 2.1. The area under the curve and precision are performance
measures on the experiment.

Algorithm Area under the curve Precision
Logistic regression 0.990 0.596
Fully connected neural network 0.990 0.629
Support vector machine 0.990 0.593
Ensemble model 0.988 0.775
Long-short term memory 0.998 0.873

Table 2.1: Performance comparison of deep learning algorithms.[20]

2.5 Programming tools

Any kind of software that enables data analysis can be used for PdM. R, Python,
Orange, MATLAB are few examples of such software. According to the webi-
nar of pwc and mainnovation, the most used software tools for PdM are; MS
Excel & MS Access(67%), CM software(40%), data software(33%), statistical
software(18%), IoT(14%) and cloud(13%).[8]

Another important factor while implementing an algorithm if the system is
identifying the type of data that will be used. It is essential to determine where
to start collecting the data. Unnecessary data can slow down the process of
missing out important data may result in an inaccurate algorithm. The types
of data that are mostly used are; maintenance history(%73), condition(72%),
usage(72%), data from other equipment(42%), environmental(29%), data from
other companies(9%) and other types of data(7%).[8]

There are also several programmes and toolboxes that are designed specif-
ically for RUL estimation and PdM planning. Microsoft’s Azure also enables
the design of a reliable algorithm and MATLAB has a PdM toolbox directly
designed for applications. Similar products from various suppliers are available
for industrial usage.

18

One example of such software is SensorCloud. It is a cloud-based data stor-
age system which enables direct upload and storage of the data from the sensors
to the cloud. It also provides a statistical analysis toolbox called MathEngine.
MathEngine works with Python using Jupyter notebooks. The statistical anal-
ysis toolboxes of Python makes MathEngine a convenient tool for data analysis.
The data will be sent to cloud instantaneously as the test is being done and can
be used directly by the MathEngine.

SensorCloud provides documentation for CM and CBM using sensors and
programming tools. Sample documentation for PdM based on machine per-
formance in the oil industry and vibration analysis in factory equipment are
provided within their guidelines. [25][24] Both documents indicate the possibil-
ity of predicting the downtime and finding the optimum performance by using
CM equipment and simple programming tools.

Another example is MATLAB. MATLAB has a special toolbox for predic-
tive maintenance applications. The predictive maintenance toolbox in MAT-
LAB provides tools for simplifying commercial applications while keeping the
reliability high.

19

3. Methodology

A well established PdM application requires large data sets from extensive
periods. Additionally, data collection is a recursive action. The basic process
for that is capturing data, analysing it, determining if new types of data are
required, make new measurements if required and redoing it until obtaining
adequate information. Since the duration of the project is limited, it is not
possible to collect all the data within a short time and it is essential to prepare
an effective plan of action. The project will have consisted of three main steps:

1. Creating a preliminary model based on the data available in the com-
pany in order to determine the most important parameters for the data
collection part.

2. Building a test set by using the information obtained in the first step. This
test will run for the entire project period and provide daily information
about the status of the door.

3. Designing the final predictive model. By using the data from the tests,
a fully operable algorithm can be generated. Optimization of the perfor-
mance of this algorithm is the main goal of this step.

Several different design alternatives will be discussed in section 3.3 and the
results of these will be compared in Section 4.2.

3.1 Preliminary model

The available data from the tests that were conducted in the second quarter
of 2020 is very limited and does not provide enough information to design an
accurate predictive model. Additional data is required for an improved design.
The preliminary study is planned to have more insight into the failures of the
doors and to determine the necessary parameters to be measured in the tests
for improvements.

The available data is from a 4-day endurance test of a bus door. The test had
to be stopped on the fourth day due to a mechanical failure in the door. Even
though 4 day is a very short period to train a predictive model since the door
broke down it provides considerable information on faulty working door systems.
Signals acquired from the test are given in Figure 3.2. The data contains 12
channelled sensor information from the test. The sensors used in the test are
an accelerometer in each door, measuring in x, y and z axes(3.2a), one strain
gauge on each lower door arm (3.2c), 3 strain gauges on the door arm (−45o,
0o and +45o to the arm axis) and an amperemeter on the electric motor(3.2d).
A placement scheme for the sensors is given in Figure 3.1. The exact places of
the sensors are defined in Table 3.1.

20

Positions

Sensors Lower door arm Door frame Electric motor Upper door arm
Left Right Left Right Left Right

Strain gauge* 0o 0o −45o0o45o −45o0o45o

Accelerometer** XYZ XYZ
Amperemeter +

Table 3.1: Positions of the sensors for the preliminary endurance test.

*All the angles are relative to the movement axis of the sensor.
**Orientations are relative to the axis of the accelerometer. Schematic repre-
sentation can be seen in Figure 3.1.

Figure 3.1: Sensor placement diagram of the first endurance test.

21

(a) Accelerometer signals. (b) FFT of the accelerometer signals.

(c) Strain-gauge signals for lower door
arms.

(d) Amperemeter signals for motor cur-
rent.

Figure 3.2: Signals from the initial endurance test.

The sensors on the upper door arms had highly disturbed signal which was
not providing useful information. The signal from Figure 3.3 was removed from
the analysis and the connection with the sensor node was fixed for further tests.
The data obtained from the sensors are stored in the cloud sensor data storage
system, SensorCloud.

Figure 3.3: Noise dominated signal from the upper door arms strain gauge.

The change in the signals acquired from the sensors in time as the machine
goes into the failure region is the feature of interest. The main goal is to find a
pattern in the signals as the machine breaks down. For the accelerometer signal,
it is also useful to measure spectral features by using FFT(Figure 3.2b).

The failure has occurred on the third night (between 12/07 and 13/07) of
the test. However, it is not possible to detect the exact moment of the failure
due to lack of data. The pictures of the test system, taken periodically are
used to detect the estimated failure time of the system. Those pictures can be
seen in Figure 3.4. It can be clearly seen from the pictures that the right arm

22

of the door mechanism was broken between 21.00 on 12/07/2020 and 08.00 on
13/07/2020.

(a) Picture from the test on 12/07/2020, 21:00.

(b) Picture from the test on 13/07/2020, 08:00.

Figure 3.4: Pictures of the door during endurance test.

Analysing the entire period in the data set is unnecessary and inefficient.
It is also impossible to analyse the sensor data for longer periods. Therefore,
analysing a signal for a length of 1 minute in each day was decided as adequate.
The test started at 17.00 on 10/07/2020. The one-minute data samples are
taken at 18.00 on 10/07 and 11/01, at 04.00 on 12/07 and at 12.00 on 13/07.
The progression of the features, extracted from the data samples is an indicator
of the failure. Even though this analysis can provide information solely on the
failures of door mechanism arms, the algorithm can be extended for other types
of failures once the data is acquired.

23

3.1.1 Learning algorithm
The available data is not enough to build a similarity or survival model for
estimation. Similarity model requires a full life history of similar systems and
survival model needs failure data from several machines. Since the only available
data is from a 4-day test, degradation model will be used for RUL prediction.
The flowchart for this algorithm that was generated with Python in MathEngine
Notebooks of SensorCloud is given in Table 3.2.

Step Notes
1. Uploading Data Direct upload through SensorCloud
2. Get frequency-domain features FFT’s, Spectral Kurtosis and other spectral features.

3. Get time-domain features Mean, Standard Deviation, Skewness and other
types of time domain features of the signals.

4. Data smoothing In order to eliminate the effect of noise in long term
data, a moving average filter is applied to features.

5. Feature ranking
Monotonicity is the desired property for a
health indicator.
Features are ranked based on their monotonicity.

6. Feature selection Features with higher monotonicity values are selected.
7. Normalization Preprocessing for principal component analysis.
8. PCA Dimension reduction for further analysis.

9. Generate health indicator
and safety threshold

Monotonic PCA with a higher variance is selected
to represent the health indicator.
Threshold is predetermined based on company data.

10. Fitting algorithm

For the preliminary model, exponential
curve fitting is used.
Different methods will be investigated
in posterior analyses.

11. RUL prediction Based on the fitted model, RUL is predicted in every
step by updating the parameters in the function.

Table 3.2: Flowchart of the preliminary prediction algorithm.

Accessing the data
MathEngine was selected due to its convenience in access to data. It is possible
to directly upload the data from SensorCloud via an automatically generated
code without downloading or transferring the data. This also enables continu-
ous monitoring in a real door system.

Time-domain features
Mean, standard deviation, skewness, kurtosis, peak to peak amplitude, root
mean square, crest factor, shape factor, impulse factor and margin factor are
the time-domain features to be captured.

Those features can be expressed as;

Mean : The average of the signal.
Standard deviation : Amount of variation.
Skewness : Asymmetry in the distribution of the signal.
Kurtosis : The measure of "flatness" or "tailedness" of the distribution of the
signal.
Peak to peak : The difference between the maximum and the minimum point

24

in the signal.
RMS : The square root of the average of the squared variables.

RMS =
√

avg(x2)
n

Crest factor : The parameter that indicates the intensity of the peaks. Ex-
pressed as the rate of the maximum values to the RMS of the signal.
CF = max(x)

RMS

Shape factor : The ratio of the RMS to the mean of the signal.
Impulse factor : Ratio of the peak to the average of the signal.
IF = max(x)

avg(x)

Margin factor : Square of the impulse factor.

Frequency-domain features
Spectral features can give significant information about the system. FFT’s gen-
erated from the data of accelerometers are used to investigate those features.
Natural frequencies, spectral kurtosis, spectral mean, spectral standard devia-
tion and spectral skewness are the features of interest.

Natural frequencies or eigenfrequencies of the signal are the vibration frequen-
cies of the free oscillations. This feature is used only in vibration analysis. The
rest of the spectral features are the same statistical properties described in time
domain features, applied in the spectral distribution of the data.

Filtering and smoothing
A moving average filter with a window of 2 is applied to the features. Since the
size of the data is low, the window is restricted to 2. A higher window would
provide smoother data but in the cost of losing more points.
Smoothing the data is also required for the next step. Monotonicity will be used
to rank and select the features of interest and noise in the data may disrupt the
monotonicity calculations resulting in inaccurate RUL estimations.

Feature ranking and feature selection
Since it is expected that the machine goes into the failure region steadily by
time, monotonic series from the features give further information about the
status. Therefore, a monotonicity index was calculated to rank the features.
According to that indexing, the features with highest monotonicity values are
selected to be used in the prediction model.

Monotonicity implies the quantification of the monotonic trends in the se-
rie. If a serie is monotonically increasing or decreasing, it will have a higher
monotonicity index. The monotonicity index is calculated with equation 3.1.

monotonicity =
1

K

K∑
a=1

∣∣∣∣∣
La−1∑
b=1

sign(xa(b+ 1)− xa(b))

La − 1

∣∣∣∣∣ (3.1)

[5]
The parameters and their meanings are given in Table 3.3

25

sign(x) Signum function (returns 1 if x is positive and -1 if x is negative)
K The number of systems (in this case, doors) monitored
xi Vector of the feature measured on system j
Li Number of data points on system j

Table 3.3: Parameters in Equation 3.1.

For the initial test analysis, K = 1 and L = 4(number of days). Features
with a monotonicity value of 0.3 or higher will be included in the analyses.

Normalization
Since the features are not on the same scale, it is vital to normalize the features
to avoid the dominance of features with a higher range. All the features are
rescaled between -1 and 1.

Principal component analysis
It is possible to express the variance of the data with fewer components(sometimes
even with 1 component). Thus, a PCA was done to find a principal axis that
represents most of the variance for dimension reduction. For an accurate ap-
proximation, 95% confidence threshold is adequate. The principal components
that provide more than 95% of the variance will be used for lifetime prediction.
If only the first principal component explains more than 95% of the variance,
then the prediction can be done with a single component.

Health indicator
The variable that represents the situation of the machine is called "health indi-
cator". It is used to fit a prediction function for RUL estimation. A threshold is
determined by the company, based on their knowledge and as the time between
the day of measurement and the predicted day of overshooting of the threshold
is the remaining useful life of the machine.
The health indicator is the combination of principal components (or only the
first component, if it has a variance higher than 95%) that have a monotonic
trend. A monotonic set is required for health indication since the health of a
machine can not incline to opposite directions in time.

Algorithm
For the preliminary model, a basic exponential function,

y(t) = a ∗ eb∗t + c (3.2)

will be fitted to the data. The parameters a, b and c are updated in every itera-
tion. With every newly acquired data, the coefficients are recalculated to make
a better prediction. The accuracy of the prediction increases as the machine
moves towards the failure point.

Estimating the remaining useful life
The safety threshold is the point where the machine is not operable anymore.
It can be determined based on the prior studies on the doors or a rough esti-
mation based on the parameters and the know-how of the company. The time
required for the machine to surpass the threshold is the remaining useful life of

26

the machine. The basic approach to that is;

RUL =
ln(

yt−copt
aopt

)

bopt
− tc (3.3)

Where yt is the threshold value for the health indicator, opt subscript implies
the optimum parameters of Equation 3.2 and tc is the current day.

3.1.2 Outcomes
The results of the initial analysis can be interpreted in several ways. First of all,
the correlation matrix explains the dependencies of the sensors. This can be used
to eliminate the unnecessary equipment in the upcoming tests and determine
additional measurements. The correlation matrix can be seen in Figure 3.5.

Figure 3.5: Correlation matrix of the parameters for the initial endurance test.

It was expected that the right lower strain-gauge would exhibit a different
value set than the one on the left lower door arm since the failure occurred on the
right-upper door mechanism arm. However, according to the correlation matrix,
the left and right tension values are 100% correlated. This indicates that either
both doors are affected by the fracture on the upper right door mechanism arm
or more likely, both of the doors were not affected by the fracture. In both
cases, it can be deduced that it is essential to determine a new way to monitor
the situation of the upper door mechanism arm. This problem can be solved
by placing strain gauges on the upper door mechanism arms on the new test set.

27

Motor current and vibration on the X direction (the direction of the door
movement) are 80% correlated. Since the opening force is directly related to the
motor current and the vibration is related to the force on the movement axis, it
is an expected result. However, this does not imply that one of the parameters
is redundant. Motor current can also be used to identify electrical failures, in
addition to mechanical failures thus it is necessary to measure. Vibration on X
direction can also be used to determine the robustness of the bolts and other
connection elements. Both parameters can not be removed due to their ability
to identify different types of failures but for mechanical failure on the door arm,
it is possible to use information from only one of them, to reduce the computa-
tional load.

Vibration on Z and X directions are also highly correlated, 90%. One of
them can be eliminated. However, their variance in different types of failures
must be evaluated before deciding which one to eliminate in order to ensure the
accuracy of the model.

For this study, since only a single type of failure is the response of interest,
for computational convenience vibration X will not be used in the further anal-
ysis after validating its redundancy. However, the measurements will be taken
for further studies.

After a PCA, it was observed that the first principal component explains
80% of the variance. This component can be used for a lifetime prediction. It is
known that the failure occurred between the 3rd and the 4th day so a threshold
between those days can be selected. With the extracted information, a basic
prediction can be made to see how the program performs. The predictions on
the 3rd and 4th date can be seen in Figure 3.6. The estimated RUL’s for there
predictions are 2 days (3.6a) and -0.2 days (3.6b). Negative remaining life is
an accurate prediction for the 4th day since the door had broken down after
the 3rd day. Considering the amount of data used to train, the basic model
provided a satisfying result.

For this prediction, pythons curve_fit function was used. The parameters of
equation 3.2 were updated for each day and the prediction is repeated. This is
a simple algorithm to estimate the RUL and results of the complex algorithms
will be discussed in the following sections. Nevertheless, this basic algorithm
provided partially adequate results for very limited data.

It is not expected to predict with 100% accuracy. A confidence interval of
the estimation can be calculated with the results of curve_fit() function to be
demonstrated on the plot. Even though the confidence interval relatively broad
for a prediction model, since this is only the test algorithm it is considered
acceptable.

28

(a) Health indicator prediction based on 3-day-data.

(b) Health indicator prediction based on 4-day-data.

Figure 3.6: Machine health predictions of the preliminary model.

29

Since the behaviour of the door did not change significantly for the first 3
data points, the prediction is a straight line. Therefore its confidence interval
is narrower than the prediction made in the 4th day. The exponential function
is expected to fit the data better as the number of sample points increase. For
only 3 samples, a straight line is an expected outcome. After the condition
changes seriously on the 4th day, the fit is more descriptive. However, the steep
ascent in the health indicator caused uncertainty in the prediction, extending
the confidence interval and decreasing the prediction accuracy. The accuracy is
expected to increase with more samples therefore in the second test run, after
a certain time the model will have a narrower confidence interval for failure
prediction.

3.2 Data collection

The initial endurance test provided valuable results to build a new test set with
the purpose of acquiring more informative data. This is the recursive step indi-
cated in Figure 2.2 of Section 2.1.
A moving average filter was planned to be used to reduce the effect of the noise
in the signal. However, since the number of data points is already low, a window
of only 2 could be used in this step. This resulted in a data set which is influ-
enced significantly by the noise. In addition to that, the data could not be very
informative due to the lack of measurements. The features were ranked based
on their monotonicity as explained and analysed after normalization. Similarly,
the monotonic behaviour of 4 point data can not be reliable. All these problems
indicate that this model can only be used as a template to the real predictive
model. The most important outcome of the initial test is that it indicated the
improvement points so that in the next step, a better test set can be built and
more reliable results can be obtained.

In order to obtain more informative data, a test system for another PSD
was constructed. Placement and types of some sensors are changed based on
the results from the initial test. The number of strain gauges on the upper door
arms is reduced to one. The stress on the perpendicular axis was relatively
minor, compared to the axial direction, thus the strain-gauges that were placed
+45o and −45o were removed. The amperemeter was changed with a shunt
resistor due to its lack of accuracy on current measurements. Shunt resistor
provided considerably more reliable results in trial measurements. The temper-
ature sensor was installed in the bearing and the electric motor. Temperature
measurements can give important information about different types of failures.
Finally, a strain-gauge was placed on the vertical axis of the upper door mech-
anism arm, which fractured on the first test, to obtain more information about
the part. The accelerometers on both doors are not altered.

The test system contained two accelerometers in both doors, one strain-
gauge in both lower door arms, one strain-gauge on both upper door arms,
one strain-gauge on both upper door mechanism arms, a temperature sensor in
left bearing, a temperature sensor in the electric motor and a shunt resistor to
measure the motor current. The positions of the sensors for the main endurance
test are defined in Table 3.4 and are shown in Figure 3.7.

30

Positions

Sensors Lower door arm Door frame Motor Top door arm Bearing Mechanism arm
Left Right Left Right Left Right Left Right

Strain gauge 0o 0o 0o 0o 90o 90o

Accelerometer XYZ XYZ
Shunt resistor +
Temperature + +

Table 3.4: Positions of the sensors for the main endurance test.

*All the angles are relative to the movement axis of the sensor.
**Orientations are relative to the axis of the accelerometer. Schematic repre-
sentation can be seen in Figure 3.7

Figure 3.7: Sensor placement diagram for the main endurance test.

The optimum number of sensors that are necessary for a complete model is
unknown. Before deciding which sensors to eliminate and which data to collect,
it is essential to understand the failures that can occur in a bus door. Current
measurements can be irrelevant to connection element failures but it can give
information about the electrical failures. Moreover, the types of sensors that
can be used in a real bus are limited. It is not possible to implement strain
gauges on every risk spot on a real bus so a correlation between variables must
be observed to connect the relations between sensors. Therefore a broader test
set is designed to be examined.

Similar to the initial test, the sensors are connected to the cloud database
to send instantaneous signals for analysing. The test is planned to run contin-
uously.

31

In general, the tools that are used in the project can be summarized as;

Measurement tools
-Strain gauges
-Accelerometers
-Temperature sensors
-Current sensors

Analysis tools
-SensorCloud
-MathEngine
-MATLAB

The final test has started at 14:12, 6th of October, 2020.

The temperature measurements have a transient period and a stationary
period. Both motor and bearing temperatures increase after the test starts. In
order to ensure that the analysis is unbiased, the samples must be taken after
this transient period. The convergence of the signals for temperature sensors
can be seen in Figure 3.8

Figure 3.8: Temperature readings for the transient zone.

The environment temperature is approximately 19.5o C and assumed to be
constant through the test. The motor temperature (blue line) starts from 19.5o
C and increases up to 33oC over time. After that, it oscillates between 34 and 32,
correlated to the hour of the day. The bearing temperatures increase with time
similarly to the motor temperature, but with a smaller difference. Similarly, the
bearing temperature reaches a stationary point with an offset of approximately
1.5oC to the environment temperature. The samples to analyse can be taken
when that point is reached.

The other signals from the sensors are given in Figure 3.9 where figs. 3.9a–
3.9i represent the signals from strain gauges in lower door arms, upper door
arms, door mechanism arms, roller mechanism, accelerometers on x, y and z
axes, motor current measurements and voltage measurements, respectively.
On the plots with two lines, the green lines represent the signals from the right
node (for right door) and the red lines represent the signals from the left node

32

(for left door).

(a) Strain gauge signals from lower door
arms.

(b) Strain gauge signals from upper door
arms.

(c) Strain gauge signals from door mecha-
nism arms.

(d) Strain gauge signals from roller mech-
anism.

(e) Accelerometer signals on X axis. (f) Accelerometer signals on Y axis.

(g) Accelerometer signals on Z axis. (h) Motor current signal.

(i) Voltage signal.

Figure 3.9: Sensor signals from the final endurance test.

33

Similar to the primary test, the data samples are taken once in every 24
hours to reduce the effect of the temperature change since strain gauges are
extremely sensitive to temperature differences. Due to the amount of data, the
interval for sampling is 36 seconds, slightly higher than half of the samples in
the primary test. A full cycle takes approximately 12 seconds, meaning that
in each sample there are exactly 3 opening and closing actions. In addition to
the time adjustment, a synchronization operation is introduced to ensure that
the collected data are from the exact time stamps of the door cycles. All the
data for the 60 day period start from the beginning of an opening cycle and
end in the 3rd closing cycle after the sampling starts. The data set contains
information from the test for 60 days, 36 seconds each. The total time of the
data is 2160 seconds. The sampling rate is 256 Hz meaning that 7776 data
points are collected per day and 466.560 data points in total.

3.3 Improved model

With the larger data set obtained from the second endurance test. A final
algorithm is designed for advanced prediction. The initial approach uses the
preliminary model as a base and builds the improvements on it. Similarly, the
model is updated with every data acquired and RUL is predicted according to
that.

The exponential regression algorithm is almost the same as the one used
in the preliminary analysis. MathEngine notebooks of SensorCloud are used
to generate an exponential regression model based on the simple least-squares
method. The script of the initial algorithm is used with minor modifications.
The steps of the analysis are exactly the same as in Table 3.2. However, in
this run, feature ranking and selection is more reliable since most of the data is
still in the model even after the moving average filter and monotonicity index
represents more sensible results. With the larger data, it is possible to observe
the effects of the progression of features on the situation of the door. However,
for performance comparison, two other algorithms are introduced at this step:
exponential degradation and artificial neural network.

3.3.1 Exponential degradation
Gathering larger and more informative data enables a new opportunity. In ad-
dition to the Python script, MATLAB’s predictive maintenance toolbox is used
for the validation of the results. The toolbox uses a degradation function that
updates the parameters based on variables extracted from probability distri-
butions of the parameters. Thus it is expected to obtain different results to a
certain extent but converge to the same point as the time increases.

The steps in this approach are similar to the example study, Wind Tur-
bine High-Speed Bearing Prognosis of MATLAB’s documentation on Predictive
Maintenance Toolbox.[17]

34

Algorithm

The degradation function that MATLAB uses is based on the paper of Ge-
braeel(2006) and his algorithm to define distributions with degradation patterns.
[7] The function is expressed as in Equation 3.4.

S(t) = φ+ θ(t) ∗ e
(
β(t)∗t+ε(t)−σ2

2

)
(3.4)

The parameters used in this equation are defined in Table 3.5

φ Constant in the system.

θ(t)
Random parameter which is drawn from a longnormal distribution
with a mean and standard deviation that are updated over time.

β(t)
Random parameter which is drawn from a Gaussian distribution
with a mean and standard deviation that are updated over time.

ε(t)
Noise factor used in the equation for increased accuracy. Drawn from
a normal distribution with zero mean and time dependent variance.

σ(t)2 Variance of ε.

Table 3.5: Parameters for Equation 3.4.

3.3.2 Artificial neural network
An artificial neural network or shortly, ANN is one of the most reliable methods
in time series analysis. [30][20] A simple neural network is used to capture the
time-dependent pattern in the experiment data and to predict the progression
of the health indicator of the door. MATLAB’s neural network toolbox is used
to build the network. The tool that will be used is a Nonlinear Autoregressive
Neural Network (NAR). This is a type of recurrent neural network, meaning
that the algorithm uses ’d’ numbers of past values of a serie ’y’ to determine
the future values of the serie. The algorith can be mathmematically expressed
as;

y(t) = f(y(t− 1), y(t− 2), ..., y(t− (d− 1)), y(t− d)) (3.5)

The parameters in Equation 3.5 are d, time delay in the network; t, discrete
time steps and y(t), value to be predicted.

The number of hidden layers and the delay are updated for each sensor for
optimizing the prediction. There is a single output layer that gives the prediction
of the series y which was mentioned as the health indicator before. A schematic
representation of the network can be seen in Figure 3.10.

Figure 3.10: NAR Neural Network

35

3.3.3 Preprocessing
The preprocessing part is the same in all three algorithms. The extracted fea-
tures does not differ since the preprocessor is unchanged, meaning that it uses
the same principal components, or consequently the same health indicator data.

The initial step is to visualise the data. Figure 3.11 represents the data from
the accelerometer in time-domain. For the vibration data, frequency-domain
features can be even more useful. To express the data in frequency-domain, the
FFT generated from the left door accelerometer on x-axis data can be seen in
Figure 3.12.

Figure 3.11: Left door accelerometer (X axis) data.

Figure 3.12: FFT plot of the accelerometer (X axis).

36

The first feature to be extracted is the spectral kurtosis. Spectral kurtosis
indicates non-Gaussian behaviour of the data in the frequency domain. The
changes in the spectral kurtosis of the data over time can indicate a degradation
in the signal, which will provide useful information for the condition prediction.
The Spectral Kurtosis - Frequency - Time plot can be seen in Figure 3.13.

Figure 3.13: Spectral kurtosis plot of the accelerometer data. (X-axis)

In addition to spectral features, time-domain features are extracted for fur-
ther processing. Since the data from the 5th day is missing, the value for the
features of the 5th day is filled with the mean of the values from 4th and 6th
day. A moving average filter with a window size of 5 is applied to the features
to reduce the random noise in the data. The feature table for the first 30 days
after smoothing operation can be seen in Table 3.6.

Table 3.6: Feature table for the left door accelerometer, x axis data.

The monotonicity indices for all features are calculated to select the most

37

useful data. A threshold of 0.3 was selected to delete the features with lower
monotonicity index. Figure 3.14 show the sorted monotonicity indices of the
features, sorted from highest to lowest. According to this plot, Crest Factor,
Kurtosis, Impulse Factor and Margin Factor will be used to build the predictive
model.

Figure 3.14: Sorted bar plot of monotonicity indices of the extracted features
for the left door accelerometer, x-axis data.

The last step before the prediction is dimension reduction. Principal com-
ponent analysis on the selected features gives the principal components which
express most of the variance, thus enables the reduction of the number of vari-
ables used in the predictive model. The first principal component represents
more than 90% of the variance, meaning that it can be used as the health in-
dicator of the door. The results are given in Figure 3.15. Subfigures 3.15a and
3.15b represent the plot if the first two principal components and the health
indicator.

38

(a) First two principal components.

(b) Health indicator of the door for left door accelerometer, x axis.

Figure 3.15: Results of the PCA.

After determining the health indicator, the three aforementoned algorithms
are used to generate a fit and to predict the RUL of the machine.

39

4. Results and Discussions

The main interest was on the effect of the algorithm on accuracy and the
correlations between the parameters. The study provided satisfactory results
for both of the questions and the results are interpreted below.

The test was done with 10 different sensors, meaning that a separate predic-
tion can be made for each component, resulting in 10 different predictions. To
explain the interpretation of the results, the prediction based on the left door
accelerometer data on the X-axis will be investigated. The rest of the predic-
tions and results are given in Appendix B The comparison, on the other hand,
will be done with the information gathered from the entire data collection setup.

4.1 Prediction algorithms

Although it is possible to use any type of learning algorithm, experimenting
with every algorithm is unnecessary and inefficient at this stage of the project.
Three algorithms are proposed for this study and the most feasible design will
be selected among the alternatives. The first algorithm is exponential regres-
sion. Since it is one of the most simple methods that can be used in machine
learning, it is possible to observe the prediction quality even in the most ba-
sic solution. The second alternative is a recurrent neural network, which was
mentioned as one of the most efficient methods in several studies inspected in
Section 2.4[30][20]. The third algorithm is an exponential degradation based on
the PDF of the data.

The doors are expected to work for approximately 1.500.000 cycles. The
average number of cycles performed during the test in one day is 8500, meaning
that the test should run for approximately 180 days before the door fails to
operate. Since the exact value of the safety threshold is not yet known for the
company, the values are adjusted to fit this criterion. A performance evaluation
can be done between the algorithms afterwards.

4.1.1 Exponential regression
The threshold is determined based on the 50 day data of the test. The 50 day
period is used as the training set, to train the predictive model and the remaining
10 days are used to test the prediction accuracy. The prediction plots taken from
10th, 20th, 30th, 40th and 50th days are given in figs. 4.1a–4.1e.

40

(a) RUL prediction on 10th day. (b) RUL prediction on 20th day.

(c) RUL prediction on 30th day. (d) RUL prediction on 40th day.

(e) RUL prediction on 50th day.

Figure 4.1: Predictions of the regression algorithm.

4.1.2 Exponential degradation
Similarly to the regression model, degradation model predicts the RUL for days
50 to 60 based on the 50-day data. The predictions for the same time periods
with the degradation model is represented in figs. 4.2a–4.2e.

41

(a) RUL prediction on 10th day. (b) RUL prediction on 20th day.

(c) RUL prediction on 30th day. (d) RUL prediction on 40th day.

(e) RUL prediction on 50th day.

Figure 4.2: Predictions of the degradation algorithm.

The toolbox enables the generation of diagnostic plots for the prediction.
Figure 4.3 shows the difference between the predicted RUL and the actual(expected)
RUL in each day. It can be clearly seen that the prediction converges to the
real value as the amount of data increase.

42

Figure 4.3: Comparison of predicted and real RUL.

4.1.3 Artificial neural network
The network is trained with the first 50 days of the health indicator data and
predictions for 10 days between 50th and 60th days were made to test the
algorithm. Similar to the previous two methods, first 50 days are used as the
training set to train the model, and the remaining 10 days are used as the test
set to evaluate the performance of the network. In addition to that, to evaluate
the performance of the network, the diagnostics plots that are given in Figure
4.4 can be used.

43

(a) Autocorrelation of errors. (b) Histogram of errors.

(c) Regression plots for training, validation, test sets and overall fit.

Figure 4.4: Diagnostic plots of the neural network.

Figure 4.4a demonstrates the autocorrelation of the errors. It can be seen

44

from the figure that all of the errors except the one with zero lag are within the
95% confidence interval, meaning that the errors are not correlated with each
other. In other words, it is white noise. This shows that the prediction model
is applicable.

According to the error histogram in Figure 4.4b, the highest amount of errors
are clustered near the zero error point. The rest of the errors show a Gaussian
distribution, meaning that the error of the fit is acceptable.

The regression plots in Figure 4.4c explain how well the fit performs on the
test, training and validation sets. The overall accuracy according to those plots
is 98% while giving 99% accuracy on the training set. The lowest accuracy is
on the validation set with 96% accuracy. The fit is adequately accurate.

The response of the fit is given in Figure 4.5. The predictions will base on
this function.

Figure 4.5: Response of the fit.

The neural network can clearly capture the pattern in the data and it is
able to predict with high accuracy. However, even though the fit is excellent
for training and test sets and short term predictions, the neural network can
not predict the RUL since the time that needs to be predicted is approximately
200% of the available data while the neural network is programmed to predict
for only 15% of the entire data set, meaning that only 10 days of accurate pre-
diction can be made with this algorithm.

45

4.2 Comparison of the learning methods

The performances of the three algorithms are compared on their accuracy on
the test set. Their predictions on the interval between 50th and 60th day should
be as close to the actual RUL as possible.

First of all, the predictions on the training set are also a good indicator of
the presence of degradation in the component. For the regression and degrada-
tion algorithms, the fit on the training set is represented with Table 4.1. The
red cells in the table represent the period where no degradation detected in the
data. The green cells are the points where a clear degradation is detected by the
algorithm. From this table, it can be concluded that the left lower arm strain
gauge is not degrading, meaning that the component is not showing any sign
of failure. This would also mean that the predictions for that component may
not have adequate accuracy. The frame strain gauges have a clear degradation
starting from the 20th day. This would indicate that the first component that
will fail is probably one of the frames. The prediction for those components
would also have higher accuracy than the others due to the clear degradation.

46

Table 4.1: Results on the train set for regression and degradation algorithms.

On the other hand, the performances of the algorithms on the test set are
stated in Table 4.2. The red cells indicate predictions with higher than 20%
error. The rest are represented with a colour scale, with lighter colours indicat-
ing higher accuracy. As can be clearly seen, Neural Network performs superior
to the other two algorithms. The degradation function of MATLAB’s PdM
toolbox also captures the pattern with considerable accuracy for some of the

47

sensors. However, the basic exponential regression can not perform an accurate
prediction except the right frame strain gauge.

Table 4.2: Results on the test set for all three algorithms.

4.3 Correlations of the parameters

One of the most important outcomes of the project is to observe and understand
the effects of the parameters. The object of this study was to find out whether
it is possible to see the trend in one parameter by investigating other param-
eters. This inspection step is crucial for the implementation of the predictive
maintenance system since it is not feasible to mount 12 sensors to every bus
door. In that sense, the relations between the signals obtained from different
sensors are examined.

Comparing two signals directly is meaningless since the values that are mea-
sured have different characteristics. It is not possible to compare acceleration
to current directly. Instead, the statistical features of those signals can be used
to detect correlations. The features that were mentioned in Section 3.1.1 were
used to compare two signals.

The goal is to remove the strain gauges in the implementation phase. The
correlations between the statistical features of the strain gauge signals and ac-
celerometers are investigated in that purpose. All of the heat maps regarding
those correlations are given in Appendix A The correlations visualized with
those plots are lower door arm - accelerometer (X), lower door arm - accelerom-
eter (Y), lower door arm - accelerometer (Z), door mechanism frame - accelerom-
eter (X), door mechanism frame - accelerometer (Y), door mechanism frame -
accelerometer (Z), lower door arm - current and door mechanism frame - current.

The heat maps contain the three correlation matrices that were mentioned
before. The top left square matrix of the heat map represents the self-correlation
of the signal from the first sensor and the bottom-right square matrix represents
the self-correlation of the signal from the second sensor. The two square ma-
trices on the counter diagonal represent the correlations of the two signals and
those two matrices are symmetric about the origin. The matrices on the counter
diagonal can be investigated to explain the correlations between two signals.

48

As an example of this, Figure 4.6 represents the correlations between the left
frame strain gauge and left accelerometer(X). It can be seen from the top-right
part of the heat map that there are 75% correlations in some of the features,
but not a significant relation. In order to replace the strain gauges with ac-
celerometers in the data analysis part, clear information on those correlations
must be captured. Field tests have great potential to identify those relations
more clearly.

Figure 4.6: Correlation matrix of the frame strain gauge - accelerometer x axis.

From the results obtained from this analysis, it is not possible to eliminate
any of the strain gauges with the accelerometers. There are not any signifi-
cant correlations between parameters. Additional sensors or a new placement
diagram must be used to detect more significant interactions.

4.4 Cost analysis

The main costs of the project depend on 3 factors: the CM equipment, the data
storage and analysis software and the test sets in the company . The estimated
costs for the elements that were used in the project and the total estimated cost
of the project is summarized in Table 4.3.

49

Expense type Unit cost Number Total Cost
Sensors

Strain gauge 12e 6 72e
Accelerometer 400e 2 800e

Temperature sensor 78e 2 156e
Shunt resistor 82e 1 82e

Data collection setup 4500e 1 4500e
Software

SensorCloud License 150 $/mnt 1 150$
MathEngine Extension 50 $/mnt 1 50$

MATLAB 800e/yr Optional 800e
MATLAB PdM Toolbox 680e/yr Optional 680e

Factory test
Test setup 1500e 1 1500e

Total annual expenses 200e (+1480)
Total non-recurring expenses 7110e

Table 4.3: Estimated expenses for the project.

The software does not cause a great financial expense on the project thus
a more advanced solutions can be used for better performance. However, still
a more cost efficient algorithm can be found after further research. The data
collection setup creates more than 50% of the total expenses, meaning that if an
alternative solution is available, that would decrease the general costs greatly.

50

5. Conclusions

The project aimed to inspect the current progressions in predictive main-
tenance systems and adapt it to the bus door manufacturer, Ventura Systems
according to its goals and expectations. The plan of approach consisted of three
main steps;

1. Investigation of case studies and relevant progression about PdM to pre-
pare a convenient methodology for the project in the company.

2. Constructing the structure of the project based on similar studies. Plan-
ning the project steps. Preparation and design of the experiment.

3. Analysing the results and evaluating the applicability of the model in the
real doors. Performance comparison of several algorithms.

The study covered these three steps to achieve the main objective. The actions
taken in those steps are briefly summarized.

1. Research
Most of the information about maintenance systems is provided by pro-
gramming suppliers. In this case, MATLAB published several compre-
hensive guidelines and example projects to aid engineers working in PdM
projects. In addition, many case studies around the world investigate al-
gorithms and evaluated the implementation phase of their project. These
studies provide a head start for organisations that plan to adopt the new
methods of maintenance. Having a vision of what is needed and what
might cause problems enhanced the progression speed and robustness of
the study greatly. The methodology was based on the knowledge from
case studies as well as the possibilities in the company.

2. Planning
The methodology was planned to be a recurring process to have the deep-
est insight about the door and mechanism failures. Initially, an exper-
imental test set was used to determine the most influential parameters
and to decide if additional information is necessary or not. The experi-
ment data was analysed to extract the desired information. Based on that
information, an extensive endurance monitoring test is designed.

3. Application
The data collected from the endurance test is analysed with several dif-
ferent methods to ensure the reliability of the study and to evaluate the
performances of different algorithms. Three tools used in this step are
exponential regression based on least-squares curve fitting, exponential
degradation based on probability distribution and artificial neural net-
work. The performances of these three methods are compared based on
their accuracy to estimate the actual remaining useful life.

The successful implementation of the three design steps enabled the solution to
the main goal and interest of the project:

51

"Designing a predictive maintenance algorithm for bus door
systems."

The basic algorithm did not give satisfactory results in the study but it can easily
be improved with larger data for commercial use. More advanced algorithms
increase the performance but also cause greater expenses for the company and
require more computational power. The oncoming steps of the project are the
recurrent steps that were mentioned for performance and precision improvement.

5.1 Limitations of the study

The project has limitations in several areas, naturally. The data used in the
learning model is not comprehensive enough to design a fully operable PdM
system. The data contains limited information from a single test set, which
enables the algorithm to make simple predictions about whether it is about to
fail or not, rather than informing about the type of the failure that may occur.
Also, a single test set means that the validation of the data set is not yet done.
The number of tests must be increased to ensure that the data collected from
the test is not biased. Therefore, the algorithms used in this project are in the
simplest way and aim to provide a reliable result but not to optimize accuracy.
The findings of the analyses would be able to estimate the desired information
but not provide sufficient performance if they are implemented in a real system
directly.

Another limitation is about the quality of the data. Conducting a test in
a test environment is different from testing it on a field. Testing the same
parameters on a real bus may give similar, but not the exact same results. As
an example, eigenfrequencies of the door may shift slightly due to elasticity of
the connection parts on the bus or due to the vibrations of the bus. That effect
must be observed and removed from the signal before using the algorithm for
improved precision. Also, it is not possible to measure all the values used in the
test on a real bus. For instance, implementing strain gauges can be a problem in
the field test. Hence it is vital to correlate the parameters from strain gauges to
other types of sensor measurements. A similar operation has been done in Figure
3.5 of Section 3.1.2 to find the correlation between parameters and remove the
redundant ones. However, as stated before, this study does not represent all the
possible failures in a door and a redundant parameter for a failure type can be
necessary for another one. These relations must be observed in field tests before
making robust conclusions and implementations on a real bus.

5.2 Recommendations for the company

The report is a simplified guideline to build an extensive predictive maintenance
system. The methodology used in the project can be generalised to design a
fully comprehensive algorithm. However, there are significant points that need
to be approached with caution while generalizing it.

• Most important of those is scaling step by step to avoid undesired errors.
The next objective is to identify the failure types and associate them with

52

the features extracted from the data. A correlation study has been done
in this project, however, for different measurements, different parameters
can have particular significance. Those relations must be studied carefully
to connect the indicators to specific failures.

• Another important factor is identifying correlations from parameters for
each failure type. The limitations in the field test obligate the inspection
of correlations. If the parameter is not directly connected to another
parameter, the correlations in some of the features or combinations of
several features from one or many data sets may be used. However, to
obtain this knowledge largely scaled tests must be done beforehand. An
efficient field test set can only be implemented after that.

• Next problem that the company may face is the condition differences be-
tween the factory and the field. The sensors in the bus, especially the
accelerometers will measure the noise caused by the movements of the
bus. Several methods can be used to eliminate this noise in accelerometer
readings.

Removing time-domain features
This is the simplest and most straightforward solution. The vibration of
the bus changes time-dependent measurements (i.e. mean) but not the
features in the frequency domain(i.e. eigenfrequencies). Spectral features
of the door can easily be isolated from the vibration signals of the bus,
thus, there will not be any need for extra computations or equipment.
However, this prevents the usage of time-domain features. Peak to peak
amplitudes, mean, distribution of the signal will be affected by the bus
vibrations. This solution limits the analysis to spectral features and it
may cause loss of precision of any time-domain feature is significant in
determining the health indicator of the door.
Also, spectral features of the door must be well understood to distinguish
from the noise coming from the bus.
Pros
Easy, no need for new sensors or equipment provides sufficient information
on vibration.
Cons
Losing the ability to work with time-domain features, losing the correla-
tion to other parameters through the time-domain features.

Measuring and subtracting the bus vibration signals
Another straightforward solution is directly removing the bus vibration
signal from the door vibration signal. Theoretically, it is applicable. how-
ever, in practice, it needs perfect precision. The signal removal operation
must be done for exactly the same data points. Small deviations may
cause higher frequencies to be less informative.
This is a simple method but can give the desired accuracy if could be
applied properly. The problem is it does not allow any time-based error
on measurement. A slight offset can cause large errors, especially on a
higher frequency. Pros
Gives an accurate result. Relatively simple algorithm.
Cons

53

Hard to implement, needs the 3rd sensor, 0 error margin.

FEM modelling
Looking through the properties of the door and the bus separately in a
FEM software can be used to identify the features of both signals. For
example, if the door has eigenfrequencies at 90 and 120 Hz according to
FEM software and the bus has 15 and 60 and if the accelerometer gives
eigenfrequencies of 13, 65, 80 and 105 in the field experiment, it can be
confirmed that 13 and 65 belong to the bus while 80 and 105 belong to
the door. The values from the bus can be removed by comparing with the
FEM software and continue the calculations with the doors.
Pros
Can be used both with the 3rd sensor or without it. Simple approach.
Can work well with simple systems with low numbers of components.
Cons
Needs an accurate model of the door. Can be too complex to use in a
FEM software. FEM software does not give 100% precision so results may
not be enough to eliminate the signal from the door.

5.3 Future research

PdM methods require large data sets over long periods to perform in the most
efficient operation. The algorithm that was designed in this project was based
on several sensor data, but without the information of the distinct failure types
therefore it can also be a base for a more comprehensive study. To enable
the usage of the PdM algorithm effectively, the company needs to obtain more
data, from both tests in the company and field measurements in real busses.
Investigating several different failure types such as bolt and screw, engine, door
arm and frame failures can provide better information about the features that
change over time for those particular failures. Those features can be used to
predict the type of failure in addition to the failure date, which would enhance
the efficiency of the maintenance process greatly.

Another point of improvement can be using a different model in the design
phase of the algorithm. The available data enables the usage of the degradation
model for failure prediction as stated in Section 2.1. However, with full life-
time data from several similar machines, it is also possible to build a similarity
model, which would enable the improvement of the prediction. Collecting this
kind of data can take much longer time and designing a prediction model based
on that data can be even more complicated. That kind of project could be done
in several years but in return, can greatly decrease the costs of maintenance
operations and increase the efficiency by increasing the uptime for the doors.

Different algorithms can also be used in a single prediction model. In section
2.4, several studies that use various algorithms were mentioned. Exponential
decay, neural networks, ARIMA models and AI are examples of the alternative
algorithms. Exponential decay functions are used to predict the failure in this
project. However, other methods of prediction can also give decent results and

54

can even be more accurate. Investigating the efficiency of the alternative algo-
rithms can be the subject of a posterior study.

Interesting progress for the company could be applying a similar study for
different types of doors. The study was conducted on a PSD. However, the
’Smart Machines’ project is planned to be installed on every product of the
company. ISD’s, RSD’s and OSD’s have different response due to their mechan-
ical and electrical differences. This indicates that each type of door may require
a different algorithm and each algorithm may provide a broader insight into the
doors. For instance ISD’s exhibit larger vibration amplitudes during opening
cycles than the PSD, which was the main focal point of this study. Investigating
these kinds of differences can enhance the design process as well as the PdM
systems within the company.

55

Acronyms

AI artificial intelligence. 14, 54

ANN artificial neural network. 35

ARIMA auto regressive integrated moving average. 12, 54

ARMA auto regressive moving average. 12

CBM condition-based maintenance. 1, 2, 15, 19

CM condition monitoring. 1, 4, 18, 19, 49

FFT fast Fourier transform. 22, 25, 36

IoT internet of things. 17, 18

ISD inward swinging door. 5, 55

OSD outward swinging door. 5, 55

PCA principal component analysis. 16, 24, 28

PDF probability density function. 40

PdM predictive maintenance. 2–4, 7, 8, 10, 11, 14, 16–20, 47, 51, 52, 54, 55

PM preventive maintenance. 1–4

PSD plug sliding door. 5, 30, 55

RM reactive maintenance. 1, 3, 4

RSD rapid sliding door. 5, 55

RUL remaining useful life. 11, 12, 14, 15, 18, 24–28, 34, 39, 41, 42, 45, 46

56

A. Correlation matrices

Figure A.1: Correlation matrix of the frame strain gauge - accelerometer x axis.

57

Figure A.2: Correlation matrix of the frame strain gauge - accelerometer y axis.

58

Figure A.3: Correlation matrix of the frame strain gauge - accelerometer z axis.

59

Figure A.4: Correlation matrix of the accelerometer x axis - accelerometer y
axis.

60

Figure A.5: Correlation matrix of the accelerometer x axis - accelerometer z
axis.

61

Figure A.6: Correlation matrix of the accelerometer y axis - accelerometer z
axis.

62

Figure A.7: Correlation matrix of the frame strain gauge - accelerometer x axis.

63

Figure A.8: Correlation matrix of the underlever strain gauge - accelerometer y
axis.

64

Figure A.9: Correlation matrix of the underlever strain gauge - accelerometer z
axis.

65

Figure A.10: Correlation matrix of the underlever strain gauge - frame strain
gauge.

66

B. Predictions

Figure B.1: Right frame condition prediction with regression model.

Figure B.2: Right frame condition prediction with degradation model.

67

Figure B.3: Right frame condition prediction with neural network.

Figure B.4: Left frame condition prediction with regression model.

68

Figure B.5: Left frame condition prediction with degradation model.

Figure B.6: Left frame condition prediction with neural network.

69

Figure B.7: Left underlever condition prediction with regression model.

Figure B.8: Left underlever condition prediction with degradation model.

70

Figure B.9: Left underlever condition prediction with neural network.

Figure B.10: Right accelerometer (X) condition prediction with regression
model.

71

Figure B.11: Right accelerometer (X) condition prediction with degradation
model.

Figure B.12: Right accelerometer (X) condition prediction with neural network.

72

Figure B.13: Right accelerometer (Y) condition prediction with regression
model.

Figure B.14: Right accelerometer (Y) condition prediction with degradation
model.

73

Figure B.15: Right accelerometer (Y) condition prediction with neural network.

Figure B.16: Right accelerometer (Z) condition prediction with regression
model.

74

Figure B.17: Right accelerometer (Z) condition prediction with degradation
model.

Figure B.18: Right accelerometer (Z) condition prediction with neural network.

75

Figure B.19: Left accelerometer (X) condition prediction with regression model.

Figure B.20: Left accelerometer (X) condition prediction with degradation
model.

76

Figure B.21: Left accelerometer (X) condition prediction with neural network.

Figure B.22: Left accelerometer (Y) condition prediction with regression model.

77

Figure B.23: Left accelerometer (Y) condition prediction with degradation
model.

Figure B.24: Left accelerometer (Y) condition prediction with neural network.

78

Figure B.25: Left accelerometer (Z) condition prediction with regression model.

Figure B.26: Left accelerometer (Z) condition prediction with degradation
model.

79

Figure B.27: Left accelerometer (Z) condition prediction with neural network.

Figure B.28: Electric motor condition prediction with regression model.

80

Figure B.29: Electric motor condition prediction with degradation model.

Figure B.30: Electric motor condition prediction with neural network.

81

%matplotlib notebook
import MathEngine
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
from scipy.stats import kurtosis
import pandas as pd
from sklearn.decomposition import PCA
from sklearn import preprocessing
from scipy.optimize import curve_fit
from scipy.signal import argrelextrema
from mpl_toolkits import mplot3d
import seaborn as sn
import time
import functools

deviceSerial = ###sensor serial number
inSensor = ###sensor node numer
inChannel = ###channel number [right frame, right accelerometer x, right accelerometer y, right accelerometer z, current, left
 ###onderlever, left frame, left accelerometer x,left accelerometer y,left accelerometer z,]

data = list()
doorData = list()
maxDay = 60
measurementDay = 60 #4/12/2020

sampleRate = 256
sampleTime = 36
controlSensor = ###door opening/closing signals
controlChannel = ###channel number

def moving_avg(x, n):
 cumsum = np.cumsum(np.insert(x, 0, 0))
 return (cumsum[n:] - cumsum[:-n]) / float(n)
def get_column_array(df, column):
 expected_length = len(df)
 current_array = df[column].dropna().values
 if len(current_array) < expected_length:
 current_array = np.append(current_array, [''] * (expected_length - len(current_array)))
 return current_array
def stft(x, fs, frame_size, hop):
 """
 Perform STFT (Short-Time Fourier Transform).

 x: Input data.
 fs: Sampling rate.
 frame_size: Frame size.
 hop: Hop size
 """

 frame_samp = int(frame_size*fs)
 hop_samp = int(hop*fs)
 w = np.hanning(frame_samp) # Hanning window
 X = np.array([np.fft.fft(w*x[i:i+frame_samp])
 for i in range(0, len(x)-frame_samp, hop_samp)])
 return X
def timeavg(x):
 y = np.empty(len(x))
 for i in range(len(x)):
 y[i] = np.mean(x[i])
 return y

1

C. Regression script

82

def rms(y):
 ms = 0
 for i in range(len(y)):
 ms = ms + y[i]**2
 ms = ms / len(y)
 rms = (ms)**0.5
 return rms
def monotonicity(x,m):
 monoList = 0
 for i in range(0,len(x)-1):
 monoList = monoList + (np.sign(x[i+1]-x[i])/m)
 return monoList

for day in range(maxDay):
 if (day != 4) and (day != 5) and (day != 6):
 start=1601999999950198000+day*86400000000000
 end=start+80000000000

 repo = TimeSeriesRepo(deviceSerial)

 inSeries = repo.getAllTimeSeries(inSensor, inChannel, startTime=start, endTime=end)[
 data.append(inSeries.getData())
 print len(data[day]), 'Points'

 controlSeries = repo.getAllTimeSeries(controlSensor, controlChannel, startTime=start, endTime=end)[
 doorData.append(controlSeries.getData())
 if day == 4:
 start=1602302399789547000
 end=start+80000000000

 repo = TimeSeriesRepo(deviceSerial)

 inSeries = repo.getAllTimeSeries(inSensor, inChannel, startTime=start, endTime=end)[
 data.append(inSeries.getData())

 controlSeries = repo.getAllTimeSeries(controlSensor, controlChannel, startTime=start, endTime=end)[
 doorData.append(controlSeries.getData())

 print len(data[day]), 'Points'
 if day == 5:
 a = np.zeros(len(data[day-1]))
 data.append(list(a))

 controlSeries = repo.getAllTimeSeries(controlSensor, controlChannel, startTime=start, endTime=end)[
 doorData.append(controlSeries.getData())

 print len(data[day]), 'Points'
 if day == 6:
 start=1602489599998559000
 end=start+80000000000

 repo = TimeSeriesRepo(deviceSerial)

 inSeries = repo.getAllTimeSeries(inSensor, inChannel, startTime=start, endTime=end)[
 data.append(inSeries.getData())

 controlSeries = repo.getAllTimeSeries(controlSensor, controlChannel, startTime=start, endTime=end)[
 doorData.append(controlSeries.getData())

 print len(data[day]), 'Points'
sensorData = pd.DataFrame(data)

2

sensorData.iloc[5] = np.nan
doorData = pd.DataFrame(doorData)

testData = sensorData
newSensorData = []
for testDay in range(maxDay):
 if doorData.iloc[testDay][0] > 0.8:
 startIndex = next((i for i, x in enumerate(doorData.iloc[testDay]) if x <0.2))-300
 if startIndex < 300:
 if doorData.iloc[testDay][startIndex+300] > 0.8:
 startIndex = next((i for i, x in enumerate(doorData.iloc[testDay][300:])
 elif doorData.iloc[testDay][300] < 0.2:
 nextIndex = next((i for i, x in enumerate(doorData.iloc[testDay][300:])
 startIndex = next((i for i, x in enumerate(doorData.iloc[testDay][nextIndex:])
 endIndex = startIndex + sampleRate*sampleTime
 newSensorData.append(testData.iloc[testDay][startIndex:endIndex])
 elif doorData.iloc[testDay][0] < 0.2:
 nextIndex = next((i for i, x in enumerate(doorData.iloc[testDay]) if x >0.8))
 startIndex = next((i for i, x in enumerate(doorData.iloc[testDay][nextIndex:]) if
 endIndex = startIndex + sampleRate*sampleTime
 newSensorData.append(testData.iloc[testDay][startIndex:endIndex])
newSensorData = pd.DataFrame(newSensorData)
a = newSensorData.transpose()
b = pd.DataFrame({column: get_column_array(a, column) for column in a.columns})
newSensorData = b.iloc[0:sampleRate*sampleTime]
newSensorData = newSensorData.transpose()

for i in range(len(newSensorData)):
 for j in range(len(newSensorData.iloc[0])):
 if i != 5:
 newSensorData.iloc[i][j] = float(newSensorData.iloc[i][j])
 else:
 newSensorData.iloc[i][j] = np.nan
sensorData = newSensorData
sensorData.iloc[5] = np.nan

fft_s, freq_s = MathEngine.FFT(sensorData.iloc[0], inSeries.getSampleRate(), xMin=0, xMax=
fft_e, freq_e = MathEngine.FFT(sensorData.iloc[-1], inSeries.getSampleRate(), xMin=0, xMax=
fft_s = fft_s/len(sensorData.iloc[0])/2
fft_e = fft_e/len(sensorData.iloc[-1])/2
plt.figure()
plt.plot(freq_s, fft_s/len(fft_s)/2,label='first day')
plt.plot(freq_e, fft_e/len(fft_e)/2,label='last day')
plt.xscale('log')
plt.legend(loc = 'upper right')

frame_size = 0.05 # with a frame size of 50 milliseconds
hop = 0.17

peakFreq = np.empty(len(sensorData))
SK = list()
fig = plt.figure()
ax = plt.axes(projection='3d')
for day in range(0,len(sensorData)):
 a = stft(sensorData.iloc[day],256,frame_size,hop)
 b = np.empty(len(a))
 if math.isnan(sensorData.iloc[day][0]):
 peakFreq[day] = np.nan
 SK.append(np.empty(len(SK[0])))
 else:

3

 fft, freq = MathEngine.FFT(sensorData.iloc[day], inSeries.getSampleRate(), xMin=
 peakFreq[day] = freq[np.where(fft == fft.max())]
 SK.append(timeavg((abs(a)**4))/(timeavg(abs(a)**2)**2)-2)
 skPlot = SK[day][0:len(freq)]
 ax.plot3D((day+1)*np.ones(len(freq)),freq,skPlot)

fig = plt.figure(figsize=(14,10))
ax = plt.axes(projection='3d')
for day in range(0,len(sensorData)):
 fft, freq = MathEngine.FFT(sensorData.iloc[day], inSeries.getSampleRate(), xMin=0, xMax=
 fft = fft/len(sensorData.iloc[day])/2
 ax.plot3D(day*np.ones(len(freq)), freq, fft)

SK = pd.DataFrame(SK)
SK.iloc[5] = np.nan
sensorData.reset_index().values
features = list()
for i in range(len(sensorData)):
 features.append(list())
for i in range(len(sensorData)):
 features[i].append(stats.tmean(sensorData.iloc[i]))
 features[i].append(np.std(sensorData.iloc[i]))
 features[i].append(stats.skew(sensorData.iloc[i]))
 features[i].append(stats.kurtosis(sensorData.iloc[i]))
 features[i].append(np.ptp(sensorData.iloc[i]))
 features[i].append(rms(sensorData.iloc[i]))
 features[i].append(max(sensorData.iloc[i])/rms(sensorData.iloc[i]))
 features[i].append(rms(sensorData.iloc[i])/abs(stats.tmean(sensorData.iloc[i])))
 features[i].append(max(sensorData.iloc[i])/stats.tmean(sensorData.iloc[i]))
 features[i].append(max(sensorData.iloc[i])/(stats.tmean(sensorData.iloc[i]))**2)

 features[i].append(np.mean(SK.iloc[i]))
 features[i].append(np.std(SK.iloc[i]))
 features[i].append(stats.skew(SK.iloc[i]))
 features[i].append(stats.kurtosis(SK.iloc[i]))
 features[i].append(peakFreq[i])

features = pd.DataFrame(features)
for i in range(len(features)):
 for j in range(len(features.iloc[i])):
 if math.isnan(features.iloc[i][j]):
 features.iloc[i][j] = (features.iloc[i+1][j]+features.iloc[i-1][j])/2

featureTableSmooth = []
windowSize = 5
for i in range(0,len(features.iloc[i])):
 featureTableSmooth.append(moving_avg(np.array(features[i]),windowSize))

newFeaturetable = pd.DataFrame(featureTableSmooth[0])
for i in range(1,len(featureTableSmooth)):
 newFeaturetable[i]= (pd.DataFrame(featureTableSmooth[i]))
featureTableSmooth = newFeaturetable
newLength = len(newFeaturetable)

for i in range(0,windowSize-1):
 featureTableSmooth = featureTableSmooth.append(pd.DataFrame(np.ones(len(featureTableSmooth.iloc[
 ,ignore_index=True)
for i in range(len(featureTableSmooth)-1,-1,-1):
 featureTableSmooth.iloc[i] = featureTableSmooth.iloc[i-(windowSize-1)]
for i in range(0,windowSize-1):
 featureTableSmooth.iloc[i] = features.iloc[i]

4

features = pd.DataFrame(featureTableSmooth)
monoTable = np.empty(len(features.iloc[0]))
m = len(data)-1
for feature in range(len(features.iloc[0])):
 monoTable[feature] = monotonicity(features[feature],m)
for i in range(len(monoTable)):
 monoTable[i] = abs(monoTable[i])
monoTable= pd.DataFrame(monoTable)

indices = list()
k = 0
if np.mean(monoTable[0]) > 0.3:
 limit = 0.3
else:
 limit = np.mean(monoTable[0])
for i in range(len(monoTable[0])):
 if monoTable[0][i] > limit:
 indices.append(i)
 k = k+1

trainData = pd.DataFrame(features)[indices]
dataLabels = np.array(['Mean', 'Std', 'Skewness', 'Kurtosis',
 'Peak_to_peak','RMS', 'Crest_Factor','Shape_Factor','Impulse_Factor','Margin_Factor'
 "SKKurtosis",'Natural_Frequency'])
trainData.columns = dataLabels[indices]
normalized = preprocessing.normalize(trainData.transpose())

trainNormal = pd.DataFrame(normalized.transpose())
trainNormal.columns = dataLabels[indices]

pca_data = PCA(n_components=2)
principalComponents_data = pca_data.fit_transform(trainNormal)
principal_data_Df = pd.DataFrame(data = principalComponents_data , columns = [0, 1])
print('Explained variation per principal component: {}'.format(pca_data.explained_variance_ratio_))

x_data = principal_data_Df[0]
y_data = principal_data_Df[1]
t = range(len(x_data))
t = [x + 1 for x in t]
plt.scatter(x_data, y_data, c=t,s=100)
plt.grid(color='k', linestyle='dotted', linewidth=1)
cbar = plt.colorbar()
plt.ylabel("second principal component")
plt.xlabel("first principal component")
cbar.set_label("Days")
plt.show()

pcas = list()
pcas.append(abs(pca_data.explained_variance_ratio_))
index = pcas.index(max(pcas))
healthIndicator = np.empty(len(principalComponents_data))
for i in range(len(principalComponents_data)):
 healthIndicator[i] = principalComponents_data[i][index]

healthIndicator = healthIndicator-healthIndicator[0]
threshold1 = 1.52##experimental value
threshold2 = -threshold1
ydata = np.empty(len(healthIndicator))
plt.plot(healthIndicator,linewidth=2.0)
plt.grid(color='k', linestyle='dotted', linewidth=1)

5

if healthIndicator[-1] < 0:
 healthIndicator = -healthIndicator

def func(x, a, b, c):
 return abs(a)*np.exp(abs(b)*x)+c
xdata = range(len(healthIndicator))
xdata = [x + 1 for x in xdata]
for day in range(0,len(healthIndicator)):
 ydata[day] = healthIndicator[day]
popt, pcov = curve_fit(func, xdata, ydata,p0=[0,0,0],maxfev = 8000)
sigma_ab = np.sqrt(np.diagonal(pcov))

x = np.linspace(0,len(healthIndicator)+200,1000)
x = [x + 1 for x in x]
x = np.array(x)
y = func(x, *popt)

plt.figure(figsize=(7,5))

plt.plot(x,y,'g',label='Prediction',linewidth=2.0)
plt.plot(xdata, ydata, 'b', label='Data',linewidth=2.0)
plt.hlines(threshold1,xmin=x[0],xmax=x[-1],color='r',label='Threshold',linewidth=2.0)
plt.hlines(threshold2,xmin=x[0],xmax=x[-1],color='r',linewidth=2.0)
plt.grid(color='k', linestyle='dotted', linewidth=1)
plt.ylim(-0.5, 1)
plt.xlim(1, maxDay+130)

bound_upper = func(x, *(popt + sigma_ab))
bound_lower = func(x, *(popt - sigma_ab))
plt.fill_between(x, bound_lower, bound_upper,
 color = 'green', alpha = 0.35,label='Confidence Interval')

leg = plt.legend(loc="best")

plt.title('Prediction of the health indicator')
plt.xlabel('Days')
plt.ylabel('Health Indicator')

plt.show(sn)

RUL1 = np.log((threshold1-popt[2])/popt[0])/popt[1] - len(healthIndicator)
RUL2 = np.log((threshold2-popt[2])/popt[0])/popt[1] - len(healthIndicator)
RUL = max(RUL1,RUL2)
print RUL

6

%% START
timeUnit = 'day';
totalDay = 60;
for i = 1:totalDay
 tday(i) = datetime(2020,10,i+5,18,0,0);
end

varIndex = 1;% 1 - 10 to select one of the variables to make prediction;
% [left frame, left underlever, right frame, left accelerometer x, left
% accelerometer y, left accelerometer z, right accelerometer x, right
% accelerometer y, right accelerometer z, current]
%% IMPORT DATA
data = importdata('Path to folder');
%% VARIABLE SELECTION
data = table(data{:,varIndex});
%% VIBRATION ANALYSIS
fs = 256;

tstart = 0;
figure
hold on
dataNum = 0;
for k = 1:totalDay
 v = data.Var1(1+dataNum:dataLength+dataNum);
 t = tstart + (1:length(v))/fs;
 if ~isnan(v(1))
 plot(t(1:length(v)), v(1:length(v)))
 end
 tstart = t(dataLength);
 dataNum = (k)*dataLength;
end
hold off
xlabel('Time (s), 36 seconds per day, 60 days in total')
ylabel(sprintf('Acceleration (g)'))

clear ind t v tstart k
%% SPECTRAL KURTOSIS
colors = parula(totalDay);
DATA = table;
figure
hold on
day = 1;

dataNum = 0;
for day = 1:totalDay
 data2add = table;

 v = data.Var1(1+dataNum:dataLength+dataNum);
 if ~isnan(v)
 [SK, F] = pkurtosis(v, fs);
 data2add.SpectralKurtosis = {table(F, SK)};
 plot3(F, day*ones(size(F)), SK, 'Color', colors(day, :))
 DATA(day,1) = data2add.SpectralKurtosis;

1

D. Predictive maintenance toolbox

88

 end
 dataNum = (day)*dataLength;
end
hold off
xlabel('Frequency (Hz)')
ylabel('Time (day)')
zlabel('Spectral Kurtosis')
grid on
view(-45, 30)
cbar = colorbar;
ylabel(cbar, 'Fault Severity (0 - healthy, 1 - faulty)')
%% MISSING VALUES
SK6 = (DATA.Var1{7,1}.SK+DATA.Var1{5,1}.SK)/2
F6 = (DATA.Var1{7,1}.F+DATA.Var1{5,1}.F)/2
DAT6 = table(F, SK)
DATA.Var1{6,1}=DAT6
clear SK6 F6 DAT6
%% FEATURE EXTRACTION
dataNum = 0;
features = table;
day = 1;

dataNum = 0;
for day = 1:totalDay
 v = data.Var1(1+dataNum:dataLength+dataNum);
 SK = DATA.Var1{day,1}.SK;
 % Time Domain Features
 features.mean(day) = mean(v);
 features.std(day) = std(v);
 features.skewness(day) = skewness(v);
 features.kurtosis(day) = kurtosis(v);
 features.peak2peak(day) = peak2peak(v);
 features.rms(day) = rms(v);
 features.crestfactor(day) = max(v)/features.RMS(day);
 features.shapefactor(day) = features.RMS(day)/mean(abs(v));
 features.impulsefactor(day) = max(v)/mean(abs(v));
 features.marginfactor(day) = max(v)/mean(abs(v))^2;
 features.energy(day) = sum(v.^2);

 % Spectral features
 features.smean(day) = mean(SK);
 features.sstd(day) = std(SK);
 features.sskewness(day) = skewness(SK);
 features.skurtosis(day) = kurtosis(SK);
 dataNum = (day)*dataLength;
end
clear dataNum data2add SK F data
%% MISSING VALUES
 features.mean(6) = (features.mean(7)+features.mean(5))/2;
 features.std(6) = (features.std(7)+features.std(5))/2;
 features.skewness(6) = (features.skewness(7)+features.skewness(5))/2;
 features.kurtosis(6) = (features.kurtosis(7)+features.kurtosis(5))/2;
 features.peak2peak(6) = (features.peak2peak(7)+features.peak2peak(5))/2;
 features.rms(6) = (features.rms(7)+features.rms(5))/2;

2

 features.crestfactor(6) = (features.srestfactor(7)+features.crestfactor(5))/2;
 features.shapefactor(6) = (features.shapefactor(7)+features.shapefactor(5))/2;
 features.impulsefactor(6) = (features.impulsefactor(7)+features.impulsefactor(5))/2;
 features.marginfactor(6) = (features.marginfactor(7)+features.marginfactor(5))/2;
 features.energy(6) = (features.energy(7)+features.energy(5))/2;

 % Spectral features
 features.smean(6) = (features.smean(7)+features.smean(5))/2;
 features.sstd(6) = (features.sstd(7)+features.sstd(5))/2;
 features.sskewness(6) = (features.sskewness(7)+features.sskewness(5))/2;
 features.skurtosis(6) = (features.skurtosis(7)+features.skurtosis(5))/2;
%% FEATURE TABLE
tableoffeatures = gather(tall(features));
for i = 1:totalDay
 tableoffeatures.Date(i)=tday(i)
end
tableoffeatures = table2timetable(tableoffeatures)
clear numData tday varIndex v fs dataLength
%% FEATURE POSTPROCESSING
smoothFeatureTable = table;
variableNames = tableoffeatures.Properties.VariableNames;
smoothFeatureTable = varfun(@(x) movmean(x, [5 0]), tableoffeatures);
smoothFeatureTable.Properties.VariableNames = variableNames;

smoothFeatureTable.Date = tableoffeatures.Date;

%% TRAINING DATA
trainSet = featureTableSmooth(1:50, :);
%% FEATURE RANKING
featureImportance = monotonicity(trainSet, 'WindowSize', 0);
helperSortedBarPlot(featureImportance, 'Monotonicity');
%% FEATURE SELECTION
selectedTrainData = trainSet(:, featureImportance{:,:}>0.2);
selectedFeatures = smoothFeatureTable(:, featureImportance{:,:}>0.2)
%% DIMENSION REDUCTION
trainAvg = mean(selectedTrainData{:,:});
trainStd = std(selectedTrainData{:,:});
rainData = (selectedTrainData{:,:} - trainAvg)./trainStd;
coef = pca(trainDataNormalized);

PCA_1 = (selectedFeatures{:,:} - trainAvg) ./ trainStd * coef(:, 1);
PCA_2 = (selectedFeatures{:,:} - trainAvg) ./ trainStd * coef(:, 2);

figure
numData = size(featureTable, 1);
scatter(PCA_1, PCA_2, [], 1:numData, 'filled')
xlabel('PCA 1')
ylabel('PCA 2')
cbar = colorbar;
ylabel(cbar, ['Time (' timeUnit ')'])
%% HEALTH INDICATOR
healthIndicator = PCA_1;

healthIndicator = healthIndicator - healthIndicator(1);

3

threshold = 6;%%experimental data

figure
hold on
plot(selectedFeatures.Date, healthIndicator, '-o')
xlabel('Time')
title('Health Indicator')
%% PREDICTION
mdl = exponentialDegradationModel(...
 'Theta', 1, ...
 'ThetaVariance', 1e6, ...
 'Beta', 1, ...
 'BetaVariance', 1e6, ...
 'Phi', -1, ...
 'NoiseVariance', (0.1*threshold/(threshold + 1))^2, ...
 'SlopeDetectionLevel', 0.05);
%% PLOTTING
% Keep records at each iteration
totalDay = length(healthIndicator) - 1;
estRULs = zeros(totalDay, 1);
trueRULs = zeros(totalDay, 1);
CIRULs = zeros(totalDay, 2);
pdfRULs = cell(totalDay, 1);

% Create figures and axes for plot updating
figure
ax1 = subplot(2, 1, 1);
ax2 = subplot(2, 1, 2);

for currentDay = 1:totalDay

 % Update model parameter posterior distribution
 update(mdl, [currentDay healthIndicator(currentDay)])

 % Predict Remaining Useful Life
 [estRUL, CIRUL, pdfRUL] = predictRUL(mdl, ...
 [currentDay healthIndicator(currentDay)], ...
 threshold);
 trueRUL = totalDay - currentDay + 1;

 % Updating RUL distribution plot
 helperPlotTrend(ax1, currentDay, healthIndicator, mdl, threshold, timeUnit);
 helperPlotRUL(ax2, trueRUL, estRUL, CIRUL, pdfRUL, timeUnit)

 % Keep prediction results
 estRULs(currentDay) = estRUL;
 trueRULs(currentDay) = trueRUL;
 CIRULs(currentDay, :) = CIRUL;
 pdfRULs{currentDay} = pdfRUL;

 % Pause 0.1 seconds to make the animation visible
 pause(0.3)
end
%% PERFORMANCE

4

function [monoList] = monotonicity(x)
 [m, n] = size(x);
 monoList = zeros(1,n);
 for k = 1:n
 for j = 1:m-1
 monoList(k) = monoList(k) + sign(x(j+1,1)-x(j,1))/m;
 end
 end

timeUnit = 'day';
totalDay = 60;
for i = 1:totalDay
 tday(i) = datetime(2020,10,i+5,18,0,0);
end

varIndex = 1;% 1 - 10 to select one of the variables to make prediction;
% [left frame, left underlever, right frame, left accelerometer x, left
% accelerometer y, left accelerometer z, right accelerometer x, right
% accelerometer y, right accelerometer z, current]
%% IMPORT DATA
data = importdata('Path to folder');
%% VARIABLE SELECTION
data = table(data{:,varIndex});
%% VIBRATION ANALYSIS
fs = 256;

tstart = 0;
figure
hold on
dataNum = 0;
for k = 1:totalDay
 v = data.Var1(1+dataNum:dataLength+dataNum);
 t = tstart + (1:length(v))/fs;
 if ~isnan(v(1))
 plot(t(1:length(v)), v(1:length(v)))
 end
 tstart = t(dataLength);
 dataNum = (k)*dataLength;
end
hold off
xlabel('Time (s), 36 seconds per day, 60 days in total')
ylabel(sprintf('Acceleration (g)'))

clear ind t v tstart k
%% SPECTRAL KURTOSIS
colors = parula(totalDay);
DATA = table;
figure
hold on
day = 1;

dataNum = 0;
for day = 1:totalDay

1

E. Neural Network

92

 data2add = table;

 v = data.Var1(1+dataNum:dataLength+dataNum);
 if ~isnan(v)
 [SK, F] = pkurtosis(v, fs);
 data2add.SpectralKurtosis = {table(F, SK)};
 plot3(F, day*ones(size(F)), SK, 'Color', colors(day, :))
 DATA(day,1) = data2add.SpectralKurtosis;
 end
 dataNum = (day)*dataLength;
end
hold off
xlabel('Frequency (Hz)')
ylabel('Time (day)')
zlabel('Spectral Kurtosis')
grid on
view(-45, 30)
cbar = colorbar;
ylabel(cbar, 'Fault Severity (0 - healthy, 1 - faulty)')
%% MISSING VALUES
SK6 = (DATA.Var1{7,1}.SK+DATA.Var1{5,1}.SK)/2
F6 = (DATA.Var1{7,1}.F+DATA.Var1{5,1}.F)/2
DAT6 = table(F, SK)
DATA.Var1{6,1}=DAT6
clear SK6 F6 DAT6
%% FEATURE EXTRACTION
dataNum = 0;
features = table;
day = 1;

dataNum = 0;
for day = 1:totalDay
 v = data.Var1(1+dataNum:dataLength+dataNum);
 SK = DATA.Var1{day,1}.SK;
 % Time Domain Features
 features.mean(day) = mean(v);
 features.std(day) = std(v);
 features.skewness(day) = skewness(v);
 features.kurtosis(day) = kurtosis(v);
 features.peak2peak(day) = peak2peak(v);
 features.rms(day) = rms(v);
 features.crestfactor(day) = max(v)/features.RMS(day);
 features.shapefactor(day) = features.RMS(day)/mean(abs(v));
 features.impulsefactor(day) = max(v)/mean(abs(v));
 features.marginfactor(day) = max(v)/mean(abs(v))^2;
 features.energy(day) = sum(v.^2);

 % Spectral features
 features.smean(day) = mean(SK);
 features.sstd(day) = std(SK);
 features.sskewness(day) = skewness(SK);
 features.skurtosis(day) = kurtosis(SK);
 dataNum = (day)*dataLength;
end

2

clear dataNum data2add SK F data
%% MISSING VALUES
 features.mean(6) = (features.mean(7)+features.mean(5))/2;
 features.std(6) = (features.std(7)+features.std(5))/2;
 features.skewness(6) = (features.skewness(7)+features.skewness(5))/2;
 features.kurtosis(6) = (features.kurtosis(7)+features.kurtosis(5))/2;
 features.peak2peak(6) = (features.peak2peak(7)+features.peak2peak(5))/2;
 features.rms(6) = (features.rms(7)+features.rms(5))/2;
 features.crestfactor(6) = (features.srestfactor(7)+features.crestfactor(5))/2;
 features.shapefactor(6) = (features.shapefactor(7)+features.shapefactor(5))/2;
 features.impulsefactor(6) = (features.impulsefactor(7)+features.impulsefactor(5))/2;
 features.marginfactor(6) = (features.marginfactor(7)+features.marginfactor(5))/2;
 features.energy(6) = (features.energy(7)+features.energy(5))/2;

 % Spectral features
 features.smean(6) = (features.smean(7)+features.smean(5))/2;
 features.sstd(6) = (features.sstd(7)+features.sstd(5))/2;
 features.sskewness(6) = (features.sskewness(7)+features.sskewness(5))/2;
 features.skurtosis(6) = (features.skurtosis(7)+features.skurtosis(5))/2;
%% FEATURE TABLE
tableoffeatures = gather(tall(features));
for i = 1:totalDay
 tableoffeatures.Date(i)=tday(i)
end
tableoffeatures = table2timetable(tableoffeatures)
clear numData tday varIndex v fs dataLength
%% FEATURE POSTPROCESSING
smoothFeatureTable = table;
variableNames = tableoffeatures.Properties.VariableNames;
smoothFeatureTable = varfun(@(x) movmean(x, [5 0]), tableoffeatures);
smoothFeatureTable.Properties.VariableNames = variableNames;

smoothFeatureTable.Date = tableoffeatures.Date;

%% FEATURE IMPORTANCE
m = totalDay
featureImportance(1,1) = monotonicity(smoothFeatureTable.mean)
featureImportance(1,2) = monotonicity(smoothFeatureTable.std)
featureImportance(1,3) = monotonicity(smoothFeatureTable.skewness)
featureImportance(1,4) = monotonicity(smoothFeatureTable.kurtosis)
featureImportance(1,5) = monotonicity(smoothFeatureTable.peak2peak)
featureImportance(1,6) = monotonicity(smoothFeatureTable.rms)
featureImportance(1,7) = monotonicity(smoothFeatureTable.crestfactor)
featureImportance(1,8) = monotonicity(smoothFeatureTable.shapefactor)
featureImportance(1,9) = monotonicity(smoothFeatureTable.impulsefactor)
featureImportance(1,10) = monotonicity(smoothFeatureTable.marginfactor)
featureImportance(1,11) = monotonicity(smoothFeatureTable.energy)
featureImportance(1,12) = monotonicity(smoothFeatureTable.smean)
featureImportance(1,13) = monotonicity(smoothFeatureTable.sstd)
featureImportance(1,14) = monotonicity(smoothFeatureTable.sskewness)
featureImportance(1,15) = monotonicity(smoothFeatureTable.skurtosis)

%% TRAINING DATA
trainset = smoothFeatureTable(1:end, :);

3

%% FEATURE SELECTION

featureImportance = abs(featureImportance')

idx = find(featureImportance > 0.3)
trainSelection = trainset(:, featureImportance(:,:)>0.3);
selectedFeatures = smoothFeatureTable(:, featureImportance(:,:)>0.3)

if sum(length(idx)) < 2
 idx = find(featureImportance > mean(featureImportance))
 trainSelection = trainset(:, featureImportance(:,:)>mean(featureImportance));
 selectedFeatures = smoothFeatureTable(:, featureImportance(:,:)>mean(featureImportance))
end
trainSelection = table2array(trainSelection);
%% DIMENSION REDUCTION
trainAvg = mean(trainSelection(:,:));
trainStd = std(trainSelection(:,:));
normalTrainData = (trainSelection(:,:) - trainAvg)./trainStd;
coefs = pca(normalTrainData);

PCA_1 = (selectedFeatures{:,:} - trainAvg) ./ trainStd * coefs(:, 1);
PCA_2 = (selectedFeatures{:,:} - trainAvg) ./ trainStd * coefs(:, 2);

figure
numData = size(tableoffeatures, 1);
scatter(PCA1, PCA_2, [], 1:numData, 'filled')
xlabel('PCA 1')
ylabel('PCA 2')
cbar = colorbar;
ylabel(cbar, ['Time (' timeUnit ')'])

pcas = [PCA1 PCA_2];
idx = find(max(abs(monotonicity2(pcas))));
healthIndicator = pcas(:,idx);

figure
plot(1:length(healthIndicator), healthIndicator, '-o')
xlabel('Time')
title('Health Indicator')

healthIndicator = healthIndicator - healthIndicator(1);
threshold = healthIndicator(end-1);
clear variableNames trainDataSelected trainDataNormalized trainData pcas PCA1 PCA2 featureSelected featureTable
%% NEURAL NETWORK FITTER
days = 1:totalDay;
days = days';
%% NN TIME SERIES 1
delay = 5
T = num2cell(healthIndicator(1:50)');
net = narnet(1:delay,10);

[Xs,Xi,Ai,Ts] = preparets(net,{},{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)

4

%% 2
[Y,Xf,Af] = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)
%% 3
[netc,Xic,Aic] = closeloop(net,Xf,Af);
view(netc)
%% 4
y2 = netc(cell(0,10),Xic,Aic)
%% 5
y2 = cell2mat(y2);
Y = cell2mat(Y)
%% TIME SERIES PLOTTING
pred = [Y,y2]
figure
hold on
plot(days(1:50),healthIndicator(1:50))
plot(days(50:end),healthIndicator(50:end))
daysPred = 1:length(pred);
plot(daysPred+delay,pred)
grid on
hold off
xlabel('Time (Days)')
ylabel('Health Indicator')
ylim([min(healthIndicator),max(healthIndicator)])
legend('Machine data','Test set','Fitted model');
fprintf('Remaining useful life = %d days. \n',min((pred)> threshold)-totalDay)
error = 100*((pred(50-delay:end) - healthIndicator(50:end)') ./ healthIndicator(50:end)');
%% CLEAR
clear colors i idx m timeUnit coef cbar breaktime breakpoint sdTrain meanTrain

5

Bibliography

[1] Predictive maintenance market analysis report by solution, by service, by
deployment, by enterprise size, by end use, by region and segment forecasts
from 2019 to 2025. Technical report, Grand View Research, November 2019.

[2] Bernard Boser, Isabelle Guyon, and Vladimir Vapnik. Pattern recognition
system using support vectors, May 1996.

[3] Bryan Christiansen. 3 main types of maintenance strategies, 2020. https:
//limblecmms.com/blog/3-main-types-of-maintenance-strategies/
#, accessed: 01.09.2020.

[4] Bryan Christiansen. A complete guide to predictive maintenance,
2020. https://limblecmms.com/blog/predictive-maintenance/#, ac-
cessed: 01.09.2020.

[5] Jamie Coble and J. Hines. Identifying optimal prognostic parameters from
data: A genetic algorithms approach. Annual Conference of the Prognostics
and Health Management Society, San Diego, CA, September, 01 2009.

[6] Ilesanmi Daniyan, Khumbulani Mpofu, Moses Oyesola, Boitumelo Ramat-
setse, and Adefemi Adeodu. Artificial intelligence for predictive mainte-
nance in the railcar learning factories. Procedia Manufacturing, 45:13–18,
2020. https://doi.org/10.1016/j.promfg.2020.04.032.

[7] Nagi Gebraeel. Sensory-updated residual life distributions for components
with exponential degradation patterns. Automation Science and Engineer-
ing, IEEE Transactions on, 3:382 – 393, 11 2006.

[8] Mark Haarman, Michel Mulders, and Costas Vassiliadis. Predictive main-
tenance 4.0: Predict the unpredictable. Technical report, pwc and main-
novation, June, 2017.

[9] Micharl Decourcy Hinds. Preventive Maintenance: A Checklist. The New
York Times, page 14, 1895.

[10] I.A.Daniyan, K. Mpofu, and A.O. Adeodu. Development of a diagnostic and
prognostic tool for predictive maintenance in the railcar industry. Procedia
CIRP, 90:109–114, 2020. https://doi.org/10.1016/j.procir.2020.02.
001.

[11] Veronica Jaramillo Jimenez, Nouredinne Bouhmala, and Anne Haugen
Gausdal. Developing a predictive maintenance model for vessel machin-
ery. Journal of Ocean Engineering and Science, page 14, 2020. https:
//doi.org/10.1016/j.joes.2020.03.003.

[12] Patrick Killeen, Bo Ding, Iluju Kiringa, and Tet Yeap. IoT-based predictive
maintenance for fleet management. Procedia Computer Science, 151:607–
613, 2019. https://doi.org/10.1016/j.procs.2019.04.184.

97

https://limblecmms.com/blog/3-main-types-of-maintenance-strategies/#
https://limblecmms.com/blog/3-main-types-of-maintenance-strategies/#
https://limblecmms.com/blog/3-main-types-of-maintenance-strategies/#
https://limblecmms.com/blog/predictive-maintenance/#
https://doi.org/10.1016/j.promfg.2020.04.032
https://doi.org/10.1016/j.procir.2020.02.001
https://doi.org/10.1016/j.procir.2020.02.001
https://doi.org/10.1016/j.joes.2020.03.003
https://doi.org/10.1016/j.joes.2020.03.003
https://doi.org/10.1016/j.procs.2019.04.184

[13] MathWorks. Overcoming four common obstacles to predictive maintenance
with matlab and simulink. Technical report, MathWorks, 2018.

[14] MathWorks. Introduction to predictive maintenance with matlab. Techni-
cal report, MathWorks, 2019.

[15] MathWorks. Predictive maintenance: Estimating remaining useful life with
matlab. Technical report, MathWorks, 2019.

[16] MathWorks. Predictive maintenance: Extracting condition indicators with
matlab. Technical report, MathWorks, 2019.

[17] MATLAB. Wind turbine high-speed bearing progno-
sis, 2020. https://nl.mathworks.com/help/predmaint/ug/
wind-turbine-high-speed-bearing-prognosis.html, accessed:
18.11.2020.

[18] R. Keith Mobley. An Introduction to Predictive Maintenance. Elsevier,
2002.

[19] Gordon Moore. Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114
ff. Solid-State Circuits Newsletter, IEEE, 11:33 – 35, 10 2006.

[20] Srikanth Namuduri, Barath Narayanan Narayanan, Venkata Salini Priyam-
vada Davuluru, Lamar Burton, and Shekhar Bhansali. Review—deep learn-
ing methods for sensor based predictive maintenance and future perspec-
tives for electrochemical sensors. Journal of The Electrochemical Society,
167, 01 2020.

[21] F.S. Nowlan and H.F. Heap. Reliability-centered maintenance. United
airlines, 1978.

[22] TÜV Rheinland. Emit optimisation – getting more out of existing equip-
ment for less. The Newsletter of Risktec Solutions, pages 4–5, 2017.

[23] Cornelius Scheffer and Paresh Girdhar. Practical Machinery Vibration
Analysis and Predictive Maintenance. Elsevier, 2004.

[24] SensorCloud. Good vibrations for machine health monitoring: Maxi-
mizing uptime with intelligent vibration monitoring and predictive an-
alytics, 2020. https://sensorcloud.com/static/files/documents/
SolutionBrief_SCVibration.pdf, accessed: 28.09.2020.

[25] SensorCloud. Machine monitoring applications in the oil and
gas industry: Real-time health monitoring of high value as-
setss, 2020. https://sensorcloud.com/static/files/documents/
SolutionBrief_SCOil&Gas.pdf, accessed: 28.09.2020.

[26] Sandro Sperandei. Understanding logistic regression analysis. Biochemia
medica, 24:12–8, 02 2014.

[27] G. P. Sullivan, R. Pugh, A. P. Melendez, and W. D. Hunt. O&m best
practices guide, release 3.0. Technical report, United States Department of
Energy, August 2010.

98

https://nl.mathworks.com/help/predmaint/ug/wind-turbine-high-speed-bearing-prognosis.html
https://nl.mathworks.com/help/predmaint/ug/wind-turbine-high-speed-bearing-prognosis.html
https://sensorcloud.com/static/files/documents/SolutionBrief_SCVibration.pdf
https://sensorcloud.com/static/files/documents/SolutionBrief_SCVibration.pdf
https://sensorcloud.com/static/files/documents/SolutionBrief_SCOil&Gas.pdf
https://sensorcloud.com/static/files/documents/SolutionBrief_SCOil&Gas.pdf

[28] Ventura Systems. Ventura systems innovative bus door systems, 2020.
https://www.venturasystems.com/about-us, accessed: 01.09.2020.

[29] Darren Whitaker, David Egan, Eoin OBrien, and David Kinnear. Appli-
cation of multivariate data analysis to machine power measurements as a
means of tool life predictive maintenance for reducing product waste, 02
2018.

[30] Haiyue Wu, Aihua Huang, and John W. Sutherland. Avoiding Environ-
mental Consequences of Equipment Failure via an LSTM-Based Model
for Predictive Maintenance. Procedia Manufacturing, 43:666–673, 2020.
https://doi.org/10.1016/j.promfg.2020.02.131.

99

https://www.venturasystems.com/about-us
https://doi.org/10.1016/j.promfg.2020.02.131

	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background information on maintenance
	Overview on the maintenance market
	The Smart Machines project
	The company
	Plan of the company for the 'Smart Machines' project

	The scope and the goals of the design project
	Overview of the structure of the report

	Review of literature
	Maintenance methods and PdM models
	Failure modes
	Successful implementations and case studies
	Algorithms and performances
	Programming tools

	Methodology
	Preliminary model
	Learning algorithm
	Outcomes

	Data collection
	Improved model
	Exponential degradation
	Artificial neural network
	Preprocessing

	Results and Discussions
	Prediction algorithms
	Exponential regression
	Exponential degradation
	Artificial neural network

	Comparison of the learning methods
	Correlations of the parameters
	Cost analysis

	Conclusions
	Limitations of the study
	Recommendations for the company
	Future research

	Correlation matrices
	Predictions
	Regression script
	Predictive maintenance toolbox
	Neural Network
	Bibliography

