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Abstract:
This research was done in cooperation with the Systems Biology Lab of the
VU Amsterdam. In this paper a generalization of Elementary Flux Modes
(EFMs) is made towards communities of micro-organisms. To do so a com-
munity of microorganisms is assumed to grow at a steady-state with a fixed
growth rate across all species in the community. The resulting "Elementary
Interaction Modes" (EIMs) provide a mathematical basis for analyzing such
communities of microorganisms that grow in a chemostat (a type of bioreactor).
The model used to compute the EIMs was constructed after analyzing different
earlier efforts made to generalize "Flux Balance Analysis" towards communities
of microorganisms. With this knowledge the model was tested on a toy model
of 2 organisms and altered until it functioned properly, biologically speaking.
Afterwards, the resulting model was generalized towards any community of 2
species and subsequently towards any community of n species. Based on this
developed notion of EIMs for communities of n species, several theorems were
proven which together put an upper bound on the complexity (in the number
of EFMs used) in a community of n species that grows at its maximal growth
rate.
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1 Introduction

1.1 Research problem
Micro-organisms often form large communities that by themselves play a part in
an even larger system. For example, some communities of micro-organisms help
digest food inside the human intestines. In fields such as medicine or industrial
engineering a better understanding of these communities of micro-organisms
could benefit for example treatments of diseases or improve production pro-
cesses. A sound general understanding of such communities and their flexibility
as a whole may also become a basis for further academic research.

Micro-organisms often use metabolic 1 interactions with other micro-organisms
(e.g. cross-feeding or parasitism) to grow faster than they would have done
on their own. Due to the development in the last few decades of genome-scale
sequencing it is becoming more and more possible to reconstruct all the pos-
sible reactions that can occur inside a (simple) organism by reading out and
analyzing their DNA. Based upon this information one may now be able to de-
scribe the complete metabolic functioning of a single organism. But although
the metabolic functioning of each individual micro-organism might be known,
due to the complexity in which the species interact with each other in a com-
munity, a qualitative approach would be far too time consuming to learn to
understand how the community functions. However, due to evolution, it is very
likely that the microorganisms each grow in an optimal way, that is, with maxi-
mized steady-state growth. This is because organisms with an optimal approach
have an edge over rivaling organisms with a non-optimal approach, as they grow
faster and therefore, in the long run will be more abundant, which ensures their
survival. Thus, over time, it is very likely that only the most optimal organ-
isms survive [1]. Therefore, it might be possible to compute the way in which
microorganisms grow by using mathematical optimization techniques.

For single organism metabolism, mathematical models have been used for quite
some time now in this field. But here, two applications are especially relevant:

• In order to better understand the combinations of reactions that lead to
steady state growth that can be used by an organism, the concept of
Elementary (Flux) Modes (EFMs) [2] [3] was developed. Although com-
putationally intensive, this gives a set of elementary metabolic pathways
of reactions which form a basis for all the possible metabolic combinations
of reactions that lead to steady state growth of the organism.

• The second group of noteworthy applications are formed by optimization
techniques such as the renowned Flux Balance Analysis (FBA)[4] which
use apart from the stoichiometry 2 also the biochemical constraints of
the environment. In this way, by maximizing a chosen objective function

1The whole range of chemical processes that occur within a living organism.
2The ratio of reactants and products in chemical reactions.

4



(e.g. reproduction) the technique computes the optimal flow through the
metabolic network.

Previous efforts have already been made to extend the optimization techniques
as used for metabolic networks of single organisms to microbial communities,
by for example community Flux Balance Analysis (cFBA) [5] and SteadyCom
[6]. For the elementary modes however, there has not yet been made a gener-
alization towards communities of microorganisms. In this paper an attempt is
made to define such modes.

Note that due to the fact that there are different species active in such a com-
munity the ratios between the species may vary. Therefore, the single species
approaches cannot strait away be generalized, as they assume a very rigid con-
stant ratio between species that can only be changed by extensively altering the
network.

1.2 Research question:
Can we, for any given set of metabolic interactions, mathematically define a
minimal set of modes that can be used to describe all forms of metabolic inter-
actions amongst microorganisms that together lead the community as a whole
to achieve steady-state growth?

Besides this main research question we define the following sub-research ques-
tions:

Sub-research question:

• Given a community of 2 species, can we define a set of elementary modes
that can be used to describe all its possible metabolic behaviour? Can we
generalize this set of modes to any community of 2 species? And to any
community of n species?

• Can we relate a single one of these modes to one or more EFMs? Is there
an upper bound on the number of EFMs that are related to one mode?

• Given a community that grows at an optimal rate, how many different
elementary modes are used by that community? Is there a non-trivial
upper bound?

1.3 Sketch of approach to research question:
First, as this research is applicable for chemostat3-growth we will give a brief
introduction of the chemostat environment. Afterwards, we will follow with
a mathematical basis of the methods used in the rest of the paper. Once we
have provided the basic framework, we will follow with a section on two earlier

3A certain type of bioreactor
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published optimization methods for analyzing communities of microorganisms.
Then, by using these methods as inspiration, we will design our own method
to find a set of elementary modes for communities. After this method starts to
take form, we will test it on a toy model, to see if the output corresponds with
what would be expected biologically. If the method indeed functions properly,
we will start generalizing it. First for communities of 2 species, and then, for
communities of n species. After we have derived at this general method for
communities of n species, we will start analyzing the general elementary modes
that it has as output and prove several theorems which together will put an
upper bound on the expected complexity of communities of microorganisms in
terms of how many EFMs are used.

6



2 Research

2.1 Application to bioreactor
As mentioned before, this paper is written towards an application in a chemo-
stat. A chemostat is a bioreactor in which medium constantly enters and leaves
the reactor at a fixed rate which is set by the experimenter [7]. In order to keep
the medium inside the chemostat well mixed, it is continuously stirred.

Figure 1: A schematic picture of a chemostat.

In this way a community can be grown at steady state under constant envi-
ronmental conditions. Since the inflow of nutrients can be controlled, the system
can be set up such that the availability of the nutrients is the only limiting fac-
tor for the growth of the microorganisms. By controlling the dilution rate the
excess material can flow out (the medium contains waste products as well as
nutrients and the microorganisms itself). In that way the micro-organisms can
grow continuously, without depriving nutrients, overpopulating the chemostat
nor creating too much waste products that limit the growth. While the global
dilution rate is set, the dilution rate of a of a certain metabolite4 is dependent
on its metabolite concentration in the medium. As the community of microor-
ganisms grows, the concentration of each organism in the medium rises. So at
a constant dilution rate and constant inflow the concentration of the metabo-
lites that are consumed drop, while the concentration of metabolites that are
excreted increase. Therefore, in order for the system to remain in steady state,
it is crucial that the inflow and dilution rate scale with the consumption of the
metabolites. i.e. the inflow and dilution rate need to scale with a factor of the
growth rate of the micro-organisms.

To illustrate this, let us describe the environment mathematically: We start
with a chemostat of volume V filled with medium. The inflow and outflow of
the chemostat together give rise to a certain amount of flow (e.g. in liters/hour)
through the chemostat. Let us call this volumetric flow rate Q. As both V and
Q are based on volumes, and we are in fact only interested in the ratio between
them, let us introduce q = Q

V as the dilution rate which has unit ratio per unit

4A biochemical compound
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of time.

Now let us look at the medium in a chemostat. In such a medium firstly there
will be micro-organisms whose concentrations will vary throughout time, and
secondly metabolites concentrations which will also vary throughout time. In
biology it is standard practice to measure the concentration of micro-organisms
in grams of dry weight and metabolite concentrations in grams per liter. If
there are n species active in the medium, we can measure for each of the species
its concentration in the medium. Let Xi(t) be the mass of micro-organism i at
time t in the medium. Furthermore, if there are m metabolites in the medium,
we can measure the concentration of each of the m metabolites in the medium.
let cj(t) be the concentration of metabolite j. Additionally, let us describe the
growth rate of the community as a whole by µ. In this paper, we assume that
growth is enzyme mediated, which means that growth depends on reactions
catalyzed by enzymes. These reactions in turn depend on the concentrations of
the metabolites in the medium. Hence, we have that µ is a function of the ci(t),
which together form the vector c(t). Now that we have a basic framework for
the components in the chemostat, we may describe the fluctuations of both the
amount of microorganisms and the concentrations of metabolites in the chemo-
stat by a set of differential equations derived from mass balance equations and
the laws of mass action:

For each species i we have that the amount of micro-organisms in the medium
grows with the growth rate µ(c(t)). At the same time a part of the medium,
containing micro-organisms flows out with a dilution rate q. This together gives
us:

dXi

dt
(t) = µ(c(t))Xi(t)− qXi(t) (1)

which states that the change in biomass Xi(t) over time is equal to the difference
between the biomass that was created through growth (µ(c(t))Xi(t)) minus
the amount of biomass that is diluted out of the system(qXi(t)). For every
metabolite i we have that it can flow into the medium through the inflow, it can
flow out of the medium through the overflow or it can be consumed or produced
by one of the micro-organisms. Here both the inflow and outflow are coupled
to the dilution rate, and therefore the metabolite concentrations also depend
on the dilution rate. The production and consumption of the metabolite by
the micro-organism of course depend on the amount of the micro-organism in
the medium. Together this gives us for the ith metabolite in the medium the
following equation:

dci
dt

(t) = qci0 − qci(t)−
n∑
j=1

cijµ(ci(t))Xj(t) (2)

where ci0 signifies the concentration of the metabolite in the inflowing medium.
cij is a constant which indicates how much of the metabolite is consumed or pro-
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duced by organism j. The equation states that the change in concentration of
a metabolite over time equals the inflow (qci0) minus the outflow (qci(t)) minus
the consumption (plus the production) by the microorganisms of the metabolite
(
∑n
j=1 cijµ(ci(t))Xj(t)).

In order to operate a chemostat continuously the system needs to be at steady
state, i.e. the micro-organisms need to be able to grow continuously, without
depriving nutrients, overpopulating the chemostat nor creating too much waste
products that limit the growth. Hence we are interested in the case where the
populations of the micro-organisms are stable over time in the chemostat while
the concentrations of the metabolites remain constant (this is done by control-
ling the in- and outflow). This implies that we need to fullfil the following
equations:

dXi

dt
(t) = 0 (3)

dci
dt

(t) = 0 (4)

Note that together with equation (1), equation (3) also implies that q = µ(c(t)).
Which shows that indeed the dilution rate needs to be equal to the growth rate,
just as we argued before.

2.2 Mathematical groundwork
Here we will look at the two single organism orientated applications mentioned
in the introduction: the concepts of "Elementary Flux Modes (EFMs)" and
"Flux Balance Analysis (FBA)". Both techniques were created for the analysis
of metabolic networks. To do so, the metabolic network of an microorganism
is reconstructed by analyzing its DNA. This can be done as in the DNA all
the enzymes of a micro-organism are encoded. Since each enzyme typically cat-
alyzes a specific reaction, this information can be used to reconstruct the entire
metabolic network. Subsequently, this information can be transferred into a
matrix:

Definition 1: Stoichiometric Matrix
The stoichiometric matrix (S) is a n×m matrix, containing the information of
all the metabolic reactions of a micro-organism. Every reaction has a column
which denotes exactly how much of which metabolite(s) is used and how much
of which metabolite(s) is produced by that particular reaction. In each row,
one can read for every metabolite exactly which reactions use and and which
produce it. Together this contains all the information on the metabolic network.
[8]
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From this metabolic network can be read what metabolites are taken from
the environment, how they react inside the cell and what metabolites are ex-
ported back out of the cell. Each reaction is typically catalyzed by an enzyme
and can be either reversible or irreversible catalyzed (most reactions are re-
versible but not all are within the environment of the cell). Every reaction has
a certain flux (vi) associated to it, this flux is the amount of the reaction that
occurs. The vector with as its elements the fluxes, is called a flux vector (v).
For the micro-organism to be at steady state (so that no metabolite is accu-
mulated nor depleted) the rate at which any metabolite is consumed needs to
equal the rate at which it is produced. This implies that the flux vector needs to
meet the relation: Sv = 0. Now, for mathematical convenience, we will without
loss of generality assume that all fluxes are non-negative (i.e. that all reactions
are irreversible). This can be done by splitting any flux (vi) of a reversible
reaction into two fluxes: a forward flux (v+i ) and a backward flux (v−i ) so that
v = v+i − v

−
i where v+i ≥ 0 and v−i ≥ 0. Note that this slightly alters matrix S

as well. Thus for any micro-organism at steady state we have :

Sv = 0, v ≥ 0.

Example 1: Stoichiometric Matrix
Let us consider the metabolic sample network in figure 2 to illustrate how such
a stoichiometric matrix is constructed:

Figure 2: A metabolic sample network where the mi’s are the metabolites and
the vi’s are the fluxes.

This metabolic network can be translated into the following stoichiometric
matrix:

S =


v1 v2 v3 v4 v5 v6

m1 1 0 −1 0 0 0
m1 0 1 0 −1 1 0
m1 0 0 1 1 −1 1

, v =


v1
v2
v3
v4
v5
v6
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The j-th column describes which metabolites reaction j transfers into what
products. Here the i-th row describes which reactions make or use metabolite
i.

If we now assume steady state for this sample network (i.e. Sv = 0 where
v ≥ 0), we see that certain relations between the vi’s must hold.

In general, the solution space for a non-negative flux vector v can be de-
scribed geometrically by a cone (a "flux cone"). From now on this cone will be
referred to as FC.

2.2.1 Elementary Flux Modes:

Let us, for a flux vector v define supp(v) = {i|vi 6= 0}, i.e. the set of nonzero
fluxes in a flux vector. As we assumed without loss of generality that all fluxes
are non-negative, in this paper we have supp(v) = {i|vi > 0}. We may now use
this notion for the following definition:

Definition 2: Elementary Flux Mode (EFM)
The Elementary Flux Modes are the extreme rays of the flux cone FC. That
is: e ∈ FC is an EFM if there does not exist a ray r ∈ FC such that

supp(r) ⊂ supp(e)

As we already assumed all elements of v to be non-negative we know that the
EFMs span the entire solution space (the entire solution space is non-negative
and therefore the EFMs, which are also non-negative, can describe the entire
solution space). As is known from linear programming, The solution space FC,
forms a pointed cone [9]. Therefore any steady-state metabolic behaviour of a
micro-organism can be described by a convex combination of its EFMs.

Example 2: Let us illustrate the calculation of the EFMs with the example
network in figure 3, where we assume the model to be in steady-state:
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Figure 3: Practice Network: The capital letters represent metabolites, where the
underlined metabolites are external, and therefore are set by the environment.
As is standard practice S denotes a substrate, and P the products. The vi
arrows represent the fluxes per reaction.

Based on this network we can construct the stoichiometric matrix. Because
the figure already features an S we will call the stoichiometric matrix here N :

N =


v1 v2 v3 v4 v5 v6

X 1 −1 0 0 −1 0
Y 0 1 −1 0 0 0
Z 0 0 1 −1 0 0
W 0 0 0 0 1 −1


where the rows represent the metabolites and the columns the reactions.
Since we assumed the model to be in steady-state, we have:

Nv = 0 and vi ≥ 0 where v =


v1
v2
v3
v4
v5
v6


We note that we have 6 variables with 4 equality constraints and 6 inequality
constraints. Since we know that an EFM will be located on an extreme ray which
is by definition 1-dimensional, and as the space is 6-dimensional, the EFM will
be located at the intersection of 6-1=5 (independent) constraints. Therefore,
aside from the 4 metabolic constraints at least one flux will be set to zero to
saturate the inequality constraint. Furthermore, we note that if we for example
set v5 = 0 it forces v6 to zero as well. The W constraint however would become
a trivial constraint (a row with only zeros, so not an independent constraint
anymore). So in that case we would again fulfill exactly 5 nontrivial constraints
(2 saturated inequalities and 3 metabolite constraints). Since for any solution
of v we have Nv = 0 we note that setting v5 = 0 forces v6 = 0 and vice versa. In
the same way setting one of v2, v3 or v4 to zero forces the other two to zero as
well. We note that in all of these cases there are 5 nontrivial constraints active.
Setting v1 = 0 forces all other fluxes to zero. Hence there are only two viable
nontrivial EFMs:
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•EFM1 : v1 = 1, v2 = 1, v3 = 1, v4 = 1, v5 = 0 and v6 = 0.

•EFM2 : v1 = 1, v2 = 0, v3 = 0, v4 = 0, v5 = 1 and v6 = 1.

An FC is typically, without environmental conditions, an infinite solution
space. Because in practice there often are boundaries to the solution space, it
makes sense to also define finite versions of the EFMs. We do so as follows: For
a given EFM e with supp(e) = {i|ei > 0} we can take a (finite) vector v with
supp(v) = supp(e). In this paper, we will call such a vector v an Elementary
Flux State (EFS). The difference here between e and v is that e is a pointed
infinite extreme ray where v is a finite vector in the direction of e.

Definition 3: Elementary Flux State (EFS)
An Elementary Flux State is a finite vector on an EFM (which in this case
coincides with the extreme rays) of the flux cone FC.

This definition will be valuable later on in the paper. But let us for now leave
it as it is, and dive into the other fundamental technique in this paper, called
Flux Balance Analysis.

2.2.2 Flux Balance Analysis:

The other application that we will look at in this paper is running a linear pro-
gram over the solution space FC to find the optimal solution and most often
reproduction is chosen as the objective function. Clearly, running a linear pro-
gram is only possible if the flux cone is bounded (in the direction of the objective
function) and in order to make this happen, additional physiological constraints
are added to bind the FC into a "Flux Polyhedron", from now on referred to
as a FP . After these additional constraints are added such that the solution
space becomes a bounded polyhedron we can use the main theorem from linear
programming which says that the optimal solution will lie on one of the vertices
of the bounded polyhedron.

Flux Balance Analysis maximizes the objective function over this solution space.
Typically it assumes the network to be in steady state and uses constant upper-
and lower bounds for each flux, based on experimental data. To keep notation
further on in the paper relatively neat, we will here use a bit quirky notation
for the upper and lower bounds on the fluxes. As an objective function the
production of the desired substance is used, often the production of biomass is
chosen. If we put all of this together we obtain a linear program of the form:
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Maximize : cT v

Subject to : Sv = 0

and : LB ≤ v ≤ UB

Where cT v is the objective function, Sv = 0 is the steady-state assumption and
LB and UB are the upper bound and lower bound vectors of v.

2.2.3 Outlook

Both the concepts of EFMs and of FBA are designed for metabolic networks of
one single organism, hence one might question:

Can we just as easily apply the concepts of Elementary Flux Modes and Flux
Balance Analysis to communities of micro-organisms? i.e. Are these methods
scalable to function on communities of micro-organisms instead of on single or-
ganisms?

From a mathematical point of view this would be a logical next step. We
have the metabolic networks, so let us paste them together and reapply these
techniques. The devil here however is in the ratios between species, and their
variability. Theoretically if we take a community of 2 species with an exact
fixed ratio of 1:1, you could add the two networks together and look at them
as a single organism. Or if it was an exact fixed ratio of 2:1 instead of 1:1, you
could add the whole network of the first species again to the model so that the
community again could be seen as a single organism. In practice however, that
gives these methods a very limited reach in the application on communities of
micro-organisms. In any community of micro-organisms the ratios might vary
throughout time or they could only be expressed in integers using really large
numbers which would skyrocket the computing time. These issues can as of
now not be fixed with an easy trick. Therefore other approaches are needed to
analyze such communities of micro-organisms. For Flux Balance Analysis, as
we will see in the next section, such techniques already exist. In this paper we
will try to somehow mimic those techniques so that we can extend the use of
Elementary Flux Modes to communities of micro-organisms as well.

To fully understand how the ratios between species mess with the single organ-
ism techniques mathematically, let us go back to the constraints these methods
function upon. Up to now we had for an single micro-organism:

Sv = 0

here v is the flux vector with all the specific fluxes of the micro-organism in
mmol

hour∗gdw and S is the stochiometric matrix of the micro-organism. gwd here,
stands for the amount of the micro-organism in grams of dry weight. So it is
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the amount of mol going through as flux per hour, per amount of the micro-
organism. So if the amount of a certain micro-organism changes, it is not
reflected in its specific flux v (as the amount of (absolute) mmol rises with the
total gwd and it is therefore divided out). This means that the model, if applied
to a community of micro-organisms, is not altered if the ratio between species
changes and therefore the model will become a false representation of the com-
munity.

To mediate this we will rewrite v to v = V
X where V is the absolute flux in

mmol
hour and X is the biomass of the species in gwd. Hence our equation becomes:

S
V

X
= 0

Because for any non-trivial community X 6= 0 we can now also rewrite this to:

SV = 0.

In the case of a single organism, this equation is interchangeable with Sv = 0
because all specific fluxes v are multiplied by the same value of X to obtain the
absolute fluxes V . But if we have more than one species there will be different
values of X for different specific fluxes, which means that the absolute fluxes
V will change along with the different abundances X of the different species,
which solves the problem the equation Sv = 0 had. If we now apply this to a
community of n species we will have for every species i, that we multiply all the
specific fluxes vi with different amounts of Xi to get all the different absolute
fluxes Vi. Note that here every species also has its own stoichiometric matrix
Si so that in the case of n species we would get:

n∑
i=1

SiVi = 0.

Which exactly states that the whole community of micro-organisms as a whole
is at steady state. As this solves the issue that arose by changing ratios amongst
species, this will now become the basis for our approach of communities of micro-
organisms.

An additional practical reason that this change is necessary is that we cannot
write V as V = vX (with v as our variables because the specific abundances(Xi)
are all unknown and only the dry weight of the entire community (

∑n
i=1Xi)

can be measured, which inhibits us from using the specific fluxes as variables.

A final issue we should name before we dive any deeper, is caused by the
inevitable change in objective function in the case of the FBA. As we will now
consider a community of different species of microorganism there will not be
a clear objective anymore. Each species is in principle selected for its own re-
production and not for the reproduction of the whole community. On top of
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that, due to the often occurring inter-dependencies of the metabolic objectives
of the different organisms in the community, each organism’s objective function
is often directly or indirectly dependent on all the the other objective functions.

This can, generally speaking, best be solved by using a multi-objective opti-
mization technique. That however runs rapidly into computational issues. To
bypass that situation, it is common to assume a steady state community growth
rate i.e. a (constant across species) community growth rate. Although at any
specific moment in time this might not be the case, due to the steady state
assumption it should be the case on average throughout time. Therefore it is
likely that this average community growth rate will be a good estimator for
the growth rate of each specific species growth rate. All the methods from
here onward considered in this paper, including our own story, adhere to this
assumption.

2.3 Previous efforts to generalize FBA to communities
Later on in this paper our goal is to generalize Elementary Flux Modes (EFMs)
towards communities of micro-organisms. In this section we will look at two
techniques that do exactly that, but for Flux Balance Analysis (FBA). By an-
alyzing these two techniques we hope to find inspiration on how to do this for
Elementary Flux Modes (EFMs) as well. The two techniques we will consider
in this section are named cFBA and SteadCom. Both methods originate from a
normal (single organism) FBA, which is extended to form a "joint" FBA which
is tweaked until it is functioning properly. Here we should note that extensive
papers were written on both techniques and that the goal in this paper is to find
inspiration in them on how to go from a single organism to a community, not to
go thoroughly through their details. Therefore in this section sometimes we will
not go into detail in the exact reasoning of every step and be more concerned
with the crucial parts of them.

2.3.1 cFBA:

cFBA [2013] (community Flux Balance Analysis) is a technique that shows a
way around an earlier published method called OptCom [10], which uses an
multi-objective function as objective function for the entire community to ad-
just for the presence of several different species. OptCom however, is a tool that
is very heavy in computing and practically unfeasible for applications in larger
communities. By instead assuming balanced growth of the entire community
(as we discussed earlier), cFBA can use just a single objective function. And by
fixing one of the variables in the nonlinear model that they came up with, the
problem becomes linear, and in that way also solvable.

Balanced growth is here assumed to be: internal metabolism at steady-state
for all the organisms in the community, while the entire community grows at
a fixed (community) growth rate. This also implies that all metabolite levels
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in the community are at steady-state. Hence the mass balance equations of all
metabolites are set to zero.

As a start in the original paper, it is noted that three types of reactions in-
fluence the metabolite levels in the medium of the community: reactions that
produce or consume a metabolite, the production of biomass which uses or pro-
duces a metabolite, and the flow in or out of the environment of a metabolite.

Based on this observation, the researchers of [5] come up with the following
equations for all metabolites mi:

d

dt
mi =

nX∑
j=1

nR∑
k=1

nikqkjXj +

nX∑
j=1

gijµjXj +

nE∑
l=1

nilJl = 0

where nik, gij and nil are the dimensionless stoichiometric coefficients. qkj is
the reaction rate of reaction k in organism j, µj is the biomass production rate
of organism j and Jl is the total rate at which metabolite mi flows in or out
of the environment. Xj is the total biomass of species j. Furthermore, nX is
the number of species, nR is the number of metabolic reactions and nE is the
number of reactions that exchange substances in or out of the environment.

Since d
dtmi = 0 and the qkj ’s and µj ’s are constant, the researchers argue,

there are two possible cases:

• Either the biomasses Xj remain fixed ∀j, while Jl remains fixed ∀l, so that
the two balance out against each other. Where a constant biomass also implies
(biologically) that for all j µj = 0 i.e. that there is no growth, implying that
the entire second term is equal to zero.

• Or µi = µj = µC 6= 0 ∀ i, j i.e. all species grow at the same rate and Jl
also increases with this same factor µC . Here µC is the community growth rate.
In this case the biomasses Xj scale with the in/out flow Jl so that the total
equation remains equal to zero.

The first case could be biologically possible in certain specific occasions, but
the focus in the cFBA paper is on the second scenario.

The next step used in the cFBA method is to normalize the balanced growth
constraints by dividing both sides by the total sum of biomass

∑nX

j=1Xj(t).
Resulting in:

nX∑
j=1

φj(

nR∑
k=1

nikqkj + gijµC) +

nE∑
l=1

nilqil = 0

Where:

17



φj =
Xj(t)∑nX

j=1Xj(t)
and qil = Jil(t)∑nX

j=1Xj(t)

In this equation the φ’s (the mass-percentage of the total community that con-
sists out of species j) and the q’s are the only variables that can change in order
to maximize µC . This is however still a nonlinear problem as it has a product
of φ’s and q’s. Additionally, there are more variables than equations. To solve
the latter, first several constraints are added based on thermodynamic relations
that have to be measured/estimated for each flux experimentally (just like in
single species FBA) such that: qij,min ≤ qij ≤ qij,max. Now it is noted that
for the optimization of µC , µC is dependent on one or more qij,max that is/are
attained. And thus µC is optimized subject to some q.

To make this problem linearly solvable the φ’s are set to a fixed value in this
method. By then running the optimization over all values in the estimated
range of the φ’s the global optimum of µC can be found. This has been used
successively for communities of up to 5 species.[5]

By extensive rewriting, this model can be written as a linear program and
solved accordingly as follows:

maximize: µC
subject to:

C Φ q = 0

And:

qij,min ≤ qij ≤ qij,max

Where C is a matrix filled with constants, Φ is a matrix containing the φj ’s, and
thus the biomass’s (Xj) whose variables get new values in each iteration and q
is a vector consisting of the reaction variables (q) and the community growth
rate(µC).

To wrap it up, we have seen that cFBA has found a way to extrapolate FBA to
(small) communities of micro-organisms as well. Although it is not very scal-
able, it is neatly written down and quite intuitive. A big problem with it is
however that it is required that the total biomass of all the species as well as
their ratios between species are known. Especially in larger communities this
is often not the case. The assumption of a community growth rate is definitely
something we will take from this paper but on the further execution it might
be worth to explore other similar methods. Let us therefore look at another
technique in the next subsection.
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2.3.2 SteadyCom:

SteadyCom [2017] is the second technique we will analyze, it could be seen as
a reformulation of the cFBA but here we will derive SteadyCom from a combi-
nation of single organism FBA models to keep it as intuitive as possible.

Such a "joint" FBA is created by extending a single organism FBA model to a
multi-organism FBA model, which is basically achieved by pasting several FBA
models together.

For a single organism k we have the following FBA model:

max: vkbiomass
subject to:∑

j∈Jk

Skijv
k
j = 0 ∈ Ik

LBkj ≤ vkj ≤ UBkj ∀j ∈ Jk

Where: vkbiomass is the flux of biomass for species k(i.e. the reproduction flux),
which is assumed to be one of the fluxes of vk. vkj is the flux of reaction j of
species k, Skij is the stoichiometric coefficient for metabolite i in reaction j of
species k. And LBkj and UBkj are the upper and lower bounds for fluxes vkj .
Ik and Jk are respectively the set of metabolites and the set of reactions for
organism k.

By combining all these models we cover all the activity inside each of the cells.
However, next to the organisms themselves the space in between the cells ("The
community space" or medium) has also to be taken into account. So in order
to obtain a steady state for all metabolites the researchers of SteadyCom argue
we also need to have:

d

dt
mi = uci − eci +

∑
k∈K

vkex(i) = 0 ∀i ∈ Icom (5)

where: uci is the community uptake (inflow) of metabolite i, eji is the com-
munity export (outflow) of metabolite i and vkex(i) are the exchange reactions of
metabolite i between the community space and the individual organisms. And
Icom is the set of metabolites that are active in the community space. To stay
away from multiple objective functions the objective of the joint FBA becomes:

maximize:
∑
k∈K α

kvkbiomass
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where αk is the objective coefficient for the biomass flux of organism k (vkbiomass).
This however still does not guarantee a stable steady state growth. Therefore, it
is also assumed that all organisms grow at the same rate: vkbiomass = µC ∀ k ∈ K
Where µC is the (time averaged) community growth rate (just as in cFBA).
Equation (5) however, still has a problem with it. It implies that the exchange
reactions are a direct sum of the fluxes. This indirectly assumes that all species
have identical biomasses. Therefore, in a community application equation (5) is
incorrect. This is the same issue we ran into in the previous section. And this
is also where the earlier discussed approach stems from.

To improve the issue SteadyCom scales the optimization problem to the full
population by multiplying the specific fluxvkj by the biomass Xk (as we showed
before) so that we have: V kj = Xkvkj . Where V kj is the flux of reaction j for the
full population of species k. Now by replacing vkj by V kj in all the constraints
and by adding a constraint that the total biomass is nonzero, the optimization
problem becomes:

max µC

subject to:



∑
j∈Jk S

k
ijV

k
j = 0 ∀i ∈ Ik

LBkjX
k ≤ V kj ≤ UBkjXk ∀j ∈ Jk

V kbiomass = XkµC

Xk ≥ 0


∀k ∈ K

uci − eci +
∑
k∈K

V kex(i) = 0 ∀i ∈ Icom

∑
k∈K X

k = X0

eci ≥ 0 ∀i ∈ Icom

where X0 is the total community biomass. These new constraints force all
the constraints to hold for the full population of all the species. By the third
constraint the community composition remains stable. And by the second con-
straint a species can only generate a nonzero flux if both the flux of the cell
as well as the species biomass are nonzero. By fixing µC this problem becomes
linear and by iterating over values of µC and checking its feasibility µC,max can
be found. This generally takes less than 10 iterations and only depends on the
accuracy needed and the closeness of the initial guess to the actual value of
µC,max. [6]
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2.4 Comparison
Now, before we continue to create our own approach to analyze the "EFMs" of
communities, let’s look at what we can take from these two models. Both cFBA
and SteadyCom assume a community growth rate so that the community stays
in steady state. This assumption, as introduced by cFBA, is also quite practical
as it bypasses the need for several objective functions. This is the first thing
we will take from these FBA approaches. The second thing we can take from
both methods is that the community growth rate µC needs to be fixed in order
for the problem to become linearly solvable as neither of the methods found a
way to bypass this. The newer SteadyCom does have several advantages over
cFBA, most noteworthy for this paper is that it does not assume given ratios of
species in the community. A disadvantage of SteadyCom however is that it is
also less intuitive, as the population wide (absolute) flux is used instead of the
flux per organism. Both techniques have previously been shown to give very
similar results [6] so the approach we choose is mostly based on practicality in
this perspective. Because in this paper we rather not make the quite strong
assumption of knowing the ratios between species, we will in this paper use the
approach of SteadyCom as a starting point for our technique.

2.5 EFM generalization for communities
Instead of the optimization of the growth rate as in the last section, we now
want to generalize the notion of Elementary Flux Modes (EFMs) to the appli-
cation in a community. To do so we will use the SteadyCom approach, as it
is more widely applicable. Therefore, by completely following the SteadyCom
approach, but then in an "elementary modes" application we would have the
following model:



∑
j∈Jk S

k
ijV

k
j = 0 ∀i ∈ Ik

LBkjX
k ≤ V kj ≤ UBkjXk ∀j ∈ Jk

V kbiomass = XkµC

Xk ≥ 0


∀k ∈ K

uci − eci +
∑
k∈K

V kex(i) = 0 ∀i ∈ Icom

∑
k∈K X

k = X0

eci ≥ 0 ∀i ∈ Icom

where it is noteworthy that for an elementary modes application we are no
longer looking to optimize the community growth rate but we are rather look-
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ing for the extreme rays of the solution space. To obtain a model that is more
biology based we will remove the upper and lower bounds on the fluxes. but
we do need to replace them with a constraint that keeps them from going to
infinity as this is biologically impossible. To do so we assume that all reac-
tions are enzyme mediated and therefore we may introduce a constraint that
states that there is an enzyme constraint for each organism. Which leads to
an upper bound on the total flux for an organism. We write this as follows:
aiV

k
biomass +

∑
j∈Jk cijV

k
j ≤ UBkXk ∀ k ∈ K, where UBk is the upper bound

on the energy an organism k can spend on its reactions (which can be obtained
experimentally). And ai and cij are the corresponding weights of the reactions.
Since these last constraints are inequalities, slack variables (sk) are added to
form a buffer. Furthermore, in order for the chemostat to remain in steady
state the difference between the community uptake (uci ) and community export
(eci ) needs to grow with the community growth rate. Hence, we may replace
uci − eci with µCCi where Ci is a constant computed by taking the difference
between the concentration of metabolite i in the feed and the concentration of
metabolite i in the medium. Hence, we obtain the following model:



∑
j∈Jk S

k
ijV

k
j = 0 ∀i ∈ Ik

V kbiomass = XkµC

aiV
k
biomass +

∑
j∈Jk cijV

k
j + sk = UBkXk

V kj ≥ 0 ∀j ∈ Jk

Xk ≥ 0

sk ≥ 0



∀k ∈ K

∑
k∈K

V kex(i) − µCCi = 0 ∀i ∈ Icom

2.6 Functionality check via toy model
To learn to better understand the constraints of our new model, let us consider
the toy model in figure 4. The model has two organisms (A and B) that both
have two internal metabolites (mA

1 , mA
2 , mB

1 and mB
2 ) and with two external

metabolites (mE
1 and mE

2 ) in the community space. The community is placed
in a chemostat such that the uptake and export of the external metabolites only
depends on the concentration of the external metabolites itself and some con-
stant which is set by the experimenter. In that way, the steady-state community
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Figure 4: A toy model with 2 species in a community.

growth can be assured by not providing enough external metabolites for either
of the organisms to overgrow the other.

If we now apply our model from the previous section to this situation we see
that from the steady-state assumption we already have eight constraints for the
metabolites: a constraint for each of the four inner metabolites, a constraint for
the two biomasses and a constraint for the two external metabolites. Addition-
ally, we have a constraint on the total reactions of each of the organisms. If we
now put all of this into a matrix format we get the following (in-homogeneous)
system of equations:
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V A
1 V B

1 V A
mass V B

mass V A
ex1 V A

ex2 V B
ex1 V B

ex2 XA XB slack1 slack2

mI
A1 1 0 −1 0 −1 0 0 0 0 0 0 0

mI
A2 −1 0 0 0 0 1 0 0 0 0 0 0

mI
B1 0 1 0 −1 0 0 −1 0 0 0 0 0

mI
B2 0 −1 0 0 0 0 0 1 0 0 0 0

biomassA 0 0 1 0 0 0 0 0 −µc 0 0 0
biomassB 0 0 0 1 0 0 0 0 0 −µc 0 0

mE
1 0 0 0 0 1 0 0 −1 0 0 0 0

mE
2 0 0 0 0 0 −1 1 0 0 0 0 0

species A 1 0 1 0 1 1 0 0 −UBA 0 1 0
species B 0 1 0 1 0 0 1 1 0 −UBB 0 1





V A1
V B1
V Amass
V Bmass
V Aex1
V Aex2
V Bex1
V Bex2
XA

XB

slack1
slack2



=



0
0
0
0
0
0

Ctottrans 1
Ctottrans 2

0
0



Let us define this system of equations as:

Pq = r (6)

where P is the matrix and q and r are the vectors.

Now we would like to analyze the "EFMs" of this model, to see what an "Ele-
mentary Interaction Mode" of this community might look like. In order to do
so we want to look for support minimal solutions with one degree of freedom
(so that it forms an extreme ray). As this is quite a tedious task we use a
MATLAB package "efmtool" [11]. The calculation of elementary modes with
this tool however is only possible for homogeneous systems of equations while
our model is in-homogeneous. Hence we will now apply the transformation as
suggested by [12] and further worked out by [13] to homogenize our model.

let λ ≥ 0 ∈ R, Now let us set:

N =
(
P r

)
and v =

Å
q′

λ

ã
(7)

So that we have:
Nv =

(
P r

)Åq′
λ

ã
= 0 (8)

If we now obtain an EIM solution q′ for v, we may rescale it such that q = q′

λ
if λ > 0 and q = q′ if λ = 0. In this way we make a distinction between
homogeneous solutions (where λ = 0) and in-homogeneous solutions (where
λ > 0) while all the sizes are scaled back to the actual fluxes. Applied to our
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model this looks like:



V A
1

′ V B
1

′ V A
mass

′ V B
mass

′ V A
ex1

′ V A
ex2

′ V B
ex1

′ V B
ex2

′ XA′ XB ′ slack 1′ slack 2′ λ

mI
A1 1 0 −1 0 −1 0 0 0 0 0 0 0 0

mI
A2 −1 0 0 0 0 1 0 0 0 0 0 0 0

mI
B1 0 1 0 −1 0 0 −1 0 0 0 0 0 0

mI
B2 0 −1 0 0 0 0 0 1 0 0 0 0 0

biomassA 0 0 1 0 0 0 0 0 −µc 0 0 0 0
biomassB 0 0 0 1 0 0 0 0 0 −µc 0 0 0

mE
1 0 0 0 0 1 0 0 −1 0 0 0 0 Ctottrans 1

mE
2 0 0 0 0 0 −1 1 0 0 0 0 0 Ctottrans 2

species A 1 0 1 0 1 1 0 0 −UBA 0 1 0 0
species B 0 1 0 1 0 0 1 1 0 −UBB 0 1 0





V A1
′

V B1
′

V Amass
′

V Bmass
′

V Aex1
′

V Aex2
′

V Bex1
′

V Bex2
′

XA′

XB ′

slack 1′

slack 2′

λ



=



0
0
0
0
0
0
0
0
0
0



where λ ≥ 0. Now, let:

q′ = (V A1
′, V B1

′, V Amass
′, V Bmass

′, V Aex1
′, V Aex2

′, V Bex1
′, V Bex2

′, XA′, XB ′, sA′, sB ′)T

Then for each EIM q:
q = (q′, λ)T (9)

where q corresponds to a bounded EIM of the system of equations. To this
model we can now apply the MATLAB efmtool [11] that can calculate all the
EIM for the system, as can be seen in the figure below. For the code used, see
Appendix A.

Figure 5: The four elementary flux modes (vectors) of the toy model in the
columns. On the row the size of the fluxes for each of the "elementary flux
modes".
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As can be seen from the figure there are four elementary flux modes for the
toy model. In efv1 V Aex1 and V Bex1 are set to zero, therefore, this mode signifies
the case in which the species do not cooperate and both work separately on their
own biomass production. In efv2 all fluxes are positive, so this mode signifies
the case in which both work on their own biomass production but where addi-
tional energy is put into producing metabolites for the other species as well (in
exact equilibrium). In efv3 only V Bex1 is set to zero, and thus efv3 corresponds
to the mode in which the species together maximize the production of biomass
of species B. In efv4 only V Aex1 is set to zero and this mode thus corresponds to
the mode where the species work together to maximize production of biomass A.

As these modes correspond to the modes that a biologist would expect for
such a model, we may now start to generalize our model towards modelling any
community of 2 species.
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3 Model analysis:

3.1 Generalization for communities of 2 species

Now that we have a feeling for what such elementary modes look like, let us
rewrite the problem as sketched in the toy model, into a generally applicable
one of the form NV = 0, given a community with two species living in it, let us
set the following: if species i has p internal reactions and k exchange reactions:

V iin =


V i1
V i2
...
V ip

 V iex =


V iex1
V iex2
...

V iexk


Now that those are defined let us define V given two species (A and B) as
follows:

V =



V Ain
V Aex
V Am
V Bin
V Bex
V Bm
XA

XB

sA

sB

λ


where for species i: V im is the total biomass flux of species i, Xi is the total
biomass of species i, si is the slack variable for species i and λ is the additional
variable that was added to homogenize the problem.
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Now that V is defined, we can define the matrix N in the system of equations

NV = 0 with N =

ï
S
C

ò
where:

S =


V A
1 ···V A

j1
V A
ex 1 ···V

A
j2

V A
m V B

1 ···V B
j3

V B
ex 1 ···V

B
ex j4

V B
m XA XB sA sB λ

(mA
1 ...mA

k1
)
T SAin SAex 1 SAm 0 0 0 0 0 0 0 0

(mB
1 ...mB

k2
)
T 0 0 0 SBin SBex 1 SBm 0 0 0 0 0

(mE
1 ...mE

k3
)
T 0 SAex 2 0 0 SBex 2 0 0 0 0 0 Scomtrans

biomass A 0 0 1 0 0 0 −µ 0 0 0 0
biomass B 0 0 0 0 0 1 0 −µ 0 0 0


.

Here the first three columns represent all the reactions of species A (j1 internal,
j2 exchange and 1 biomass production reactions), the second three represent
all the reactions corresponding to species B ( j3 internal, j4 exchange and 1
biomass production reactions). The next two columns represent the produced
biomass of the two species, and the last three columns represent the slack vari-
ables for the two species and the λ variable which is used to homogenize the
model. The first two set of rows of S represent all the steady-state constraints
for the internal metabolites of the two species (k1 for species A and k2 for species
B). The third set of rows represents all the steady-state constraints for the k3
metabolites in the medium. The last two rows of S represent the constraint that
both the communities grow with the community growth rate. SAin represents the
stoichiometric submatrix of all the internal reactions of species A, and similarly
for the other S sub-matrices. Note here that SAm, SBm and Scomtrans are vectors
instead of matrices. So that the dimensions of S are:

# of columns of S =

4∑
i=1

ji + 7

# of rows of S =

3∑
i=1

ki + 2.

Furthermore:

C =

ï V A
1 ···V A

j1
V A
ex 1 ···V

A
j2

V A
m V B

1 ···V B
j3

V B
ex 1 ···V

B
ex j4

V B
m XA XB sA sB λ

species A c1 c2 c3 0 0 0 −UBA 0 1 0 0
species B 0 0 0 c4 c5 c6 0 −UBB 0 1 0

ò
where, the columns coincide with S and the two rows represent the con-

straints on the two species’ energy usage. The ci’s represent the row vectors
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with the weights (in energy) of each of the reactions. These two constraints put
the upper bound on the energy usage of the organisms. Here we note that the
sizes of C are:

# of columns of C =

4∑
i=1

ji + 7

# of rows of C = 2

If we now put S and C together to form the matrix N we obtain the following
system of equations:

NV =



V A
1 ···V A

j1
V A
ex 1 ···V

A
j2

V A
m V B

1 ···V B
j3

V B
ex 1 ···V

B
ex j4

V B
m XA XB s1 s2 λ(

mA
1 ...mA

k1

)T
SAin SAex 1 SAm 0 0 0 0 0 0 0 0(

mB
1 ...mB

k2

)T
0 0 0 SBin SBex 1 SBm 0 0 0 0 0(

mE
1 ...mE

k3

)T
0 SAex 2 0 0 SBex 2 0 0 0 0 0 Scomtrans

biomass A 0 0 1 0 0 0 −µ 0 0 0 0
biomass B 0 0 0 0 0 1 0 −µ 0 0 0
species A c1 c2 c3 0 0 0 −UBA 0 1 0 0
species B 0 0 0 c4 c5 c6 0 −UBB 0 1 0





V Ain
V Aex
V Am
V Bin
V Bex
V Bm
XA

XB

sA1
sB1
λ


= 0

Here we note that the sizes of N are:

# of columns of N =

4∑
i=1

ji + 7

# of rows of N =

3∑
i=1

ki + 4

We also note that the matrix N only depends on the community growth rate µ (both
direct as well as through Scomtrans) and on the community metabolite concentrations through
Scomtrans.

3.2 Moving towards the space of external metabolites
Since analysis on the variables presented in the previous paragraph will be rather chaotic, we
will in this section apply a variable transformation on the model. This variable transformation
only applies for the flux variables and therefore we will split the matrix up in the flux part of
N (left) and the non-flux part of N (right). The non-flux variables will be multiplied by an
identity matrix and in that way remain unchanged. To properly explain the implications of
this variable transformation, let us, for now, also reduce our model back to a community of
just one species. So that we have:

NV =



V1 ···Vj5
Vex 1 ···Vj6

Vm X s1 λ

(m1 ...mk4 )
T Sin Sex 1 Sm 0 0 0(

mE
1 ...mE

k5

)T
0 Sex 2 0 0 0 Scomtrans

biomass 0 0 1 −µ 0 λ
species c7 c8 c9 0 −UB 0

=0



Vin
Vex
Vm
X
s1
λ

 (10)

where there are k4 internal metabolites, k5 external metabolites, j5 internal fluxes, j6 exchange
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fluxes, X is the biomass of the organism, s1 is the slack variable and λ is the homogenezation
variable.
Let us first look just at the metabolite constraints on this community of one species, so that
we have:

N1LV =

ñ V1 ···Vj5
Vex 1 ···Vj6

Vm

(m1 ...mk4 )
T Sin Sex 1 Sm(

mE
1 ...mE

k5

)T
0 Sex 2 0

ôVinVex
Vm

 (11)

where N1L stands for the first left part of the constraint matrix N . We will now rewrite the
vector V into the product of the EFM matrix E times a scalar vector β as follows:

VinVex
Vm

 =
[
EFM1 · · ·EFMd

] β1...
βl0

 (12)

where the d EFMs of the organisms are the column vectors of matrix E and where for all
elements of vector β, βi ≥ 0. If we now plug equation 12 into equation 11, we obtain the
following equation:

N1LV = N1LEβ =

ï
Sin Sex 1 Sm
0 Sex 2 0

ò [
EFM1 · · ·EFMd

] β1...
βl0

 (13)

we note that in the matrix N , the first set of rows represent the constraints on the internal
metabolites and the second set of rows represent the constraints on the external metabolites.
We will now multiply matrix N with matrix E to obtain a new matrix which we will call
matrix G. To understand what matrix G will look like, let us first look at the product of the
first set of rows of matrix N and matrix E, and then afterwards we will look at the second set
of rows.

As we assumed internal steady state for all organisms in a community, also this organism
has an assumed internal steady-state. This implies that no internal metabolite will be ac-
cumulated nor depleted. As the EFMs of the organism are the extreme rays of the solution
space of the internal metabolism, and therefore part of the solution space, none of them will
have an accumulation or depletion of any of the metabolites. Therefore, the product of the
stoichiometry of any internal metabolite times any EFM is equal to zero. And thus the top
rows of matrix G will all consist of only zeros.

If we now look at the second set of rows of N, we note that these represent the constraints
of the external metabolites. So if we take one of these rows, we can read in it, from the
perspective of the medium, in which reactions that specific metabolite is used and in which it
is produced. As this only considers the fluxes that flow from the medium into the cell and the
fluxes that flow out of the cell into the medium, typically the product with E of these rows is
not equal to zero. Instead, the columns of these products will contain only parts of the EFMs.
Specifically, the only entries of these column vectors are the metabolites that enter or leave
the organism per EFM. We call these column vectors Elementary Conversion Modes.

Definition 4: Elementary Conversion Mode (ECM)
an ECM of an organism is the metabolic conversion of substrates into products in the medium
by the organism via the corresponding EFM (i.e. the conversion made by the EFM, as it is
seen from the medium).

Although often several EFMs correspond to the same ECM and the set of ECMs therefore is
often smaller than the set of EFMs of an organism, there could be at most "the number of
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EFMs" of ECMs.

The product of the matrices in equation 13 therefore becomes:

N1LEβ =

ï
Sin Sex 1 Sm
0 Sex 2 0

ò [
EFMs

] β1...
βl0

 = G1Lβ =

ï
0

ECMs

òβ1...
βl0

 (14)

where EFMs and ECMs are the (sub)matrices with in its columns the Elementary Flux /
Conversion Modes of the organism.

Let us now continue with the second part of the variable transformation. In the beginning of
this section we only considered the constraints on the metabolites. Let us now consider the
two additional constraints: the one on the growth rate of the organism and the one on the
enzyme-usage upper bound of the organism. In matrix format this looks as follows:

N2LV =

ï V1 ···Vj5
Vex 1 ···Vj6

Vm

biomass 0 0 1
species c7 c8 c9

òVinVex
Vm

 (15)

where N2L is the lower left part of matrix N, of the one species model. Here we again apply
the following variable transformation:VinVex

Vm

 =
[
EFM1 · · ·EFMd

] β1...
βl0

 (16)

So that we obtain the following product of matrices:

N2LV = N2LEβ =

ï V1 ···Vj5
Vex 1 ···Vj6

Vm

biomass 0 0 1
species c7 c8 c9

ò [
EFM1 · · ·EFMd

] β1...
βl0

 (17)

.
Here the product of N2L and E will form the lower left part of the new matrix G. The product
of the first row of N2L with matrix E now becomes a row vector of non-negative elements per
EFM which indicate whether and how much biomass that specific EFM produces. We will
call this row vector the biomass indicator of the organism denoted by e.

The second row of N2L contains the weights on the enzyme usage of every reaction and
thus, multiplied with the EFMs these become the weights of each of the EFMs (and so also
of each of the ECMs) we will denote this row vector by w. Note that here, it does make
sense to keep double ECMs coming from different EFMs in the model, because although the
ECMs might coincide with each other (in reactions), they come from different EFMs and so
the enzyme usage might differ. Thus, the product of these matrices will become:

N2LEβ =

ï V1 ···Vj5
Vex 1 ···Vj6

Vm

biomass 0 0 1
species c7 c8 c9

ò [
EFMs

] β1...
βl0

 =

= G2Lβ =

ï
e
w

òβ1...
βl0


(18)

.
If we now put this together with equation 13 we obtain the complete left side of matrix G for
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this single species community:

GLβ =


0

ECMs
e
w


β1...
βl0

 (19)

.
Together with the unchanged right hand side this gives us:

Gβ =


β1 ... βl0 X s1 λ

(m1 ...mk4 )
T 0 0 0 0(

mE
1 ...mE

k3

)T
ECMs 0 0 Scomtrans

biomass e −µ 0 0
species w −UB 1 0




β1
...
βl0
X
s1
λ

 =


0
0
0
0

 (20)

where the upper set of rows of course are trivial constraints. In the next subsection we will
apply this variable transformation to the 2 species model of the previous section.

3.2.1 Variable Transformation on 2 Species Model
Let us remind ourselves of the model of a community with 2 species of microorganisms we
had before:

NV =



V A
1 ···V A

j1
V A
ex 1 ···V

A
j2

V A
m V B

1 ···V B
j3

V B
ex 1 ···V

B
ex j4

V B
m XA XB s1 s2 λ(

mA
1 ...mA

k1

)T
SAin SAex 1 SAm 0 0 0 0 0 0 0 0(

mB
1 ...mB

k2

)T
0 0 0 SBin SBex 1 SBm 0 0 0 0 0(

mE
1 ...mE

k3

)T
0 SAex 2 0 0 SBex 2 0 0 0 0 0 Scomtrans

biomass A 0 0 1 0 0 0 −µ 0 0 0 0
biomass B 0 0 0 0 0 1 0 −µ 0 0 0
species A c1 c2 c3 0 0 0 −UBA 0 1 0 0
species B 0 0 0 c4 c5 c6 0 −UBB 0 1 0





V Ain
V Aex
V Am
V Bin
V Bex
V Bm
XA

XB

sA1
sB1
λ


= 0

.

Here we will apply the variable transformation, as written out in the beginning of this section,
on the vector V. As there are now 2 species in the community we will apply this transformation
to both species. Also, instead of the 3 non-flux variables we had for a one species model we now
have 5 non-flux variables (an additional biomass and an additional slack variable). Therefore
we will apply the following transformation:



V Ain
V Aex
V Am
V Bin
V Bex
V Bm
XA

XB

sA1
sB1
λ


=

[EFMsA
] [

EFMsB
] [

I5×5
]




βA1
...
βAl1
βB1
...
βBl2
XA

XB

sA1
sB1
λ
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where the 5 non-flux variables are multiplied with the identity matrix so that they remain
unchanged. Furthermore, l1 are the number of EFMs of organism A and l2 are the number
of EFMs of organism B. If we now plug this transformation into the 2 species model we had
before, we obtain:

N · E · β =



SAin SAex 1 SAm 0 0 0 0 0 0 0 0
0 0 0 SBin SBex 1 SBm 0 0 0 0 0
0 SAex 2 0 0 SBex 2 0 0 0 0 0 Scomtrans
0 0 1 0 0 0 −µ 0 0 0 0
0 0 0 0 0 1 0 −µ 0 0 0
1 1 1 0 0 0 −UBA 0 1 0 0
0 0 0 1 1 1 0 −UBB 0 1 0


[EFMsA

] [
EFMsB

] [
I5×5

]




βA1
...
βAl1
βB1
...
βBl2
XA

XB

sA1
sB1
λ


.
Here we should note that this equation is just twice equation 11 on the first 6 sets of columns
(column 3 and 6 are just regular columns) and a multiplication with the identity matrix for
the last 5 columns. Therefore, after multiplication we obtain:

N · E · β = G · β =



0 0 0 0 0 0 0
0 0 0 0 0 0 0

ECMsA ECMsB 0 0 0 0 Scomtrans
eA 0 −µ 0 0 0 0
0 eB 0 −µ 0 0 0
wA 0 −UBA 0 1 0 0
0 wB 0 −UBB 0 1 0





βA1
...
βAl1
βB1
...
βBl2
XA

XB

sA1
sB1
λ


where the first two sets of columns are just twice the column as displayed in equation 18
and the other 5 columns are unchanged with respect to matrix N. As the upper two sets of
rows have now become trivial constraints we may reduce our model to the following system
of equations:

G · β =



βA
1 ... βA

l1
βB
1 ... βB

l2
XA XB sA1 sB1 λ(

mE
1 ...mE

k3

)T
ECMsA ECMsB 0 0 0 0 Scomtrans

biomass A eA 0 −µ 0 0 0 0
biomass B 0 eB 0 −µ 0 0 0
species A wA 0 −UBA 0 1 0 0
species B 0 wB 0 −UBB 0 1 0





βA1
...
βAl1
βB1
...
βBl2
XA

XB

sA1
sB1
λ



=


0
0
0
0
0



where k3 is the number of metabolites in the medium, l1 is the number of EFMs for organism
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A and l2 is the number of EFMs for organism B. Here we additionally note that:

# of columns of G =

2∑
j=1

(lj + 2) + 1 = l1 + l2 + 5

# of rows of G = k3 + 4.

We will now look at the interdependence between the constraints in this model. First, we
note that aside from the k3 + 4 constraints in the matrix format, all variables in the vector
β have an additional non-negativity constraint. If we now further analyze the model we see
that:

• Setting the biomass of organism A (XA) to zero forces all the scalars of the ECMs
of organism A (βA’s) and the slack variable of organism A (s1) to zero because the
enzyme-usage upper bound then becomes zero. The same reasoning holds for organism
B.

• Setting either one of the slack variables to zero implies that the upper bound inequality
of the corresponding species becomes an equality constraint, which forces all its ECMs
to perfectly balance with its biomass. Which makes many combinations of ECMs
infeasible.

• Setting λ to zero excludes all inhomogeneous solutions. Forcing the ECMs of both
organisms to perfectly balance out each metabolite in the community.

Therefore, it should be clear that the constraints of this model are, without further assump-
tions, generally not independent.

3.3 Generalizations for communities of n species
In this section we will prove a few theorems on communities of n species. To do so, let us start
by generalizing the matrix G towards a community of n species. As this already was a rather
chaotic task with two species, we will here for n species only write out the changes it implies
for the dimensions of G. As we saw before, every added organism adds a biomass variable
and a slack variable to the system of equations and of course its own ECM scalars, it also ads
two constraints (the growth rate constraint and the enzyme-usage constraint). Therefore, the
new dimensions of G for an community with n species become:

# of columns of G =

n∑
j=1

(lj + 2) + 1 = ltot + 2n+ 1

# of rows of G = k3 + 2n

where: lj is the number of ECMs (equal to the number of EFMs) of species i and ltot =∑n
j=1 lj . k3 is the number of active metabolites in the community space.

We also note that in a community, which grows at a certain community growth rate µ
and which has a given vector C0 (which depend on the external metabolite concentrations),
the solution space for a non-negative flux vector v can again be described geometrically by a
pointed cone (a "flux cone") From now on this solution space will be referred to as FCcom.

Definition 5: Elementary Interaction Modes (EIMs)
We define the set of Elementary Interaction Modes as the extreme rays of the community
flux cone FCcom which depends on the community growth rate µ and the external metabolite
concentrations through Ci.
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Note that the EIMs can be either an infinite extreme ray, in the case where λ = 0 or a finite
extreme ray for the case in which λ = 1 as the set of EIMs span the entire community flux
cone FCcom. Any steady-state metabolic behaviour of a community of micro-organism can
be described by a convex combination of its EIMs.

3.3.1 Upper Bound on the number of ECMs used in an EIM

Theorem 1: Every EIM of a community in which n species are present, which has a positive
biomass (X) for all species and a positive particularity variable (λ) uses at most k3+s0 ECMs.
Where k3 is the number of active metabolites in the community space and s0 is the number
of slack variables equal to zero.

Proof: If we have an EIM β, by definition such an extreme ray has one degree of freedom.
Hence, we may rewrite its constraint matrix into a matrix with one column more than the
number of independent rows. We may assume the constraint matrix to be full row rank (since
if it were not full row rank it could be reduced to a full row rank matrix without changing the
solution space of vectors satisfying its constraints). Hence, if there are p independent rows in
the constraint matrix of β, it must now have exactly p+ 1 nonzero columns. In order for the
constraint matrix to fulfill this definition, all variables in vector β will be set to zero except
for a subset of p+ 1 variables. This reduces the number of columns of the constraint matrix
to the required amount. Note: if such a subset of variables does not exist, the corresponding
EIM also does not exist. Therefore, β will have at most k3 + 2n + 1 nonzero variables as
there are at most k3 + 2n independent rows (p ≤ k3 + 2n). We note that all variables also
have non-negativity constraints so that all nonzero variables have to be positive. Since we
assumed all the X variables and λ to be strictly positive (together n + 1 variables) we have
at most k3 + n additional variables that can be strictly positive. Let us now set s0 to the
number of slack variables that are equal to zero. Since there are n slack variables we have
s0 ∈ {0, 1, 2, . . . , n}. Since we have a total of at most k3 + n additional positive variables we
have at most k3 + n − (n − s0) = k3 + s0 positive variables for the ECMs. Hence at most
k3 + s0 ECMs (and thus at most k3 + s0 EFMs) will be used in such an EIM.

3.3.2 Community uses at maximal µ at most n EIMs
We note that the model is dependent only on the variables µ and Scomtrans. Where Scomtrans in
itself is dependent on µ and C, where C is the vector with constant Ci for every metabolite
i (the difference between the concentration of metabolite i in the feed, and the concentration
of metabolite i in the medium). As we know, Theorem 1 holds for any constant community
growth rate µ. Therefore, we know it also holds for the maximal µ. This is interesting as it
is likely that a community will grow at a maximal growth rate as the organisms are selected
to do so by evolution. In this subsection we will analyze the complexity of the model when it
operates at a maximal community growth rate µ. Let us start doing so by making our model
clearer by rewriting Scomtrans = µC where C is the vector with constants Ci for every metabolite
i. This rewriting yields the following model:
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βA
1 ... βA

l1
βB
1 ... βB

l2
XA XB sA1 sB1 λ(

mE
1 ...mE

k3

)T
ECMsA ECMsB 0 0 0 0 µC

biomass A eA 0 −µ 0 0 0 0
biomass B 0 eB 0 −µ 0 0 0
species A wA 0 −UBA 0 1 0 0
species B 0 wB 0 −UBB 0 1 0





βA1
...
βAl1
βB1
...
βBl2
XA

XB

sA1
sB1
λ



=


0
0
0
0
0



note here that the upper bounds are intrinsic to the organisms and therefore generally are
fixed. If we now also de-homogenize the model back to its original form, we obtain:



βA
1 ... βA

l1
βB
1 ... βB

l2
XA XB sA1 sB1(

mE
1 ...mE

k3

)T
ECMsA ECMsB 0 0 0 0

biomass A eA 0 −µ 0 0 0
biomass B 0 eB 0 −µ 0 0
species A wA 0 −UBA 0 1 0
species B 0 wB 0 −UBB 0 1





βA1
...
βAl1
βB1
...
βBl2
XA

XB

sA1
sB1



= µ


C
0
0
0
0



which from now on we will refer to as the system of equations G(µ)β = µb(C), where β ≥ 0.

Let us also, in order to be able to better analyze the implications for the model, write out
the system of equations G(µ)β = µb(C), with for clarity n = 2 , we obtain:
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∀mi :
ltot∑
j=1

gijβj = µCi

biomass A :

l1∑
j=1

1jβ
A
j − µXA = 0

biomass B :

l2∑
j=1

1jβ
B
j − µXB = 0

species A :

l1∑
j=1

wAj β
A
j + s1 − UBAXA = 0

species B :

l2∑
j=1

wBj β
B
j + s2 − UBBXB = 0

non− negativity : βij ≥ 0, Xi ≥ 0, si ≥ 0

where mi are the metabolites in the community space, gij are the values of G(µ) in the
left upper block corresponding to the ECM coefficients, 1j are the indicator variables which
indicate whether the corresponding ECM produces biomass. wj are the enzyme-usage weights
of the ECMs. We note from the metabolite constraints that if we now set µ = (1 + α)µ0, we
obtain βj = (1+α)βj0 for all βj . If we now increase µ we see that all βj increase linearly with
it. Therefore, to maintain all equations (specifically the combination of both the metabolite
equations and the the mass equations) we obtain that both XA and XB are independent of
µ. Hence with increasing µ and thus increasing β’s, the last two equations indicate that since
the UBA and UBB are also independent of µ these equations can only be maintained in case
both sA and sB decrease as well. Therefore, we obtain: sA = sA0 − (1 + α)

∑l1
j=1 w

A
j β

A
j0

and

sB = sB0 − (1 + α)
∑l2
j=1 w

B
j β

B
j0
. Since we have sA ≥ 0 and sB ≥ 0, µ cannot be increased

infinitely. Hence, If we start with a set of EIMs for a system of equations given a low µ, by
increasing µ, the lower bounds of the slack variables will be violated at some point. Hence
for both the slack variables there will be some EIM that is the last EIM to violate the lower
bound ( and since the point at which this happens is dependent on the specific weights of the
specific ECMs it is practically impossible that more than one EIMs remain upto the same
µ). The EIS that exactly meets this lower bound will have an optimal µ = µmaxi . Hence,
the overall maximal µ will be either µmaxA , µmaxB or a convex combination of two (possibly
other) growth rates Since in the application of a chemostat we can indeed aim the evolution-
ary power towards the maximal growth rate, we expect that after a sufficient amount of time
this optimal growth rate will be obtained and that therefore at most 2 (number of species)
EIMs will be used in this setting. This in turn, by theorem 1, gives us an upper bound on
the number of ECMs and thus on the number of EFMs used by the community. Let us now
generalize this upper bound in the following theorem.

Theorem 2: In a community with n species that grows at the optimal community
growth rate, the community will use a convex combination of at most n EIMs.
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Proof:
Let us take a community with n species that grows at the optimal community growth rate.
Then for each species there will be an upper bound constraint that binds the reactions of the
corresponding organism, hence for each of these organisms there will be an EIM that is the
last to remain feasible while increasing the community growth rate. Therefore either one of
these n EIMs or a convex combination of a subset of these n EIMs will attain the optimal
community growth rate. Hence a convex combination of at most n EIMs will be used in the
community.

As mentioned before, by combining Theorem 1 and Theorem 2, we can give an upper

bound on the number of EFMs that is used in a community. To show this let us consider the
following example:

Example 3: In a community with 2 active species and 3 metabolites in the community
space, that grows at the optimal community growth rate, we know by Theorem 2 that at most
2 EIMs are used. For each of those EIMs we know by Theorem 1 that at most 3(external
metabolites)+2(at most two slack variables will be equal to zero) =5 ECMs (thus 5 EFMs)
are used. Hence in the community at most 10 EFMs will be used.

Especially in small controlled environments such as research facilities or industrial reactors
such an upper bound can give a good indication of the expected complexity of the commu-
nity. In Appendix B, an additional theorem is featured which would prove that EIMs are
continuous with respect to the community transfer vector C and the community growth rate
µ. Due to its complexity and lack of time however, it has not been possible to include it in
this paper. Together with the two theorems of this paper this continuity theorem would make
the framework of the EIMs a more practical approach to determine the expected complexity
of communities of micro-organisms.
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4 Discussion
As is well known by now, micro-organisms form a big part of life on earth. Until quite re-
cently however, the understanding of those micro-organisms were relatively low, but due to
the technological development in the research area, the level of understanding has massively
been improved. Especially for single micro-organisms many methods have already been de-
signed to analyze their behaviour. The two examples of such techniques in this paper are Flux
Balance Analysis (FBA) and the concept of Elementary Flux Modes (EFMs). By using these
kind of techniques a lot of the behaviour of these micro-organisms can be quantified and in
that way be predicted. With this information, it would now also be very interesting to be
able to analyze how micro-organisms interact with one another in a larger environment. To
do so, efforts are made to extend these techniques for single micro-organisms to also function
in communities of micro-organisms. As was shown in the first part of the paper, several ap-
proaches have already been published to do just that for FBA. In this paper an attempt is
made to design such an extension towards communities for EFMs too. The resulting Elemen-
tary Interaction Modes (EIMs) form mathematically speaking the basic building blocks for
communities of microorganisms that grow together at a steady state in a controlled environ-
ment. To construct this method, the earlier published methods on the "FBA extension" were
taken as inspiration. This new generalized method was subsequently mathematically analyzed
in the end of this paper. Resulting in two theorems that together provide an upper bound on
the expected metabolic complexity of communities of micro-organisms. This can have many
applications in varying fields such medicine or industrial engineering. Furthermore, it can also
streamline further research on communities of microorganisms.

As this paper gives a good starting point for computationally analyzing communities of mi-
croorganisms it also creates several interesting opportunities that were not covered in this
paper. Topics for further research might be:

• the proposal in Appendix B, the model now assumes constant community growth rate
µ and C, the vector with constant Ci for every metabolite i (which is the difference be-
tween the concentration of metabolite i in the feed, and the concentration of metabolite
i in the medium). But biologically speaking these variables might vary and it would
therefore be interesting to see if EIMs are continuous with respect to µ and C.

• We already looked at the EIMs at a maximal community growth rate but if the EIMs
are indeed continuous with respect to µ, it would be interesting to see how the EIMs
react to slight changes in µ.

• If the EIMs are indeed also continuous with respect to C, it would also be interesting to
see how the EIMs react to changes in C. As it is biologically speaking not very logical
that C, the communities exchange with the environment, would remain constant at all
times.

A final word:

This bachelor project covers some new ground with some actual new results, and this was
very exiting for me. The idea was that although the subject was potentially a bit challenging
for a bachelors project, with on site supervision and my interest in the subject it would be
doable. However, due to the global COVID-19 pandemic I was forced to do my research from
home instead of full-time on site at the Systems Biology department of the VU in Amsterdam.
Both content wise as well as socially this negatively impacted my progress and because of that
it has been more difficult than anticipated to conduct my research. In particular I would have
liked to also finalize theorem 3 (Appendix B) and to include it in the body text of my thesis.
Nevertheless, I trust that my project can still be helpful to me or other researchers in the
future.
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A Matlab Code

1 clear all
2
3 cgr = 0.8; %community growth rate
4 C1 = 0.5; %uptake constant metabolite mE1
5 C2 = 0.6; %uptake constant metabolite mE2
6 concmE1 = 0.3; %concentration external metabolite 1
7 concmE2 = 0.4; %concentration external metabolite 2
8 comm_tr_mE1 = cgr*(C1−concmE1); %total community transport external metabolite 1
9 comm_tr_mE2 = cgr*(C2−concmE2); %total community transport external metabolite 2

10 UB_A = 20; %upper bound for all reactions in organism A
11 UB_B = 20; %upper bound for all reactions in organism B
12
13
14 % Stoichiometric matrix:
15 S = [1 0 −1 0 −1 0 0 0 0 0 0 0 0;
16 −1 0 0 0 0 1 0 0 0 0 0 0 0;
17 0 1 0 −1 0 0 −1 0 0 0 0 0 0;
18 0 −1 0 0 0 0 0 1 0 0 0 0 0;
19 0 0 1 0 0 0 0 0 −cgr 0 0 0 0;
20 0 0 0 1 0 0 0 0 0 −cgr 0 0 0;
21 0 0 0 0 1 0 0 −1 0 0 0 0 comm_tr_mE1;
22 0 0 0 0 0 −1 1 0 0 0 0 0 comm_tr_mE2];
23
24
25 % Sum of fluxes is maximally UB_I * X_I
26 CF=[1 0 1 0 1 1 0 0 −UB_A 0 1 0 0;
27 0 1 0 1 0 0 1 1 0 −UB_B 0 1 0];
28
29 S=[S;CF];
30 %metabs = [mA1,mA2,mB1,mB2,massA,massB,mex1,mex2]
31 %r =[VA1; VB1; VAmass; VBmass; VAex1; VAex2; VBex1; VBex2; XA; XB; slack1; slack2;

lambda]
32 r= zeros(length(S(1,:)),1); %all values have to be positive −−> all "irreversible"
33
34 mnet = CalculateFluxModes(S,r);
35
36 efvs= mnet.efms;
37 [numRows,numCols] = size(efvs);
38
39 for i = 1:numCols %normalize EFVs to lambda=1 so that all values are actual fluxes.
40 if efvs(numRows,i) == 0
41 efvs(:,i) = efvs(:,i);
42 else
43 efvs(:,i)= efvs(:,i)/efvs(numRows,i);
44 end
45 end
46
47 rowNames = {'VA1', 'VB1', 'VAmass', 'VBmass', 'VAex1', 'VAex2', 'VBex1', 'VBex2', '

XA', 'XB', 'slack 1', 'slack 2', 'lambda'};
48 efv = efvs;
49 EFV_table = array2table(efv,'RowNames',rowNames)
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B Are EIMs continuous w.r.t. µ and C ?
This section is still a draft version. The idea here was to slightly alter theorem 3 of [14] which
relies on the Implicit Function Theorem, so that it would fit this paper. During this bachelor
project I have not been able to work this out properly but it would have been an interesting
feature. If it was finished it would have been fitted in after paragraph 3.3.1. The setup here
in the appendix will be as follows: First we will discuss the additional mathematics needed to
understand the use of the theorem. Then, we will consider the original theorem in [14] and
how this needs to be altered to fit this paper. Afterwards we will do the same for the proof.

Let us start with the basics: µ and C were up to now assumed to be constant but
biologically speaking this is a bit awkward as they often may vary. Therefore, we would like
to understand how the EIMs react to changes in µ an C. To do so we will analyze how a
(unique) fixed point on an EIM changes after a change in the variables. But in order to achieve
that we will first have to introduce a bit more mathematical background for our model. Let
us go back to our model:



βA
1 ... βA

l1
βB
1 ... βB

l2
XA XB sA1 sB1(

mE
1 ...mE

k3

)T
ECMsA ECMsB 0 0 0 0

biomass A eA 0 −µ 0 0 0
biomass B 0 eB 0 −µ 0 0
species A wA 0 −UBA 0 1 0
species B 0 wB 0 −UBB 0 1





βA1
...
βAl1
βB1
...
βBl2
XA

XB

sA1
sB1



= µ


C
0
0
0
0



which we will refer to as the system of equations G(µ)β = µb(C), where β ≥ 0.

G is here an (k3 + 2n) × (ltot + 2n + 1) matrix. Let us assume ltot ≥ k3 so that G has
more columns than rows. Let us now set rank(G) = m. And let us reduce the matrix G
to a matrix with m rows such that there are no row-dependencies in G. Now because G has
more columns than rows there are degrees of freedom in the matrix. Therefore, in general, the
solution of β is not unique (This is also why we can find EIMs with one degree of freedom).
But at this moment we are looking for unique solutions of β. In order to be able to find an
unique solution of β, G needs to be square and invertible. To make G square we may choose
a set D of columns of G, so that GD (G restricted to the columns in D) is a square matrix. If
GD is also invertible we will call D a basis for G. For every basis D we have a unique solution
for β namely, βD = µ(GD)−1b(C), where all elements of β that are not in D are set to zero.
If all the elements of βD also adhere to the constraint that β ≥ 0, then we call basis D a
feasible basis and the corresponding βD a basic feasible solution. It can however be, that one
of the elements of βD is zero. Therefore we have in general that:

supp(v) ⊆ D.

Let us now define these unique solutions as follows:

Definition 6: Elementary Interaction State (EIS)
An EIS is a fixed unique solution βD on an EIM where βD = µ(GD)−1b(C).

With this definition we now have a framework of EISs and EIMs which works analo-
gously to the framework of EGSs (Elementary Growth States) and EGMs (Elementary Growth

42



Modes) as was constructed in [14]. The theory behind that framework is not very relavant in
this paper but if you are interested in it, it can be found in the original paper. Theorem 3 of
that paper states the following:

"Theorem 3. For a given growth rate µ0 and set of metabolite concentrations x0, there ex-
ists an open neighbourhood U such that for all (x, µ) ∈ U , each EGS with support equal to
its feasible basis, α(x0, µ0), can be continuously extended to a vector α(x, µ) that solves the
balanced growth equations and belongs to the same EGM."[14]

Here the "balanced growth equations" refer to the system of equations that are used in the
paper which are similar to our system of equations G(µ)β = µb(C). If we now alter this
theorem to fit this paper, we replace EGS with EIS, EGM by EIM and instead of the set of
metabolite concentrations x we have the "community transfer vector" C. Additionally our
EIS will be called β instead of α as in the original paper. Together these alterations give us
the following theorem:

Theorem 3: For a given growth rate µ0 and a given community transfer vector C0

there exists an open neighbourhood U such that for all (µ,C0) ∈ U , each EIS with support
equal to its feasible basis β(µ0, C0) can be continuously extended to a vector β(µ,C) that
solves the balanced growth equations and belongs to the same EIM.

Let us for the proof of this theorem first look at the proof of the original paper, here the exact
interpretation of all the formulas are not of interest, but the blueprint is (especially the use
of the Implicit Function Theorem).

"Proof: Choose an arbitrary EGS α0 ∈ Rn+1. We know that it solves:

B(x0, µ0)α0 = µ0um+1, α0 ≥ 0.

The EGS has a feasible basis D, and without loss of generality we restrict B(x0, µ0) to the
columns indexed in D. As discussed before, we can select a set of rows corresponding to
independent metabolites with non-zero concentrations such that the resulting matrix is square
and invertible. We may therefore choose n = m and the dimension of B to be (m+1)×(m+1).

We would like to apply the Implicit Function Theorem to see that there are continuously
differentiable functions α̂j , j = 1, . . . ,m + 1, such that in an open environment of (x0, µ0),
the Balanced Growth Equations are still met: B(x0, µ0)α0 = µ0um+1. Since the α̂j(x, µ) are
continuous, and since no αj(x0, µ0) is equal to zero by the assumption in the Theorem, we
can then also choose a neighbourhood in which α̂(x, µ) ≥ 0. This α̂(µ) would thus indeed be
a continuous extension of the EGS that belongs to the same EGM, since its support does not
change.

Let s be the number of components in x. For the Implicit Function Theorem we need a
function F : Rm+1 × Rs+1 −→ Rm+1 that is zero at (α0, x0, µ0). For this function, we can
use the Balanced Growth equations as components: the first m are given by:

Fk(α, x, µ) :=
m∑
j=1

((xkαj − Pkj)
fj(x)

µ
+ xkbj −Mkj)ajgj(x)+

(xkbm+1 −Mk(m+1))αm+1gm+1(x) = 0

(21)

where k = 1, . . . ,m. The last component is given by:

Fk(α, x, µ) := am+1gm+1(x)− µ = 0 (22)
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Let us check the conditions for the Implicit Function Theorem:

The function F : Rm+1 ×Rs+1 −→ Rm+1 with components given by (21) and (22) is contin-
uously differentiable in α, x, and µ in a neighbourhood of (α0, x0, µ0).

By assumption, (α0, x0, µ0) is a solution of the balanced growth equations: F (α0, x0, µ0) = 0.

The entries of the Jacobian of F at (α0, x0, µ0) with respect to α are, for k = 1. . . ,m,
given by

Jkj =
δFk

δαj
= ((x0,kaj − Pkj)

fj(x0)

µ0
+ x0,kbj −Mkj)gj(x0);

and the last row of the Jacobian is zero except for the last entry, which is gm+1(x). Note
that this Jacobian is exactly the matrix B(x0, µ0), which was invertible by construction.

The IFT may therefore be invoked, which shows that for each EGS at (x0, µ0), with sup-
port equal to its feasible basis, there is an open neighbourhood around (x0, µ0) such that the
EGS can be continuously extended. By taking the intersection of these neighbourhoods we
can indeed find a neighbourhood in which all of the EGSs can be extended."[14]

If we now replace the EGS framework by the EIS framework we replace the balanced growth
equations by our own balance growth equations G(µ)β = µb(C). To let the application of the
Implicit Function Theorem work in this case as well we will replace the continuously differen-
tiable function F by F (β, µ, C) = G(µ)β − µb(C). This yields us the following proof:

Proof: Choose an arbitrary EIS: β0 ∈ Rltot+4, with support equal to its feasible basis. By
definition it solves:

G(µ0)β0 = µ0b(C0), β0 ≥ 0.

This EIS has a feasible basis D, and without loss of generality we may restrict G(µ0) to the
columns indexed in D. As discussed before we can select a set of rows corresponding to in-
dependent metabolites with non-zero concentrations such that the resulting matrix is square
and invertible. We may therefore choose ltot = K3 where K3 is the number of independent
metabolites with non-zero concentrations. Hence the dimensions of G are (K3+4)× (K3+4).

Now, we would like to apply the Implicit Function Theorem to see that there exist K3 + 4
continuously differentiable functions β̂j(µ,C) that together form the vector β̂ such that in
an open neighborhood around (µ0, C0) the system of equations G(µ)β̂ = µb(C) is still met.
Since the functions β̂j(µ,C) are continuous, and since no βj(µ0, C0) ∈ β0 is equal to zero by
assumption in the theorem, we can then also choose a neighborhood in which β̂ ≥ 0. This β̂
would thus indeed be a continuous extension of the EIS that belongs to the same EIM, since
its support does not change.

For the Implicit Function Theorem we need a continuous differentiable function F : RK3+4 ×
R1+K3 −→ RK3+4 that is zero at (µ0, C0). That has an invertible Jacobian matrix. For
this function we can use the system of equations G(µ)β = µb(C) so that F (β, µ, C) =
G(µ)β − µb(C). We note:

• F : RK3+4 × R1+K3 −→ RK3+4 is continuously differentiable in β, µ and in C in
a neighborhood of (β0, µ0, C0). To see this, note that a composition of functions is
continuously differentiable if all of its components are, which clearly is the case as all
functions are mere linear combinations.

• By assumption (β0, µ0, C0) is a solution of F (β, µ, C) = 0.

• The entries of the Jacobian matrix of F ( δFk
δβj

) are exactly equal to the entries of matrix
G, which was invertible by construction (both G(µ) and µb(C) are independent of β,
hence the Jacobian of F = G(µ)β − µb(C) is exactly equal to G(µ)).
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Hence the IFT may be invoked. This shows that for each EIS at (µ0, C0) with support equal
to its feasible basis, there is an open neighborhood around (µ0, C0) such that the EIS can be
continuously extended. By taking the intersection of these neighborhoods we can indeed find
a neighborhood in which all of the EIS can be extended.
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