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A B S T R A C T

Closed hyperelliptic Riemann surfaces can be represented by a
class of polygons in the hyperbolic plane, called admissible or
hyperelliptic polygons. In this thesis we study this relation, and
derive conditions on the vertices of a hyperbolic polygon as to
be admissible. Furthermore, we apply our representation of a
closed hyperelliptic Riemann surface M by an admissible poly-
gon to solve a specific problem: given a non-contractible closed
curve α on M, we provide algorithms to calculate the unique
closed geodesic β homotopic to α, as well as a homotopy from
α to β.
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Part I

I N T R O D U C T I O N A N D S T U D Y





1
I N T R O D U C T I O N

One of the core concepts of topology and geometry is that we
may construct surfaces by gluing together sides of a polygon in
the plane. A basic example is that of the torus, which we can
construct by identifying opposite sides of a rectangle in the Eu-
clidean plane. This allows us, for instance, to study curves on
the torus by studying its corresponding segments in this rect-
angle.

The main topic of this thesis is the description of a particular
class of surfaces, the closed hyperelliptic (Riemann) surfaces.
We may describe each hyperelliptic surface by a polygon in the
hyperbolic plane. Such a polygon will belong to a subset of hy-
perbolic polygons that are called admissible or hyperelliptic (see
figure 1. The relation between hyperelliptic surfaces and admis-
sible polygons was first shown by Schaller [7]. If a hyperelliptic
surface is provided with a bit of extra structure, a so-called
marking, this relation is one-to-one. The coordinates of 2g− 1
vertices of such polygons can be used to parametrize the space
of marked hyperelliptic surfaces. In this thesis we will describe
the space of possible vertices in the hyperbolic disk for admis-
sible polygons. This will build on results from [1] on closed
Riemann surfaces of genus 2, which are all hyperelliptic.

Furthermore, we will look at a specific computational prob-
lem on hyperelliptic Riemann surfaces. Each non-contractible
closed curve on a Riemann surface is homotopic to a unique
closed geodesic. We provide an algorithm that, given a non-
contractible closed curve, computes this closed geodesic, as well
as an algorithm that computes a homotopy from the closed
curve to the closed geodesic explicitly.

In Chapter 2 we recall some necessary background. We will
briefly describe some of the basics on hyperbolic geometry, Rie-
mann surfaces and Fuchsian groups, and spend some time on
markings and Teichmüller space. In Chapter 3 we will move
on to hyperelliptic Riemann surfaces. We will define admissi-
ble polygons and hyperellipticity, and provide an exposition of
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Figure 1: An admissible octagon in the Poincaré disk model the hy-
perbolic plane. By identifying its opposite sides as indicated
by the arrows, we obtain a closed hyperelliptic surface of
genus 2.

the results of Schaller which relate the two. In Chapter 4, we
investigate the space of admissible polygons, and find a condi-
tion on the vertices of a symmetric polygon as to be admissible.
In Chapter 5 we will construe algorithms for finding the homo-
topic closed geodesic of a curve on a hyperelliptic surface, and
moreover find a homotopy. Finally, we present a discussion of
the thesis and its results in Chapter 6.



2
B A C K G R O U N D

We will first briefly describe the setting in which the questions
of this thesis appear, that of hyperbolic geometry. For a similar
brief overview see [1] as well, and for a more detailed discus-
sion see for instance [2] and [3].

2.1 the hyperbolic plane

We use the Poincaré disk model of two dimensional hyperbolic
space. It consists of the points in the unit disk

D = {z ∈ C||z| < 1}

together with the metric

ds2 =
4(dx2 + dy2)

(1− x2 − y2)2
.

The geodesics in this space consist of circular arcs which meet
the boundary of D perpendicularly. The isometries of the Poincaré
disk which preserve orientation are the maps{

z 7→ az+ b

b̄z+ ā
| a,b ∈ C, |a|2 − |b|2 = 1

}
,

on D, where we let c̄ denote the complex conjugate of a com-
plex number c. These transformations form a subgroup of the
group of Möbius transformations of the extended complex plane.

We can classify the orientation preserving isometries which are
not the identity by their fixed points in D. Those with one fixed
point in the interior of D (and hence none on the boundary) are
called elliptic. Those with a double fixed point on the boundary
are called parabolic. Those with two distinct fixed points on the
boundary interior are called hyperbolic.
A hyperbolic transformation φ has an attracting fixed point ξ+
and a repelling fixed point ξ−, in the sense that limn→±∞φn(z) =
ξ± for any z ∈ D. The geodesic between the two fixed points of
a hyperbolic transformation φ is called the axis Aφ of the trans-
formation. Applying a hyperbolic transformation to a point in
D will move it along an equidistant of the axis. In particular,
the distance d(z,φ(z)) is minimal if and only if z lies on Aφ.

11



12 background

2.2 hyperbolic polygons

We define an n-sided hyperbolic polygon P, or hyperbolic n-gon, to
be a region in D bounded by n geodesic segments (called sides
or edges), which do not mutually intersect except at their end-
points (called vertices).

Unlike the Euclidean case, the area of a hyperbolic polygon
is fully determined by the interior angles at its interior ver-
tices. For an n-sided hyperbolic polygon P with internal angles
α0, . . . ,αn−1, we have the following:

areaP = (n− 2)π−

n−1∑
i=0

αi. (1)

We now consider a hyperbolic polygon P with 4g sides
b0, . . . ,b4g−1 and internal angles α0, . . . ,α4g−1, g ∈ N,g > 2

which satisfies

• The lengths of opposite sides are equal, i.e. `(bi) = `(bi+2g),
i = 0, . . . , 2g− 1,

• The internal angles of P sum to 2π, i.e.
∑4g−1
i=0 αi = 2π.

If we now glue together its opposite sides as in figure 2, we
will obtain a closed Riemann surface M of genus g. The hy-
perbolic isometries that send a side to its opposite side, called
the side-pairings, generate a discrete subgroup of the group of
isometries on D, and are called the Fuchsian group of M, which
we will denote by Γ . By Poincaré’s polygon theorem [6], the Rie-
mann surface M is then quotient space of D under the action
of the Fuchsian group Γ , i.e. M = D/Γ .

Conversely, on every compact Riemann surface M of genus
g > 2 we can construct 2g simple geodesic loops with the same
base point, and obtain a hyperbolic 4g-gon if we cut open M
along them.

Throughout the rest of this thesis, we will use the term surface
for a compact Riemann surface of genus g > 2.

2.3 markings and teichmüller space

We have noted that we can construct any closed surface of
genus g > 2 by gluing the sides of a hyperbolic polygon. This
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Figure 2: A hyperbolic polygon P whose internal angles sum to 2π
and whose opposite sides have equal (hyperbolic) length.

correspondence is not one-to-one however; many hyperbolic
polygons correspond to the same surface. The (moduli) space of
all closed surfaces of genus g turns out to be difficult to study
directly. We will find it easier to study the space of marked (Rie-
mann) surfaces.

Definition 1 Let F be a fixed orientable compact smooth surface of
genus g. A marked (Riemann) surface (M,φ) is a compact Riemann
surface M together with a homeomorphism φ : F → M, called a
marking homeomorphism.

Definition 2 Two marked surfaces (M1,φ1) and (M2,φ2) are said
to be marking equivalent if there exists an isometry χ : M1 → M2

such that χ ◦φ1 and φ2 are isotopic. Teichmüller space Tg is the set
of all equivalence classes of marked surfaces of genus g.

Here isotopy is a homotopy between homeomorphisms whose
"intermediate maps" are also homeomorphisms, in the follow-
ing sense:

Definition 3 Let M, M ′ be two surfaces, and φ0,φ1 homeomor-
phisms from M to M ′. Then φ0 and φ1 are isotopic if there exists
a continuous mapping J : [0, 1]×M→M ′ such that
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1. J is a homotopy from φ0 to φ1,

2. For any s ∈ [0, 1], the map Js : M → M ′ defined by Js(t) =

J(s, t) is a homeomorphism.

A different way to define a marking on a Riemann space is
through a set of labeled curves, sometimes called a star set.

Definition 4 Let M be closed surface of genus g. A star set on M
is an ordered set S = {γ1, . . . ,γ2g} of geodesic loops on M which all
mutually intersect at a single point p ∈ M, and only at that point.
That is γi ∩ γj = {p} for all i 6= j. We will call S a geodesic star set if
γ1 and γ2 are closed geodesics.

Note that there is a distinction between a geodesic loop and a
closed geodesic. A geodesic loop need not be smooth at its base
point, while a closed geodesic is. Zieschang, Vogt and Cold-
ewey showed that a marking equivalence class on a marked
surface M corresponds uniquely to a geodesic star set defined
on M (see [3], Section 6.7). This gives us the following charac-
terization of Teichmüller space:

Theorem 5 Let Sg be the space of closed surfaces of genus g > 2

with a geodesic star set defined on it. Then there is a one-to-one corre-
spondence between Sg and Teichmüller space Tg.

Teichmüller space Tg has a natural real analytic structure, home-
omorphic to R6g−6 (see [3], Section 6.3). So in particular, we
need 6g− 6 real parameters to specify a marked surface in Tg.

For a more in depth look at Teichmüller spaces, see for instance
[3], [4] and [5].



3
A S T U D Y O F T H E R E L AT I O N B E T W E E N
A D M I S S I B L E P O LY G O N S A N D H Y P E R E L L I P T I C
S U R FA C E S

Now that we have recalled the necessary background, it is time
to delve into the main topic of this thesis.

3.1 admissible polygons

We have introduced Teichmüller space, and seen a few ways in
which we can describe it. In their article ’Hyperbolic octagons
and Teichmüller space in genus 2’ [1], Aigon-Dupuy et al. in-
vestigate a parametrization of Teichmüller space of genus 2 by
a certain set of octagons, those that they call admissible:

Definition 6 Let P be a hyperbolic octagon in D with vertices
z0, . . . , z7, which satisfies

1. z0 lies in the interval (0, 1) on the real axis,

2. zk+4 = zk, k = 0, 1, 2, 3, i.e. the polygon is symmetric.

We say P is admissible if the sum of its internal angles is 2π.

See figure 3. Note that since P is symmetric, its opposite sides
have equal length. So if it is admissible, we can glue together
opposite sides as in figure 3 to obtain a (compact Riemann) sur-
face of genus 2. If we label the sides of the polygon, they will
give us a marking on this surface as well.

It has long been known that such admissible octagons are in
one-to-one correspondence with Teichmüller space of genus 2.
Aigon-Dupuy et al. show how we may choose vertices in D

in such a way that the resulting octagon is admissible, and
how this description relates to a few other descriptions of Te-
ichmüller space. Their main goal in doing so is to provide tools
for computation and numerical experimentation on compact
Riemann surfaces of genus 2.
Our question is the following: can we extend the results of
Aigon-Dupuy to closed surfaces higher genus? We look at the
straightforward generalization of admissible polygons in higher
genus:

15
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Figure 3: An admissible octagon.

Definition 7 Let g ∈ N,g > 2, and let P be a 4g-gon in the hyper-
bolic disk with vertices z0, . . . , z4g−1, which satisfies

1. z0 lies in the interval (0, 1) on the real axis,

2. zk+2g = zk, k = 0, . . . , 2g− 1, i.e. the polygon is symmetric.

We say P is admissible if the sum of its internal angles is 2π.

The first thing to note is that these polygons cannot parametrize
Teichmüller space in general: each such polygon is fully deter-
mined by its 2g vertices, which together with the restriction
on z0 and the internal angles gives us only 4g− 2 real param-
eters, while Teichmüller space needs 6g − 6. Only in the case
that g = 2 these coincide.

Instead, what we will find is that these admissible polygons
correspond to the hyperelliptic surfaces1. This was first shown
by Schaller [7]. All closed (Riemann) surfaces of genus 2 are
hyperelliptic, which is why admissible octagons can be used
to parametrize the entirety of Teichmüller space for genus two.
We will present Schaller’s result in detail in the next section.

1 For this reason, they are sometimes referred to as hyperelliptic polygons.
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3.2 correspondence to hyperelliptic surfaces

As is the case for Riemann surfaces in general, there exist many
equivalent definitions of hyperellipticity. Some are more alge-
braic in nature, some more geometric. As we take a geometric
approach to surfaces in this thesis, it makes sense to take a ge-
ometric definition. We use the following, for compact Riemann
surfaces:

Definition 8 Let M be a compact Riemann surface of genus g > 2.
We say M is hyperelliptic if there exists an isometry φ : M → M

which has exactly 2g+ 2 fixed points onM and φ2 = id (the identity
on M).

Such an isometry φ is called an involution. We will look at the
following result of Schaller [7]:

Theorem 9 Let M be a closed Riemann surface of genus g. The fol-
lowing are equivalent:

1. M is hyperelliptic.

2. There exists a set of at least 2g− 2 simple closed geodesics that
all meet in one point, and nowhere else.

3. There exists a set of 2g simple closed geodesics on M that all
meet in one point, and nowhere else.

4. M corresponds to an admissible polygon, i.e. there is an admis-
sible polygon P such that identifying its opposite sides gives us
M.

Proof. We will prove 1⇒ 2⇒ 3⇒ 4⇒ 1.
(1 ⇒ 2): Suppose M is hyperelliptic. Then by definition there
exists an isometry φ : M → M with fixed points A1, . . . ,A2g+2
and φ2 = id. Define h1 to be a simple geodesic from A1 to A2.
Since φ is smooth and A1,A2 are fixed points, u1 = h1 ∩φ(h1)
is a closed geodesic. We note the following:

• u1 does not contain any fixed points of φ other than A1
and A2, as this would imply there exists a non-trivial
Möbius transformation with 3 fixed points. Note that in
particular, this implies that u1 is simple.

• M \ u1 is connected; if it were not, then φ would have to
map its two connected components either both to them-
selves or both to the other component. Since φ is locally
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a π-rotation at its fixed points, it must be that it maps
each component to the other. However, since there are still
other fixed points of φ which do not lie on u1, this cannot
be the case.

So we have constructed a simple closed geodesic on M using
fixed points A1 and A2. We will continue in the same vein, us-
ing the other fixed points.
First, we cut open the surface M along u1 to obtain M1 =

M \u1, which will be a (g− 1, 2)-surface. Now we take h2 to be
a simple geodesic from a copy of A1 on one of the boundaries
to A3. Then u2 = h2 ∩φ(h2) is again a closed geodesic on M.
Moreover, since h2 only meets u1 in A1, φ(h2) will only meet
φ(u1) = u1 in A1, so u1 ∩ u2 = A1.

If we cut open M1 across u2, we obtain a (g− 1, 1)-surface M2.
We can repeat what we did above; we use the fixed point Ai+1
to create a new closed geodesic ui and cut along it to obtain Mi.
The surfaceMi will be connected by exactly the same argument
as before. We do this until we have 2g− 2 closed geodesics and
obtain the desired result.

(2 ⇒ 3): Suppose we have a set S2g−2 = {u1, . . . ,u2g−2} of sim-
ple closed geodesics that all meet, and only meet, in some point
p ∈ M. We cut open the surface M along u1 to obtain the sur-
face M1 \u1. Since the remaining u2, . . . ,u2g−2 did not meet u1
but in p, and there intersected u1 transversally, they are now
geodesics between the two distinct copies of u1 on M1. Hence
it is clearM1 is connected and a (g− 1, 2)-surface. If we now cut
M1 open along u2 to obtainM2 =M1 \u2, we obtain a (g−1, 1)-
surface. If g > 2, we can cut open M2 along u3, . . . ,u2g−2, and
by the same arguments as above, we will end up with a (1, 1)-
surface M2g−2.

Now, we note that the boundary of M2g−2 consists of 4g − 4
geodesic segments, corresponding to copies of u1, . . . ,u2g−2.
Each ui has two copies on this boundary, and they are opposite
to each other on the boundary (this follows from the fact that
the geodesics meet transversally in p). We may assume without
loss of generality that the u1, . . . ,u2g−2 were labeled such that
the clockwise order of the geodesic segments on the boundary
is u1, . . . ,u2g−2,u1, . . . ,u2g−2.

Let q and q ′ be the two distinct points on the boundary of
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M2g−2 where a copy of u1 and a copy of u2g−2 meet. Then we
can define u2g−1 to be a geodesic from q to q ′ which is not ho-
motopic to the boundary. We cut M2g−2 open along our new
u2g−1 to obtain M2g−1, which is a cylinder. The way in which
we chose q and q ′ now ensures that each of it boundary com-
ponents consists of copies of u1, . . . ,u2g−1, and in order when
going around the boundary. We repeat the same trick by letting
r and r ′ be the two distinct points where u1 and u2g−1 meet on
M2g−1, and let u2g be a geodesic between r and r ′. We cut open
M2g−1 along u2g, and see that we have now obtained a hyper-
bolic polygon P with 4g sides. Its opposite sides correspond to
the same geodesic ui.

From the construction it is clear that u2g−1 and u2g become
simple closed loops on M that only meet each other, and each
of the other u1, . . . ,u2g−2, in p. What remains is to prove that
they are smooth at p. We prove this on the polygon P. For this
we will need the following lemma:

Lemma 10 Let T be a hyperbolic triangle with sides of length a,b, c,
opposite to angles α,β,γ respectively. Let T ′ be another hyperbolic
triangle with sides of length a ′,b ′, c ′ opposite to angles α ′,β ′,γ ′

which satisfies a ′ = a and b ′ = b. Then

c ′ > c⇐⇒ γ ′ > γ⇐⇒ α ′ +β ′ < α+β.

Proof. We use the fact that

cosh c = cosha coshb− sinha sinhb cosγ. (2)

We can then already see that

c ′ > c⇐⇒ cosh c ′ > cosh c,
⇐⇒ cosγ ′ < cosγ,
⇐⇒ γ ′ > γ.

Now let m be the midpoint of the side of length c opposite to
γ, and let u be the geodesic segment between m and the vertex
associated to γ (see figure). Write `(u) = d

2 . If we now attach
two copies of the triangle T as in figure 4, we see that we obtain
a quadrangle. The two copies of u form a diagonal which splits
the quadrangle into two triangles. Again applying formula (2),
we see that

cosha = cosh
c

2
cosh

d

2
− sinh

c

2
sinh

d

2
cos δ,

coshb = cosh
c

2
cosh

d

2
+ sinh

c

2
sinh

d

2
cos δ.
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Figure 4: Two copies of T , attached at the side with length c.

So

cosha+ coshb = 2 cosh
c

2
cosh

d

2
.

If we keep a and b fixed we see that, as c increases, d decreases.
If d decreases, then so does α+ β by the first part of the proof.

Corollary 11 Let Q and Q ′ be two hyperbolic quadrilaterals with
the sides a,b, c,d and a ′,b ′, c ′,d ′ respectively, which follow in the
same order (say, clockwise) around the quadrilaterals. Suppose

(`(a), `(b), `(c), `(d)) = (`(a ′), `(b ′), `(c ′), `(d ′)),

and let α,β,γ, δ and α ′,β ′,γ ′, δ ′ be the internal angles, where corre-
sponding symbols (e.g. α,α ′) denote angles between sides of the same
length. Then

α+ γ > α ′ + γ ′ ⇐⇒ β+ δ < β ′ + δ ′.

Proof. We draw diagonals e, e ′ in Q and Q ′. By the first equiv-
alence of the lemma,

α > α ′ ⇐⇒ `(e) > `(e ′),
⇐⇒ γ > γ ′,

and the result follows from the second equivalence of the lemma.

We go back to our polygon P. Let z0 be a vertex where two sides
corresponding to u1 and u2g meet, and label the other vertices
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Figure 5: The geodesic loops u1, . . . ,u2g meeting at p on the surface
M

such that zi and zi+2g are the vertices where ui and ui−1 meet,
and going around the polygon gives the vertices z0, . . . , z4g−1 in
order. Let αi be the internal angle of the polygon at the vertex
zi. Note that the αi and αi+2g correspond to the angles ui and
ui+1 make on the surface, as in figure 5, where we let u0 = u2g.
Since u1, . . . ,u2g−2 at least are closed geodesics, we see that
αi = αi+2g for i = 0, . . . 2g− 3. Also,

α2g−2 +α4g−1 = α2g−1 +α4g−2.

If we can prove αi = αi+2g for i = 2g− 2, 2g− 1 as well, we can
can conclude u2g−1 and u2g are closed geodesics as well.

Let d be the geodesic between z2g−1 and z4g−1, d1 the geodesic
between z2g−3 and z4g−3. See figure 6.
The geodesics d, d1 and d2 divide the polygon in 4 compo-
nents. Let Vi be the component with di among its sides, but
not d, and let Wi be the component with both di and d among
its sides. Now, since αi = αi+2g for i = 0, . . . 2g− 3, V1 and V2
are isometric and `(d1) = `(d2). Therefore, W1 and W2 must
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Figure 6: The polygon P and geodesics d,d1,d2.

be quadrilaterals with the same side lengths. Now suppose W1

and W2 are isometric. Then we certainly have α2g−2 + α4g−1 =
α2g−1 + α4g−2. If we now try to keep W1 fixed and try to vary
W2 by varying its angles, corollary 11 implies that we cannot do
so while keeping α2g−2 + α4g−1 = α2g−1 + α4g−2. For instance,
increasing α2g−2 increases α4g−1 as well, while decreasing α2g−1.
Therefore W1 and W2 must be isometric, and αi = αi+ 2g for
all i = 0, . . . , 4g− 1. With this, we have then proved u1, . . . ,u2g
are all closed geodesics.

(3 ⇒ 4) Suppose we have a set S2g = {u1, . . . ,u2g} of simple
closed geodesics that all meet, and only meet, in some point
p ∈ M. If we look at the proof of (2 ⇒ 3) above, we see that
most of the work is already done: we see that by cutting along
M open along all ui results in a hyperbolic polygon with op-
posite sides of equal length and equal opposite angles that
sum to 2π. We translate and rotate the polygon by isometries
in the hyperbolic disk such that z0 lies on the real axis, and
z2g−1 = −z0. The upper half of the polygon defined by the
vertices z0, z1 . . . , z2g−1 is isometric to its lower half defined by
the vertices z2g−1, z2g, . . . , z0, and we see that zi+2g = −zi for
i = 0, . . . , 2g − 1. Hence we M corresponds to an admissible
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polygon.

(4 ⇒ 1) Suppose we have an admissible polygon P that cor-
responds to the surface M. The projection to M of the map
φ : z 7→ −z on P has exactly 2g+ 2 fixed points: 2g coming from
the midpoints of the sides, one from the point corresponding
to the vertices, and one from the origin. Moreover, it is not the
identity, but φ2 is the identity on P, and hence its projection to
M is the identity on M. We conclude M is hyperelliptic, and
the proof is finished.

Note that this theorem and its proof tell us that an admissi-
ble polygon gives us a closed hyperelliptic surface, on which
the curves corresponding to its sides form what we defined as
a geodesic star set (see section 2). Hence we see that an admissi-
ble polygon with labeled sides corresponds to a unique marked
hyperelliptic surface, and we have the following:

Corollary 12 The marked closed hyperelliptic surfaces of genus g are
in one-to-one correspondence to the set of admissible 4g-gons.

Note again that in the case of genus 2, all surfaces are hyperel-
liptic, so that the admissible octagons correspond to the entirety
of Teichmüller space, as we noted earlier. For higher genus this
is however not the case, and the results we will obtain will not
pertain to Teichmüller space in general.
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C O N S T R U C T I N G A D M I S S I B L E P O LY G O N S

We have established that we may use admissible polygons to
describe hyperelliptic Riemann surfaces. We now wish to see
what the space of admissible polygons looks like. We can con-
struct a symmetric 4g-gon by choosing 2g vertices in the up-
per half of the hyperbolic disk, D+ = {z ∈ D| Im z > 0}, and
letting zi+2g = zi, i = 0, . . . , 2g − 1. But clearly, such a poly-
gon need not be admissible; we will want to require that z0
lies on (0, 1), and that its internal angles add up to π. So we
will pursue the following question: given z1, . . . , z2g−1 ∈ D+,
can we find a suitable z0 so that the polygon with vertices
z0, . . . , z2g−1,−z0, . . . ,−z2g−1 is admissible?

Let us first fix some notation and definitions for ease of ex-
position. We denote by P[z, . . . , z2g−1] the symmetric hyperbolic
polygon with vertices z0, . . . , z2g−1,−z0, . . . ,−z2g−1. See figure
7. It will be convenient to work with just the upper half of
the symmetric polygon as well, so for z ∈ [0, 1] we will de-
note by D[z, z1, . . . , z2g−1] the hyperbolic polygon with vertices
z, . . . , z2g−1,−z. This is a (2g+ 1)-gon if z is not 0 and a 2g-gon
if it is. We now define what it means for a set of 2g points in
D+ to be admissible:

Definition 13 Let z1, . . . , z2g−1 ∈ D be such that

0 < arg z1 < · · · < arg z2g−1 < π.

Then z1, . . . , z2g−1 are called admissible if there exists a z0 ∈ (0, 1)
such that P[z0, . . . , z2g−1] is admissible.

Our main question becomes: when are z1, . . . , z2g−1 ∈ D+ ad-
missible? We will deduce the following criterion:

Theorem 14 Let z1, . . . , z2g−1 ∈ D be such that

0 < arg z1 < · · · < arg z2g−1 < π. (3)

Then z1, . . . , z2g−1 are admissible if and only if

arg ((1− z̄1)(1+ z2g−1)) +

2g−2∑
k=1

arg (1− zkz̄k+1) > (g− 1)π.

(4)

27
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z

z1

z2

z2g−1

−z

z2g+1

z4g−1

0

D

Figure 7: A symmetric hyperbolic polygon which we denote
by P[z, z1, . . . , z2g−1. The upper half we denote by
D[z, z1, . . . , z2g−1].

If they are, then there exists a unique z0 such that P[z0, . . . , z2g−1] is
admissible. This z0 is given by

z0 =
2c

−b±
√
b2 − 4ac

, (5)

where

a = Im−uz̄1z2g−1,
b = Im((−z̄1 + z2g−1)u),
c = Imu,

u = (−1)g
2g−2∏
k=1

(1− zkz̄k+1).

Note that the theorem not only gives a criterion for admissibil-
ity for vertices z1, . . . , z2g−1, but also tells that there is a only
one admissible polygon that incorporates these vertices. More-
over, it shows us how we may calculate the missing vertex, z0.

Proof. Suppose we have z1, . . . , z2g−1 such that (3) is satisfied.
We wish to find a z0 on (0, 1) such that the internal angles of
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P[z0, . . . , z2g−1] sum to 2π. Equivalently, we want that the inter-
nal angles of its upper half D[z0, . . . , z2g−1] sum to π. By the
area formula for hyperbolic polygons, this is true if the area of
D[z0, . . . , z2g−1] is (2g− 2)π.

We note that the area of D = D[z, . . . , z2g−1] becomes that of a
2g-gon as z goes to 0, which is smaller than (2g− 2)π. Further-
more, the area ofD is strictly increasing as z increases along the
real axis. So taking the limit of z to 1, we see that z1, . . . , z2g−1
are admissible if and only if the area of D[1, z1, . . . , z2g−1] is
bigger than (2g− 2)π. It also shows us that a suitable z0 for ad-
missible z1, . . . , z2g−1 will be unique.

To derive the criterion given in (4), we calculate the area of
D[1, z1, . . . , z2g−1]. For this we use the following lemma:

Lemma 15 Let z1, z2 ∈ D s.t. 0 < arg z1 < arg z2 < π. Then the
area of the hyperbolic triangle with vertices 0, z1 and z2 is given by

area T = 2 arg(1− z1z̄2).

A proof is given in the appendix of [1]. Using the lemma, we
can find

areaD = 2 arg(1− z̄1) + 2
2g−2∑
i=1

arg(1− zkz̄k+1) + 2 arg(1+ z2g−1).

So we find the criterion for admissibility is

arg(1− z̄1) +
2g−2∑
i=1

arg(1− zkz̄k+1) + arg(1+ z2g−1) > (g− 1)π.

As the first and last term are both smaller than π
2 (as they rep-

resent half the area of an hyperbolic triangle), we may rewrite
this as

arg ((1− z̄1)(1+ z2g−1)) +

2g−2∑
k=1

arg (1− zkz̄k+1) > (g− 1)π.

All that is left is to calculate z0, given that z1, . . . , z2g−1 are ad-
missible. We need that

(g− 1)π =

2g−1∑
k=0

arg (1− zkz̄k),

= arg((1− z0z̄1)(1+ z2g−1z0)) +
2g−2∑
k=1

arg (1− zkz̄k+1).
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Since we assume z1, . . . , z2g−1 are admissible and the first term
is between 0 and π, the second term must be between (g− 2)π

and (g − 1)π. We note that if g is even, this implies that the
second term can be written as

2g−2∑
k=1

arg (1− zkz̄k+1) = (g− 2)π+ arg(
2g−2∏
k=1

(1− zkz̄k+1)),

= (g− 2)π+ arg(u),

while if g is odd,

2g−2∑
k=1

arg(1− zkz̄k+1) = (g− 2)π+ arg(−
2g−2∏
k=1

(1− zkz̄k+1)),

= (g− 2)π+ arg(u).

With this, our requirement for z0 becomes

π = arg ((1− z0z̄1)(1+ z2g−1z0)u)

where we know the right hand side is not 0. Hence we may also
write this as

0 = Im ((1− z0z̄1)(1+ z2g−1z0)(−1)
g
2g−2∏
k=1

(1− zkz̄k+1)),

= az20 + bz0 + c.

We deduce that z0 = ± 2c

−b±
√
b2−4ac

. To see that it is the solution

with the plus sign that we are looking for, note 0 < arg(u) < π,
and hence c = Imu > 0. We now look at the cases a > 0 and
a < 0.
If a < 0, b2− 4ac > b2, so that the solution with the minus sign
lies in (−∞, 0).
For the case a > 0, first note that (4) implies

π < arg ((1− z̄1)(1+ z2g−1)) + arg(u).

We see that a + b + c < 0. Hence a > 0 and c > 0 implies
that b < 0. Now, a+ b+ c < 0 also implies −a > b+ c. There-
fore, b2 − 4ac > b2 + 4bc+ 4c2 = (−b− 2c)2. We conclude that√
b2 − 4ac > −b − 2c, and −b −

√
b2 − 4ac < 2c. So we find

that 2c

−b−
√
b2−4ac

> 1, and the solution with the minus sign

again does not lie in (0,1).
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Let us compare this to the case of genus 2, as described in
Aigon-Dupuy et al. We note that in the case of genus 2, the
(−1)g-term plays no role, and the coefficients a,b, c are those
given in Aigon-Dupuy et al. The criterium (4) for admissibility
becomes a sum of only 4 terms, which are each smaller than π

2 .
It can therefore be restated more neatly as

a+ b+ c = Im((1− z̄1)(1+ z3)

2∏
k=1

(1− zkz̄k+1)) < 0,

as in Aigon-Dupuy. This condition, a+ b+ c < 0, is necessary
but not sufficient for admissibility in higher genus, because it
includes the z1, . . . , z2g−1 that can form a symmetric polygon of
area a multiple of 4π less than that which is required.





5
A L G O R I T H M S F O R C L O S E D G E O D E S I C S

We now turn to apply our description of hyperelliptic surfaces
by admissible polygons to a specific computational problem.
Given any non-contractible closed curve on a Riemann surface,
there exists a unique closed geodesic that is homotopic to it. In
this section we will see how we may compute this homotopic
closed geodesic on a hyperelliptic surface, by computing it on
the admissible polygon corresponding to the surface.

5.1 finding the homotopic closed geodesic

To tackle the problem we will first introduce some notation.
Let P be an admissible 4g-gon corresponding to a hyperellip-
tic surface M of genus g > 2. We will label the sides counter-
clockwise by a0, . . . ,a4g−1, as in figure 8. We denote the hyper-

z0

z1

z2

z3

z4

z5

z6

z7

a0

a1
a2

a3

a4

a5

a6

a7

α0

α1

α2

α3

α4

α5

α6

α7

0

D

b0

b1b2

b3

Figure 8: An admissible octagon.
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bolic transformation that maps the side ak to ak+2g by bk, for
k = 0, . . . , 4g− 1. Note that b−1k = bk+2g, k = 0, . . . 2g− 1. We
will abuse notation and take our indices of a and b modulo 4g,
so ai+2g := a(i+2g) mod 4g. We denote the Fuchsian group of the
surface by Γ . Note that

Γ = 〈b0, . . . ,b2g−1|b0b−11 b2b−13 . . . b2g−2b
−1
2g−1 = id〉.

Since we the denote the inverses b−1i by bi+2g, we may also
write the relation defining Γ as

b0b1+2gb2b3+2g · · ·b2g−2b4g−1 = id .

5.1.1 Representing curves on an admissible polygon

We wish to study curves on a hyperelliptic surface M through
its representation by an admissible polygon P. Throughout this
section we will assume all curves have a constant speed
parametrization with domain [0, 1]. We must note though that
the projection of P to M will not give us a chart on M; the inte-
rior of P is in one-to-one correspondence with an open subset
of M, but points on M corresponding to the sides of P each cor-
respond to two points in P, and all 4g vertices of P even project
to a single point on M. This implies that we may represent any
(continuous) curve α̂ in M on P by a sequence α0, . . . ,αm−1 of
continuous segments on P, m ∈N, M > 1 such that:

1. The begin- and endpoints of the segments α1, . . . ,αm−1

lie on the boundary of P, as do the endpoint α0(1) of the
first segment and the begin point αm−1(0) of the last.

2. The begin- and endpoints of subsequent segments are
such that αi(1) = αi+1(0), i = 0, . . . ,m− 2, so that they
project to the same point on surface M.

3. The begin- and endpoint of subsequent segments are not
the same, so αi(1) 6= αi+1(0), i = 0, . . . ,m− 2 1.

See Figure 9 for an example. The segments α0, . . . ,αm−1 to-
gether define a piecewise continuous curve that represents the
curve α in M on P. Throughout this section, we will denote this
representation on P by α as well. To distinguish the curve onM,

1 This we require so that α truly "crosses" a side of P at the endpoint of each
of its segments, and this will be beneficial to the clarity of the algorithms
presented later on.
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Figure 9: A sequence of 4 segments α0,α1,α2,α3 in an admissible
polygon P that project to a closed loop α on the surface M.
Note also that two points on opposite sides that project to
the same point on M may not appear to be placed equally
far along their respective sides. This is due to the hyperbolic
metric differing from the Euclidean metric.

we add a hat; that is, α will now denote a piecewise continuous
curve on P that projects to a continuous curve on M, which we
denote by α̂.

5.1.2 The lift of a closed curve

Now, we are given a curve α in P that represents a closed curve
α̂ on the surface M corresponding to P, and let α consist of
the segments α0, . . . ,αm−1 (in the manner of the previous para-
graph). To facilitate our study of α̂, we will study its lift to D,
which is the universal cover of M. Let π : D → D/Γ = M be
the projection from D to M. The fact that D is a universal cover
implies that, given a point z ∈ π−1(α̂(0)) ⊂ D, there exists a
unique curve α̃ in D starting at z that projects to α̂. In particu-
lar, we may pick α̃ to be the curve that starts in P at α(0) (where
α is again the piecewise continuous curve on P). We will abuse
terminology and refer to this curve α̃ as the "lift of α (to D)". In
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the same vein, we will call α a "representation of α̃ in P", so we
need not write "a representation in P of the projection α̂ on M
of α̃ that starts at α̃(0)". See figure 10 for an example of a piece-
wise continuous curve α representing a curve on the surface.

a0

a1
a2

a3

a4

a5
a6

a7

0

D

α̃(0)

α̃

α̃(1)

Figure 10: The lift α̃ of the curve α in figure 9. Note that α̃ is a contin-
uous curve traversing multiple copies of P in D.

Since α̂ is a closed loop on M, its endpoint α̂(1) must be lifted
to gα̂(1) for some unique g ∈ Γ . Now we have introduced the
necessary notation and terminology, we specify the goal of our
algorithm. Its goal is the following: we take as input a sequence
of segments α0, . . . ,αm−1 in P, that represent a closed curve α̂
on the surface M. As output we wish to produce a sequence of
segments β0, . . . ,βm−1 in P that represent the closed geodesic
β̂ homotopic to α̂ on M.

The general idea is this: any homotopy of α̂ lifts to a unique
homotopy of α̃. This implies that this g will be invariant under
homotopy. But we know that g has an axis, Ag, along which the
displacement length is minimal, i.e. d(z,gz) is minimal for z on
Ag. Then for each z on the axis, the segment from z to gz of the
axis projects to the closed geodesic onM that is homotopic to α.
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We now have a general outline for our algorithm:

1. We find g. We do this by determining what sides of the
copies of P are crossed by α̃.

2. We choose a point z on the axis Ag, and calculate gz on
the axis.

3. We calculate the sequence P0, . . . ,Pr−1 of copies of P along
the segment β̃ of Ag between z and gz, and find the rep-
resentation in P of the sequence of segments of β̃ defined
by the copies P0, . . . ,Pr−1.

During the algorithm we will assume that both α̃ and the calcu-
lated β̃ do not pass through vertices of copies of P (though their
endpoints may be vertices). This ensures that the segments of
α̃ and β̃ lie in neighboring copies of P (copies of P sharing a
side) in D. Though it is not difficult to deal with the case that
α̃ or β̃ does pass through vertices, it complicates the exposition
of the algorithm. Also, given such a curve, it is easy to see how
we may apply a homotopy that perturbs the curve slightly as
to avoid the vertices crossed.

We will now present the algorithm in more detail. We make use
of three subroutines, which will be given after the algorithm to
reduce clutter.

Algorithm 1

Input: A piecewise-continuous curve α given by a sequence of
segments α0, . . . ,αm−1 in an admissible polygon P, that repre-
sents a closed curve α̂ on the hyperelliptic surface M corre-
sponding to P.

Output: A sequence of segments β0, . . . ,βr−1 in P that repre-
sents the closed geodesic β̂ homotopic to α̂.

1. Finding g:

a) We first determine which sides of copies of P the lift
α̃ of α will cross. These we can determine by the
begin and endpoints of the segments α0, . . . ,αm−1,
using subroutine 1 given below. The result is a se-
quence of indices i0, i1, . . . , im−2, that are such that α̃
crosses the sides ai0 , . . . ,aim−2

of copies of P before
arriving at α̃(1).
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b) We now calculate the sequence (P0,P1, . . . ,Pm−1) of
copies of P that α̃ crosses in D, where we denote
P0 := P. Moreover, we calculate the transformations
hk such that Pk = hkP, k = 0, . . . ,m− 1. For this we
use the indices from the previous step, and subrou-
tine 2 (given below), which, given a copy P ′ of P and
the index k of a side, calculates the copy of P shar-
ing the side hkak with P ′. This allows us to calculate
the sequence (P0,P1, . . . ,Pm−1) and the sequence of
transformations hk inductively.

c) The transformations hm−1 sends P0 to Pm−1, and thus
α̃(0) to α̃(1). So we find that g = hm−1.

2. Finding the axis of g and picking a segment of it:

a) We solve gz = z to find the fixed points of g on the
boundary of D.

b) We calculate the axis Ag of g by finding the geodesic
between g’s fixed points, i.e. the circular arc that meets
the boundary perpendicularly at g ′s fixed points.

c) We pick a point p̃0 on Ag, and calculate gp̃0. We de-
fine β̃ to be the segment of Ag from p̃0 to gp̃0.

3. Finding the representation of β̃ in P:

a) Since the transformations b0, . . . ,b4g−1 are used re-
peatedly, we first calculate them and put them in a
table for later use. Each transformation bk is given
by a π-rotation around the origin, followed by a π-
rotation around the midpoint of the side ak 2.

b) We find a copy of P that contains p̃0. If p̃0 is not
already in P, we calculate the geodesic segment γ̃
from 0 to p̃0. We then apply the subroutine 3 given
below to obtain the sequence of copies of P that γ̃
crosses. We only need the last one, which we will
call P ′0. The subroutine also determines the transfor-
mation h ′0 such that h ′0P = P ′0.

c) We now apply subroutine 3 to find the sequence
P ′0,P

′
1, . . . ,P

′
r−1 of copies of P that β̃ crosses, and de-

fine β̃i to be the segment of β̃ that lies in P ′i , i =

0, . . . , r − 1. The subroutine also provides the trans-
formations h ′0, . . . ,h

′
r−1 such that h ′kP = Pk.

2 See [1] section IV for an explicit expression for bk in terms of the vertices of
P.
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d) We calculate the representation βi in P of each seg-
ment β̃i by applying the inverses of the transforma-
tions we found to map P to P ′i , i.e. βk = h ′−1k β̃k, k =

0, . . . , r − 1. This gives us the segments β0, . . . ,βr−1
that make up β, and we are done.

These are the subroutines referred to in the algorithm:

Subroutine 1

Goal: to find the indices of sides crossed by a sequence of seg-
ments.

Input: a sequence of segments α0, . . . ,αm−1 in an admissible
polygon P, that represents a closed curve α̂ on the hyperelliptic
surface M corresponding to P.

Output: a sequence i0, . . . , im−2 of indices in {0, . . . , 4g− 1} with
the property that α "crosses" the sides ai0 , . . . ,aim−2

of P in or-
der.

We repeat the following step for k = 0, . . . ,m− 2:

1. We check which side the endpoint of αk lies on. If it lies
on the side aj, we have determined ik = j 3.

Subroutine 2

Goal: to calculate a neighboring copy of P, from the shared side.

Input:

• the transformation h0 ∈ Γ such that P ′0 := h0P is the copy
of P we wish to find a neighbor of.

• the index k ∈ {0, . . . , 4g− 1} such that h0ak is the side of
P ′0 shared by the neighboring copy we wish to construct.

• the transformations b0, . . . ,b4g−1 (the side-pairing trans-
formations of P).

Output:

• the transformation h1 ∈ Γ such that P ′1 := h1P is the copy
of P that shares the side h0ak with P ′0.

3 Note that the endpoint of αk, k = 0, 1, . . . ,m − 2 is by assumption not a
vertex, and hence lies on one side only.
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• P ′1 itself.

Steps:

1. We calculate the transformation h1 = h0bkh−10 .

2. We determine P ′1 = h1P.

For subroutine 3 (given below), we assume we may calculate
the intersection of two curves in D.

Subroutine 3

Goal: to calculate the sequence of copies of P that a curve in
D passes through.

Input:

• a curve γ̃ in D.

• a transformation h0 such that the P0 = h0P, where P0 is
the copy of P such that γ̃(0) ∈ P0.

Output:

• the sequence P0, . . . ,Pn−1 (with Pk+1 6= Pk, k = 0, . . . ,n−

2) of copies of P which γ̃ crosses.

• a sequence of transformations h0, . . . ,hn−1 ∈ Γ s.t. hkP =

Pk, k = 0, . . . ,n− 1.

• a sequence of points p̃0, . . . , p̃n−2 in D such that p̃i is the
point in D where γ̃ leaves Pi and enters Pi+1, for i =

0, . . . ,n− 2.

• a sequence of segments γ̃0, . . . , γ̃n−1 such that each γ̃k is
the segment in Pk from the endpoint of γ̃k−1 to where γ̃k
leaves Pk, k = 1, . . . ,n − 2, and γ̃0 is the segment from
γ̃(0) to γ̃1(0), while γ̃n−1 is the segment from γ̃n−2(1) to
γ̃(1).

We repeat the following steps for k = 0, . . . ,n− 2:

1. We find the first point p̃k of intersection of γ̃ with the
boundary of Pk where γ̃ will leave Pk. We define γ̃k to
be the segment of γ̃ from γ̃k−1(1) (the endpoint of the
previous segment) to p̃k. For the case k = 0, we define γ̃0
to be the segment of γ̃ from γ̃(0) to p̃k.
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2. We determine the side ak of P that h−1k p̃k lies on.

3. We let Pk+1 be the copy of P that shares the side ak with
Pk, and determine it by using subroutine 2. This also gives
us the transformation hk+1 s.t. hk+1P = Pk+1.

5.2 finding a homotopy

It is sometimes said that the road is more important than the
destination. We turn to the question of determining a homotopy
between the curve and its homotopic closed geodesic explicitly.

To make the goal of this section more precise, we will first in-
troduce some terminology, analogous and complementary to
that which we introduced in Section 5.1. We define a homotopy
of a (piecewise-continuous) curve α in P representing a closed
curve α̂ onM to be a map H : [0, 1]× [0, 1]→ P that projects to a
homotopy of α̂ on M. The goal of this section is to find an algo-
rithm that calculates a homotopy from the representative α of
a closed curve α̂ to the representative β of the closed geodesic
β̂ homotopic to α̂.

We will again make use of the lift α̃ of α to D 4. We define
a homotopy of α̃ to be a free homotopy of α̃ that projects to a
homotopy (of closed curves) of α̂ in M, where α̂ is the projec-
tion of α to M. A homotopy φ̂ of α̂ on M will lift to a unique
homotopy φ̃ of α̃ in D. Let φ be a homotopy of α that projects
to φ̂ on M. Then we say φ is the representative on P of the homo-
topy φ̃, while we call φ̃ the lift of φ (to D)".

In what follows, we will also occasionally use the reverse of
a curve in D, defined as follows: let γ̃ be a curve in D with
parametrization γ̃(t) : [0, 1] → D. Then its reverse is the curve
γ̃R parametrized as γ̃R(t) = γ̃(1− t). Similarly, we define the re-
verse of an homotopy H(s, t) : [0, 1]× [0, 1] → D by HR(s, t) :=
H(1− s, t).

If we have two curves γ̃0, γ̃1 such that the endpoint of γ̃0 co-

4 We again abuse terminology here, see Subsection 5.1.2 of the previous sec-
tion.
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incides with the begin point of γ̃1, γ̃1γ̃0 denotes the curve that
appends γ̃1 to γ̃0. That is,

γ1γ0 =

γ0(2t) if 0 6 t 6 1
2

γ1(2t− 1) if 12 < t 6 1
.

Also, if γ0,γ1,γ2 are three curves, H0 is a homotopy from γ0 to
γ1 and H1 a homotopy from γ1 to γ2, then H1H0 is defined to
be the homotopy from γ0 to γ2 defined by

(H1H0)(s, t) =

H0(2s, t) if 0 6 s 6 1
2

H1(2s− 1, t) if 12 < s 6 1
.

Our goal is to design an algorithm that, given a representative
α in P of a closed curve α̂ in M and a representative β of the
closed geodesic homotopic to α̂, produces a homotopy from α

to β. We will do this by building a homotopy from α̃ to β̃ in
steps, in such a way that each step we add to the homotopy has
a known representative in P. The following is a rough overview
of the algorithm, that will be made clearer in the rest of this
section.

Overview of algorithm 2

1. We first find a homotopy on α̃ in such a way that, after
the homotopy, its endpoints coincide with a lift β̃ of the
closed geodesic homotopic to β̂. This homotopy on α̃ will
be called H̃end. We apply it to α̃ 5.

2. The curves α̃ and β̃ are homotoped to a simplified form,
which we will call standard form. It will reduce α̃ and β̃ to a
sequence of geodesic segments between centers of copies
of P. This will facilitate the exposition of the rest of the
algorithm. The homotopy on α̃ that brings α̃ to standard
form will be called H̃std,α̃, while the homotopy on β̃ is
called H̃std,β̃.

3. Next, we calculate a homotopy from α̃ to β̃ (which are
now both in standard form). This will be done in two
parts: in part a), a homotopy is calculated which homo-
topes the first part of α̃ to β̃, in the sense that, after ap-
plying the homotopy, α̃ = δ̃β̃, where δ̃ is a closed loop (in

5 By apply, we mean that we now let α̃(t) = H̃end(1, t) for t ∈ [0, 1]. That is, α̃
is now defined to be the curve to which H̃end homotopes.
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standard form) at the endpoint of β̃. We call this homo-
topy H̃part, and apply it to α̃.
In part b), we calculate a homotopy that homotopes α̃ =

δ̃β̃ to β̃, by contracting the loop δ̃ to its base point. This
homotopy is denoted H̃contr, and applied to α̃.

4. We homotope α̃ back to the original β̃ (since β̃ was homo-
toped to standard form). This boils down to applying the
homotopy H̃Rstd,β̃ to α̃.

5. The output of the algorithm will be the homotopy
H = HRstd,βHcontrHpartHstd,αHend, whereHstd,β,Hcontr,Hpart,
Hstd,α and Hend are the homotopies on P representing
H̃std,β̃, H̃contr, H̃part, H̃std,α̃ and H̃end, respectively. H then
homotopes α to β, as desired.

We will now present the steps of the algorithm in detail.

5.2.1 Step 1: Closing the loop

The first step we take is to find a homotopy of α that brings the
endpoints of α̃ to the axis Ag of g ∈ Γ corresponding to α̃ (in
the same manner as in section 5.1). To this end, we apply the
following algorithm:

Algorithm 2.1

Input:

• The lift α̃ of a closed curve.

• The transformation g ∈ Γ such that α̃(1) = gα̃(0).

Output:

• A homotopy Hend that moves the endpoints of α̃ to the
axis Ag of g.

Steps:

1. Let Ag be the axis of g. We calculate the geodesic through
α̃(0) that meets Ag perpendicularly. Let ζ̃ be its segment
from α̃(0) to the point where it meets the axis. As we did
in section 5.1, we calculate the copies of P that ζ̃ meets
along the way, and calculate ζ̃’s representative ζ in P.
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2. We now homotope α̃ such as to add ζ̃R before the original
starting point of α̃ as well as gζ̃ after the endpoint of α̃.
We let

H̃end(s, t) =


ζ̃(s− 4t) if 0 6 t < s/4

α̃

(
t− s/4

1− s/2

)
if s/4 6 t 6 1− s/4

gζ̃(s+ 4t− 4) if 1− s/4 < t 6 1

.

Note that H̃(s, 0) = gH̃(s, 1), as it should. Also this homo-
topy has a clear representative in P, given by

Hend(s, t) =


ζ(s− 4t) if 0 6 t < s/4

α

(
t− s/4

1− s/2

)
if s/4 6 t 6 1− s/4

ζ(s+ 4t− 4) if 1− s/4 < t 6 1

.

We apply H̃end to α̃, and will continue with the resulting α̃ from
now on. After applying the homotopy H̃end given by algorithm
2, α̃(0) clearly lies on the axis. But α̃(1) = gα̃(0), so α̃(1) now
does as well. We define the segment of the axis from α̃(0) to
α̃(1) to be β̃, and δ̃ to be the closed loop β̃Rα̃.

5.2.2 Step 2: A homotopy to standard form

To simplify our algorithm in the steps that follow, we will ho-
motope α̃ and β̃ such that they take a grid-like form, which we
will call standard form. Specifically, we homotope α̃ and β̃ such
that they consist of geodesic segments between the centers of
neighboring copies of P.

Definition 16 Let γ̃ be a curve in D that passes through the se-
quence P0, . . . ,Pn−1 of copies of P, where Pk shares a side with Pk+1
for each k = 0, . . . ,n− 2. Then γ̃ is said to be in standard form if it
is the sequence of geodesic segments γ̃0, . . . , γ̃n−2, where each γ̃k is
the geodesic segment from the center of Pk to the center of Pk+1.

See figure 11 for an example of a curve α̃ in standard form.
Let γ̃ be as in definition 15. Because of the symmetry of ad-
missible polygons, any segment γ̃k crosses the polygon Pk on
the midpoint of one of its sides. This is shown in the following
proposition:
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a0

a1
a2

a3

a4

a5
a6

a7

0

D

α0

α0
α1

α1

α2

α2

α̃0

α̃1 α̃2

Figure 11: Here we see the curve α̃ from figure 10 brought to "stan-
dard form", as well as its representation α in P. Note that
we now divide α̃ (and α) in 3 parts, rather than 4. Each α̃k,
k = 0, 1, 2 is a geodesic segment between the centers of two
adjacent copies of P.

Proposition 17 Let P be an admissible polygon with sides
a0, . . . ,a4g−1 and P ′ the copy of P that shares the side ak with P.
Then the geodesic between the center 0 of P and the center c ′ of P ′

crosses the side ak of P at its midpoint mk.

Proof. Let bk be the hyperbolic transformation that sends P to
P ′. This transformation sends the side ak+2g of P to the side ak
of P. Since P is symmetric, bk(−z) = −b−1k (z) (since bk is fully
determined by the two sides ak and ak+2g, which are symmetric
under z 7→ −z. Therefore the endpoints ξ+, ξ− of the axis of bk
satisfy

ξ+ = lim
n→∞bnk (0) = lim

n→∞−b−nk (0) = − lim
n→∞b−nk (0) = −ξ−.

Therefore the axis A of bk is a (Euclidean) straight line through
the origin. There are two possibilities: either it crosses both ak
and ak+2g, or neither. Neither is impossible, since then ak+2g
lies on a different side of the axis A as ak, and bkak+2g = ak
must lie on the other side of the axis as well. If A crosses ak and
ak+2g, it is easy to see that the midpoints mk+2g, mk of ak+2g
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and ak respectively are the only points paired by bk that are
also symmetric under z 7→ −z. Hence, the axis A is a straight
line through the origin and the midpoints mk+2g,mk. In par-
ticular, bk maps the origin to another point on the axis. Hence
the center c ′ of P ′ lies on the axis, and the geodesic segment
between 0 and c ′ contains mk.

We will not give an explicit form for a homotopy on α and
β that brings α̃ and β̃ to standard form, but this is not difficult
to do. Each geodesic segment of α̃ and β̃ is represented in P by
two segments, the first from the midpoint of a side to the center
of P, and the second from the center of P to the midpoint of a
(possibly different) side.
We assume we have a homotopy Hstd,α and Hstd,β that put α̃
and β̃ in standard form, respectively. We make a few remarks
regarding these homotopies:

• Note that after Hstd,β, in general β does not represent a
closed geodesic anymore. However, when we have found
a homotopy from α to β, we may simply homotope β and
α back to the original β by HRstd,β to obtain a homotopy
from α to (the representative in P of) its homotopic closed
geodesic.

• We will denote the geodesic segments that make up α̃

and β̃ by α̃0, . . . , α̃m−2 and β̃0, . . . , β̃r−2, respectively. Note
that these segments do not correspond to those of section
5.1; here we are talking about segments between centers,
each of which lies in two neighboring copies of P, while
in section 5.1 we used the same notation for a segment
contained in a single copy of P. This also implies there is
one fewer segment (which is why we use m− 1 and r− 1
segments).

5.2.3 Step 3 : A homotopy from α̃ to β̃

After step 2, the curves α̃ and β̃ are in standard form, given
by the geodesic segments α̃0, . . . , α̃m−1 and β̃0, . . . , β̃r−1 respec-
tively. Moreover, their endpoints are the same. It is now time
to calculate a homotopy from α̃ to β̃. This will be done in two
steps:

a) First, we find a homotopy of α̃ such that the first r − 1
segments of α̃ become those of β̃. This does not mean we
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are done: after its first r− 1 segments α̃ may still continue.
As α̃ will eventually end at the endpoint of β̃, this implies
that, after applying the homotopy found in this step, α̃ =

δ̃β̃, where δ̃ is a closed loop.

b) We find a homotopy that contracts the closed loop δ̃ to its
base point (the endpoint of β̃). Extending this homotopy
to α̃ = δ̃β̃ we find a homotopy from α̃ to β̃.

See figure 12 for a schematic example of step 3a.

β̃ α̃ β̃

δ̃

Figure 12: In the left figure we see two curves α̃ and β̃ before apply-
ing the homotopy of algorithm 3a. After the homotopy we
obtain the figure on the right, where the curve α̃ is homo-
toped to δ̃β̃ for a closed loop δ̃ at the endpoint of β̃

.

Step 3a: A homotopy for the first r− 1 segments of α̃

The homotopy in this section and the next will be constructed
using small building blocks, which we will call elementary moves.
Each such elementary move is a small algorithm that produces
a homotopy µ̃. The result of algorithm 2.3a and 2.3b will be
compositions µ̃n−1 . . . µ̃0 of homotopies resulting from elemen-
tary moves µ̃0, . . . , µ̃n−1, that together form the homotopies de-
sired.

For algorithm 2.3a, we will need only one elementary move,
which we call Rotate. Suppose that the first k segments of α̃
are already those of β̃ for some 0 6 k < r− 1, i.e. α̃i = β̃i for
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i = 0, . . . ,k− 1, but the (k+ 1)-th segment α̃k is not β̃k. Since α̃
is in standard form, there are only 4g options for the segment
α̃k, given that we know its starting point; one through each
side of the copy of P that its starting point lies in. Suppose ã ′j
is the side of the copy P ′ that α̃k crosses. We will present an
elementary move that, given a direction, clockwise or counter-
clockwise, replaces the segment α̃k by 4g− 1 segments, the first
of which is α̃k "rotated" in the direction given. That is, it is the
segment going through the side ã ′j+1 if the direction was clock-
wise, and ã ′j−1 if the direction was counter-clockwise. See figure
13. We now present the elementary move in detail.

a0

a5

a2
a7

a4
a1

a6

a7

0
v

ξ̃

Figure 13: The homotopy Rotate(γ̃ ′, counter-clockwise) will homo-
tope the red segment γ̃ ′ in the figure to the curve con-
sisting of the sequence of blue segments. Note that g = 2

in this example. We first add the segment ξ̃ (in orange),
that connects the midpoint of side a7 with vertex v on the
left side of a7 (in purple). We then bring the curve to stan-
dard form, in such a way that the resulting blue curve is
such that it takes the other way around the vertex v (when
compared to the red segment we started with). The first
segment of the blue curve now crosses the side a0 next to
a7 in the counter-clockwise direction.
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Elementary move: Rotate

Input:

• A curve γ̃ in D in standard form, given by the segments
γ̃0, . . . , γ̃n.

• A specific segment γ̃ ′ of γ̃.

• The direction in which we will rotate, denoted by o, which
is clockwise or counter-clockwise.

Output:

• A homotopy of γ̃ that replaces the segment γ̃ ′ by 4g− 1
segments, of which the first is "rotated" in the direction o

with respect to the original segment γ̃ ′.

Steps:

1. We first homotope γ̃ ′ as to add a segment along the side
of P it crosses, to the vertex on the right if the direction o

given as input is clockwise, and to the vertex on the left if
it is anti-clockwise. See figure 13

2. γ̃ now includes a vertex which lies in 4g copies of P. We
homotope γ̃ such that γ̃ ′ is deformed into a sequence of
segments γ̃0, . . . , γ̃4g−2 that are each segments between
neighboring copies of P, as in figure 13.

Given this elementary move, homotoping the first r − 1 seg-
ments of α̃ to those of β̃ is fairly simple: starting from the
first segment, we rotate every segment α̃k either clockwise or
counter-clockwise until it is the same as the corresponding seg-
ment of β̃. This gives us the following algorithm:

Algorithm 2.3a

Input:

• A curve α̃ in standard form.

• A curve β̃ in standard form, whose endpoints are the
same as those of α̃.

Output:

• A homotopy H̃part that homotopes α̃ to δ̃β̃, where δ̃ is a
closed loop in standard form at the endpoint of β̃.
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Steps:

1. We define the variable s to count the number of elemen-
tary moves we apply in this algorithm. We set s = 0.

2. For k = 0, . . . , r− 2, we perform the following step:

• While α̃k 6= β̃k, we let µ̃s = Rotate(α̃, α̃k, clockwise),
apply µ̃s to α̃ and increase s by 1.

3. We output the homotopy H̃part = µ̃s . . . , µ̃0.

Step 3b: Contracting the extraneous part of α̃

We now proceed with the second part of step 3. After applying
the homotopy of algorithm 3a, α̃ is given by δ̃β̃ for some closed
loop δ̃ at the endpoint of β̃, in standard form. We will use a
combination of two elementary moves to contract the loop δ̃,
RemoveDeadEnd, and RemoveVertex. We will first introduce
RemoveDeadEnd, which removes what we call a dead-end of δ̃.
We define a dead-end as follows:

Definition 18 Let γ̃ be a curve in D in standard form, given by the
geodesic segments γ̃0, . . . , γ̃n−1. Let Pk be the copy of P whose center
is γ̃k(0), for some k ∈ {1, . . . ,n− 1}. Then if γ̃k = γ̃Rk−1, we call the
ordered pair (γ̃k−1, γ̃k) a dead-end.

See figure 14 for an example. During the algorithm that finds
a homotopy to contract δ̃ that we will present later, we often
require a homotopy to remove a dead-end 6. During the algo-
rithm to find a homotopy to contract δ̃ that we will present, we
often require a homotopy to remove a dead-end. To this end,
we define the elementary move RemoveDeadEnd:

Elementary move: RemoveDeadEnd

Input:

• A curve γ̃ in standard form, given by the segments
γ̃0, . . . , γ̃n−1.

• A dead-end (γ̃k−1, γ̃k) of γ̃.

6 Note that we do not include the pair (γ̃n−1, γ̃0) in the definition; in what
follows we wish to contract a curve to its base point, so we do not want to
remove such a pair.
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z0

z1

z2

z3

z4

z5

z6

z7

0

D

γ̃k−1
γ̃k

Figure 14: A dead-end (γ̃k−1, γ̃k) of a curve γ̃ (the rest of the curve
is omitted). Though in reality the segments overlay one
another, we moved them apart a little for clarity of illustra-
tion.

Output:

• A homotopy of γ̃ that removes the dead-end from γ̃.

Steps:

1. We will first give the representative in P of the homotopy
that will remove the dead-end. In P, γ̃k−1 is represented
by two segments, γk−1 from 0 to some midpoint m of a
side of P and γ ′k−1 from the opposite midpoint m ′ back to
0. Since γ̃k is γ̃Rk−1, it is represented by the segments γ ′Rk−1
and γRk−1. Let γ ′ be piecewise-continuous curve in P made
up from the segments γk−1,γ ′k−1. Then γ ′Rγ ′ represents
the segments γ̃k−1 and γ̃k in P. We apply the following
homotopy to γ ′Rγ ′:

H(s, t) =

γ ′((1− s)2t) if 0 6 t 6 1
2

γ ′R((1− s)(2t− 1)) if 12 < t 6 1
.

This homotopy keeps the endpoints of γ ′Rγ fixed, so we
may easily extend this homotopy to a homotopy on γ that
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leaves the rest of γ untouched. This homotopy reduces
γ ′Rγ ′ to the point {0}.

2. The homotopy H given above lifts to the following homo-
topy on D:

H̃(s, t) =

γ̃ ′((1− s)2t) if 0 6 t 6 1
2

γ̃ ′R((1− s)(2t− 1)) if 12 < t 6 1
,

and (again, extended to the whole of γ̃) clearly removes
the dead-end (γ̃k−1, γ̃k) from γ̃.

Apart from removing dead-ends from α̃, our strategy to con-
tract δ̃ is based on finding and removing what we call "pockets"
of α̃. We make the following definitions:

Definition 19 Let γ̃ be a curve in D in standard form, given by the
segments γ̃0, . . . , γ̃n−1. Then a subcurve of γ̃ is a curve in standard
form given by the segments γ̃i, . . . , γ̃j, 0 6 i < j 6 n− 1. We will
use the notation γ̃[i, j] for this subcurve.

Definition 20 Let γ̃ be a closed curve in D in standard form. Then
a pocket of γ̃ is a simple closed subcurve of γ̃.

See figure 15 for a schematic example of a pocket. As we will
show below, any non-trivial closed curve in standard form which
does not have a dead-end will have at least one pocket. The
strategy of our algorithm will be to contract these pockets to
their begin point. Each pocket will enclose one or more ver-
tices of copies of P. We will introduce an elementary move that,
given a pocket of δ̃, will give us a homotopy of α̃ that removes
a vertex of a copy of P from the interior of the pocket (and does
not add another).

We have seen that the elementary move Rotate defined for al-
gorithm 2.3a results in a homotopy which homotopes a curve
to go "the other way around" a vertex of a copy of P in D. See
again figure 13. Suppose we are given a pocket γ̃ of δ̃. Then its
first segment γ̃0 crosses the midpoint of a side of a copy of P,
and one of the vertices at the endpoints of this side must lie in
the interior of γ̃. Which of the two is determined by the orien-
tation of γ̃. Thus we may remove a vertex of a copy of P from
the interior of γ̃ by first determining its orientation o and then
calculating and applying Rotate(γ̃, γ̃0, o). This is how we will
define the elementary move called RemoveVertex.
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β̃

δ̃

Figure 15: The curve δ̃ as given in figure 12 has one pocket, indicated
here in purple.

Elementary move: RemoveVertex

Input:

• A curve γ̃ in standard form, given by the segments
γ̃0, . . . , γ̃n−1.

• A pocket γ̃ ′ of γ̃ in D, given by the segments γ̃ ′0, . . . , γ̃
′
n−1.

Output:

• A homotopy on γ̃ which replaces γ̃ ′0 by a sequence of
segments γ̃ ′0, . . . , γ̃

′
4g−2 such that, after applying the ho-

motopy to γ̃, the vertex v lying in the interior of γ̃ ′ and
on the side of the copy of P crossed by γ̃ ′0 is removed from
the interior of γ̃ ′.

Steps:

1. The orientation of γ̃ ′ is determined as follows: we take
a point p̃ on γ̃ ′. We then draw a geodesic χ̃ through the
point p̃, transverse to γ̃ ′ at p̃. We include the endpoints
ξ−, ξ+ on the boundary of D in χ̃, and parametrize χ such
that χ̃(0) = ξ−, χ̃(1) = ξ+. Let x̃ be the first intersection of
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γ̃1

γ̃n−2

γ̃0
γ̃n−1

Figure 16: A closed curve γ̃ with split (γ̃1, γ̃n−2) (so k = 1 in the
definition of a split).

χ̃(t) with γ̃ ′. The orientation can now be determined by
the direction of γ̃ ′ at x̃: if it crosses χ̃ from the left of χ̃(t)
to the right of χ̃, it is anti-clockwise, and if from right to
left, clockwise.

2. We calculate and output Rotate(γ̃, γ̃ ′0, o).

Our goal is to contract the curve δ̃ by removing pockets and
dead-ends. Before we present an algorithm to remove a pocket
by using our elementary moves, we first turn to the matter of
finding a pocket of δ̃ in the first place, and indeed, showing
that δ̃ has a pocket. To this end we define a subroutine called
FindPocket. Before presenting this subroutine we make two
more definitions. The first clarifies the notion of the interior of
a closed curve in D that may not be simple.

Definition 21 Let γ̃ be a closed curve in D. Then the interior of
γ̃ is the set of all points z̃ ∈ D such that any continuous curve
ζ̃ : [0, R)→ D from z̃ to the boundary of D (i.e. limt→∞ ζ̃(t) ∈ ∂D)
intersects γ̃.

The second definition concerns what we call the "split" of a
closed curve in standard form.

Definition 22 Let γ̃ be a closed curve with non-empty interior in
D in standard form, given by the segments γ̃0, . . . , γ̃n−1. Then the
split of γ̃ is the pair of segments (γ̃k, γ̃n−1−k) such that γ̃k is the first
segment of γ̃ satisfying γ̃k 6= γ̃Rn−1−k.

See Figure 16 for an example. It is easy to see that any closed
curve with non-empty interior in standard form must have a
split. We are now able to define the subroutine FindPocket, as
follows:
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Subroutine: FindPocket

Input:

• A closed curve γ̃ in D in standard form, given by the seg-
ments γ̃0, . . . , γ̃n−1, which has a non-empty interior and
no dead-ends.

Output:

• A pocket γ̃[i, j] of γ̃.

Steps:

1. We let γ̃ ′ = γ̃. This will be our working copy of γ̃.

2. We find the split (γ̃ ′k0 , γ̃ ′l0) of γ̃ ′. Since γ̃ ′ has non-empty
interior, such a split must exist.

3. Now γ̃ ′[k0, l0] must be a closed curve. We calculate its self-
intersections. If it has none, γ̃ ′[k0, l0] is a pocket of γ̃, and
we output γ̃ ′[k0, l0].

4. If γ̃ ′ does have a self-intersection, we take the first self-
intersection p̃, and find the first segment γ̃ ′k1 that leaves
the point p̃ (so γ̃ ′k1(0) = p̃), as well as the first segment
γ̃ ′l1 , k1 < l1, that gets back to p again (so γ̃ ′l1(1) = p̃). Note
that k1 > k0 and l1 < l0.

5. Since γ̃ had no dead-ends, γ̃ ′[k1, l1] must have non-empty
interior (otherwise it would contain a dead-end). We let
γ̃ ′ = γ̃ ′[k1, l1] and repeat this algorithm from step 2 on-
ward.

To see that the algorithm terminates, note that the number of
segments of γ̃ ′ is finite, and strictly decreases every iteration
of the algorithm. In particular, this also shows the fact that any
closed curve in standard form with no dead-ends has a pocket.
Therefore, if we first remove δ̃’s dead-ends using
RemoveDeadEnd, we can be sure it has a pocket, and we may
find one using FindPocket.

As said, δ̃ will be contracted by removing pockets. To remove
a pocket γ̃, we define a subroutine RemovePocket. It will use
RemoveVertex to remove the vertices of copies of P inside γ̃. Af-
ter removing a vertex, dead-ends may have been created, which
we can remove by RemoveDeadEnd. It may also be however
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that γ̃ is no longer simple, and hence no longer a pocket. In
this case we use FindPocket to find a pocket of γ̃, and apply
RemovePocket to the found pocket 7. It is easy to see that every
iteration of the subroutine removes a vertex of a copy of P from
the interior of γ̃, while not adding any. As a pocket contains
only finitely many vertices of copies of P, the algorithm will
terminate.

Subroutine: RemovePocket

Input:

• A curve γ̃ in standard form.

• A pocket γ̃ ′ of γ̃.

Output:

• A homotopy that homotopes γ̃ so that γ̃ ′ is removed.

Steps:

1. We let s be a counter for the elementary moves that are
found in this algorithm, and set s = 0.

2. We apply and list µ̃s = RemoveVertex(γ̃, γ̃ ′), and increase
s by 1.

3. Applying RemoveVertex may have created dead-ends
and/or self-intersections in γ̃ ′. While there are dead-ends
(γ̃k−1, γ̃k) in γ̃ ′ we calculate
µ̃s = RemoveDeadEnd(γ̃, (γ̃k−1, γ̃k)), apply the result and
increase s by 1.

4. If γ̃ ′ has not been contracted to its starting point, we cal-
culate γ̃ ′′ := FindPocket(γ̃ ′), and then calculate
RemovePocket(γ̃, γ̃ ′′).

5. We output the homotopy µ̃s · · · µ̃0.

We are now ready to present algorithm 2.3b, which finds a ho-
motopy of α̃ = δ̃β̃ that contracts δ̃ to its starting point. In figure
17 we see a schematic example of the two main steps of the al-
gorithm, removing pockets and removing dead-ends.

7 Note that we define RemovePocket recursively in this way.
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Algorithm 2.3b

Input:

• A curve α̃ = δ̃β̃ in standard form, where δ̃ is a closed loop
at the endpoint of β̃.

Output:

• A homotopy H̃contr from α̃ to β̃.

Steps:

1. We define the variable s as a counter for the elementary
moves, and set s = 0.

2. While α̃ 6= β̃, we repeat the following steps:

a) While δ̃ has a dead-end (δ̃k, δ̃k+1), we let
µ̃s = RemoveDeadEnd(α̃, (δ̃k, δ̃k+1)). We apply µ̃s to
α̃ and increase s by 1.

b) If α̃ is now β̃, we output µ̃s · · · µ̃0 and terminate the
algorithm.

c) We calculate χ = FindPocket(δ̃).

d) We calculate and apply µ̃s = RemovePocket(α̃,χ),
and increase s by 1.

3. We output H̃contr = µ̃s · · · µ̃0 and terminate the algorithm.

To see that this algorithm terminates, note that δ̃ has a finite
number of closed subcurves. Each time we remove a pocket,
we remove a closed subcurve and do not create a new closed
subcurve. Hence the algorithm will terminate.

5.2.4 Step 4: Back to the original β̃

Now all that is left is to homotope α̃ back to the original version
of β̃, i.e. β̃ before we put it in standard form. This comes down
to simply applying H̃Rstd,β̃, the reverse of the homotopy H̃std,β̃

that we applied to β̃ in section 5.2.2.



58 algorithms for closed geodesics

β̃

δ̃

β̃

δ̃

β̃

δ̃

Figure 17: In first figure we have found a pocket of δ̃, indicated in
purple. In the second figure we remove this pocket by
RemovePocket. A dead-end remains, which is removed in
the third figure by RemoveDeadEnd.

5.2.5 Step 5: Output

The end result of algorithm 2 is the homotopy
H = HRstd,βHcontrHpartHendHstd,α, whereHstd,β,Hcontr,Hpart,Hstd,α

and Hend are the homotopies on P representing H̃std,β̃, H̃contr,
H̃part, H̃std,α̃ and H̃end, respectively. It homotopes α to β, as de-
sired.



6
D I S C U S S I O N

At the outset, the goal of this master project was the follow-
ing: to generalise the results of Aigon-Dupuy’s article on the
description of Teichmüller space of genus 2 by admissible poly-
gons to higher genus. The hope was that finding such a gener-
alisation would allow us to use the tools provided in Aigon-
Dupuy’s description to facilitate computation on closed Rie-
mann surfaces of higher genus.

We realised that just taking symmetric 4g-gons would not work,
as we do not get the required 6g−6 real parameters to parametrize
Teichmüller space. Our initial attempt, not described in thesis,
was to take three of its vertices, mirror these and leave the rest
to vary. This seemed to give us the required 6g − 6 parame-
ters. We were not able, however, to show that this construc-
tion would actually parametrize Teichmüller space. We tried
to relate the construction to that of Zieschang-Vogt-Coldewey,
which also provides coordinates to Teichmüller space using hy-
perbolic polygons, but could not make progress.

We decided to switch focus to the symmetric polygons of higher
genus. These we found, are known to correspond to the closed
hyperelliptic Riemann surfaces. We made a study of this result,
which was first proven by Schaller.

Now, given this relation between admissible polygons and closed
hyperelliptic Riemann surfaces, we wished to see whether the
results of Aigon-Dupuy would carry over to this more general
case. We went through the arguments of Aigon-Dupuy proving
criteria on how we may choose vertices of admissible octagons,
and showed that, apart from some small adaptations, the same
results hold for admissible polygons of higher genus.

In looking ahead through the rest of the article of Aigon-Dupuy,
it seemed that its results, apart from section (viii) on the gener-
ators of the modular group, would generalise almost immedi-
ately. We therefore thought it to be more interesting to spend
the remaining time of the project on a computational problem
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in which we might apply the studied parametrization of hy-
perelliptic surfaces by admissible polygons. The problem we
settled on was determining a homotopic closed geodesic to a
curve on a closed hyperelliptic Riemann surface, and if possi-
ble, find a homotopy explicitly.
There are some comments to be made regarding the algorithms
we presented. The algorithms have not been implemented and
tested, the complexity of the algorithms has not been analysed
and they are probably not as efficient as they could be. They
are still, very much, theoretical algorithms.

Furthermore, there are different approaches one might take in
the construction of the algorithms. A different idea for the al-
gorithm to find vertices inside δ̃ is a so-called sweep-line algo-
rithm. With a δ̃ in the Euclidean plane and the case of the torus,
this would work as follows: we start with the vertex of δ̃ that
is leftmost, i.e. has the lowest x coordinate. We then work right-
wards. We know that each gridpoint between the edges that
leave the leftmost vertex will be inside δ̃. Moving rightwards,
and taking care to note where new vertices appear and where
edges come together, and which gridpoints we encounter in-
side δ̃ along the way, we can find all vertices inside δ̃.
The problem in the hyperbolic case, however, is that we do not
know beforehand where our gridpoints, the vertices of copies
of P, lie. We could try to calculate them along the way, and
probably this could work as well, though you might have to
calculate and check points that lie left of your sweepline, mak-
ing the process messier.

In this thesis we used the approach as described in section 5.2.
Follow up studies are recommended to explore such algorithms
further and provide actual implementation.
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