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Abstract

Since Ancient times, Mathematicians have been interested in the study of convex, regular poly-
hedra and their beautiful symmetries. These five polyhedra are also known as the Platonic Solids.
In the 19th century, the four-dimensional analogues of the Platonic solids were described mathe-
matically, adding one regular polytope to the collection with no analogue regular polyhedron. This
thesis describes the six convex, regular polytopes in four-dimensional Euclidean space. The focus
lies on deriving information about their cells, faces, edges and vertices. Besides that, the symmetry
groups of the polytopes are touched upon. To better understand the notions of regularity and sym-
metry in four dimensions, our journey begins in three-dimensional space. In this light, the thesis
also works out the details of a proof of prof. dr. J. Top, showing there exist exactly five convex,
regular polyhedra in three-dimensional space.
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1 | Introduction

“He who in action sees inaction
and in inaction sees action
is wise among men.”

— Chapter 4, verse 18, Bhagavad Gita, translated by
Maharishi Mahesh Yogi [Yog90]

The above excerpt from the Hindu scripture Bhagavad Gita can be of help to understand the
mathematical notion of symmetry. In Humanistic Mathematics Network Journal, professor of
Mathematics Catherine Gorini [Gor96] illustrates it as follows. For an object as a set of points
in R𝑛, a symmetry of this object is a transformation (action) that leaves the object invariant
(inaction). By definition, a transformation in R𝑛 is a map 𝜙 : R𝑛 → R𝑛 with the property
‖𝜙(𝑣) − 𝜙(𝑤)‖ = ‖𝑣 − 𝑤‖ for all 𝑣, 𝑤 ∈ R𝑛. Such maps are also called isometries.

The convex, regular polyhedra are an example of objects with an exceptionally high degree of
symmetry. By the words ‘a high degree of symmetry’, we mean there exist a high (finite) amount of
transformations that leave these objects invariant. This set of polyhedra is also called the Platonic
solids.

Simply put, a Platonic solid is a three-dimensional object, a polyhedron, with each flat face being
an equilateral polygon. There exist exactly five such shapes, called the tetrahedron, the cube, the
octahedron, the dodecahedron, and the icosahedron.

Throughout the history of mathematics, these objects have been studied extensively. They
earned a place in Plato’s dialogue Timaeus in 360 B.C., and Euclid gave a mathematical description
and exploration of their properties in The Elements in 300 B.C. Even from at least 1000 years before
Plato’s Timaeus, carved models were found of the solids. Whether these were studied in a similar
way to Euclid’s studies and his mathematical descriptions is rather questionable, but it affirms that
these objects have been capturing human’s eye throughout history [DeH16, p. 3].

Around the mid-19th century, an interest in the fourth dimension began to rise. Swiss mathe-
matician L. Schläfli described an analogue version of the Platonic solids in four-dimensional space
in his work Theorie der vielfachen Kontinuität [SG01]. The term polytope is used to generalise the
notion of a polygon or polyhedron. Schläfli discovered that there exist exactly 6 regular, convex
polytopes in four-dimensional space. These are called the convex regular 4-polytopes or sometimes
polychora.

In this thesis, four-dimensional space denotes four-dimensional Euclidean space. This space
is not to be confused with the notion of spacetime. The latter is topologically different [Zee67].
Just as one can imagine going from two-dimensional planes to three-dimensional space by adding
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CHAPTER 1. INTRODUCTION 1.1. AIM OF THIS THESIS

one axis orthogonal to all others, the same reasoning can be applied to going from three- to four-
dimensional space. Visualising such a space can be considered nearly impossible, although there
are records of humans who were able to do so. One extraordinary example is mathematician Alicia
Boole Stott. Without a formal education, she managed to create models of sections of 4-polytopes,
through visualisation and self-study. Her works are on display in the University Museum of the
University of Groningen [Bla02, p. 29].

1.1 Aim of this thesis

This thesis aims to describe the geometry of the six convex, regular 4-polytopes and their symmetry
groups. The vertices of these figures are described, and their symmetry groups are touched upon.
First, however, the Platonic solids are discussed. This somewhat inductive approach aims to help
the reader familiarise with the mathematical concepts of regular polytopes, before moving into
unimaginable territory.

The necessary preliminaries are given in Chapter 2. The mathematical definitions of symmetries
and symmetry groups are presented. The algebra of quaternions is introduced, as we will use this in
Chapter 4 to describe the vertices and symmetries of the 24-cell and 600-cell.

The third chapter describes the three-dimensional analogue of these objects, the Platonic solids.
The reader becomes familiarised with symmetry groups and regularity. Through a proof of the
existence of exactly five such polyhedra, the objects are constructed.

The notions of regularity and symmetry will be looked into again in Chapter 4, but this time
concerning four-dimensional polytopes. The six regular, polytopes in four-dimensional space are
described one by one. For the four-dimensional analogues of the tetrahedron, cube and octahedron
we derive their vertices, edges, faces and cells. For the analogues of the icosahedron and dodeca-
hedron, as well as the 24-cell, we use quaternions to represent the vertices in terms of certain sets
of quaternions.

7



2 | Regular polytopes & Symmetry
Groups

“POLYTOPE is the general term of the sequence
point, segment, polygon, polyhedron, . . .

— H.S.M. Coxeter [Cox48], p. 118

This section provides preliminary knowledge regarding convex, regular polytopes and symmetry
groups. It serves as a support to understand the thesis and is based on [Cox48], [MT18] and
[Arm88].

2.1 Regular polytopes

This thesis concerns only convex polytopes. We define convexity shortly as follows. A subset 𝑃 of
R𝑛 is called convex if any segment between points in the set, is contained in the set. An example of
a non-convex set is a regular star pentagon.

The following definition of a polytope is used, which is a generalisation to 𝑛 dimensions of
polygons (two-dimensional) and polyhedra (three-dimensional).

Definition 2.1.1 (Polytope). An 𝑛 dimensional polytope is a closed, bounded subset of R𝑛 that is
bounded by 𝑛− 1 dimensional hyperplanes and has non-empty interior.

The regular polytopes form a specific collection of highly symmetrical polytopes. In two-dimensional
space, for example, the regular polytopes are equilateral and equiangular polygons. In three di-
mensions, the regular polytopes are polyhedra with equal, regular faces, where an equal number
of edges meets at each vertex [Bla02, p. 4]. As stated before, these regular polyhedra are the five
Platonic solids.

A general definition of an 𝑛 dimensional regular polytope can be given as follows.

Definition 2.1.2 (Regular polytopes [MS02]). An 𝑛 dimensional polytope is called regular if, for
each 𝑗 = 0, . . . , 𝑛− 1 its symmetry group is transitive on the 𝑗-faces of it.

This thesis mainly concerns polytopes of dimension four, called 4-polytopes. For 4-polytopes,
where 𝑗 = 0, 1, 2, 3, the 𝑗-faces are called respectively vertices, edges, faces and cells. Cells are
three-dimensional faces that bound the four-dimensional objects.
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CHAPTER 2. REGULAR POLYTOPES & SYMMETRY GROUPS 2.2. SYMMETRY GROUPS

A way to represent (regular) polytopes is by their so-called Schläfli symbol. These symbols are
of the form {𝑝, 𝑞, 𝑟, . . .}, where 𝑝, 𝑞, 𝑟, . . . are natural numbers if the described polytope is convex
and regular. For three-dimensional bodies, the symbol is of the form {𝑝, 𝑞}. The first input 𝑝 stands
for 𝑝-gonal faces, the second input 𝑞 stands for the number of 2-faces meeting in each vertex. For
four-dimensions, the symbol is of the form {𝑝, 𝑞, 𝑟}. The additional 𝑟 represents the number of
three-dimensional cells with symbol {𝑝, 𝑞} meeting in each edge [Bla02]. This notation will be
used in Chapter 4 to denote different regular polytopes.

A notion that will show itself to be very useful in, for example, researching symmetry groups is
that of a dual of a polytope. The dual of a regular polytope is defined as follows.

Definition 2.1.3. The dual of a regular polytope 𝑃 in 𝑛 dimensions is another polytope having one
vertex in the centre of each 𝑛− 1 face of the polytope 𝑃 .

Remark. It turns out that the dual of a polytope with Schläfli symbol {𝑝, 𝑞, 𝑟} is a polytope with
symbol {𝑟, 𝑞, 𝑝}.

Later we will see that a polytope and its dual share the same symmetry group. An elaboration
on symmetry groups is now given.

2.2 Symmetry groups

A symmetry group can be described informally as the group of transformations that leave an object
‘unchanged’ when applied to it. The group law of such a group is composition. Examples of a
symmetry are rotations or reflections.

Symmetries are by definition distance preserving maps. Such maps are generally called isome-
tries. For an isometry to be a symmetry, it is also required that the map sends an object to itself. In
[MT18, p. 44], a definition for isometries is given.

Definition 2.2.1 (Isometry). An isometry on R𝑛 is a map 𝜙 : R𝑛 → R𝑛 with the property 𝑑(𝑣, 𝑤) =
𝑑(𝜙(𝑣), 𝜙(𝑤)) for all 𝑣, 𝑤 ∈ R𝑛. Here 𝑑(·, ·) is the Euclidean distance.

In [MT18, p. 44] it is also proved that isometries mapping 0 to 0 are linear, and that the linear
isometries on R𝑛 are exactly the elements of the orthogonal group 𝑂(𝑛). For 𝑛 ∈ Z>0 it is given by

𝑂(𝑛) = {𝐴 ∈ 𝐺𝐿𝑛(R) : 𝐴𝑇𝐴 = 𝐼}, where 𝐴𝑇 is the transpose of 𝐴. (2.1)

Elements of𝑂(𝑛) have determinant equal to 1 or -1. This is easily seen from the fact that det(𝐴𝑇𝐴) =
1 and det(𝐴𝑇𝐴) = det(𝐴𝑇 ) det(𝐴) = det(𝐴)2. A subgroup of 𝑂(𝑛) whose elements have determi-
nant equal to 1 is the special orthogonal group and is given by

𝑆𝑂(𝑛) = {{𝐴 ∈ 𝐺𝐿𝑛(R) : 𝐴𝑇𝐴 = 𝐼, det(𝐴) = 1}. (2.2)

A formal definition of a symmetry group of a set is given in [MT18] as follows.

Definition 2.2.2 (Symmetry group). A symmetry group of a subset 𝑃 ⊂ R𝑛 is defined as the group
of all isometries on R𝑛 with the property that 𝑃 is mapped to 𝑃 .

From this it can be inferred that any object centred at the origin has a symmetry group that is a
subgroup of 𝑂(𝑛).

We now describe basic knowledge of quaternions. These will be used to make representing
points and rotations in R4 easier in Chapter 4.
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CHAPTER 2. REGULAR POLYTOPES & SYMMETRY GROUPS 2.3. QUATERNIONS

2.3 Quaternions

In 1843, Hamilton invented the algebra of quaternions H(R) [Sti00, p. 18], or shortly H. It is a
normed algebra of quadruples, a two-dimensional extension of the complex numbers. A quaternion
is of the form

𝑞 = 𝑞0 + 𝑞1𝑖+ 𝑞2𝑗 + 𝑞3𝑘,

with 𝑞0, . . . , 𝑞3 ∈ R and where the imaginary units 𝑖, 𝑗, 𝑘 are such that

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1.

The conjugate of an element of H is defined as

𝑞 = 𝑞0 − 𝑞1𝑖− 𝑞2𝑗 − 𝑞3𝑘.

This can be used to define the norm map 𝑁 of a quaternion. The norm map is defined as the square
of the norm ‖𝑞‖ :=

√
𝑞𝑞.

𝑁(𝑞) := ‖𝑞‖2 = 𝑞𝑞

This norm has the property that 𝑁(𝑥𝑦) = 𝑁(𝑥)𝑁(𝑦) for all 𝑥, 𝑦 ∈ H. This follows from writing
out 𝑁(𝑥𝑦) .

𝑁(𝑥𝑦) = 𝑥𝑦𝑥𝑦

= 𝑥𝑦𝑦𝑥

= 𝑥𝑁(𝑦)𝑥

= 𝑁(𝑥)𝑁(𝑦).

(2.3)

The second equality requires a small proof, as it uses the following equality.

𝑥𝑦 = 𝑦𝑥, for all 𝑥, 𝑦 ∈ H

It is not true in general that 𝑥𝑦 = 𝑥𝑦. To make notation easier, collect the quaternion coefficients in
a vector. Hence, for 𝑥 = 𝑎+ 𝑏𝑖+ 𝑐𝑗 + 𝑑𝑘 ∈ H, we write {𝑎, 𝑏, 𝑐, 𝑑} and for 𝑦 = 𝑒+ 𝑓𝑖+ 𝑔𝑗 + ℎ𝑘 ∈ H,
we write {𝑒, 𝑓, 𝑔, ℎ}. To see that 𝑥𝑦 equals 𝑦𝑥, but does not generally equal 𝑥𝑦, let us list the three
quaternions using the vector notation introduced above.

𝑥𝑦 = {𝑎𝑒− 𝑏𝑓 − 𝑐𝑔 − 𝑑ℎ,−𝑏𝑒− 𝑎𝑓 + 𝑑𝑔 − 𝑐ℎ,−𝑐𝑒− 𝑑𝑓 − 𝑎𝑔 + 𝑏ℎ,−𝑑𝑒+ 𝑐𝑓 − 𝑏𝑔 − 𝑎ℎ}
𝑥𝑦 = {𝑎𝑒− 𝑏𝑓 − 𝑐𝑔 − 𝑑ℎ,−𝑏𝑒− 𝑎𝑓 + 𝑑𝑔 − 𝑐ℎ,−𝑐𝑒− 𝑑𝑓 − 𝑎𝑔 + 𝑏ℎ,−𝑑𝑒+ 𝑐𝑓 − 𝑏𝑔 − 𝑎ℎ}
𝑦𝑥 = {𝑎𝑒− 𝑏𝑓 − 𝑐𝑔 − 𝑑ℎ,−𝑏𝑒− 𝑎𝑓 − 𝑑𝑔 + 𝑐ℎ,−𝑐𝑒+ 𝑑𝑓 − 𝑎𝑔 − 𝑏ℎ,−𝑑𝑒− 𝑐𝑓 + 𝑏𝑔 − 𝑎ℎ}

Observe that for 𝑥𝑦 = 𝑥𝑦 to be true, it must hold that 𝑑𝑔 = 𝑑𝑓 = 𝑏𝑔 = 0. On the other hand
𝑥𝑦 = 𝑦𝑥 for all 𝑥, 𝑦 ∈ 𝑅. Looking at the second coefficient already reveals it, as for 𝑥𝑦 this is
−𝑏𝑒− 𝑎𝑓 + 𝑑𝑔 − 𝑐ℎ, and for 𝑥𝑦 it is −𝑏𝑒− 𝑎𝑓 − 𝑑𝑔 + 𝑐ℎ.

Using quaternions can make notation simpler, as we will see in Chapter 4 when describing
vertices of the 24-cell and 600-cell. Quaternions can also be used to represent rotations in three as
well as four-dimensional space [Zho91, p. 17 – 30].

To construct elements of 𝑂(4) expressed as quaternions, take 𝑞 ∈ H with 𝑁(𝑞) = 1. Define
𝜆𝑞 : H → H by 𝜆𝑞(𝑥) = 𝑞𝑥.
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CHAPTER 2. REGULAR POLYTOPES & SYMMETRY GROUPS 2.3. QUATERNIONS

Take 𝑥, 𝑦 ∈ H and 𝛼 ∈ R. We will show that the map 𝜆𝑞(𝑥) is linear, by showing that 𝜆𝑞(𝑥+𝑦) =
𝜆𝑞(𝑥) + 𝜆𝑞(𝑦) and 𝜆𝑞(𝛼𝑥) = 𝛼𝜆𝑞(𝑥).

𝜆𝑞(𝑥+ 𝑦) = 𝑞(𝑥+ 𝑦)

= 𝑞𝑥+ 𝑞𝑦

= 𝜆𝑞(𝑥) + 𝜆𝑞(𝑦)

Distributive properties of H are used here.

𝜆𝑞(𝛼𝑥) = 𝑞𝛼𝑥

= 𝛼𝑞𝑥

= 𝛼𝜆𝑞(𝑥)

Associative properties of H are used here as well as the fact that for 𝑧 ∈ H and 𝛼 ∈ R one has
𝛼𝑧 = 𝑧𝛼. Because we assume 𝑁(𝑞) = 1, the map 𝜆𝑞(𝑥) is also distance-preserving. In other words,
‖𝑥− 𝑦‖ = ‖𝜆𝑞(𝑥) − 𝜆𝑞(𝑦)‖.

After all, we can write out ‖𝜆𝑞(𝑥) − 𝜆𝑞(𝑦)‖2 as follows.

‖𝜆𝑞(𝑥) − 𝜆𝑞(𝑦)‖2 = 𝑁(𝑞𝑥− 𝑞𝑦)

= 𝑁(𝑞)𝑁(𝑥− 𝑦)

= ‖𝑥− 𝑦‖2

A map 𝜆𝑝(𝑥) : 𝑥 ↦→ 𝑥𝑝 with 𝑝 ∈ H, 𝑁(𝑝) = 1 is also linear and distance preserving by similar
arguments. Any composition of the form 𝜙 : 𝑥 ↦→ 𝑞𝑥𝑝 has the same properties.

Earlier it was stated that linear isometries on R4 are exactly the elements of 𝑂(4). These kinds
of maps 𝜙 will show to be useful in determining the symmetries of some four-dimensional regular
polytopes in Chapter 4.
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3 | The Platonic Solids

“Though analogy is often misleading, it is the least
misleading thing we have.”

— Samuel Butler (1835 – 1902) (Music, Pictures and
Books) [Cox61, p. 401]

This chapter presents a description of the Platonic solids and their symmetry groups. Not only
listing them, but constructing them through a proof inspired by [Top96, p. 66 – 69] that exactly
five of them exist. This chapter can be seen as supporting the reader to read the subsequent chapter
about their four-dimensional analogues. Besides that, it should provide a more complete story to
understand regular polytopes. We will now describe useful excerpts from group theory that will be
used in the proof.

3.1 Action, orbit and stabiliser

The lecture notes of prof. dr. J. Top and dr. J.S. Müller [MT18, p. 60 – 62] provide theory on the
notions of action, orbit, and stabiliser. The original proof of the existence of five regular polyhedra
in Top’s Dutch version of the notes [Top96] does not mention their use explicitly. The extension of
this proof given in the thesis will make use of theory on actions and orbits.

Definition 3.1.1 (Group action, from [MT18]). Let 𝐺 be a group and 𝑋 be a nonempty set. A
group action of 𝐺 on 𝑋 is a map 𝐺×𝑋 → 𝑋 which we write as (𝑔, 𝑥) ↦→ 𝑔𝑥, satisfying

A1. 𝑒𝑥 = 𝑥 for every 𝑥 ∈ 𝑋

A2. (𝑔ℎ)𝑥 = 𝑔(ℎ𝑥) for all 𝑔, ℎ ∈ 𝐺 and all 𝑥 ∈ 𝑋

It is common to refer to a group action on 𝑋 as ‘𝐺 acts on 𝑋 ’.

Definition 3.1.2 (From [MT18]). Let the group 𝐺 act on the set 𝑋 and take 𝑥 ∈ 𝑋.

1. The stabiliser of 𝑥 in 𝐺, denoted 𝐺𝑥 is defined as

𝐺𝑥 := {𝑔 ∈ 𝐺 : 𝑔𝑥 = 𝑥} ⊂ 𝐺

2. The orbit of 𝑥 under 𝐺, denoted by 𝐺𝑥, is defined as

𝐺𝑥 := {𝑔𝑥 : 𝑔 ∈ 𝐺} ⊂ 𝑋

12



CHAPTER 3. THE PLATONIC SOLIDS 3.2. FIVE REGULAR, CONVEX POLYHEDRA

If 𝐺 is a group of permutations, the stabiliser may be described as the set of permutations such
that an element 𝑥 remains invariant. The orbit of an element 𝑥 will be the set of elements that 𝑥 is
mapped to by elements of 𝐺.

3.2 Five regular, convex polyhedra

The only convex, regular polyhedra are the tetrahedron, the cube, the octahedron, the dodecahe-
dron and the icosahedron. Proofs of this fact using geometry (angle sums) and topology (Euler’s
polyhedral formula) are given in [DeH16, p. 11 – 18]. The proof included here is based on group
theory and works out the details of [Top96, p. 66 – 69].

Theorem 3.2.1. There exist five convex, regular polyhedra.

Let us first set up some ‘mise en place’ for proving this theorem. We begin with a sphere in three-
dimensional space, centred at the origin. One can construct a Platonic solid by taking the convex
hull of 𝑛 suitably-picked points on this sphere. Any isometry preserves the distance between the 𝑛
points. The only point that has equal distance to all of them is the origin of the sphere. Therefore,
this point gets mapped to itself by any isometry, and as stated in Section 2.2 any isometry fixing
the origin is linear. This shows that symmetries of such polyhedra are in fact linear (also called
orthogonal) isometries.

The following proposition from [Top96, p. 59] is an important result for proving the existence
of exactly five regular polyhedra.

Proposition 3.2.2. If 𝜙 is an orthogonal map on R3 with det(𝜙) = 𝜖, then 𝜖 = ±1. There also exist
a line 𝐿 and a plane 𝑊 orthogonal to 𝐿 such that 𝜙 maps 𝐿 and 𝑊 to itself. Here 𝜙 acts on 𝑊 as a
rotation around 𝐿 or as a reflection in a line 𝑀 ⊂ 𝑊 , and on 𝐿 as multiplication with 𝜖 in the first
case, resp. with −𝜖 in the second.

Figure 3.1: The Platonic solids as
constructed by picking 𝑛 points on a
sphere, taken from [TG20].

The proof of this proposition uses the fact that the
characteristic polynomial of the 3-by-3 matrix 𝐴 in 𝑂(3)
corresponding to 𝜙 has at least one real root 𝜆, with
eigenvector 𝑣. By distance preservation of the map 𝜙 rep-
resented by 𝐴 it follows that 𝜆 = ±1. Since 𝐴𝑣 = 𝜆𝑣 it
follows that 𝜙 maps a line 𝐿 through 𝑣 and the origin to
itself. By looking at a plane 𝑊 through the origin orthog-
onal to 𝑣, it is shown that 𝜙 maps this plane to itself by
showing that for any vector 𝑤 ∈𝑊 , 𝜙(𝑤) is orthogonal to
𝑣 and hence also in the plane 𝑊 . The map 𝜙 is therefore
either a rotation of 𝑊 or a reflection in a line in the plane
through the origin.

From this (one deduces, using that if 𝜆 is a non-real
eigenvalue then so is 𝜆̄) that elements of 𝑆𝑂(3) (where det = 1) can be seen as rotations around a
line 𝐿 through the origin.

It is known from Linear Algebra that linear maps are determined by their effect on a basis and
specifically in this case by the 𝑛 vertices of a Platonic solid. Without loss of generality we can
assume that the origin is the centre of the solid so that the symmetry group consists of linear maps,
and then three vertices can be picked as a basis for R3, since not all lie in the same plane. Therefore,
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the symmetries of Platonic solids are determined by their action on the vertices. The consequence
is that the order of the symmetry group is at most equal to the number of permutations on the 𝑛
vertices. The symmetry group is thus isomorphic to a subgroup of 𝑆𝑛.

By Definition 2.1.1 it is also known that the symmetry group of a Platonic solid acts transitively
on its edges and vertices. This simply means that for each pair of vertices 𝑥, 𝑦 there exists a sym-
metry that sends 𝑥 to 𝑦, and similar for pairs of edges. In more mathematical terms, if 𝑥, 𝑦 ∈ R3

are vertices of polytope 𝑃 , there exists a 𝜙 in the symmetry group of 𝑃 , such that 𝜙(𝑥) = 𝑦. Fur-
thermore, we stated that symmetry groups are subgroups of 𝑂(3), as 𝑂(3) consists of all linear
isometries.

Now the claim is that vertices of a Platonic solid can be mapped to each other using purely
rotations (so, elements in 𝑆𝑂(3)). This is supported by the following intuitive argument, which
provides some additional explanation to the brief text given on p. 66 of [Top96]. Take an arbitrary
Platonic solid 𝑃 , centred at the origin, and a vertex 𝑛 on the North Pole. Say 𝑣 is another vertex
of 𝑃 . Symmetries that fix a vertex at the North Pole are either rotations around the 𝑧-axis, or
reflections in a plane containing the 𝑧-axis. Such symmetries have the property of preserving the
𝑧-coordinates of all vertices. Firstly, we can map 𝑣 to 𝑛 by rotating the solid. Now in order to
construct a symmetry that maps 𝑣 to 𝑛, we need to ensure that 𝑃 ends up in its original position.

Since the solid is regular, it looks the same seen from all vertices when looking towards the
origin. From this point of view, some vertices can be said to be ‘underneath’ the vertex from which
we are looking. These ‘underlying’ vertices lie in one or more planes 𝑃𝑖, 𝑖 ∈ N orthogonal to the
line through the origin and our viewpoint. Drawing a line 𝐿 through the vertex 𝑣 and origin, we
define the ‘height’ of the other vertices as the distance between vertex 𝑣 and the point(s) 𝑃𝑖 ∩ 𝐿.
From whichever vertex we are looking, the heights between the planes and the vertex will be equal
because the solid is regular. It also holds that at each vertex, an equal number of equal angles meet.
Therefore, it is possible to rotate 𝑃 until it is in its original position.

It was seen in Proposition 3.2.2 elements of 𝑆𝑂(3) are such rotations. We would like therefore
to consider the rotation group 𝑆𝑂(3), because the vertices of any Platonic solid can be mapped to
each other by purely using such rotations. We recall some facts concerning rotations around the
origin in the plane.

Using, e.g., [Leo15, p. 202] these rotations considered in the two-dimensional plane 𝑊 can be
represented by a matrix of the form

𝑅 =

[︂
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]︂
,

where 𝜃 is the angle of rotation about the origin in the counterclockwise direction. These matrices
clearly have determinant equal to 1.

For any vertex, there exist rotations in the symmetry group that fix that vertex. More precisely,
these are rotations of a certain angle around the line through the origin and the vertex itself. The
rotations fix this line pointwise and send a plane through the origin and orthogonal to the line to
itself. The following theorem from [Top96, p. 61] tells us something about this group of rotations.

Theorem 3.2.3. If 𝐺 is a subgroup of 𝑆𝑂(2) existing of 𝑚 elements, then 𝐺 consists entirely of
rotations about a multiple of 2𝜋/𝑚. In particular 𝐺 ∼= Z/𝑚Z.

Hence, the group of such rotations fixing a vertex is isomorphic to Z/𝑚Z for some 𝑚 ∈ N. The
rotations in such a group map each face connected to the vertex cyclicly to one another. Because of
the order of the group, it is clear that precisely 𝑚 such faces exist.
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From the above follows a sketch of the proof of Theorem 3.2.1.
Because the symmetry groups are finite and any vertex can be mapped to another using rotation,

we first determine all finite subgroups of 𝑆𝑂(3). For all possible vertices of Platonic solids there
exists at least one rotation that maps this vertex to itself, as we described above. We are interested
in these vertices, and therefore determine all such points on the sphere. Then focusing on one point
and looking at its orbits under an arbitrary finite subgroup of 𝑆𝑂(3), denoted as 𝐺, we can find the
regular polyhedra. We now provide the proof in more detail.

Proof. (of Theorem 3.2.1) Let 𝐺 be an arbitrary finite nontrivial subgroup of 𝑆𝑂(3). Denote its
order by 𝑁 ≥ 2. Consider the boundary of the unit ball, so 𝐵 = {(𝑥, 𝑦, 𝑧) : 𝑥2 + 𝑦2 + 𝑧2 = 1}. Any
element 𝑔 of 𝐺 is an orthogonal map with determinant equal to 1. By Proposition 3.2.2, if 𝑔 ̸= id
then 𝑔 is a rotation around a unique line 𝐿 through the origin. Any such line 𝐿 intersects the sphere
𝐵 in two antipodal points ±𝑃 . The points ±𝑃 are the only points of 𝐵 that are fixed by the linear
map 𝑔, i.e. 𝑔(𝑃 ) = 𝑃 .

We now count the number of pairs (𝑔, 𝑃 ) such that 𝑔 ∈ 𝐺 is not the identity map and 𝑃 ∈ 𝐵
satisfies 𝑔(𝑃 ) = 𝑃 . Since #𝐺 = 𝑁 , and for each 𝑔 ̸= id in 𝐺 we have two points 𝑃 ∈ 𝐵 such that
𝑔(𝑃 ) = 𝑃 we see that there are 2(𝑁 − 1) such pairs. The set 𝑋 consisting of those pairs is denoted
as

𝑋 = {(𝑔, 𝑃 ) : 𝑔 ∈ 𝐺, 𝑔 ̸= id, 𝑃 ∈ 𝐵, 𝑔(𝑃 ) = 𝑃}.

Group 𝐺 acts on 𝑋. The group action is defined as ℎ𝑥 := (ℎ𝑔ℎ−1, ℎ(𝑃 )) where ℎ is an element of
𝐺. Note that ℎ𝑥 is again an element of 𝑋, because ℎ𝑔ℎ−1ℎ(𝑃 ) = ℎ𝑔(𝑃 ) = ℎ(𝑃 ). Here we use the
fact that 𝑥 = (𝑔, 𝑃 ) ∈ 𝑋 implies 𝑔(𝑃 ) = 𝑃.

Consider now the set 𝑌 given by

𝑌 = {𝑃 | ∃ 𝑔 ∈ 𝐺 : (𝑔, 𝑃 ) ∈ 𝑋}.

This set consists of all points on the sphere that are held fixed by some element ̸= id of 𝐺. In the
sketch of the proof, we argued that those points are possible vertices of the regular polyhedra.

Group 𝐺 acts on this set 𝑌 , with group action defined as ℎ𝑃 := ℎ(𝑃 ), ℎ ∈ 𝐺,𝑃 ∈ 𝑌 . To see
that ℎ𝑃 ∈ 𝑌 , note that by definition there exists 𝑔 in 𝐺 such that (𝑔, 𝑃 ) ∈ 𝑋. We saw earlier that
(ℎ𝑔ℎ−1, ℎ(𝑃 )) is in 𝑋 as well. Hence, ℎ𝑃 ∈ 𝑌 .

For 𝑃 ∈ 𝑌 we write 𝐺𝑃 ⊂ 𝐺 for its stabiliser under the action of 𝐺. Looking at the proof of
Lagrange’s theorem given in [MT18], we see that 𝐺 is the disjoint union of cosets 𝑔𝑖𝐺𝑃 . This can
be expressed as follows.

𝐺 = 𝑔1𝐺𝑃 ∪ 𝑔2𝐺𝑃 ∪ · · · ∪ 𝑔𝑛𝑝
𝐺𝑃

with 𝑛𝑃 = [𝐺 : 𝐺𝑃 ].
By writing any element of a coset as 𝑔𝑖ℎ ∈ 𝑔𝑖𝐺𝑃 , observe that 𝑔𝑖ℎ(𝑃 ) = 𝑔𝑖(𝑃 ). Also, 𝑔𝑖(𝑃 ) ̸=

𝑔𝑗(𝑃 ) for any 𝑖 ̸= 𝑗, because otherwise it would imply that 𝑔𝑖𝐺𝑃 and 𝑔𝑗𝐺𝑃 are not disjoint, leading
to a contradiction. A more detailed explanation of this fact can be found in the proof of Lagrange’s
theorem on p. 27 of [MT18]. It follows that the orbit 𝐺𝑃 ⊂ 𝑌 consists of 𝑛𝑃 points.

We continue to look at an orbit 𝐺𝑃 ⊂ 𝑌 . As stated above, the order of an orbit is 𝑛𝑃 . Given
𝑄 ∈ 𝐺𝑃 , its stabiliser 𝐺𝑄 has the same order as 𝐺𝑃 . Indeed, taking 𝑔 ∈ 𝐺 with 𝑔𝑄 = 𝑃 and
𝜏 ∈ 𝐺𝑃 , one finds 𝑔𝜏𝑔−1 ∈ 𝐺𝑄. The same holds the other way around, showing that 𝐺𝑃 and 𝐺𝑄

are conjugate within 𝐺. Hence, their order is equal.
For any point 𝑃 ∈ 𝑌 , we have now discussed the number of points in its orbit: #𝐺𝑃 = 𝑛𝑃 ,

and the number of elements of 𝐺 in the stabiliser of any point in this orbit: for 𝑄 ∈ 𝐺𝑃 one has
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#𝐺𝑄 = #𝐺𝑃 = 𝑁/𝑛𝑃 ; this integer we will denote by 𝑚𝑄 = 𝑚𝑃 . The orbit 𝐺𝑃 therefore yields
𝑛𝑃 ( 𝑁

𝑛𝑃
− 1) pairs in 𝑋, namely

{(ℎ,𝑄) : 𝑄 ∈ 𝐺𝑃, ℎ ∈ 𝐺, ℎ ̸= id, ℎ(𝑄) = 𝑄)} ⊂ 𝑋.

Note that this number is independent of 𝑃 : it depends solely on the orbit 𝐺𝑃 .
The cardinality of the set 𝑋 was counted before as being equal to 2(𝑁 − 1). One can now infer

a second way of counting by taking the sum over each orbit 𝐺𝑃 = 𝐶 ⊂ 𝑌 ; for all 𝑄 ∈ 𝐶 the
number 𝑛𝑄 is the same, and the same holds for 𝑚𝑄. Hence we write these numbers as 𝑛𝐶 and 𝑚𝐶 ,
respectively. This yields

#𝑋 =
∑︁
𝐶

𝑛𝐶(𝑚𝐶 − 1),

the sum taken over the different orbits 𝐶 ⊂ 𝑌 .
Combining the two expressions for #𝑋 one finds

2(𝑁 − 1) =
∑︁
𝐶

𝑛𝐶(𝑚𝐶 − 1) =
∑︁
𝐶

(𝑁 − 𝑛𝐶). (3.1)

Equation 3.1 can be manipulated by dividing by 𝑁 and using that 𝑛𝐶𝑚𝐶 = 𝑁 . This leads to

2 − 2

𝑁
=

∑︁
𝐶

(1 − 1

𝑚𝐶
). (3.2)

Since 𝑁 ≥ 2, the left hand side of Equation 3.2 has value at least 1 and less than 2. Note that every
𝑃 ∈ 𝑌 satisfies 𝑚𝑃 = #𝐺𝑃 ≥ 2, hence each term of the sum in the right hand side has value at
least 1/2 and less than 1. Therefore, this sum must consist of two or of three terms.

The proof in [Top96] concludes that there must be three terms, or the equation is concluded
with one vertex, which will not lead us to a regular polyhedron. The order of the remaining orbits
denoted 𝐶𝑖 is chosen such that 𝑚1 ≤ 𝑚2 ≤ 𝑚3, where 𝑚𝐶𝑖

is denoted by 𝑚𝑖. The original proof
excludes the case where all 𝑚𝑖 with 𝑖 = 1, 2, 3 are at least 3 and sets 𝑚1 = 2. The reasoning used
is similar to that in the previous paragraph. Similarly, it is excluded that the remaining 𝑚2 and 𝑚3

are both at least 4. A case distinction is made for 𝑚2 and it is concluded that its value is not equal
to two. This case would yield regular 𝑛-gons.

Another case distinction is made for 𝑚3, with 𝑚1 = 2 and 𝑚2 = 3. Using the same argument
as before for obtaining a case distinction for 𝑚2, it is found that 𝑚3 is at most 5. The remaining
options for the value of 𝑚3 are 3, 4 and 5.

Inserting the obtained values for 𝑚1 and 𝑚2, we write Equation 3.2 as

1

6
+

2

𝑁
=

1

𝑚3
(3.3)

If 𝑚3 = 3, 𝑁 = 12. The order of 𝐶2 and 𝐶3 is equal to 𝑁/𝑚2 = 12/3 = 4. The order of
the stabiliser of this set of points is 3. These are rotations of degree 2𝜋/3. The regular polyhedron
consists of 4 vertices where 3 faces meet at each vertex. This is the tetrahedron with Schläfli symbol
{3,3}.

If 𝑚3 = 4, 𝑁 = 24. By the same reasoning we find |𝐶2| = 24/3 = 8 and |𝐶3| = 24/4 = 6. These
span respectively the cube and octahedron with Schläfli symbols {4, 3} and {3, 4}.

If 𝑚3 = 5, 𝑁 = 60. Again we find |𝐶2| = 60/3 = 20 and |𝐶3| = 60/5 = 30. These span
respectively the dodecahedron and the icosahedron, with Schläfli symbols {5, 3} and {3, 5}.

What follows is a description of the symmetry groups that belong to these regular polyhedra.
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3.3 Symmetry groups

In the previous section, we considered rotations as the symmetries of our polyhedra. These sym-
metries were described as orthogonal maps with determinant 1.

The full symmetry group 𝐺 of a regular polyhedron is, however, a subgroup of 𝑂(3) and there-
fore also contains maps 𝜏 with determinant -1. These maps are point reflections in the origin, as
stated in Proposition 3.2.2. For such maps 𝜏 , we know that −𝜏 is a rotation. Therefore, the full
symmetry group consists of rotations 𝜏 and maps −𝜏 . Hence 𝐺 ∩ 𝑆𝑂(3) has index 2 in 𝐺.

For completeness, the full symmetry groups of the Platonic solids will now be repeated from
[Top96].

Let us now examine the symmetry group of the tetrahedron. It was stated before that the
symmetry group of a polyhedron with 𝑛 vertices is isomorphic to a subgroup of 𝑆𝑛. The order of the
group 𝑆4 is equal to 4! = 24. This number is also the amount of permutations of 4 vertices. These
permutations determine entirely the symmetry group of the tetrahedron. Hence, the number of
elements in the subgroup is equal to the number of elements of its group. Therefore, the symmetry
group is equal to the group 𝑆4.

When we now explore the symmetries of the cube, we know the cube shares its symmetries with
its dual, the octahedron. In the above proof we found the order of the rotational symmetry group
to be 24. The full symmetry group has order 2 · 24 = 48. It is worked out in [Top96, p. 69 – 70]
that the symmetry group is isomorphic to 𝑆4 × {±1}. The author makes use of the fact that any
symmetry of the cube maps the four diagonals from vertex to vertex to each other, and that each
symmetry has determinant 1 or -1.

Figure 3.2: The six collections
of edges used in [Top96, p.
70]

Recall that the last two solids are also each other’s dual, the
dodecahedron and icosahedron. In [Top96, p. 70] it is worked out
that their symmetry group is isomorphic to 𝐴5×{±1}. Here, 𝐴5 de-
notes the alternating group consisting of even permutations in 𝑆5.
The reasoning used splits the edges of the dodecahedron up into
five collections of edges that are either parallel or perpendicular in
direction. The symmetry group then works on the set of these five
collections are permutations. After all, it sends angles to angles of
equal measure and the collections were picked such that the angles
between the directions of the edges in one collection are 𝜋/2 or 0.

In the above proof we saw the order of the rotational group 𝐺
is 60. The symmetry group as well as 𝐴5 × {±1} both have order
2 · 60 = 120.

The next chapter will discuss the four-dimensional analogues
of the Platonic solids. One of them has no analogue in three-
dimensional space. This is the 24-cell.
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4 | Regular polytopes in
four-dimensional space

This chapter describes the regular polytopes in four dimensions, specifically their vertices. It also
derives their symmetries from the geometrical description. The information about the polytopes is
based on [Cox61] and [Cox48].

In Coxeter’s Introduction to Geometry [Cox61] it is shown that the only possible finite regular
polytopes in four dimensions are the hypertetrahedron, the hypercube, the hyperoctahedron, the
24-cell, the 120-cell and the 600-cell.

In general we can describe a polytope as the convex hull of its vertex points. The edges, faces
and cells can then be explored. This puzzle, as one could call it, leads to an idea of what the six
regular 4-polytopes “look like”. The derivation of their symmetries will use some basic knowledge
from linear algebra and group theory. Besides that, the text by Polo-Blanco [Bla02] – will be used
to describe the 24-cell and 600-cell in terms of quaternions.

4.1 Hypertetrahedron

“Make 10 equilateral triangles, all of the same size, using
10 matchsticks, where each side of every triangle is exactly
one matchstick.”

— Éric Hernández

The analogue of the tetrahedron in 3 dimensions is the hypertetrahedron. It can be constructed
by adding a vertex to the tetrahedron that has equal distance to all other vertices. Therefore, it is
also an answer to the above riddle. The general name for this object is the 𝑛-simplex, which is one
of the regular polytopes that exist in 𝑛 dimensions.

Definition 4.1.1. The hypertetrahedron can be described as a subset of R5 in the following way.

𝑃{3,3,3} = {(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ∈ R5 :

5∑︁
𝑖=1

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0 for 𝑖 = 1, 2, . . . , 5} (4.1)

The standard basis vectors in R5 denote the vertices of this object.
To develop some intuition for the notation of Equation 4.1, consider the two-dimensional 2-

simplex. This is simply a regular triangle.
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Example 4.1.2. We can describe the 2-simplex 𝑃{3} as a subset of R3 in the following way.

𝑃{3} = {(𝑥1, 𝑥2, 𝑥3) ∈ R3 : 𝑥1 + 𝑥2 + 𝑥3 = 1, 𝑥𝑖 ≥ 0 for 𝑖 = 1, 2, 3} (4.2)

The set described here is closed and bounded. We can show that it is convex as well. Any two
points 𝐴 := (𝑎1, 𝑎2, 𝑎3) and 𝐵 := (𝑏1, 𝑏2, 𝑏3) in the set, can be connected and form a segment
[𝐴,𝐵] = {𝐴 + 𝑡(𝐵 − 𝐴) : 0 ≤ 𝑡 ≤ 1}. To show that any point on the segment is in 𝑃{3}, we
need to show that the sum of its coordinates is equal to 1, and each coordinate is semi-positive. A
coordinate of a point on [𝐴,𝐵] is given by

((1 − 𝑡)𝑎1 + 𝑡𝑏1, (1 − 𝑡)𝑎2 + 𝑡𝑏2, (1 − 𝑡)𝑎3 + 𝑡𝑏3)

It is easy to see that the coordinates are semi-positive. Now taking the sum of the coordinates yields

3∑︁
𝑖=1

𝑎𝑖 − 𝑡𝑎𝑖 + 𝑡𝑏𝑖 =

3∑︁
𝑖=1

𝑎𝑖 − 𝑡

3∑︁
𝑖=1

𝑎𝑖 + 𝑡

3∑︁
𝑖=1

𝑏𝑖

= 1 − 𝑡+ 𝑡 = 1

Hence, the set is convex and describes a 2-polytope. It lies entirely in the plane
∑︀3

𝑖=1 𝑥𝑖 = 1.

Figure 4.1: The 2-simplex as given in Equation 4.2

Note that the vertices of 𝑃{3} are the standard basis vectors in R3. The edges are the segments
that join each of these vertices. For any two vertices 𝐴,𝐵 such a segment is given by [𝐴,𝐵] =
{𝐴+ 𝑡(𝐵 −𝐴) : 0 ≤ 𝑡 ≤ 1}. Exactly three edges connect the vertices. All of them are of the form

𝑥𝑗 = 1 − 𝑥𝑘,

where 𝑗 ̸= 𝑘 and 0 ≤ 𝑥𝑘 ≤ 1.
A regular polygon has sides of equal length and angles of equal measure. So to show that 𝑃{3}

is regular, one can easily prove with Pythagoras’ theorem that the edges all have length
√

2 and
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derive that all angles are equal. To support our understanding of the more general case, however,
we will show in a less straightforward way that 𝑃{3} is a regular polygon. We use Definition 2.1.2.

To check its regularity, we then need to show that the symmetry group of this polytope acts
transitively on the vertices and edges. Considering the vertices, they can be mapped to one another
by a rotation of angle 2𝜋/3 around the axis through the origin, orthogonal to the plane

∑︀3
𝑖=1 𝑥𝑖 = 1.

This rotation also cyclically carries each edge to the other. Such isometries are in the symmetry
group of 𝑃{3}, since they map the polytope to itself. The full symmetry group of the 2-simplex
centred at the origin is the dihedral group 𝐷3 [MT18, p. 46]

We can now approach 𝑃{3,3,3} in a similar way.
Showing convexity is so similar to the example that we will not include it here.
When we fix four of the five coordinates at zero, we find the vertices as boundaries of the edges.

We see that the 5 vertices are indeed the standard basis vectors of R5. The whole object is contained
in a hyperplane given by 𝑉 :=

∑︀5
𝑖=1 𝑥𝑖 = 1. By a simple translation, we can centre this hyperplane

(and thus the hypertetrahedron) at the origin. By picking a suitable basis, 𝑉 can be considered to
be embedded in R4. A linear map 𝜙 on the hyperplane 𝑉 can be extended to R5 with the property
that a vector 𝑣 = (1, 1, 1, 1, 1) orthogonal to 𝑉 remains invariant. By extending maps in this way,
the symmetry group of the hypertetrahedron can be considered a subgroup of 𝑂(5).

A linear map 𝜙 that permutes the standard basis vectors (and thus vertices) can be extended to
𝑂(5) as described above. Thus limited to 𝑉 , they are isometries that send 𝑉 = {(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ∈
R5 :

∑︀5
𝑖=1 𝑥𝑖 = 0} to itself.

The group of permutations of the 5 vertices is a subgroup of the symmetric group on 5 integers,
called 𝑆5. This group acts transitively on the standard basis vectors.

We want to know whether the group acts transitively on the other 𝑗-faces as well. Take for
example the edges. These connect each vertex with another. These edges are described by equations
of the form

𝑆𝑖 = {𝑒𝑖 + 𝑡𝑒𝑗 : 𝑡 ∈ [0, 1]}, for all 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ {1, 2, . . . , 5}.

It is easy to see that 𝑆5 also acts transitively on the set of edges, by permuting the 𝑒𝑖𝑠 it sends each
edge to another.

In the hyperplane given by
∑︀5

𝑖=1 𝑥𝑖 = 1, a number of 2-dimensional hyperplanes is embedded.
These are found by setting 2 coordinates equal to 0. To be precise, there are

(︀
5
2

)︀
= 10 in total. These

are the faces of the hypertetrahedron. They are described by equations of the form

𝑥𝑖 + 𝑥𝑗 + 𝑥𝑘 = 1, 𝑖 ̸= 𝑗 ̸= 𝑘, 𝑖, 𝑗, 𝑘 ∈ {1, 2, . . . , 5}.

Again, permutations of the coordinates 𝑥𝑖 map each face to another.
Finally, the cells of the tetrahedron. These are themselves tetrahedral. They can be described

by equations of the form

𝑥𝑖 + 𝑥𝑗 + 𝑥𝑘 + 𝑥ℓ = 1, 𝑖 ̸= 𝑗 ̸= 𝑘 ̸= ℓ 𝑖, 𝑗, 𝑘, ℓ ∈ {1, 2, . . . , 5}.

There are
(︀
5
4

)︀
= 5 such cells, and each can be mapped to another by permutations of 𝑆5.

Clearly, 𝑆5 is a subset of the symmetry group of 𝑃{3,3,3}. The order of the symmetry group of
𝑃{3,3,3} is 5! = 120. Therefore, the symmetry group of 𝑃{3,3,3} is 𝑆5.
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4.2 Hypercube

The hypercube is the four-dimensional analogue of the cube and the square. This kind of regular
polytope exists throughout all dimensions, just like the 𝑛-simplex. It is sometimes called the tesser-
act, and any 𝑛-dimensional analogue is called an 𝑛-hypercube. Its symmetry group has order 384
[Bla02, p. 15]. We describe the hypercube as follows.

Definition 4.2.1. The hypercube can be described as a subset of R4 in the following way.

𝑃{4,3,3} = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ R4 : |𝑥𝑖| ≤ 1} (4.3)

It is easily seen that the set is closed and bounded. The set is also convex, as any segment
between points in the set lies in the set. This can be shown in the same way we proved it for the
hypertetrahedron. We conclude that 𝑃{4,3,3} is a convex polytope. The question remains whether it
is regular.

The cube as described in Equation 4.3 has its centre at the origin. A symmetry thus maps the
origin to itself. Symmetries are therefore linear isometries and it follows they are elements of the
orthogonal group 𝑂(4).

By Definition 2.1.2, the polytope is regular if the symmetry group acts transitively on all faces
of 𝑃{4,3,3}. This means that for each face, there exists a symmetry in the symmetry group of 𝑃{4,3,3}
that sends it to each other face. We will check this for each face, starting with the 0-faces.

Any vertex of 𝑃{4,3,3} can be found by fixing all coordinates to be either 1 or -1. There are
24 = 16 such vertices. They can all be sent to each other by a symmetry represented by matrix 𝐴 of
the form

𝐴 =

⎡⎢⎢⎣
𝑎11 0 0 0
0 𝑎22 0 0
0 0 𝑎33 0
0 0 0 𝑎44

⎤⎥⎥⎦ , (4.4)

where 𝑎𝑖𝑖 = −1 whenever sending a coordinate 𝑥𝑖 = ±1 to the opposite sign of itself and 𝑎𝑖𝑖 =
1 when the coordinate 𝑥𝑖 remains unchanged. Clearly this matrix is orthogonal and sends the
hypercube to itself.

For the edges, we fix three coordinates to be equal to 1 or -1. From this, we find
(︀
4
1

)︀
· 23 = 32

possible edges. These edges can be represented by equations of the form∑︁
𝑎𝑖𝑒𝑖, with three of the 𝑎𝑗 fixed, and one running from − 1 to 1.

Consider two edges represented analogously to above, with 𝑎𝑖 and 𝑏𝑗 for some 𝑖, 𝑗 = 1, 2, 3, 4 not
fixed. We can send one edge to the other by sending 𝑒𝑖 to 𝑒𝑗 and mapping the remaining 𝑒𝑘 to ±𝑒ℓ
bijectively. Here 𝑒𝑘 corresponds to the fixed 𝑎𝑘 and 𝑒ℓ correspond to the fixed 𝑏ℓ. The sign is chosen
such that the edges are indeed mapped to one another. This can be written as linear map

𝜙 :

{︃
𝑒𝑖 ↦→ 𝑒𝑗

𝑒𝑘 ↦→ ±𝑒ℓ.

This map is indeed linear (i.e. ‖𝜙(𝑒𝑖)‖ = ‖𝑒𝑖‖).
This map sends 𝑃{4,3,3} to itself and is therefore an element of its symmetry group.
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The polygonal faces can be found by fixing two coordinates equal to 1 or -1. There are
(︀
4
2

)︀
·22 =

24 square-shaped faces in total. With transformations analogous to the ones described above, it is
possible to map each face to another.

We can also find the cells by fixing one coordinate equal to either 1 or -1. This procedure yields
2 ·

(︀
4
3

)︀
= 8 cubes. For each of these cubes, we can send one to another by using the symmetries

analogolous to the ones mentioned above.
So far, we have found symmetries of 𝑃{4,3,3} to be switching the sign, permuting the coordinates

or a composition of those. The symmetry group is thus a subgroup of 𝑆4×{±1}4. In total, these are
4! · 24 = 384 symmetries. This is also the order of 𝑆4 ×{±1}4, so the symmetry group is isomorphic
to 𝑆4 × {±1}4.

The dual of the hypercube is the hyperoctahedron and vice versa, hence they share the same
symmetry group. Since symmetries map faces to faces of the object, they map vertices of its dual to
one another. Because the hypercube and hyperoctahedron are each other’s dual, this implies both
objects have the same symmetries.

4.3 Hyperoctahedron

The hyperoctahedron is the third and last type of polytope that exists in 𝑛 dimensions. Its general
name is the 𝑛-orthoplex. The hyperoctahedron is the dual of the hypercube, a property that is
shared by their three-dimensional analogues. The 8 vertices of the hyperoctahedron can be given
in terms of the standard basis vectors in R4 as {±𝑒1,±𝑒2,±𝑒3,±𝑒4}. The object itself is the convex
hull of those points. A description of the object is given below.

Definition 4.3.1. The hyperoctahedron can be described as a subset of R4 in the following way.

𝑃{3,3,4} = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ R4 :

4∑︁
𝑖=1

|𝑥𝑖| ≤ 1} (4.5)

The set in Equation 4.5 is both closed and bounded. Convexity can easily be shown. Take points
𝐴 := (𝑎1, 𝑎2, 𝑎3, 𝑎4) and 𝐵 := (𝑏1, 𝑏2, 𝑏3, 𝑏4) in 𝑃{3,3,4}. As seen similarly before in Example 4.1.2,
coordinates of a point on the segment [𝐴,𝐵] are given by {(1 − 𝑡)𝑎𝑖 + 𝑡𝑏𝑖}4𝑖=1 with 0 ≤ 𝑡 ≤ 1. The
sum of the absolute values of these coordinates is

4∑︁
𝑖=1

|(1 − 𝑡)𝑎𝑖 + 𝑡𝑏𝑖| ≤
4∑︁

𝑖=1

|(1 − 𝑡)𝑎𝑖| + |𝑡𝑏𝑖|

=

4∑︁
𝑖=1

|𝑎𝑖| − |𝑡|
4∑︁

𝑖=1

|𝑎𝑖| + |𝑡|
4∑︁

𝑖=1

|𝑏𝑖|

≤ 1 − |𝑡| + |𝑡| = 1.

In the third line it is used that
∑︀4

𝑖=1 |𝑎𝑖| ≤ 1 and
∑︀4

𝑖=1 |𝑏𝑖| ≤ 1. From the equation, it follows
that any point on this segment is in the set 𝑃{3,3,4}. This proves that the set is convex. As it is also
closed and bounded, it is a convex polytope by Definition 2.1.1.

The boundary of the set in Definition 4.3.1 is given by

𝜕𝑃{3,3,4} = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ R4 :

4∑︁
𝑖=1

|𝑥𝑖| = 1}.
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It can be written as the union of several three-dimensional cells. Expressions for these cells are
obtained by taking 16 combinations of 𝑘, ℓ,𝑚, 𝑛 mod 2 in the following expression

{(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝜕𝑃{3,3,4} : (−1)𝑘𝑥1 ≥ 0, (−1)ℓ𝑥2 ≥ 0, (−1)𝑚 ≥ 0, (−1)𝑛 ≥ 0}.

Taking all combinations, this yields 16 tetrahedral cells.
We can then find the boundary of these expressions by setting one of the 𝑥𝑖 alternately to be

equal to 0. This yields
(︀
4
1

)︀
· 23 = 32 2-faces bounding the tetrahedral cells. Note that these are

triangular.
To find the edges, we can again take the boundary of these 32 2-faces. We take two of the

𝑥𝑖 to be equal to 0. This yields
(︀
4
2

)︀
· 22 = 24 edges that bound the 2 faces. All are of the form

{±𝑒𝑑 ± 𝑡𝑒𝑘 𝑡 ∈ [0, 1]} for some 𝑑 ̸= 𝑘 ∈ {1, 2, 3, 4}, for any of the four sign combinations.
The vertices bound the edges and are found by taking three 𝑥𝑖 equal to zero. They are of the

form
{(𝑥𝑑, 0, 0, 0) ∈ 𝜕𝑃{3,3,4} : (−1)𝑘𝑑𝑥𝑑}.

This expression with 𝑑 = 1 gives two vertices (1, 0, 0, 0) and (−1, 0, 0, 0). For the other three choices
of 𝑖 : 𝑥𝑖 ̸= 0 we find 6 other vertices, yielding a total of 8. They are

(±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0), (0, 0, 0,±1).

4.4 24-cell

The 24-cell is the only four-dimensional regular polytope that has no analogue in three dimensions.
Such an object can be constructed using the hyperoctahedron we described, by taking the midpoints
of its edges as the vertices of the 24-cell [Cox61]. This construction is described in [Sti00] as
well. Begin with a hyperoctahedron as given in Definition 4.3.1. It is possible to truncate this
object by “cutting” it with hyperplanes. These hyperplanes intersect the midpoints of the 24 edges,
orthogonal to the four coordinate axes. We obtain a polytope bounded by these hyperplanes. By
taking the dual of the obtained polytope and scaling it with a factor 2, we obtain an object with as
its vertices the 16 points

(±1

2
,±1

2
,±1

2
,±1

2
)

and the 8 vertices of the hyperoctahedron.
This construction by truncation is easily visualised using a three-dimensional example. Although

the 24-cell has no regular polyhedral analogue, it can be constructed analogously to the construc-
tion of a rhombic dodecahedron from an octahedron similar to [Cox48, p. 26, 150]. By first
truncating the octahedron with hyperplanes through the midpoints of the edges, one constructs
a quasi-regular polyhedron called the cuboctahedron. This polyhedron is one of the Archimedean
solids [Cox48, p. 30]. The dual of this polyhedron is the rhombic dodecahedron whose vertices
can be described as (± 1

2 ,±
1
2 ,±

1
2 ) and permutations of (±1, 0, 0). This polyhedron is classified as a

zonohedron in [Cox48, p. 27]. These are convex polyhedra that are bounded by parallelograms.
The vertices of the 24-cell can also be described using unit quaternions [Sti00, p. 22] of a

certain ring of quaternions. This is done by identifying a vector (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ R4 with elements
𝑥1 + 𝑥2𝑖+ 𝑥3𝑗 + 𝑥4𝑘 ∈ H [Bla02, p. 16]. We consider a subring of H, called the integer quaternions
or Hurwitz quaternions. This subring is defined as

𝐻 = {𝑥1 + 𝑥2𝑖+ 𝑥3𝑗 + 𝑥4𝑘 ∈ H : either 𝑥𝑖 ∈ Z for 𝑖 = 1, 2, 3, 4 or 𝑥𝑖 ∈
1

2
+ Z, for 𝑖 = 1, 2, 3, 4}

23



CHAPTER 4. REGULAR POLYTOPES IN FOUR-DIMENSIONAL SPACE 4.4. 24-CELL

We call 𝑥𝑖 the coefficients of a quaternion, with 𝑖 = 1, 2, 3, 4. We will now show this set is indeed a
ring.

First of all it is an additive abelian group. Two quaternions are summed ‘componentwise’. Let
𝑞, 𝑞′ be in 𝐻 denoted as

𝑞 = 𝑥1 + 𝑥2𝑖+ 𝑥3𝑗 + 𝑥4𝑘, 𝑞′ = 𝑥′1 + 𝑥′2𝑖+ 𝑥′3𝑗 + 𝑥′4𝑘.

The sum of two quaternions in 𝐻 is

𝑞 + 𝑞′ = (𝑥1 + 𝑥′1) + (𝑥2 + 𝑥′2)𝑖+ (𝑥3 + 𝑥′3)𝑗 + (𝑥4 + 𝑥′4)𝑘.

Either both 𝑥𝑖 and 𝑥′𝑖 are integers, both are half-integers, or one of them is a half-integer. The sum
is either

𝑥𝑖 + 𝑥′𝑖 ∈

{︃
Z if both terms are in Z or both are in 1

2 + Z
1
2 + Z if exactly one of them is in 1

2 + Z

Therefore, 𝐻 is closed under addition. It is clear that 0 is also an element of 𝐻. The satisfaction of
the other group axioms follow from the fact that (Z ∪ 1

2 + Z,+, 0) is an abelian group.
Secondly, 𝐻 is closed under multiplication. For readability purposes we now take the first eight

letters of the alphabet to be the quaternions’ coefficients. The product of two quaternions

𝑞 · 𝑞′ = 𝑎𝑒− 𝑏𝑓 − 𝑐𝑔 − 𝑑ℎ+ (𝑎𝑓 + 𝑏𝑒+ 𝑐ℎ− 𝑑𝑔)𝑖+ (𝑐𝑒+ 𝑎𝑔 + 𝑑𝑓 − 𝑏ℎ)𝑗 + (𝑎ℎ+ 𝑑𝑒+ 𝑏𝑔 − 𝑐𝑓)𝑘

is also in 𝐻. Note that there are three cases. Either (𝑎, 𝑏, 𝑐, 𝑑) and (𝑒, 𝑓, 𝑔, ℎ) ∈ Z4, or both (𝑎, 𝑏, 𝑐, 𝑑)
and (𝑒, 𝑓, 𝑔, ℎ) ∈ (Z + 1

2 )4, or the coefficients of one of the quaternions are integers whereas the
others are half integers. It is now shown that in all cases, the coefficients of the product are in Z or
1
2 + Z.

1. When (𝑎, 𝑏, 𝑐, 𝑑) ∈ Z4 and (𝑒, 𝑓, 𝑔, ℎ) ∈ Z4 it is evident that the coefficients of 𝑞𝑞′ are in Z4 as
well.

2. When either 𝑞 or 𝑞′ has coefficients in (Z + 1
2 ) whereas the other has coefficients in Z, it is

clear that at least 2𝑞 · 𝑞′ has coefficients in Z. To see whether 𝑞𝑞′ ∈ 𝐻, we can check whether
each coefficient of 2𝑞𝑞′ is equivalent mod 2. The reason this implies 𝑞𝑞′ ∈ 𝐻 is as follows.

For any 𝑞 ∈ 𝐻 it holds that the coefficients of 2𝑞 are the same as 2 times the coefficients of 𝑞.
If each coefficient of 2𝑞𝑞′ is equivalent mod 2, they are all either 0 mod 2 or 1 mod 2. If the
coefficients are 0 mod 2, they are ∈ 0 + 2Z. Then, 𝑞𝑞′ has coefficients in Z. If the coefficients
are 1 mod 2, they are ∈ 1 + 2Z. Then 𝑞𝑞′ has coefficients in 1

2 + Z. These are exactly the two
possible cases for coefficients of elements in 𝐻.

Let us now show that the coefficients of 𝑞𝑞′ are in this case all in Z or Z+ 1
2 . If the coefficients

of 𝑞′ are in (Z + 1
2 ) the coefficients of 2𝑞′ are equivalent to 1 mod 2. Then the coefficients of

2𝑞𝑞′ are all 𝑎+ 𝑏+ 𝑐+ 𝑑 mod 2. The case where 𝑞 has coefficients ∈ Z+ 1
2 is can be shown in

a similar fashion.

3. Finally, we look at the case where both 𝑞 and 𝑞′ have coefficients in Z + 1
2 . It is possible to

write 𝑞 = 1
2 (1 + 𝑖+ 𝑗 + 𝑘) +𝑄 and 𝑞′ = 1

2 (1 + 𝑖+ 𝑗 + 𝑘) +𝑄′, with 𝑄,𝑄′ ∈ 𝐿. Here 𝐿 stands
for quaternions with integer coefficients. The product 𝑞𝑞′ can be written as

𝑞𝑞′ =
1

4
(1 + 𝑖+ 𝑗 + 𝑘)2 +

1

2
(1 + 𝑖+ 𝑗 + 𝑘)𝑄′ +

1

2
𝑄(1 + 𝑖+ 𝑗 + 𝑘) +𝑄𝑄′
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It is clear that 𝑄𝑄′ and 1
2 (𝑖 + 𝑗 + 𝑘)𝑄′ as well as 1

2𝑄(1 + 𝑖 + 𝑗 + 𝑘) are in 𝐻 because of the
earlier observations. Let us work out 1

4 (1 + 𝑖+ 𝑗 + 𝑘)2.

1

4
(1 + 𝑖+ 𝑗 + 𝑘)2 =

1

4
(−2 + 2𝑖+ 2𝑗 + 2𝑘)

=
1

2
(−1 + 𝑖+ 𝑗 + 𝑘)

This is again an element of 𝐻. Therefore, 𝑞𝑞′ ∈ 𝐻 in this case as well.

We conclude that 𝐻 is closed under multiplication. To see that 1 is an element of 𝐻, simply let the
second, third and fourth coefficients of a quaternion be equal to 0. In conclusion, 𝐻 is a subring of
H.

Recall we wanted to look at the units of this ring. It suffices to look into the quaternions in
this ring with norm equal to 1. After all, being a unit means a quaternion 𝑞 has a multiplicative
inverse 𝑞−1 such that 𝑞 · 𝑞−1 = 1. The norm of this product is equal to the product of the norms
𝑁(𝑞) ·𝑁(𝑞−1). Since the norm of 1 is simply equal to 1, we find that

𝑁(𝑞𝑞−1) = 𝑁(𝑞)𝑁(𝑞−1) = 1.

Because 𝑞, 𝑞−1 ∈ 𝐻, and 𝑁(𝑞) = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 it follows 𝑁(𝑞) ∈ Z≥0. Therefore it follows that
𝑁(𝑞) = 1 and 𝑁(𝑞−1) = 1.

The other way around it holds that when the norm of 𝑞 is equal to 1, there exists a multiplicative
inverse in 𝐻 (namely the conjugate 𝑞 of 𝑞), because 𝑞 · 𝑞 = 𝑁(𝑞) = 1.

The norm of a quaternion was defined in Chapter 2. For any integer quaternion 𝑞 that is a unit
of 𝐻, we have seen the following must hold.

𝑞 · 𝑞 = 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 = 1. (4.6)

Recall that all 𝑥𝑖𝑠 are either integers or half-integers, which is equivalent to all coefficients of
2𝑞𝑞 being in Z and all equal mod 2. Equation 4.6 can be solved by looking at the coefficients of 2𝑞𝑞
setting 𝑦𝑖 = 2𝑥𝑖 for 𝑖 = 1, 2, 3, 4. Equation 4.6 becomes

𝑦21 + 𝑦22 + 𝑦23 + 𝑦24 = 4. (4.7)

Since the 𝑦𝑖 all have the property of being equal mod 2, the only solutions are given by them being
±1 (16 solutions) and one being ±2 whereas the others are 0 (8 solutions). Hence, 𝐻× consists of
16 + 8 = 24 elements.

Besides that, it is easily seen that each square is at most equal to 1. This gives all possibilities
for the 𝑥𝑖𝑠. Either one is ±1 and the others zero (8 possibilities), or all of them are different sign
combinations of ± 1

2 (16 possibilities). All 24 vertices of the 24-cell can therefore be denoted as
quaternions with norm equal to 1.

1

2
(±1 ± 𝑖± 𝑗 ± 𝑘)

±1,±𝑖,±𝑗,±𝑘

The convex hull of these points is exactly the 24-cell.
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The symmetry group that works transitively on these 24 points is now explored. We follow the
reasoning of Polo-Blanco [Bla02, p. 16 – 17] and consider the following map. Let 𝑞, 𝑟 be units of
𝐻. They give rise to the map

𝜙 : H(R) → H(R)

𝑥 ↦→ 𝑞𝑥𝑟

To see this is orthogonal, we first show it is linear:

𝜙(𝜆𝑥+ 𝜇𝑦) = 𝑞(𝜆𝑥+ 𝜇𝑦)𝑟

= (𝑞𝜆𝑥+ 𝑞𝜇𝑦)𝑟 (distributive/associative property of a ring)

= 𝑞𝜆𝑥𝑟 + 𝑞𝜇𝑦𝑟

= 𝜆𝑞𝑥𝑟 + 𝜇𝑥𝑦𝑟 (since 𝜆, 𝜇 ∈ R)

= 𝜆𝜙(𝑥) + 𝜇𝜙(𝑦).

(4.8)

In conclusion, the map 𝜙 is indeed a linear map. Does it preserve distance as well?
For a distance preserving map the following holds.

‖𝜙(𝑥) − 𝜙(𝑦)‖ = ‖𝑥− 𝑦‖ , ∀𝑥, 𝑦 ∈ 𝑋

In this case, the set 𝑋 is H(R). Since 𝜙 is a linear map, the left hand side of the equation is equal to
‖𝜙(𝑥− 𝑦)‖. Therefore, because of the relation between the norm 𝑁 and the notion of distance, it
is sufficient to show that the norm is preserved. In other words, it needs to be shown the following
holds.

𝑁(𝜙(𝑧))) = 𝑁(𝑧) ∀𝑧 ∈ H(R).

We will see that it does, because of how 𝜙 was defined using unit quaternions (with norm 1).

𝑁(𝜙(𝑧)) = 𝑁(𝑞𝑧𝑟) = 𝑁(𝑞)𝑁(𝑧)𝑁(𝑟) = 1 ·𝑁(𝑧) · 1 = 𝑁(𝑧).

It is already clear that 𝜙(𝐻) = 𝐻 from the fact that 𝐻 is a ring and therefore closed under
multiplication. We have shown that the set 𝜙(𝐻) = {𝜙(𝑥) : 𝑥 ∈ 𝐻} is a subset of 𝐻. Now we need
to show that 𝐻 is a subset of 𝜙(𝐻). Let 𝑥 be an element of 𝐻. If there exists an element 𝑦 in 𝐻
such that 𝜑(𝑦) = 𝑥, it is done. A potential candidate could well be 𝑦 = 𝑞−1𝑥𝑟−1, for 𝑞, 𝑟 in 𝐻×.
Because 𝑞 and 𝑟 are units, their inverses exist. Now indeed 𝜙(𝑦) = 𝑥 and thus 𝜙(𝐻) = 𝐻, and we
would like to see that the set of all such maps acts transitively on the vertices of the 24-cell.

Recall that the set of vertices can be represented as 𝐻×. Let 𝑥, 𝑦 be arbitrary vertices. A
symmetry that sends 𝑥 to 𝑦 is, for example,

𝜓 : 𝑥 ↦→ 𝑥−1𝑥𝑦.

Hence, the group of all maps as described above acts transitively on the set of vertices.
The question that arises is whether all symmetries of the 24-cell are of the form 𝜙. This is indeed

the case: Polo-Blanco sketches a proof in her master’s thesis [Bla02, p. 17 ]. A crucial ingredient in
this proof is, that conjugations 𝑥 ↦→ 𝑞𝑥𝑞−1 are distance preserving, linear maps H → H, and since
they map 1 to 1, they leave the subspace 1⊥ ∼= R3 invariant (this is the subspace with basis 𝑖, 𝑗, 𝑘).
Moreover, every distance preserving linear map with determinant 1 of this subspace (so, element of
SO(3)) is given by such a conjugation.
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4.5 120-cell and 600-cell

The 120-cell is the four-dimensional analogue of the dodecahedron. It is bounded by 120 dodeca-
hedra. [Sti00, p. 23] Because it is the dual of the 600-cell, it would be possible to derive its vertices
by taking the midpoints of the tetrahedral cells of the 600-cell. The vertices of the 600-cell, which
is analogous to the icosahedron in three-dimensions, can be described using Hurwitz quaternions
as well [Bla02, p. 17 – 18]. We begin with the subset 𝑅 = 𝐻 + 𝜏𝐻 of H, where 𝜏 denotes the
golden ratio, i.e. 𝜏 = 1+

√
5

2 . It will be shown that 𝑅 is a ring as well.
Instead of looking at the units 𝑅× of this ring (which is an infinite group, because, e.g., the

element 𝜏 ∈ 𝑅× has infinite order), we will look at the kernel of the norm 𝑁 : 𝑅× → R×. We work
this out in more detail now.

First of all, let us show that 𝑅 is indeed a ring. Elements of this set are of the form

𝑟 = 𝑞1 + 𝜏𝑞2, where 𝑞1, 𝑞2 ∈ 𝐻.

The sum of an element 𝑟 with another element 𝑠 = 𝑞3 + 𝜏𝑞4 ∈ 𝑅 with 𝑞3, 𝑞4 ∈ 𝐻 can be written as

𝑟 + 𝑠 = (𝑞1 + 𝑞3) + (𝑞2 + 𝑞4)𝜏.

This sum is again in 𝑅, since 𝐻 is a ring. 𝑅 is thus closed under addition.
To see whether it is closed under multiplication, we look at the following product.

𝑟 · 𝑠 = (𝑞1𝑞3 + 𝑞2𝑞4) + (𝑞1𝑞4 + 𝑞2𝑞3 + 𝑞2𝑞4)𝜏

We have used the fact that 𝜏2 = 𝜏 + 1, a property of the golden ratio that follows from the fact it is
a solution to the equation 𝑥2 − 𝑥− 1 = 0.

Because 𝐻 is closed under multiplication, the product 𝑟 · 𝑠 is in 𝑅. Therefore 𝑅 is also closed
under multiplication. For 𝑞1 = 1, 𝑞2 = 0, we see 1 is an element of 𝑅. Therefore, 𝑅 is a subring of
H.

The norm map as defined in 2.3 is considered. Note that the norm map 𝑁 and the norm ‖𝑞‖ for
𝑞 ∈ H are not the same. The norm map sends an element of the form 𝑞1+𝜏𝑞2 to (𝑞1+𝜏𝑞2)(𝑞1+𝜏𝑞2).
To see that 𝑁(𝑞) ∈ Z[𝜏 ] for all 𝑞 ∈ 𝑅, observe firstly that 𝑁(𝑞) ∈ 𝑅, since 𝑅 is a ring and 𝑞 ∈ 𝑅. It
is also evident that 𝑁(𝑞) ∈ R. The intersection 𝑅 ∩ R = Z[𝜏 ], so inevitably 𝑁(𝑞) ∈ Z[𝜏 ].

The map 𝑁 is a homomorphism. First of all, 𝑁(1) = 1, 𝑁(0) = 0 [Top19, p. 3]. It also holds
that 𝑁(𝑟𝑠) = 𝑁(𝑟)𝑁(𝑠). This was shown in 2.

Another thing to note about the units 𝑅×, is that the norm map has its image in Z[𝜏 ]×. Just
observe that for 𝑟 ∈ 𝑅 to be a unit, there must exist an 𝑠 ∈ 𝑅 such that 𝑟𝑠 = 𝑠𝑟 = 1. Therefore
𝑁(𝑟)𝑁(𝑠) = 𝑁(𝑟𝑠) = 𝑁(1) = 1 and since 𝑁(𝑟) and 𝑁(𝑠) are elements of Z[𝜏 ], this means that
𝑁(𝑟), 𝑁(𝑠) are units in Z[𝜏 ]. The argument is similar as given above for the 24-cell.

The other way around one can show that 𝑁(𝑟) ∈ Z[𝜏 ]× implies 𝑟 ∈ 𝑅×. Consider a unit
𝑁(𝑟) ∈ Z[𝜏 ] and its inverse 𝑁(𝑟)−1 ∈ Z[𝜏 ]. An element 𝑠 := 𝑁(𝑟)−1 · 𝑟 has the property that
𝑠 · 𝑟 = 𝑟 · 𝑠 = 1. Therefore, 𝑟 ∈ 𝑅×.

The product of 𝑟 with that power of 𝜏 is an element of 𝑅 as well and is the inverse of 𝑟. Elements
of 𝑅× are thus of the form

𝑅× = {𝑞1 + 𝑞2𝜏 ∈ Z[𝜏 ]× : 𝑁(𝑞1 + 𝑞2𝜏) = 𝜏𝑛 with 𝑛 ∈ Z}
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The kernel of our homomorphism 𝑁 is a subgroup of 𝑅× [Top96, p. 40]. It consists of those
elements that have norm 1. More precisely,

ker𝑁 = {𝛼 = 𝑞1 + 𝑞2𝜏 ∈ 𝑅 : 𝛼 · 𝛼 = 1, i.e. 𝑞1𝑞1 + 𝑞2𝑞2 + (𝑞1𝑞2 + 𝑞2𝑞1 + 𝑞2𝑞2)𝜏 = 1}.

The constraint can be rewritten as

(𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 + 𝑒2 + 𝑓2 + 𝑔2 + ℎ2) + (2𝑎𝑒+ 2𝑏𝑓 + 2𝑐𝑔 + 2𝑑ℎ+ 𝑒2 + 𝑓2 + 𝑔2 + ℎ2)𝜏 = 1,

so the coefficients of 𝑞1, 𝑞2 ∈ 𝐻 should satisfy the system{︂
2𝑎𝑒+ 2𝑏𝑓 + 2𝑐𝑔 + 2𝑑ℎ+ 𝑒2 + 𝑓2 + 𝑔2 + ℎ2 = 0
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 + 𝑒2 + 𝑓2 + 𝑔2 + ℎ2 = 1.

Solving these is more straightforward than it might seem, because 𝑞1 and 𝑞2 have integer or half-
integer coefficients. Let us consider the possible values of the coefficients.

∙ 𝑎 = 𝑏 = 𝑐 = 𝑑 = 0. This leads to a contradiction. The first equation of the system implies
𝑞2 = 0 whereas the second states 𝑁(𝑞2) = 1.

∙ 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z. The second equation then shows that at least three of 𝑎, 𝑏, 𝑐, 𝑑 should be zero.
This results in 8 possible quaternions, id est all permutations of

(±1, 0, 0, 0).

In this case, the second equation of the system above implies 𝑞2 = 0, from which it follows
that the first equation holds as well. Hence this results in 8 possible 𝛼 = 𝑞1 + 𝑞2𝜏 ∈ ker𝑁 ,
namely 𝛼 = ±1,±𝑖,±𝑗,±𝑘.

∙ 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z + 1
2 . This is possible if all values are equal to ± 1

2 and the values 𝑒, 𝑓, 𝑔, ℎ are all
equal to 0. This results in 24 = 16 possible quaternions 𝛼, namely

(±1

2
,±1

2
,±1

2
,±1

2
).

Now that we have found 8 + 16 = 24 of the vertices of the 600-cell, it remains to find the re-
maining 96. In her Master’s thesis on page 18, Polo-Blanco [Bla02] continues to find the remaining
vertices as even permutations of

{0,±1

2
,±1

2
(1 − 𝜏),±1

2
𝜏}.

The way she arrives at these, is by stating they are the remaining quaternions in 𝑅 := 𝐻 + 𝜏𝐻 with
norm equal to 1. Unfortunately, this approach does not yield the vertices we desire, as the vertices
are not all in our ring 𝑅. Let us take, for example,

𝑢 := 0 +
1

2
𝑖+

1

2
(1 − 𝜏)𝑗 +

1

2
𝜏𝑘 = 𝑞1 + 𝑞2𝜏

with 𝑞1 = 1
2 𝑖+ 1

2𝑗 and 𝑞2 = − 1
2𝑗 + 1

2𝑘. This quaternion is not in 𝑅.
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What initially went wrong on page 16 of Polo-Blanco’s [Bla02] is the definition of the Hurwitz
quaternions. She defines these as

𝐻 =

{︃
4∑︁

𝑖=1

𝑎𝑖𝑒𝑖 | 𝑎𝑖 ∈
1

2
Z and

4∑︁
𝑖=1

𝑎𝑖 ∈ Z

}︃
.

According to this definition, it need not be the case that all coefficients of a quaternion 𝑞 ∈ 𝐻 are
either half-integers or integers, but could also be a mixture of both. In a world where this definition
holds, it is indeed true that the remaining 96 quaternions are in 𝑅.

Now we can attempt to find a ring in which the first 24 found quaternions as well as 𝑢 are
contained. Possibly the following could be such a ring.

𝑆 := 𝐻 +𝐻 · 𝑢.

This set is evidently closed under addition. It contains 0 and 1. What is left to show that it is a
ring is to show it is a ring is to verify closedness under multiplication. A product of two elements
𝑠1 = ℎ1 + ℎ2𝑢, 𝑠2 = ℎ3 + ℎ4𝑢 ∈ 𝑆 can be written as

𝑠1 · 𝑠2 = ℎ1ℎ3 + ℎ1ℎ4𝑢+ ℎ2ℎ3𝑢+ ℎ2ℎ4𝑢
2.

The products of the ℎ𝑖𝑠 with each other are in 𝐻 (and in 𝑆) by the fact that 𝐻 is a ring. What we
need to show is whether a product 𝑢 · ℎ with ℎ ∈ 𝐻 is again in 𝑆, so of the form ℎ1 + ℎ2𝑢 with
ℎ1, ℎ2 ∈ 𝐻.

Take ℎ1 = 0, then for 𝑢ℎ = ℎ2𝑢 we get 𝑢ℎ𝑢−1 = ℎ2. Because 𝑢2 = −1,−𝑢 is the inverse of 𝑢.
Hence we write 𝑢ℎ = (−𝑢ℎ𝑢)𝑢. Whether 𝑢ℎ𝑢 is an element of 𝑆 might, however, not be the case
for any ℎ ∈ 𝐻. Take for example ℎ = 𝑖.

𝑢𝑖𝑢 =
1

2
𝑖+

1

2
(𝜏 − 1)𝑗 − 1

2
𝜏𝑘 = ℎ𝑎 + ℎ𝑏𝜏.

with ℎ𝑎 = 1
2 𝑖−

1
2𝑗 and ℎ𝑏 = 1

2𝑗−
1
2𝑘. Hence −𝑢𝑖𝑢 /∈ 𝐻 and 𝑢ℎ = (−𝑢ℎ𝑢)𝑢 /∈ 𝑆 for ℎ = 𝑖. Therefore,

𝑆 is not a ring, and 𝑆 will not allow us to find the 120 quaternions as units of 𝑆 with norm 1.
C. van Ittersum’s approach in her thesis is similar [Itt20, p. 42 – 46]. Clearly, we can find

vertices that have unit norm, as the polytope can be rescaled to lie on a unit 3-sphere. Let 𝑇 =
R · 𝑖+ R · 𝑗 + R · 𝑘 ⊂ H. This is a linear subspace of H(R). Let 𝑈 := {𝑞 ∈ H : 𝑁(𝑞) = 1}.

For 𝑞 ∈ 𝑈 and 𝑡 ∈ 𝑇 , the map 𝑡 ↦→ 𝑞𝑡𝑞−1 is a distance preserving linear map, with determinant
1, as we have seen before. Therefore, such maps are elements of 𝑆𝑂(3) (note that Re(𝑡) = 0).

Consider a map 𝜓 : 𝑈 → 𝑆𝑂(3) : 𝑞 ↦→ 𝜎 with 𝑈 := {𝑞 ∈ H : 𝑁(𝑞) = 1} and 𝜎 := [𝑡 ↦→ 𝑞𝑡𝑞−1].
This is a surjective grouphomomorphism.

The rotation group of the icosahedron is a subgroup of 𝑆𝑂(3). We have seen in Chapter 3 that
this group consists of 60 elements and it is isomorphic to 𝐴5. Call this group 𝐺.

The pre-image of 𝐺 under 𝜓 is a subgroup of 𝑈 . The map 𝜓 is 2-to-1, so there are exactly
2 · 60 = 120 elements in this group 𝜓−1(𝑈). The reason this holds is because 𝑡 ↦→ 𝑞𝑡𝑞−1 and
𝑡 ↦→ (−𝑞)𝑡(−𝑞)−1 = − − 𝑞𝑡𝑞−1 describe the same rotation. These 120 elements are exactly those
quaternions that describe the 120 vertices of the 600 cell. These form a group under multiplication.

On page 207 of Sphere Packings, Lattices and Groups [CS87], Conway Sloane find the 120
vertices by constructing the so-called Icosian ring. This is done by taking the set of all finite sums
of elements from the icosian group. Their approach could be described as working backwards from
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the endpoint of the above description of van Ittersum’s findings. The icosian group namely consists
of exactly those 120 quaternions that van Ittersum has described as the vertices of the 600-cell. The
units of the icosian ring are exactly the elements of the icosian group and thus the 120 quaternions
that describe the vertices of the 600-cell.

We can now infer what the symmetry group of this 600-cell looks like. Simultaneously, this
symmetry group is the same as the one of the 120-cell, because the 120-cell and the 600-cell are
each other’s dual. Actually, the symmetry maps may look rather familiar. Polo-Blanco proposes the
following. Let us take 𝑟, 𝑠 in group of quaternions that represent the vertices of the 600-cell. Now
let 𝜓 : H(R) → H(R) be given by 𝜓(𝑥) = 𝑟𝑥𝑠. Before we showed that this is indeed a linear map
that preserves the norm.

We will show that this map sends the set of vertices to itself and that it acts transitively on this
set. To show the first, the same strategy as for the 24-cell can be used.

Take 𝑥 a quaternion in 𝑅. The image of 𝑥 under 𝜓 is in the form of 𝑟𝑥𝑠 with 𝑟, 𝑠 units in 𝑅. This
is again in 𝑅, therefore 𝜓(𝑅) is a subset of 𝑅.

Take 𝑥, 𝑦 be quaternions in 𝑅 and 𝑦 be such that 𝑦 = 𝑞−1𝑥𝑟−1. Basically this is a repetition of
what was done for the 24-cell. 𝜓(𝑦) = 𝑥, so 𝑥 is an element of 𝜓(𝑅) and 𝑅 is a subset of 𝜓(𝑅).
Hence, 𝜓(𝑅) = 𝑅.

The transitivity becomes clear from the same map as for the 24-cell.
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5 | Conclusion and outlook

In this thesis, convex, regular polytopes of dimension three and four were studied. A description of
their symmetries and faces was given for the three polytopes that exist in all dimensions. For the
24-cell and 600-cell, quaternion algebra was used to describe their vertices and symmetries.

First, we worked out the details of a proof from prof. dr. J. Top [Top96, p. 66 – 69], where
he showed that exactly five convex, regular polyhedra exist. In this proof, we used the fact that
symmetry groups of the polyhedra can be described as finite subgroups of the orthogonal group
𝑂(3), given that the polyhedra are centred at the origin. We defined an action of the symmetry
group on the polyhedra and looked at the orbit of a single point on a unit sphere. Using this
approach we constructed the five Platonic solids.

Recall that in Chapter 3 we considered the regular polyhedra to have vertices on a sphere.
More specifically a 2-sphere. In Chapter 4, when we started using quaternions it stood out that the
vertices had norm equal to 1 in their quaternion representation. For the cube and orthoplex this
was also clear, as the vertices could be expressed in the standard basis vectors (whose norms are
1 as well). The description that was given for the simplex was in five-dimensional space, but this
object could be translated in such a way that it is described in four coordinates. This is similar to
how the 2-simplex as described in Example 4.1.2 can be rotated such that it lies in a plane. The
connection between these observations from Chapter 3 and 4.1 is that the 4-polytopes can also
be described with their vertices on a sphere. However, this time, the sphere will be a 3-sphere
(S3 = {𝑞 ∈ H : ‖𝑞‖ = 1} or S3 = {(𝑥, 𝑦, 𝑧, 𝑤) ∈ R4 : 𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 = 1}) in four-dimensional
space.

This observation gives inspiration for a proof that there exist six four-dimensional polytopes.
The style of prof. dr. J. Top’s proof could be used here. Centring the sphere at the origin makes sure
the symmetries are orthogonal maps. Unfortunately, this thesis did not go into proving that there
exist exactly six convex, regular polytopes in four-dimensional space.

It would have been interesting to work out why in dimension 𝑛 ≥ 4 there exist only three
regular, convex polytopes. Can we also construct a proof using a similar strategy as in Chapter 3?
This might be a suggestion for further research.

Something else that was not done is interpreting the symmetries in four dimensions in a more
physical sense. For the 24-cell, 120-cell and 600-cell, it would have been more complete to work
out what the maps 𝜙 and 𝜓 actually do in terms of what kinds of isometries play a part. As the
quaternions can be used to describe rotations, the symmetries could possibly be interpreted as such.

The edges, 2-faces and cells of the 24-cell, 120-cell and 600-cell were not described. For the
120-cell, the vertices were not described either.
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