
Master Thesis

Fall detection with a wearable
camera using traditional and deep

learning algorithms

Author:
Mark Helmus

Supervisors:
dr. George Azzopardi

Xueyi Wang

dr. Estefanía Talavera

Martínez

January 5, 2021

acknowledgements

First, I would like to thank dr. George Azzopardi and Xueyi Wang for
providing me the opportunity to develop my scientific skills in this exciting
field. Their expertise helped me a lot to get on track and guided me where
needed. Further, their quick responses and insightful tips really helped me
to make progress in the thesis.

Second, I would like to thank Hichem Bouakaz for the collaboration of
the first stage of the thesis. Working and discussing concepts together was
very useful in the starting phase of the thesis.

Further, I would like to thank the volunteers for recording the videos that
were used for this research. I would also like to thank the high performance
experts at the Peregrine HPC cluster for the information and tools provided
to work on this cluster.

Finally, I would like to thank my parents, sister and friends for always
being there for me.

Abstract

A fall can have severe consequences on one’s life, even leading to death if
no adequate help is provided. This help can only be provided if the fall is
detected. Detecting the fall automatically is preferred over detecting the fall
manually. This is, among others, due to the scalability of the system. In this
research, two traditional algorithms and one deep learning algorithm are
proposed to automatically detect falls from videos filmed with a wearable
camera. The traditional algorithms used are dense trajectories (DT) and
improved dense trajectories (IDT). The compressed video action recognition
algorithm (CoViAR) is the deep learning algorithm used for this research.
The algorithms are trained and tested on the data set showing different
actions, filmed with the camera mounted to the neck or waist. In total, the
data set consists of 1459 videos. The data set is used to train the classifiers on
four different problems: fall detection with videos filmed by both cameras;
fall detection with videos filmed by the camera mounted to the neck; fall
detection with videos filmed by the camera mounted to the waist; egocentric
action recognition. After optimizing the hyperparameters of the classifiers,
the deep learning algorithm CoViAR outperforms the traditional algorithms
on each problem. When detecting falls using videos filmed with cameras
mounted to either the neck or waist, CoViAR has a ROC-AUC of 99.82%
and an accuracy of 97.95%. For action recognition with a wearable camera,
CoViAR has an AUC of 95.09% and an accuracy of 70.9%. The traditional
algorithms show that they can be used to detect falls as well. A ROC-AUC
of 97.58% and 98.47% for respectively DT and IDT is obtained. Further, no
evidence is found that a specific camera mounting point is preferred over
another. Evaluating the results, the three selected algorithms can be used to
detect falls from videos filmed with a wearable camera. The deep learning
algorithm has a slight edge over the traditional algorithms, since it has better
performance and does not need to compute optical flow explicitly.

C O N T E N T S

Abbreviations 3

1 introduction 4

1.1 Problem definition . 4

1.2 Challenges . 5

1.3 Aims and objectives . 6

1.4 Proposed solution . 7

1.5 Scope of the thesis . 8

1.6 Thesis structure . 8

2 background and literature review 9

2.1 Background . 9

2.2 Literature review . 11

2.2.1 Fall detection with a wearable camera 11

2.2.2 Algorithms used to recognize action in videos 14

2.3 Addition to the literature . 18

3 methodology 19

3.1 Traditional algorithms . 19

3.1.1 Dense trajectories . 19

3.1.1.1 Dense sampling 20

3.1.1.2 Trajectories . 20

3.1.1.3 Oriented gradients 21

3.1.1.4 Optical flow 22

3.1.1.5 Motion boundaries 24

3.1.1.6 Obtaining HOG, HOF and MBH 25

3.1.2 Improved dense trajectories 26

3.1.2.1 Speeded Up Robust Features 26

3.1.2.2 Homography and RANSAC 28

3.1.3 Encoding the descriptors and performing classification 30

3.1.3.1 Principal component analysis 30

3.1.3.2 Gaussian mixture model 31

3.1.3.3 Fisher encoding 34

3.1.3.4 Support Vector Machine 35

3.2 Compressed Video Action Recognition 37

3.2.1 Compression . 37

3.2.2 Convolutional Neural Network 39

3.2.2.1 Convolutional layer 39

3.2.2.2 Batch Normalization 40

3.2.2.3 Rectified linear unit 40

3.2.2.4 Max pooling and average pooling 41

3.2.2.5 Fully connected layer 41

3.2.2.6 Loss function 41

3.2.2.7 Backpropagation 42

3.2.2.8 Architecture 42

3.2.2.9 Keeping long term dependency with Tempo-
ral Segment Networks 44

3.2.2.10 Late fusion . 44

1

CONTENTS 2

4 experiments and results 46

4.1 Data used in this research . 46

4.2 Experimental setup . 49

4.2.1 Preprocessing of the videos 49

4.2.2 Hyperparameter optimization 50

4.2.3 Remaining parametric settings 51

4.2.4 Metrics used for evaluation 52

4.3 Results . 54

4.3.1 Results obtained from fall non-fall all-cameras 55

4.3.2 Results obtained from fall non-fall neck 1 56

4.3.3 Results obtained from fall non-fall waist 1 58

4.3.4 Results obtained from all-classes all-cameras 1 60

5 discussion 64

5.1 Analysis of the results . 64

5.1.1 Quantitative analysis of the results 64

5.1.2 Analysis of the misclassified videos of the best perform-
ing classifier . 65

5.1.3 Comparison of results with the literature 69

5.2 Advantages and disadvantages of the proposed solution . . . 70

5.3 Future work . 71

6 conclusion 74

Appendices 85

a remaining results 85

a.1 Training results . 85

a.1.1 ROC-AUC obtained after performing cross-validation
on the CoViAR CNNs 85

a.1.2 Learned weights of CoViAR after training on fall non-

fall all-cameras . 85

a.2 Test results . 86

a.2.1 fall non-fall all-cameras 86

a.2.2 fall non-fall neck 1 . 88

a.2.3 fall non-fall waist 1 . 89

a.2.4 all-classes all cameras 1 90

a.2.5 fall non-fall neck 2 . 100

a.2.6 fall non-fall waist 2 . 101

a.2.7 Sum of confusion matrices from the results of fall non-
fall neck 2 and fall non-fall waist 2 103

a.2.8 all-classes all-cameras 2 104

A B B R E V I AT I O N S

AUC Area under the curve.

CNN Convolutional neural network.
CoViAR Compressed video action recognition.

DT Dense trajectories algorithm.

FN False negative.
FP False positive.
FPR False positive rate.

GMM Gaussian mixture method.

HOF Histogram of Optical Flow.
HOG Histogram of Oriented Gradients.

IDT Improved dense trajectories algorithm.

MBH Motion Boundary Histogram.

PCA Prinipal component analysis.
PR curve Precision-Recall curve.

RANSAC Random Consensus Algorithm.
RBF Radial basis function.
ReLU Rectified linear unit.
RGB Additive color space, using the colors red, blue and green as primaries.
ROC curve Receiver operating characteristic curve.

SURF Speeded Up Robust Features.
SVM Support vector machine.

TN True negative.
TP True positive.
TPR True positive rate.
TSN Temporal Segment Networks.

3

1
I N T R O D U C T I O N

In this chapter, we introduce fall detection to the reader. We further explain
current challenges in fall detection. Next, the aim of this research is given,
along with research questions. We finish the chapter with an overview of the
thesis.

1.1 problem definition

A fall can have severe consequences on someone’s life. Research conducted
by the World Health Organization (WHO) [77] indicates that each year, 28%-
35% of people aged 65 years or older fall. The research further shows that
the fall rate increases to 32%-42% for people aged 70 years or older.

Older adults are more at risk, as they are more likely to suffer from neuro-
logical diseases, possibly resulting in falls [130]. For instance, they could
fall due to the consequences of epilepsy. Moreover, older adults are more
likely to live alone. Elliott et al. [28] investigated older adults living alone
and found that they likewise had an increased risk of falling.

A fall can cause serious injuries, leading to disabling fractures [103]. Further,
older adults suffer psychological consequences from falling and fear of falling.
Hadjistavropoulos et al. identify that fear of falling is an independent risk
factor for reduced quality of life, activity restriction, loss of independence
and fall-risk [41]. It is estimated that by 2030, the number of fall induced
injuries is doubled, if no protective measures will be taken in the future [48].

Fall detection is essential, as it enables the help of the person who fell.
Older people tend to be injured easier due to weaker bones [11], and a
quick response to a fall helps to reduce injuries. For instance, when one
starts bleeding from the fall, the injury becomes more severe if help arrives
later. Thus, reducing injuries lead to shorter recovery periods for the person
who fell, which helps the injured person to return to his daily routine at
a faster pace. In case no one is able to detect someone who fell, while the
fallen person is unable to call for help, one has to find the fallen person by
sheer luck. This increases the time between the fall and adequate care, thus
increasing the risk of injury.

Further, monitoring a person 24 hours per day, seven days per week to
detect possible falls is infeasible. This is infeasible for a couple of reasons.
Firstly, monitoring of a person can be seen as an invasive operation regarding
privacy. Secondly, the monitoring process is a tedious task for the observer.
Thirdly, a fall detection system needing human observers does not scale well.
To monitor more people, more observers are needed. Hiring extra observers
leads to increased costs. This in turn increases the costs for the monitoring
service. Consequently, this might make manual fall detection too expensive.
Therefore, a manual fall detection system is impracticable.

As fall detector systems assist in responding fast to falls, therefore reducing

4

1.2 challenges 5

injuries, we notice that recovery periods are shorter due to reduced injuries.
These shorter recovery periods lead to shorter treatment periods. The medi-
cal staff carries out these treatments. Given the shortened treatment of injury,
the medical personnel can shift their focus on patients with other medical
problems in a faster pace, reducing their working pressure.

Automating the process of detecting falls is a worthwhile project, as it
reduces the risk of severe injuries, reduces expected recovery period, reduces
the costs of detecting falls and reduces treatment time given by the medical
staff to the patient that fell.

There are multiple concepts to detect falls. Many studies have been conducted
using different approaches to detect falls. There are external sensor-based
methods, wearable sensor-based methods and a mixture of these two types of
methods. Within external sensor-based methods and wearable sensor-based
methods there are many different options to choose from. For instance, one
can choose a specific sensor such as a fixed camera or accelerometer, or
choose to use an egocentric camera.

In this research, we use two different cameras mounted to a person. One
camera is mounted to the neck, and the other camera is mounted to the waist.
We opt for this method instead of a fixed camera, as we identify that using
cameras mounted to the body has advantages over mounting the camera at
a fixed place in a room.

The first advantage we identify is that with a fixed camera, we are lim-
ited to the place where the camera is mounted. For instance, when placing
a camera in the bathroom, a fall is only detected when the user falls in the
bathroom. A solution for this issue would be to place cameras everywhere
in the house. However, this increases costs for the user, as multiple cameras
have to be purchased with current technology.

Further, having cameras setup in different sections of the house could be
experienced as intrusive, as the cameras are always observing the user at its
home. This in turn could lead to an unpleasant experience for the end-user
using the fall detection system with fixed cameras.

1.2 challenges

There are multiple challenges to detect falls. These challenges have been
identified by Igual et al. [48]. A first challenge described in this paper is the
performance under real-life conditions. Fall detectors have to be very accu-
rate and reliable. The fall detector should identify falls robustly. Thus, the
detectors should exhibit a low number of false positives and false negatives
simultaneously.

Another challenge is the positioning of the detectors. For instance, when
using smartphones as fall detectors, it should be possible to place the smart-
phones at places where a person normally places his smartphone, such as
his pockets typically. For other devices, the devices should be positioned
such that they do not interfere too much with the daily activities of the user.

Acceptance of using a fall detector on a person is another challenge. Older

1.3 aims and objectives 6

adults may not be familiar with electronic devices. For instance, when
the end-user has to adjust settings of the device by making use of speech
recognition, it makes it harder to use if the end-user is not familiar with
adjusting the settings via speech recognition. Adoption of a new device often
involves a readjustment of well-established routines [64]. Further, one should
take into account limitations of mobility, visual and hearing impairments [36].

Ozcan et al. [79] identify that there is no public database available for
fall detection in an egocentric based vision. To our knowledge, no data set
has been published after the publication of their paper. The lack of a data set
is a problem, as researchers have to collect data when they want to conduct
experiments, which is a time-consuming task.

Further, Habib et al. [40] identify that energy consumption is another issue.
They identified this as a challenge for smartphones, although this challenge
is not limited to smartphones only. It applies to other devices as well. The
device should be capable of filming when the user assigns the device to
do so, since the device is only capable of detecting falls using video data.
Therefore battery life should be high, and the battery of the device should
be able to recharge fast.

Privacy is another concern. Using an egocentric camera, the device in-
evitably films other people while it is powered on. Other people may have
an issue with being filmed, as they are filmed without giving permission,
threatening bystanders’ privacy [88]. For instance, if the fall detector is
powered on during a confidential business meeting, important comments
could be made and unknowingly be recorded. Hence, the data obtained in
the device should be confident.

1.3 aims and objectives

In this research, we aim to use an algorithm that can be used for fall detection.
Having an algorithm that can be used for fall detection is necessary for a fall
detector. This algorithm must meet certain requirements. If the algorithm
has too many false negatives , i.e. if the action of a person is classified as a
non-fall while a fall occurred, no corresponding help is coming for the user
while it is needed. When the detector has too many false positives, i.e. the
action of a person is classified as a fall while no fall occurred, we have many
unnecessary calls for help from the detector, alarming emergency centres
falsely. Therefore, we aim to reduce both types of error, while simultaneously
be able to detect falls and non-falls. If these requirements are met, the
algorithm can be used for fall detection. With this aim in mind, our first
research question is:

• Can the proposed algorithms be used for fall detection, taking false
negatives and false positives into account?

For this research, we use two types of algorithms. Algorithms using hand-
crafted features and a deep learning algorithm. The algorithms using hand-
crafted features are referred to as traditional algorithms in this research.
These algorithms were traditionally used in computer vision. In current
research, deep learning algorithms often outperform traditional algorithms.
In Chapter 2.2, we expand on this topic. Using this finding, we construct our
second research question:

1.4 proposed solution 7

• Does the deep learning algorithm outperform the traditional algorithms
when detecting falls with a wearable camera?

Further, we aim to compare results between cases when the camera is
mounted to the neck to cases when the camera is mounted to the waist.
Knowing which mounting position corresponds to the best results has im-
portant consequences. Different mounting points lead to different device
blueprints. For instance, when mounting the device on the neck yields better
performance, we would opt to attach the device to the neck. Consequently,
we would use a strap specifically designed for the neck. Therefore, it is inter-
esting to know which camera mounting point is optimal and we construct
our third research question as follows:

• Is there a difference in performance of the classification algorithms for
fall detection when mounting the camera to the neck or waist?

Besides the fall events, we have non-falling events, such as running, sitting,
etc. Another point of interest is to discover how well the selected algorithms
perform when classifying these different events, using videos filmed from
an egocentric view. Knowing the performance of the selected algorithms
provides us valuable information for the future when classifying other events
using egocentric videos. Therefore, our fourth research question is:

• How do the algorithms compare in terms of performance when taking
into account the different classes of the data set?

1.4 proposed solution

To achieve the objectives of this research, we obtain videos, filmed by vol-
unteers. We preprocess these videos manually. Some of the videos have
extreme lighting in the videos. Further, all videos finish with a hand placed
on the camera to indicate an ending of the action. We remove frames from
the videos having these properties. Furthermore, we aim to have a similar
number of frames for each type of event so that the classifier is unable to
distinguish different events merely by frame length.

Having preprocessed the videos, we use three different algorithms. Two
traditional algorithms and one deep learning algorithm. We choose to use
both types of algorithms, as both have their advantages and disadvantages.
Rodriguez-Moreno et al. [99] identify that advantages of traditional algo-
rithms are that these algorithms do not need large amounts of data for
training. Further, these algorithms are simple to understand and visualize.
Moreover, the features used are explicitly known. The disadvantages of these
algorithms are that the features are usually not robust and computation
of the features can be computationally intensive. The advantages of deep
learning algorithms are that no need of expert knowledge of the features is
needed, and features are automatically learned. Moreover, the networks can
extract high-level representation in deep layers, making it more suitable for
complex tasks. Disadvantages of deep learning algorithms are that often a
lot of data is needed, learning is time-consuming, and the models can have
problems with generalization of the data.

The traditional algorithms are executed by computing Fisher vectors, ob-
tained from both dense trajectories, as described by Wang et al. [119] and
improved dense trajectories, as described by Wang and Schmid [118]. Both

1.5 scope of the thesis 8

algorithms extract trajectories and compute static and temporal features,
each in its own fashion. These features are subsequently Fisher encoded to
create Fisher vectors. Next, a SVM classifier is trained using this data to
detect falls. We denote the algorithm employing dense trajectory features as
DT and denote the algorithm employing improved dense trajectories as IDT.

For deep learning, we make use of CoViAR, described by Wu et al. [125].
This algorithm makes use of the compressed videos and feeds them into
three separate CNNs, training each CNN on the data it is being fed. Having
trained each CNN, late fusion is applied to combine the CNNs. The scores
obtained from the combined CNNs are used to classify the videos.

All three algorithms make use of hyperparameters. We optimize the hy-
perparameters of the algorithms to increase performance of the classifiers.
This is done with k-fold cross validation. Having selected the optimal hy-
perparameters, we train and predict on the data sets to obtain the final
results.

1.5 scope of the thesis

The scope of this research is to determine how the chosen algorithms perform
under different class settings and how it performs when using different
camera mounting points. For instance, one of the class settings is binary,
where we classify a fall against a non-fall. In the binary setting, we compare
the results of using different mounting points. Another setting is that we
take into account multiple classes. To determine the performance of the
algorithm, we work as described in Section 1.3.

1.6 thesis structure

The thesis is structured as follows. In Chapter 2 we explain the background of
fall detection using wearable cameras. Further, the corresponding literature
review is described. In Chapter 3, we give a detailed overview of the
algorithms used for classification. In Chapter 4, the data set is described,
the experimental design is explained and the results are shown. Results are
discussed in Chapter 5 and compared with other studies. The conclusion of
this research is discussed in Chapter 6.

2
B A C K G R O U N D A N D L I T E R AT U R E R E V I E W

In this chapter we describe the background of research conducted on fall
detection. We describe the journey from fall detection using body movements
towards fall detection using wearable cameras. We further give a detailed
overview of research conducted on fall detection with wearable cameras in
the literature review, along with algorithms used for action recognition. We
finish this chapter with selecting the algorithms and describing what our
research adds to the literature.

2.1 background

One of the first researches conducted on fall detection was performed by
Kroonenberg et al. [58]. This research was conducted by measuring the
body movements of subjects after instructing them to fall onto a gymnasium
mattress. Motivated by this study, Wu et al. [126] distinguished fall activities
from normal activities by velocity characteristics. These velocity character-
istics were measured by placing three markers on the posterior side of the
trunk. The marker movements were measured by three cameras. Using the
marker movements, velocity in the vertical direction and horizontal direc-
tion were calculated. It was found that velocity characteristics are higher
for falls than normal movements. Furthermore, it was found that velocity
characteristics at various locations of the body are different for different
types of falls. Using these findings, many papers emerged for fall detection
using either cameras or other sensors to predict falls. Other sensors often
used are accelerometers and gyroscopes [4, 14, 54]. Using cameras, among
others, Nait-Charif and McKenna [73] and Roughier et al. [100] tracked head
movements to detect falls.

Different falls have different body movements. Further, different types
of falls have been defined in various researches. El-Bendary et al. [8] defined
three types of falls: forward, lateral and backward falls. Putra et al. [96]
used the categories forward, backward, left-side, right-side, blinded-forward,
and blinded backward fall. Chen et al. [19] grouped the types of falls in the
categories: fall lateral left lie on the floor, fall lateral left and sit up from floor,
fall lateral right and lie on the floor, fall lateral left and left sit up from the
floor, fall forward and lie on the floor, and fall backward and lie on the floor.
In this research, different types of falls are used as well.

Using wearable sensors, one has to place the sensors somewhere on the
body. Kangas et al. [54] attempted to find the best mounting point for
accelerometers by comparing multiple fall detection algorithms. In this
research, the accelerometers were placed on the waist, head or wrist. It
was found that fall detection using waist or head worn accelerometers are
both efficient. The authors further noted that it is preferred to attach the
accelerometer to the waist, as it has less limitations concerning usability and
acceptance, compared to attaching the accelerometer to the head.

Numerous papers have been written on fall detection using fixed cameras

9

2.1 background 10

and other sensors. For an extensive overview, we refer to survey papers [24,
45, 72, 90, 123, 124, 128, 135].

Our research conducts experiments on fall detection using videos filmed
from wearable cameras. Therefore, we focus on research being conducted
using similar experimental settings. To best of our knowledge, [12, 13, 17, 78,
79, 80, 81] have conducted research using similar experimental settings. In
the literature review, Section 2.2.1, a detailed description of these papers is
given.

We observe that the literature on fall detection using wearable cameras
is scarce. Therefore, we zoom out and evaluate research focusing on the
recognition of certain actions from an egocentric viewpoint. Within action
recognition using egocentric vision, a distinction can be made between two
types of recognition.

The first type of recognition is the recognition of actions performed by
the user wearing the camera. The actions performed typically consist of an
interaction with objects, with the view being focused on the activity. An
example of this type of action is cooking, where one interacts with kitchen
equipment and the view of the camera is focused on the kitchen. Performance
of action recognition algorithms for this type of actions is often compared
using the data sets GTEA GAZE, GTEA GAZE+ [32], Kitchen [111], ADL

[92], and UTE [61] as benchmark. Research conducted on these data sets
both make use of traditional algorithms, such as [63, 107, 129] and deep
learning algorithms, such as [68, 69, 106, 112, 136].

The other type of action using an egocentric viewpoint detects motions
of the user. This type of action merely focuses on scene changes as different
body movements are being performed. An example is a person running. The
scene changes while the person is running forward. Moreover, each frame
is a little different as a person slightly moves up or down due to the hops
made during a run. The data sets HUJI [93], DogCentric [50] are data sets
resembling body movements, where DogCentric resembles body movements
of dogs. Further, some researchers created their own data sets for inference.
Executing their method on the HUJI data set, both traditional algorithms
[93] and deep learning algorithms [1, 2, 94, 122] are assessed. More research
has been performed on DogCentric. For instance, [71, 82, 132] use traditional
algorithms and [30, 39, 52, 91, 95, 101, 113, 127] use deep learning algorithms.
Examples where researchers create their own data set for inference are [110,
131, 133]. These researches all used traditional algorithms. For a more
thorough overview of research being conducted using egocentric vision, we
refer to survey papers [5, 9, 23, 42, 74].

For fall detection using a wearable camera, we are detecting motions using a
wearable camera. From the literature on egocentric vision, we observe that
research performed on motion detection using wearable cameras is scarce.
The aforementioned data sets used for these types of detection are not largely
used to test the performance of new algorithms. We further observe that
research performed on egocentric data sets made use of algorithms that were
successful at recognizing actions from a third-person view. Examples are [18,
63]. Therefore, we select algorithms having the ability to correctly predict
actions at a high rate on benchmark data sets for action recognition from

2.2 literature review 11

a third-person viewpoint. These benchmark data sets have been explored
more thoroughly than the egocentric data sets. The benchmark data sets are
often used to compare new algorithms to state-of-the-art algorithms. One of
the first benchmark data sets to evaluate algorithms were the KTH data set
[104] and Weizmann [38]. Algorithms proposed and evaluated using these
data sets often were traditional algorithms, such as [56, 60, 76]. Recognizing
that these data sets are not representative of the richness and complexity of
real-world action videos, Kuehne et al. [59] created the HMDB-51 data set
and Soomro et al. [109] created the UCF-101 data set. Currently, these data
sets are often used to assess proposed algorithms in terms of performance.
In Section 2.2.2, we describe selected algorithms achieving high classification
performance on these data sets.

2.2 literature review

In this section, we explore selected literature in more detail, explaining
the current literature on fall detection with wearable cameras and give an
overview of algorithms used to recognize actions with good performance on
the UCF-101 and HMDB-51 data sets. This section is finished by explaining
our choice of the selected algorithms.

2.2.1 Fall detection with a wearable camera

In the first research conducted on fall detection with wearable cameras,
Casares et al. [17] proposed to modify HOG. This was done by employing
both gradient orientation and strength histograms to detect abrupt changes.
To compute the histograms, an image is divided into 16 cells. Next, the hori-
zontal (dx) and vertical (dy) gradients are computed for every pixel within a
cell. These values are used to calculate gradient orientation, arctan(dy

dx) and
gradient strength,

√
dx2 + dy2. For both histograms, the authors use nine

bins to obtain the final feature descriptor. After normalizing these feature
descriptors, the dissimilarity distance between the current frame at time t
(having measurement vector s) and previous frame at time t− 1 (reference
vector r) for both the edge strength (ES) and orientation (EO) is computed.
This is computed as follows

DRS = 1− ∑N−1
i=1 (ri − r̄)(si − s̄)√

∑N−1
i=0 (ri − r̄)2 ∑N−1

i=0 (si − s̄)2
,

where r̄ = 1
N ∑N−1

i=0 ri and s̄ = 1
N ∑N−1

i=0 si. The dissimilarity distance for edge
strength and edge orientation is given by DES and DEO respectively. The
authors further cross-correlate the signal using (DESDEO)

2. Using these
metrics, the authors detect falls and non-falls by comparing the values to a
threshold specified by them. This threshold was set to 0.5. When it exceeds
the threshold, the detector signals that a fall has occurred. Furthermore, the
authors proposed a mechanism that adaptively controls the number of cells
to be used for the feature descriptor. Cells are removed by computing the
maximum amplitude among the bins within a cell. Next, the mean value
and standard deviation of the vector of maximums from the cells in a frame
are computed. Finally, the cells being α standard deviations away from the
computed mean are removed. The authors further proposed to remove a
maximum of eight cells.

2.2 literature review 12

To test their algorithm, the authors used α = 0.5. 330 videos were col-
lected, filmed from a camera worn on the belt. The data set consists of 110

fall videos, 110 sitting videos and 110 videos where the persons lies down.
For fall detection, the true positives and false negatives are obtained. Next,
the fall detection rate using TP

TP+FN , i.e. recall is computed. The authors
obtain 100 true positives and ten false negatives, leading to a fall detection
rate of 91%.

Motivated by this research, Ozcan et al. [78, 81] modified the algorithm
in [17]. This was done by computing the dissimilarity distances DES and
DEO between frame t and frame t−∆. ∆ is chosen such that the time elapsed
between the past and current image is around one second. Furthermore,
using the dissimilarity distance, the algorithm detects whether an event
occurs by comparing this distance between multiple frames with parameter
ρ. If this distance is larger than ρ, an event is detected. Next, the algorithm
detects falls by comparing dissimilarity distances between the current frame
t and frame t − ∆ to a threshold τ to determine if a fall event occurs. If
the algorithm detects an event, but not a fall event, the algorithm deter-
mines which event occurs. It does so by computing average optical flow
for horizontal and vertical directions over γ consecutive frames. A sitting
event is detected when the vertical mean of optical flow vectors is greater
than the horizontal mean. If the horizontal mean of optical flow vectors
is greater than the vertical mean, the signal is classified as a lying down event.

Their method was tested by attaching a camera to the belt around the
waist of subjects. The following class distribution was obtained: 51 falls from
standing, 52 falls from sitting, 52 lying down events and 53 sitting down
events are recorded. With their proposed methods, the authors obtain a
TPR of 82.69% for lying down and 86.79% for sitting down. For falls from
standing and falls from sitting, the authors obtain a TPR of 92.15% and
78.84% respectively. They further compare their new method to the method
in [17] in terms of specificity and sensitivity, showing that the proposed
method outperforms [17] by comparing these metrics.

In a follow-up paper, Ozcan et al. [79] use gradient local binary patterns
(GLBP) instead of edge strength to compute the dissimilarity distance. Here,
DGLBP was computed instead of DEO. GLBP is computed by checking eight
neighboring pixels for each center pixel. A value of 1 or 0 is assigned to a
neighboring pixel if the intensity value is greater or less than the center pixel,
respectively. Sequences that have a maximum of two transitions (from 0 to
1 or 1 to 0) are kept. The 8-bit sequence is analyzed to find the length of
longest consecutive sequence of 1s and the angle of the edge. These values
provide the index of the entry of the 7× 8 matrix, incremented by the edge
strength value. This matrix is filled by visiting each pixel in a cell, and
then being normalized, resulting in a 56-dimensional GLBP feature. A block
is divided into 16 cells. The concatenated GLBP vector for one frame is
therefore of length 16× 56. After calculating the GLBP feature for each cell,
L2 normalization was applied before concatenation.

Further, data was obtained from the accelerometer. It was determined that
in case the magnitude of the 3-axis vector is greater than γ, the algorithm
declares the signal as a fall on the accelerometer-based part. To combine

2.2 literature review 13

both the camera data and the accelerometer data, output of both data was
compared to a threshold τf . If both are greater than τf , a fall event detection
is triggered.

Using the same data as in [78], the authors obtained a sensitivity of 96.36%
and a specificity of 92.45%. The authors further found that combining the
video data with the accelerometer further improved performance, where
performance was based on the sensitivity and false positives.

Continuing from [79], Ozcan and Velipasalar [80] proposed to select the
threshold using a relative-entropy-based threshold selection procedure, in-
stead of selecting the threshold empirically. The selected procedure was
performed using different Ali-Silvey distance measures. Having tried multi-
ple measures, it was found that the relative-entropy-based approach provided
the best overall results in selecting the optimal threshold for fall detection.
For a detailed description on the computation of this threshold, we refer to
[80]. For this research, data from the accelerometer was not used.

To test their method, the authors obtained a total of 400 videos. 100 videos
showed falls from a sitting position, 100 videos showed falls from a standing
position, 100 videos showed a person sitting and 100 videos showed a per-
son lying down. The videos were filmed both indoors and outdoors. These
videos were captured by mounting the camera to a belt around the waist. The
authors did not specify the distribution between videos filmed indoors and
outdoors. Experiments were performed for indoor and outdoor fall detection.
Results were shown using a ROC curve and a sensitivity-specificity graph.
Further, sensitivities were plotted over various thresholds. The plots indicate
that the proposed method works better than previously proposed methods.
The authors further obtained a fall detection rate of 93.78%. For outdoor
experiments, the ROC curve and sensitivity-specificity curve indicate that
their proposed method outperforms earlier proposed methods. The authors
further obtained a fall detection rate of 89.8% for outdoor falls. Finally,
performing five-fold cross validation, the authors obtained a mean sensitivity
of 93.77% and mean specificity of 92.44% for all fall events.

Boudouane et al. [12, 13] proposed a fall detection method based on HOG,
combined with optical flow. Having computed the HOG features for two
consecutive frames, the algorithm computes the dissimilarity distance D
between the HOG features in two consecutive frames. Furthermore, hav-
ing computed optical flow, the horizontal (dx) and vertical (dy) direction is
computed. Next, the mean of these two direction (d̄x and d̄y) are computed.

These means are used to compute the ratio d̄y
d̄x . If D is larger than a threshold

α, the algorithm calculates the mean of the dissimilarity distance D and d̄y
d̄x

for n consecutive frames. If these means are larger than thresholds β and δ
simultaneously, the detector signals that a fall is detected. The thresholds α,
β and δ are chosen by the authors.

To test their method, the authors placed a camera around the hips using
a belt to obtain videos. They obtained videos for the following actions:
falling from a ’standing’ position; falling from a sitting position; falling from
an ’elongated’ position; to sit; to lie down; rotating; to pick up an object
from the ground. 20 tests, using 14 subjects, have been performed to obtain

2.2 literature review 14

videos with these actions. Using the information obtained from HOG for
fall detection, the authors obtained a sensitivity of 95% and a specificity of
46.66%. By introducing optical flow to the algorithm, the authors obtained a
sensitivity of 81% and a specificity of 68.33%.

2.2.2 Algorithms used to recognize action in videos

We explore algorithms that have a good performance on data sets UCF-101

and HMDB-51. UCF-101 and HMDB-51 contain short trimmed videos, each
annotated with one action label. UCF-101 contains 13,320 videos, with 101

action categories. HMDB-51 contains 6,766 videos, with 51 action categories.
To find algorithms we can use for our research, we use performance of algo-
rithms on these data sets as a first filter for choosing the algorithms for this
paper. We describe both traditional algorithms and deep learning algorithms.
Next, we describe which algorithms are chosen for this research and outline
the reason for this choice.

The research conducted by Wang et al. [119] obtained good performance in
2011 on the data sets used. A traditional approach is applied to construct the
algorithm. By densely sampling points from each frame and tracking them
using a median filter on a dense optical flow field, dense trajectories are
obtained. Using these trajectories, local motion patterns are encoded, which
are used as the trajectory feature. Adding the features HOG, HOF and MBH,
the feature set is obtained from each video. These are the features used for
the DT algorithm. Next, the performance of their approach is evaluated
using a standard bag-of-features approach to convert the set of features into
a fixed-dimensional vector. This feature vector is subsequently fed to a SVM
classifier with a ξ2 kernel. The authors found that combining all features
yield the highest performance in terms of average accuracy, by using, among
others, the KTH data set, yielding an accuracy of 90.2%.

Creating Action Bank Feature Vectors from action detectors, Sadanand and
Corso [102] attempted to recognize actions. By feeding the resulting feature
set to a standard SVM classifier, results are obtained for the, among others,
KTH and HMDB-51 data sets. For these data sets, the following accuracies
were obtained: 98.2% for KTH and 26.9 percent for HMDB-51. These results
were better than previous results with different methods.

Modelling motion relationships between isolated local patches and temporal
patch trajectories, Jiang et al. [51] aimed at modelling human actions, using
motion reference points. Using local patch trajectories, which are computed
as in [119], the background is separated from the foreground by clustering
the trajectories. To classify, a standard bag-of-features approach is used to
convert the set of descriptors into a fixed-dimensional vector. This feature
vector is subsequently fed to a SVM classifier having a ξ2 kernel. Using this
approach, the authors obtained an accuracy of 40.7% on the HMDB-51 data
set.

By estimating the camera motion, Wang and Schmid [118] attempted to
improve the dense trajectories [119]. This was done by matching feature
points between frames using SURF descriptors and dense optical flow. These
matches are consequently used to robustly estimate a homography with
RANSAC. Given the estimated camera motion, trajectories are removed that

2.2 literature review 15

are consistent with the camera motion. This estimation is used to cancel
out camera motion from optical flow, improving motion-based descriptors,
such as HOF and MBH. The resulting descriptors are classified using two
methods. The first method makes use of the bag-of-features approach and
feeds the resulting feature vector into a SVM with a RBF-ξ2 kernel. The
second method encodes the descriptors into a Fisher vector and feeds the
Fisher vector to a linear SVM. The second method is the improved dense tra-
jectories algorithm, denoted as IDT in this paper. Using both approaches, it
was found that Fisher encoding combined with the linear SVM outperforms
the bag-of-features approach combined with a SVM with a RBF-ξ2 kernel.
Thus, IDT outperformed the first method. With IDT, the authors obtained an
average accuracy of 57.2% on the HMDB-51 data set. They further compared
the performance of IDT with DT and found that DT has an accuracy of 52.2%
for the HMDB-51 data set. The dense trajectories algorithm, abbreviated as
DT, combines Fisher encoding with the linear SVM as well. However, DT

encodes dense trajectories instead of improved dense trajectories.

Motivated by IDT, Peng et al. [86] proposed to create stacked Fisher vec-
tors as a feature set to be used as input for a classifier. Having computed
the descriptors HOF, HOG, MBH and trajectories using improved dense
trajectories, these descriptors are first encoded using a Fisher encoder. The
resulting Fisher vectors are aggregated within multi-scale subvolumes. The
Fisher vectors are only aggregated over M subvolumes, where the number of
trajectories is larger than a certain threshold. Next, a max-margin dimension-
ality reduction algorithm is used and the resulting vector is Fisher encoded,
resulting in the final feature vector. To obtain the final results, the authors
combined this feature vector with the Fisher vector obtained from regular
improved dense trajectories, as done in [118]. Feeding the combined features
to a linear SVM classifier, the authors obtained a mean average accuracy of
66.79% for the HMDB-51 data set.

Donahue et al. [27] created a Long-term Recurrent CNN to recognize actions.
This method passes visual input through a CNN and subsequently passes
it through a long short-term model, which is a recurrence sequence model,
to predict actions performed in videos. The authors trained two CNNs, one
for the RGB images, and one for optical flow. The CNNs are fused by taking
the weighted average of the scores to obtain the predicted label. The authors
tested their method on the UCF-101 data set and obtained an accuracy of
87.6% on this data set.

Introducing a 3D CNN, Tran et al. [116] attempted to learn spatiotem-
poral CNNs for action recognition. This method takes full videos as input
instead of frames and does not rely on any preprocessing. Furthermore, this
method makes use of 3D convolutions and 3D pooling and is finally used as
a feature extractor for data sets. Next, the extracted features are combined
with improved dense trajectories and fed into a SVM classifier for action
classification. Executing this method on the UCF-101 data set, the authors
obtained an accuracy of 90.4%.

Feichtenhofer et al. [34] used a two-stream CNN for video action recognition.
The authors proposed to fuse the CNN spatially at the last convolutional
layer. Fusing at this layer boosts accuracy, while effectively reducing the
number of parameters needed. With the proposed technique, the authors fed

2.2 literature review 16

RGB images to the first stream and the second stream received the optical
flow as input. Testing their method on the UCF-101 data set, the authors
obtained a mean classification accuracy of 92.5%. For the HMDB-51 data
set, the authors obtained a mean classification accuracy of 65.4%. Adding
IDT features further increased the mean classification accuracy to 93.5% and
69.2% for UCF-101 and HMDB-51 respectively.

Modelling long-range temporal structure using CNNs, Wang et al. [121]
attempted to recognize actions in the data sets UCF-101 and HMDB-51.
The proposed algorithm combines a sparse temporal sampling strategy and
video-level supervision to enable effective learning using the whole action
video. This is done using the volume of the videos with the CNNs. With
this method, the authors obtained a mean classification accuracy of 94.2% for
UCF-101 and a mean classification accuracy of 69.4% for HMDB-51. RGB,
optical flow and warped optical flow fields are used as input for the CNNs
and the CNNs are combined by applying late fusion.

Carreira and Zisserman [16] introduced a two-stream inflated 3D CNN,
based on 2D CNN inflation. Filters and pooling kernels of very deep image
classification CNNs are expanded into 3D. With this method, the classifier is
able to learn spatio-temporal feature extractors from videos while leveraging
ImageNet [26] architecture designs. The input used for the streams are RGB
frames and optical flows and the average scores between the two streams are
used to obtain the final prediction. With this method, the authors obtained
an accuracy of 97.9% on UCF-101 and an accuracy of 80.2% on HMDB-51.

Exploiting the compressed representation of videos, Wu et al. [125] rec-
ognized actions by leveraging the fact that successive frames are often very
similar. The compression technique retains only a few frames completely and
reconstructs other frames based on offsets. These other frames are called mo-
tion vectors and residuals, obtained from the complete images. Three CNNs
are trained on the motion vectors, residuals, and a small number of com-
plete images. This is the CoViAR algorithm. Performing this algorithm on
UCF-101 and HMDB-51, accuracies of 90.4% and 59.1% are obtained. Note
that these results are not better than aforementioned methods. However, as
stated by Wu et al. [125], methods using 3D CNNs result in an explosion
of parameters. Furthermore, optical flow does not need to be computed,
making it a faster method than previously proposed deep learning methods.

Recognizing that computing optical flow is a time-consuming operation,
Zhu et al. [137] proposed to train a CNN, MotionNet. This CNN is capable
of recognizing optical flow by treating the optical flow estimation as an
image reconstruction problem. Having trained this CNN, optical flow is
computed using the MotionNet. Next, the output from the MotionNet is
used as input for the temporal stream CNN. Thus, to obtain output from the
temporal stream CNN, RGB frames are sufficient, speeding up the process
for classification. For classification, two streams are used. The first one is the
spatial stream CNN, modelling the frames directly. The second stream is the
MotionNet, combined with the temporal stream CNN. Both streams take as
input the RGB frames and can be trained independently. Having computed
the scores from both streams, the streams are combined by applying late
fusion to predict the class of an action. Applying this method on the UCF-

101 data set, the authors obtained an accuracy of 89.82%. Using a different

2.2 literature review 17

architecture than initially proposed and using the trained MotionNet instead
of optical flow, the authors obtain better performances. Using the TSN ar-
chitecture [121], accuracies of 93.2% and 66.8% for the data sets UCF-101

and HMDB-51 were obtained. Using the architecture of I3D, as proposed in
[16], the authors obtained accuracies of 97.1% and 78.7% for the data sets
UCF-101 and HMDB-51 respectively.

Another research avoiding the computation of optical flow was conducted
by Crasto et al. [20]. In this paper, the authors trained a standard 3D CNN,
operating on RGB frames, mimicking the motion stream. To do so, the
feature-based loss compared to the flow stream is minimized, producing the
motion stream with high fidelity. Further, by leveraging both appearance
and motion information, a linear combination of the feature-based loss and
the standard cross-entropy loss for action recognition is used. This algorithm
is called the Motion Augmented RGB Stream (MARS) algorithm. With this
algorithm, the authors obtained an accuracy of 98.1% on the UCF-101 data
set and accuracy of 80.9% on the HMDB-51 data set.

The current state-of-the-art algorithm performing best on the data sets UCF-

101 and HMDB-51 is obtained in the research conducted by Kalfaoglu et al.
[53]. These results were obtained by combining 3D convolution with late tem-
poral modeling. This combination is created by replacing the conventional
layer at the end of the 3D convolutional architecture with the Bidirectional
Encoder Representations from Transformers (BERT) layer. Using the R(2+1)D
architecture [115] with this strategy, the authors obtained an accuracy of
85.10% for the HMDB-51 data set and accuracy of 98.69% for the UCF-101

data set.

For this research, we use traditional algorithms and a deep learning al-
gorithm. The selected traditional algorithms are DT [119] and IDT [118].
These algorithms are selected since they have good performance on the
benchmark data sets. Further, these algorithms create trajectories, which
resemble the motions in the video. The trajectories and their descriptors
are useful for our data set as well, since our data set is based on motion
detection. The selected traditional algorithms do not have the best per-
formance among the traditional algorithms shown in the literature review.
Nonetheless, we decide to use the selected algorithms, as we recognize that
traditional algorithms with better performance are often build upon the
improved dense trajectories. This leads to a more computationally intensive
task, taking more time to obtain results and classify unseen data. We there-
fore decide to make a trade-off between time to compute the results and a
possible performance improvement. Further, note that we both select DT

and IDT. Since IDT attempts to remove camera motion by rectifying images,
and removing camera motion can be ineffective to estimate global motion
for first-person view [1], we use DT as well. DT does not remove camera
motion. Furthermore, in researches where DT and IDT are compared, along
with other proposed algorithms, we observe that IDT often outperforms DT.
This is shown in [118]. However, in [63, 68] DT outperforms IDT in some
occasions. This shows us that IDT does not always outperform DT. Thus,
there is no clear consensus whether using IDT is always better than using DT.

For the selection of the deep learning algorithm, we choose to train a CNN
that is capable of using only RGB frames as input, and is not computationally

2.3 addition to the literature 18

demanding to train, such as 3D CNNs, due to the fact that 3D CNNs yield
an explosion of parameters [125]. Therefore, given the current deep learning
algorithms, we could choose between the hidden two-stream CNN, using
a self-trained MotionNet for optical flow approximation [137] or CoViAR

[125]. As observed, the hidden two-stream CNN has better performance
when combining the algorithm with TSN [121], which is also a 2D CNN.
However, we recognize that training a MotionNet and subsequently train the
hidden two-stream CNN is more computationally intensive than training
the CNNs of CoViAR. We thus make a trade-off between computational de-
mand of the algorithm and a possible improvement in performance for deep
learning by selecting CoViAR. Further, CoViAR can be used for our data set,
since it models both the temporal information and spatial information, using
multiple CNNs. The temporal information can be used to model the motions
being made during an action. The spatial information is useful, as it gives
information at which direction a person looks when an action is finished.
For instance, the CNN modelling the spatial structure could learn that if the
person falls, the person looks at the sky after the fall occurred. This in turn
strengthens the overall performance of the classifier as this information is
not ignored.

Finally, we note that the results of the deep learning algorithms are of-
ten better than the traditional algorithms on the selected data sets. With
this in mind, we constructed our research question, investigating whether
CoViAR outperforms DT and IDT for fall detection.

2.3 addition to the literature

Investigating the current literature on fall detection with wearable cameras,
we observe that performance of deep learning algorithms is missing for this
exact type of video data. As the use of deep learning algorithms led to
significant results on other computer vision projects, we use a deep learning
algorithm to detect falls.

Further, given that there are no deep learning algorithms employed for
fall detection with wearable cameras, we directly compare the performance
of the deep learning algorithm with the traditional algorithms. Moreover, we
make the same comparison for motion detection, as our data set allows to
distinguish between multiple motions instead of only distinguishing falls
from non-falls.

Finally, research conducted for the optimal placement of the camera for
fall detection is absent. We compare the results of the fall detector with the
camera mounted to the neck to results where the camera is mounted to the
waist, using the proposed algorithms. If there is a difference in results, valu-
able insight is obtained by knowing where to place a wearable vision-based
fall detector. This is important for the design of the fall detector.

3
M E T H O D O L O G Y

In this chapter, we give a detailed description of the algorithms DT, IDT and
CoViAR.

3.1 traditional algorithms

The traditional algorithms are DT and IDT. We explain how the features
for these algorithms are obtained. Further, we explain how the features
are encoded and explain the working of SVM, used for classification of the
traditional algorithms.

Figure 1: Extraction and characterization of (improved) dense trajectories. Feature
points are densely sampled on the grid. Next, tracking is carried out for a specified
number of frames by median filtering in a dense optical flow field. Finally, relative
point coordinates represent the trajectory shape. Descriptors HOG, HOF and MBH
are computed along the trajectory in a W ×W pixels neighborhood, divided into
nσ × nσ × nτ cells [119].

Figure 1 summarizes the process to obtain trajectories and compute
corresponding features.

3.1.1 Dense trajectories

The first algorithm we describe is DT. This algorithm consists of multiple
processing steps. These processing steps are explained in the following
sections. To implement this algorithm, OpenCV [15] is used for most of the
functionality.

Figure 2: Trajectories of DT during a Fall

Figure 3: Trajectories of DT during a non-fall

19

3.1 traditional algorithms 20

Figures 2 and 3 show trajectories of DT computed during both a fall and
a non-fall. Green dots depict the trajectories, red dots depict the densely
sampled points.

3.1.1.1 Dense sampling

DT starts by reading videos frame by frame. Using the frames, keypoints
are obtained by densely sampling points. These keypoints are densely sam-
pled on a grid spaced by W pixels. Following Wang et al. [119], we set
W = 5. This parameter setting yielded good results in their experiments.
The purpose of dense sampling is to track the sampled points through the
video. In homogeneous image areas without any structure, it is impossible
to track points. This is impossible as it is unknown whether the points in
two consecutive frames are exactly the same.

Having sampled the keypoints on the grid, we remove redundant keypoints.
Keypoints on the grid are removed using the corner detector introduced by
Shi and Tomasi [105]. The corner detector moves a window over each pixel.
Suppose we move the window over the area (x, y) in image I and shift it by
(u, v). The algorithm then computes the sum of squared differences between
these areas. The sum of squared differences is given by

S(x, y) = ∑
x

∑
y

w(x, y)(I(x + u, y + v)− I(x, y))2,

with w(x, y) being the window function. Using Taylor expansion and letting
Ix and Iy be the partial derivatives of I, we obtain

I(x + u, y + v) ≈ I(x, y) + Ix(x, y)u + Iy(x, y)v.

We can then approximate S(x, y) with

S(x, y) ≈∑
x

∑
y

w(x, y)(Ix(x, y)u + Iy(x, y)v)2.

This can be written in matrix form

S(x, y) ≈
[
u v

]
A
[
u v

]T ,

where A is a 2× 2 matrix. Now, the eigenvalues λ1 and λ2 of A are computed.
For each frame I, a threshold is computed

T = 0.001 max
i∈I

min{λ(i)
1 , λ

(i)
2 },

where (λ
(i)
1 , λ

(i)
2) are the eigenvalues of point i in frame I. Then, each

sampled point i in frame I is removed if min{λ(i)
1 , λ

(i)
2 } < T. After removing,

we obtain the densely sampled points.

3.1.1.2 Trajectories

Having obtained the densely sampled points, trajectories are created. For
frame It, its dense optical flow field ωt = (ut, vt) is computed with respect
to the next frame It+1. ut and vt are the horizontal and vertical components
of the optical flow respectively. Given a point pt = (xt, yt), we have

pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ωt)|(xt ,yt),

3.1 traditional algorithms 21

with M being the median filtering kernel. This filter takes all neighborhood
pixels together with the selected pixel and returns the median of this set of
pixel values. The size of the median filter kernel M is 3× 3 pixels. Following
Wang et al. [119], a median filter is used, since it is more robust to outliers
than bilinear interpolation. This improves trajectories for points at motion
boundaries that would otherwise be smoothed out. The motion boundaries
represent changes in the flow field.

Since the dense optical flow field is computed, points can be tracked densely
without additional cost. Moreover, dense optical flow has smoothness con-
straints. These constraints allow for robust tracking of fast and irregular
motion patterns. Following Wang et al., we use the algorithm of Färneback to
extract dense optical flow fields. This algorithm is explained in Section 3.1.1.4.

To form trajectories (pt, pt+1, pt+2, ...), points of subsequent frames are con-
catenated. As trajectories tend to drift from their initial locations during the
tracking process, the length is limited to L frames. Following Wang et al.
[119], we set L = 15. Taking into account the computational cost, we do not
apply hyperparameter optimization on this parameter. It is possible that the
algorithm does not find a tracked point in W ×W neighborhood for a frame.
If this is the case, a new point is sampled. This point is added to the tracking
process so that a dense coverage of the video is ensured.

Having obtained the trajectories, some trajectories are pruned. Static tra-
jectories do not contain motion information and are therefore pruned. A
trajectory is defined to be static if it has a very small variation. Further, we
remove trajectories with sudden large displacements. Such trajectories are
detected if the displacement vector between two consecutive frames is larger
than 70% of the overall displacement of the trajectory.

The shape of these trajectories encode local motion patterns. Given a trajec-
tory of length L, the shape by a sequence (∆pt, ..., ∆pt+L−1) of displacement
vectors ∆pt = pt+1 − pt = (xt+1 − xt, yt+1 − yt) is described. The resulting
vector is normalized by the sum of displacement vector magnitudes. This
results in the trajectory τ, with

τ =
(∆pt, ..., ∆pt+L−1)

∑t+L−1
j=t ||∆pj||

.

As the trajectory has a fixed length of 15 frames, we obtain a 30-dimensional
descriptor, 15 for the horizontal direction and 15 for the vertical direction.

3.1.1.3 Oriented gradients

To capture static appearance information, we make use of the histogram
of gradients (HOG). This concept became widely known after the research
conducted by Dalal and Triggs [21]. HOG makes use of the oriented gradients.
For each point obtained from dense sampling, we compute its gradient. The
result of this computation is the oriented gradient. This is computed using
the Sobel operator, first described by Sobel and Feldman [108]. This is an
operator computing the approximation of the gradient of the image intensity

3.1 traditional algorithms 22

function. The gradient is approximated by computing the x-gradient by
filtering the current point with its neighbors using the filter−1 0 1

−2 0 2
−1 0 1

 ,

and the y-gradient by filtering the current point with its neighbors using the
filter −1 −2 −1

0 0 0
1 2 1

 .

Having obtained the gradients for each sampled point, we compute HOG.
Computation of the histogram is described in Section 3.1.1.6.

3.1.1.4 Optical flow

To extract the dense optical flow fields and the optical flow, used for the
histogram of optical flow (HOF), the algorithm by Farnebäck [31] is used.
This algorithm is a two-frame motion estimation algorithm. It approximates
each neighborhood of both frames using quadratic polynomials. In this
research, we use a neighborhood size of ten. The approximation is made by
using the polynomial expansion transform.

The polynomial expansion is performed by approximating each pixel with
a polynomial. Since every pixel is being taken into account, this is a dense
optical flow algorithm. The algorithm starts by considering the quadratic
polynomial for the signal f1 of the first frame

f1(x) = xT A1x + bT
1 x + c1,

where we let x be the coordinates (x, y) of the pixels. Further, a new signal
for the second frame, f2 is constructed by a global displacement d. The global
displacement is given by d = (u, v). u is the displacement in the horizontal
direction and v is the displacement in the vertical direction. Next,

f2(x) = f1(x− d) = (x− d)T A1(x− d) + bT
1 (x− d) + c1

= xT A1x + (b1 − 2A1d)Tx + dT A1d− bT
1 d + c1

= xT A2x + bT
2 x + c2.

Letting f1(x) = f2(x), we get

A2 = A1

b2 = b1 − 2A1d

c2 = dT A1d− bT
1 d + c1.

Now solving for the translation d, which is the variable of interest, we obtain

2A1d = −(b2 − b1)⇔ d = −1
2

A−1
1 (b2 − b1).

This holds if A1 is nonsingular.

Is is unrealistic to assume that an entire signal is a single polynomial and

3.1 traditional algorithms 23

that the global translation is related to two signals. Therefore, Farnebäck
suggested to replace the global polynomial with local polynomial approx-
imations. Polynomial expansion of both images is performed. This yields
expansion coefficients A1(x), b1(x) and c1(x) for frame 1 and A2(x), b2(x)
and c2(x) for frame 2. Next, the approximation

A(x) =
A1(x) + A2(x)

2
(1)

is obtained.

∆b(x) = −1
2
(b2(x)− b1(x)) (2)

is introduced to obtain the constraint

A(x)d(x) = ∆b(x).

Here, d(x) indicates that the global replacement d is replaced with a spatially
varying displacement field.

d(x) is found using weighted least squares, i.e. minimizing:

∑
∆x∈I

w(∆x)||A(x + ∆x)d(x)− ∆b(x + ∆x)||2.

w(∆x) is a weight function for the points in the neighborhood. In our case,
the weight function is the Gaussian weight function. We use a standard
deviation of 1.5, as used by Farnebäck.

Solving this optimization problem, we find that the minimum is obtained
for:

d(x) =
(

∑ wAT A
)−1

∑ wAT∆b,

where the indices for w, A and ∆b are dropped for readability. The minimum
value of the problem is given by

e(x) =
(

∑ w∆bT∆b
)
− d(x)T ∑ wAT∆b.

This means that AT A, AT∆b and ∆bT∆b are computed pointwise and aver-
aged with w before being solved for displacement.

Furthermore, Farnebäck points out that robustness of the algorithm can
be improved. The algorithm can be improved by parameterizing the displace-
ment field according to some motion model. Farnebäck proposes to use a
motion model which is linear in the parameters. He uses the eight parameter
model. The eight parameter model in 2D is given by

dx(x, y) = a1 + a2x + a3y + a7x2 + a8xy,

dy(x, y) = a4 + a5x + a6y + a7xy + a8y2

This can be rewritten to the system d = Sp, with

S =

[
1 x y 0 0 0 x2 xy
0 0 0 1 x y xy y2

]
p =

[
a1 a2 a3 a4 a5 a6 a7 a8

]T ,

3.1 traditional algorithms 24

which yields the following weighted least squares problem

∑
i

wi||AiSi p− ∆bi||2.

Its solution is given by

p =

(
∑

i
wiST

i AT
i AiSi

)−1

∑
i

wiST
i AT

i ∆bi

which is the model that we use as well.

Farnebäck further notes that since polynomial expansions are local models,
the displacements will vary spatially. This introduces errors in the constraint
A(x)d(x) = ∆b(x). With large displacements, errors are large. A solution is
to use a priori knowledge about the displacement field. Using the a priori
knowledge, the polynomial at x in the first signal is compared to the polyno-
mial at x + d̃(x) of the second signal. Here, we have that d̃(x) is the a priori
displacement field. Replacing Equations (1) and (2) with

A(x) =
A1(x) + A2(x̃)

2

and

∆b(x) = −1
2
(b2(x̃)− b1(x)) + A(x)d̃(x),

where

x̃ = x + d̃(x).

To find a solution using a priori knowledge, estimated displacements are
used as a priori displacement in the next iteration to estimate the updated
displacements. For this research, we use two iterations.

3.1.1.5 Motion boundaries

Having obtained the optical flow, we obtain the horizontal and vertical
components of the optical flow. The derivatives of these components are the
motion boundaries, proposed by Dalal et al. [22]. The motion boundaries
represent relative motion between the pixels. Using motion boundaries,
locally constant camera motion is removed and information about changes
in the flow field is kept. Motion boundaries are more robust to camera
motion than optical flow[120]. We let u denote the image containing the x
(horizontal) component of optical flow and let v denote the image containing
the y (vertical) component of optical flow. Further, let ux, uy, vx and vy
denote the corresponding x- and y-gradient differential flow images. For
instance,

uy =
∂

∂y
u

is the y-gradient of the x component of optical flow. We compute these
gradients using the Sobel operator. These flow images are the motion
boundaries and quantize the derivative of the optical flow in horizontal and
vertical direction. Having obtained the motion boundaries, we compute
MBH. This is computed in the same way as HOG and HOF are computed.

3.1 traditional algorithms 25

3.1.1.6 Obtaining HOG, HOF and MBH

After obtaining the descriptors (oriented gradients, optical flow and motion
boundaries), we compute corresponding histograms to reduce the dimen-
sionality of the descriptors.

Following Wang et al. [119], we use eight bins for HOG and MBH. We
further use nine bins for HOF. From each descriptor, we obtain the horizontal
direction gx and vertical direction gy. Using these directions, we compute
the magnitude and angle with the formulas

g =
√

g2
x + g2

y

and

θ = arctan
gy

gx
.

After the computation of the magnitude and angle, we perform an extra
operation for HOF. In this operation, we check whether there are optical flow
magnitudes that are lower than a specified threshold. This threshold is set to
0.4. If this is the case, we add the magnitude to the zero bin of HOF. This
zero bin accounts for optical flows having a magnitude which is lower than
a threshold. Having performed this operation for HOF, we continue as we
do with HOG and MBH.

Next, the algorithm checks which bin corresponds to the computed mag-
nitude. Each bin is represented by a corresponding angle. We use eight
bins. Each bin corresponds to an angle interval. With eight bins, bin i has
the angle interval [22.5 · i, 22.5 · (i + 1) for i = 0, ..., 7. Each bin thus covers
180
8 = 22.5 degrees. The center of bin i is given by 22.5 · (i + 0.5). Note that

for the bin coverage, we use 180 in the numerator instead of 360 because we
use unsigned gradients. To describe the process of creating the histogram,
suppose that we obtain a magnitude of 2 and an angle of 12.25 degrees. Then,
2 is added to the first bin. Now, suppose that we obtain an angle of 22.5
degrees and a magnitude of 2. Then, the magnitude is shared proportionally
between the first and second bin. 37.5−22.5

22.5 · 2 is added to the first bin and
22.5−12.25

22.5 · 2 is added to the second bin.

After obtaining the histograms, we normalize each histogram with the L2
norm. Letting vector x describe the descriptor, we thus update element xi
using the transformation

x̃i =
xi√

∑n
j=1 x2

j

.

Histograms corresponding to the trajectories are computed over multiple
cells. If the trajectory reaches a length of 15, one histogram is computed.
This is done by summing up all histograms into a cell into one histogram.
The summation is performed by treating each histogram as a vector, where
each element consists of a value for the bin. Then, we sum all vectors
within a cell into an output vector, having the same dimensions. This is
the histogram corresponding to a cell, computed for a trajectory. Each
trajectory has 2× 2× 3 cells. Having computed the histograms for each cell,
we concatenate all histograms by iterating over the cells. Since a histogram

3.1 traditional algorithms 26

is a vector of bins, we obtain different feature vectors for each trajectory.
For HOG, we obtain a 2× 2× 3× 8 = 96-dimensional vector. We obtain
the same vector size for MBH in the horizontal direction and MBH in the
vertical direction. Concatenating the horizontal and vertical vector, we obtain
a 192-dimensional vector for MBH. As we have nine bins for the HOF, we
obtain a 2× 2× 3× 9 = 108-dimensional vector for HOF.

3.1.2 Improved dense trajectories

An adjustment to the dense trajectories is the improved dense trajectories
algorithm, proposed by Wang et al. [118]. To compute these trajectories,
the algorithm takes into account camera calibration. By taking the camera
calibration into account, estimation of optical flow improves. To account
for camera calibration, the Speeded up robust features (SURF) method is
used to extract keypoints. The keypoints obtained from SURF are matched
based on the nearest neighbor rule, using the features from SURF. Further,
the densely sampled points are obtained. The method of densely samplings
point is similar to that of dense trajectories and is explained in Section
3.1.1.1. The densely sampled points and the keypoints obtained from SURF
complement each other. SURF focuses on the blob-type structures and
the densely sampled points focus on corners and edges. Combining these
approaches results in a more balanced distribution of matched points. This
is important for the estimation of the homography, which rectifies images.
To compute the descriptors HOG, HOF, MBH and the trajectories, first the
homography is estimated using RANSAC. The homography is estimated
using feature matches extracted between two consecutive frames. Using the
estimated homography, the second frame is warped to the first frame. Then,
optical flow is re-computed between the first and warped second frame,
yielding the warped optical flow. Finally, HOF, MBH and the improved
trajectories are obtained in the same manner as described in Sections 3.1.1.2,
3.1.1.4 and 3.1.1.5, but now using the warped optical flow. HOG is obtained
similarly as for DT, as HOG is a static feature. In the following sections, we
describe the adjustments that are made to create the descriptors of IDT.

Figure 4: Trajectories of IDT during a fall

Figure 5: Trajectories of IDT during a non-fall

Figures 4 and 5 show trajectories of IDT computed during both a fall
and a non-fall. Green dots depict the trajectories, red dots depict the densely
sampled points.

3.1.2.1 Speeded Up Robust Features

The SURF algorithm is used for camera calibration. SURF, proposed by
Bay et al. [6, 7], is a scale- and rotation-invariant keypoint detector and
keypoint descriptor. The detector is based on approximating the Hessian
matrix, relying on integral images to reduce the time needed for computation.

3.1 traditional algorithms 27

The algorithm starts with computing the integral image (or summed-area
table). An element of the integral image IΣ(x, y) is given by the sum of all
pixels in the input image I of a rectangular region formed by the point (x, y)
and the origin. It is given by

IΣ(x, y) =
i≤x

∑
i=0

j≤y

∑
j=0

I(i, j).

Given point (x, y) in image I, the Hessian matrix H(x, y, σ) at point (x, y) at
scale σ is defined as

H(x, y, σ) =

[
Lxx(x, y, σ) Lxy(x, y, σ)
Lxy(x, y, σ) Lyy(x, y, σ)

]
,

where Lxx(x, y, σ) is the convolution of the Gaussian second order derivative
∂2

∂x2 g(σ). Approximations for the Gaussian second order derivatives are
computed. These approximations are given by Dxx, Dxy, Dyx and Dyy and
are computed using box filters. The determinant of the approximated Hessian
is given by

det(H) = DxxDyy − (wDxy)
2.

Using OpenCV, we have that w = 0.81. w is used as a measure of local change
around the point. The points with maximum determinants are chosen as
possible keypoints.

Keypoints are found at different scales. These scale spaces are implemented
as an image pyramid. The images in these scales are repeatedly smoothed
with a Gaussian and then sub-sampled to achieve a higher level of the pyra-
mid. Since box filters and integral images are used, applying the same filter
to the output of a previously filtered layer is not needed. Instead, box filters
of any size are applied to the image.

Scale space is analysed by up-scaling the filter size. The output of the
9× 9 box filter is considered as the initial scale layer, referred to as scale
s = 1.2. Next, larger masks are used to obtain following layers. Doing so, we
obtain layers with filter size 9× 9, 15× 15, 21× 21 and 27× 27 to filter the
image. The ratios of the filters remain constant after scaling. Therefore, the
approximated Gaussian derivatives scale accordingly. For example, the filter
of size 27× 27 corresponds to σ = 1.2× 3 = 3.6.

After scaling, non-maximum suppression in a 3× 3× 3 neighborhood is
applied. The first two dimensions are the neighboring pixels in its own
scale and the third dimension is the dimension in the lower and upper scale.
We check if a pixel in the neighborhood is the maximum for the current
scale, lower scale and upper scale. The possible keypoint is selected as final
keypoint if it exceeds a certain threshold τ. We set τ = 200.

To ensure that SURF is invariant to image rotation, the orientation of key-
points is identified. The Haar wavelet responses in horizontal and vertical
direction are computed within a circular neighborhood of radius 6s around
the keypoint. The sampling step is s. The size of the wavelets are chosen to
be 4s. Using the integral image, only six operations are needed to compute

3.1 traditional algorithms 28

the response in horizontal or vertical direction at any scale. After computing
the wavelet responses, the responses are weighted using a Gaussian, centred
at the keypoint. The weighted responses are represented as points, with hor-
izontal responses corresponding to the horizontal axis and vertical responses
corresponding to the vertical axis of a graph. Next, dominant orientation is
estimated by calculating the sum of all responses within a sliding window of
size π

3 . These two summed responses yield a local orientation vector. After
sliding all windows and computing orientation vectors for each window, the
orientation corresponding to the longest orientation vector is chosen. After
finding the orientation, the descriptor of a keypoint can be extracted.

To extract the descriptor corresponding to a keypoint, a square region around
the keypoint is constructed. This is oriented along the selected orientation.
This region is split into smaller 4× 4 regions. In each sub-region, Haar
wavelet responses are computed at 5× 5 regularly spaced sample points. Let
dx and dy be the Haar wavelet responses in horizontal and vertical direction,
respectively. These responses are weighted with a Gaussian, centred at the
keypoint. The responses dx and dy are summed over each sub-region, form-
ing two 16-dimensional vectors. Further, the sum of absolute values of the
responses, |dx| and |dy| are computed. Concatenating dx, dy, |dx| and |dy|
yields the 64-dimensional vector, the descriptor describing the keypoint.

Having obtained the keypoints and corresponding descriptors of two consec-
utive frames, we start matching the keypoints in both frames. Matches are
computed based on the distance between two keypoints, where the distance
D between two descriptor vectors is computed using the L2-norm, i.e.

D = ||x(i)1 − x(j)
2 ||

2,

with x(i)1 being the descriptor of a keypoint i in frame 1 and x(j)
2 being the

descriptor of a keypoint j in frame 2. A keypoint i in the first frame is
matched with a keypoint j in second frame by comparing distance. Let N1
(N2) be the number of keypoints in the first (second) frame. Then, keypoint
i of the first frame and keypoint j of the second frame are a match if the
distance between x(i)1 and x(j)

2 is the minimum for all N2 keypoints. The
algorithm compares distances of all combinations of the N1 keypoints in
frame 1 with the N2 keypoints in frame 2 to find all matches between the
two frames.

3.1.2.2 Homography and RANSAC

Having obtained the extracted points from dense sampling and SURF, the
frames are rectified using homography. Homography describes the projective
geometry of two cameras and a world plane. The homography maps images
of points lying on a world plane from one camera view to another. The
relationship is projective as it depends on the intersection of planes with
lines only. Estimating the homography rectifies the image.

Given all matched points (xi, yi) in frame 1 and points (x
′
i , y
′
i) in frame

3.1 traditional algorithms 29

2, we solve the homography p
′
= H p. For one point being matched in two

frames, we obtain the system:wx
′
i

wy
′
i

w

 =

h00 h01 h02
h10 h11 h12
h20 h21 h22

xi
yi
1

 . (3)

We have that pi =

xi
yi
1

 and p
′
i =

wx
′
i

wyi
i

w

. We can rewrite Equation (3) to

x
′
i =

h00xi + h01yi + h02

h20xi + h21yi + h22

⇔ x
′
ih20xi + h21yi + h22 = h00xi + h01yi + h02

y
′
i =

h10xi + h11yi + h12

h20xi + h21yi + h22

⇔ y
′
ih20xi + h21yi + h22 = h10xi + h11yi + h12,

which can be rewritten to the system

[
xi yi 1 0 0 0 −x

′
i xi −x

′
iyi −x

′
i

0 0 0 xi yi 1 −y
′
ixi −y

′
iyi −yi

]

h00
h01
h02
h10
h11
h12
h20
h21
h22

=

[
0
0

]
.

Repeating this procedure for all points, we obtain the system

x1 y1 1 0 0 0 −x

′
1x1 −x

′
1y1 −x

′
1

0 0 0 x1 y1 1 −y
′
1 −y

′
1y1 −y

′
1

. . .
xn yn 1 0 0 0 −x

′
nxn −x

′
nyn −x

′
n

0 0 0 xn yn 1 −y
′
nxn −y

′
nyn −y

′
n

h00
h01
h02
h10
h11
h12
h20
h21
h22

=

0
0
...
0
0

⇔ Ah = 0.

Next, we estimate the parameter h. To estimate h, we can rewrite the matrix
form to the the least squares problem

min ||Ah− 0||2,

which is solved by computing the estimate ĥ for h. The solution for ĥ is
given by the eigenvector of AT A corresponding to the smallest eigenvalue of
AT A. We now rebuild the estimation for H by indexation from ĥ.

Having found the keypoints, we might obtain outliers. These outliers could
cause a disturbed homography. To mitigate this problem, Fischler and Bolles

3.1 traditional algorithms 30

[35] proposed the RANSAC algorithm. RANSAC is used to remove out-
liers. RANSAC runs for multiple iterations. In each iteration, the following
operation is executed:

• Select some pairs of points randomly, with a pair being a match of a
point in the first and second frame.

• Compute the homography.

• Find the inliers by computing the distance between the points in the first
frame and the points in the warped frame. The distance ||p′i, H pi|| < ε
is computed.

– ε is the error tolerance between deciding whether the point is an
inlier or outlier.

– If the distance is smaller than ε, the match is added to the set of
inliers.

• Keep the largest set of inliers.

After finding a set with a sufficient number of inliers using the corresponding
model, the loop is terminated. h is estimated again, but now using all of the
inliers to obtain the final model for the homography.

3.1.3 Encoding the descriptors and performing classification

After obtaining the descriptors of either DT or IDT, we encode these de-
scriptors to reduce the number of dimensions. After encoding the video,
the video is no longer described by a large matrix consisting of multiple
features, obtained from the dense and improved dense trajectories. Instead,
each video is described by one vector, the Fisher vector. Encoding is done
using PCA, GMM and creating a Fisher vector. After encoding, the resulting
features are fed into a linear SVM classifier for training and prediction.

3.1.3.1 Principal component analysis

Principal component analysis (PCA) was first described by Pearson [84]. This
method is used to extract features of a data set using a statistical procedure.
PCA enables us to reduce the number of dimensions of the data set. Given
a data set X ∈ Rn×p, we want to reduce the data from p columns to L
columns. To do so, we start by computing the empirical mean for each
column j = 1, ..., p. These empirical means are added into the vector u. These
elements of u, the empirical means uj, are computed with the formula

uj =
1
n

n

∑
i=1

Xi,j.

Next, we center the data. To center the data, deviations from the mean are
computed. We let B be the matrix after centering the data. We then have

B = X − 1uT ,

with 1 =
[
1 1 1 . . . 1

]T being a n× 1 vector. In the following step, the
covariance matrix C is computed. We have

C =
1

n− 1
BT · B,

3.1 traditional algorithms 31

where we use the centered matrix B. Using C, we compute the eigenvectors
and eigenvalues of C, using the equation

V−1CV = D.

D corresponds to the diagonal matrix of eigenvalues of C. V is the matrix
of eigenvectors, V ∈ Rp×p. The matrix of eigenvectors is sorted by the
eigenvalues in descending order.

To obtain the final matrix from PCA dimensionality reduction, we use the
formula

X̃ = X · VL.

VL is the block matrix of V where the block is taken on all p rows and the
first L columns, i.e. VL ∈ Rp×L. Further,

V =

v1,1 · · · v1,L v1,L+1 · · · v1,p
...

...
...

...
...

...
vp,1 · · · vp,L vp,L+1 · · · vp,p

 =

 v1,L+1 · · · v1,p

VL
...

...
...

vp,L+1 · · · vp,p

 .

Having obtained the data set after PCA, we note that the transformed matrix
X̃ obtained after applying PCA has a diagonal covariance matrix. This is a
useful property that can be used for the GMM.

3.1.3.2 Gaussian mixture model

To compute the Fisher vectors, we need certain parameters. These parameters
are obtained from the Gaussian mixture model (GMM). The parameters are
estimated by taking into account a number of data points obtained from the
data matrix resulting after PCA.

Figure 6: Example of a GMM with 2 clusters, where we observe that clusters can
overlap. Data points can be a member of a cluster with a certain probability.

A Gaussian Mixture is a function consisting of several Gaussians. The
Gaussian density function is given by

N (x|µ, Σ) =
1

(2π)
D
2 |Σ| 12

e−
1
2 (x−µ)TΣ−1(x−µ).

3.1 traditional algorithms 32

x is a feature and D is the number of dimensions of each data point. Each
Gaussian is identified by cluster k, where k = 1, .., K. Each Gaussian cluster
has the following parameters:

• µk, defining the centre of cluster k.

• Σk, defining the variance of cluster k.

• πk, being the mixing coefficient πk, which gives us the proportion of
the Gaussian function k.

The mixing coefficients are probabilities, with restriction

K

∑
k=1

πk = 1.

Using the GMM, we can find a relation between a data point x and the
probability that x belongs to a cluster k. This probability is expressed as
p(znk = 1|xn), with z being a latent variable, z ∈ {0, 1}.

We let z =
[
z1, ..., zK

]
. Further, it is assumed that each zi is independent from

each other and zi = 1 if and only if k is equal to the cluster point. We thus
have:

p(z) = p(z1 = 1)z1 p(z2 = 1)z2 · · · p(zK = 1)zK =
K

∏
k=1

π
zk
k .

Now, we have that

p(xn|z) =
K

∏
k=1
N (xn|µk, Σk)

zk ,

as xn is normally distributed. Using the product rules of probabilities, we
get:

p(xn, z) = p(xn|z)p(z).

Now, we need to find p(xn), which can be found by applying marginalization.
We obtain

p(xn) =
K

∑
k=1

p(xn|z)p(z) =
K

∑
k=1

πkN (xn|µk, Σk)

and its joint probability of all observations xn is given by

p(X) =
N

∏
n=1

p(xn) =
N

∏
n=1

K

∑
k=1

πkN (xn|µk, Σk).

Taking the log of this function, we obtain:

ln(p(X)) =
N

∑
n=1

ln
K

∑
k=1

πkN (xn|µk, Σk).

Since the derivative of this equation has no analytical root solution, we
cannot find the optimal parameters analytically.

3.1 traditional algorithms 33

To find the optimal parameters, the Expectation-Maximization algorithm is
used, introduced by Dempster et al. [25]. To do so, Bayes rule is applied:

p(zk = 1|xn) =
p(xn|zk = 1)p(zk = 1)

∑K
j=1 p(xn|zj = 1)p(zj = 1)

=
πkN (xn|µk, Σk)

∑K
j=1 πjN (xn|µj, Σj)

= γ(znk). (4)

Then, for the EM algorithm, we define

θ = {π1, ..., πK, µ1, ..., µK, Σ1, ..., ΣK}.

The first step is to initialise θ. This is done by performing the K-means
algorithm [66]. This is another clustering algorithm with the hard constraint
that each data point can only belong to one cluster. It does not specify the
probabilities that a data point belongs to a certain cluster. From the K-means
algorithm, we obtain the mean of each cluster. This mean is used to initialize
µk, the mean of cluster k. Further, computing the within-cluster covariance
of cluster k, we obtain the initial value for Σk. The proportion of samples in
cluster k is used to initialize πk.

Next, the expectation step is performed. This is done by evaluating:

Q(θ∗, θ) = E(ln p(X, Z|θ∗)) = ∑
Z

p(Z|X, θ) ln p(X, Z|θ∗),

which can be rewritten as

Q(θ∗, θ) = ∑
Z

γ(znk) ln p(X, Z|θ∗).

We find

p(X, Z|θ∗) =
N

∏
n=1

K

∏
k=1

π
znk
k N (Xn|µk, Σk)

znk

Taking logs, we obtain

ln p(X, Z|θ∗) =
N

∑
n=1

K

∑
k=1

znk(ln πk + lnN (xn|µk, Σk)). (5)

As we are dealing with the restriction that ∑k πk = 1 and we are optimizing
(5), the Lagrange multiplier is introduced:

L(θ∗, θ) =
N

∑
n=1

K

∑
k=1

znk(ln πk + lnN (xn|µk, Σk))− λ(
K

∑
k=1

πk − 1).

Differentiating L by πk, µk and Σk and finding its root, we obtain the follow-
ing optimal parameters

π∗k =
∑N

n=1 γ(znk)

N

µ∗k =
∑N

n=1 γ(znk)xn

∑N
n=1 γ(znk)

Σ∗k =
∑N

n=1 γ(znk)(xn − µk)(xn − µk)
T

∑N
n=1 γ(znk)

,

3.1 traditional algorithms 34

with γ(znk) being given in Equation (4). Next, γ(znk) is computed in the
next iteration using the optimal parameters found. The log-likelihood in (5)
is evaluated to observe if the log-likelihood changes. If there is convergence,
i.e. the log-likelihood does not change or changes by a very small amount,
the process converges and the algorithm terminates. This yields the final
parameters θ∗. We use the VLFeat library [117] to obtain the parameters
from GMM.

3.1.3.3 Fisher encoding

Having obtained the optimized parameter value θ from GMM, we compute
the Fisher vectors, following Perronnin et al. [89]. A Fisher vector encodes
both the first and second order statistics between the video descriptors and a
GMM. Given the parameter θ and the descriptor set X ∈ RT×D, we assume
that X can be modeled by the normal distribution uθ. We describe X by the
gradient vector:

GX
θ =

1
T

∂θ log uθ(X),

where T is the number of descriptors. The gradient describes the contribution
of the parameters to the generation process. A natural kernel on these
gradients is subsequently given by

K(X, Y) = GX
′

θ F−1
θ GX

θ ,

with Fθ being the Fisher information matrix of uθ:

Fθ = Ex∼uθ

(
∂θ log uθ(X)∂θ log uθ(X)

′
)

.

Since Fθ is symmetric and positive definite, it has the Cholesky decomposition
Fθ = L

′
θLθ and K(X, Y) can be rewritten as a dot-product between normalized

vectors Gθ with

GX
θ = LθGX

θ .

Note that it is assumed that each xn is generated independently by the normal
distribution uθ. Further, note that the covariance matrices are diagonal for
each cluster. Using these observations, we can compute the d-th element of
the Fisher vector with respect to the mean µk with the formula

GX
µk ,d =

1
T
√

πk

T

∑
n=1

γn(k)
(

xn,d − µ
(d)
k

σ
(d)
k

)
and the d-th element of the Fisher vector with respect to the standard devia-
tion σk is given by

GX
σk ,d =

1
T
√

2πk

T

∑
n=1

γn(k)
(

xn,d − µ
(d)
k

σ
(d)
k σ

(d)
k

− 1
)

,

with xn,d being the element of X with row n and column d. µ
(d)
k is the d-th

element of the mean vector of cluster k and σ
(d)
k is the d-th diagonal element

of Σk, which is the covariance matrix corresponding to cluster k. Further,

γn(k) =
wke−

1
2 (xn−µk)

TΣ−1
k (xn−µk)

∑K
t=1 wte−

1
2 (xn−µt)TΣ−1(xn−µt)

,

3.1 traditional algorithms 35

with wk being the weight for cluster k, k = 1, ..., K. Computing each element,
we obtain

GX
µk

=

GX

µk ,0
...

GX
µk ,D−1

 , GX
σk

=

GX

σk ,0
...

GX
σk ,D−1

 ,

yielding the D-dimensional Fisher vectors with respect to the mean and
standard deviation. To obtain the final Fisher vector F, for all clusters, we
concatenate GX

µ,k and GX
σ,k vectors for k = 1, ..., K, i.e.

f =

GX
µ,1
...
GX

µ,K
GX

σ,1
...
GX

σ,K

,

yielding a 2Kd dimensional vector, describing each video by one large vector.

Having obtained the Fisher vector, we apply power and L2 normalization to
the vector. It is shown by Perronnin et al. [89] that in this case, classification
performance improves when transforming these vectors. We start by apply-
ing power normalization to each element, yielding vector f̄ , having element
f̄ (z):

f̄ (z) = sign(z)|z|α.

We use α = 0.5, following Perronnin et al. Next, we apply L2 normalization
to the obtained vector. The vector f̄ is transformed as follows:

f̃ =
f̄
|| f̄ ||

,

with f̃ being the final Fisher vector. We use the VLFeat library [117] to
compute the Fisher vectors.

3.1.3.4 Support Vector Machine

Having computed the Fisher vector for each video, we use the support vector
machine (SVM). Wang et al. [118] obtained good results using the linear
SVM in combination with Fisher vectors. Further, the SVM can handle a
large feature dimensionality, as indicated by Hua and Sun [47]. Therefore,
we choose the linear SVM as our classifier for DT and IDT.

3.1 traditional algorithms 36

Figure 7: Example of two SVMs creating hyperplanes A and B, along with the
corresponding support vectors. These hyperplanes separate two classes. The SVM
creating hyperplane A has a larger margin than the SVM creating hyperplane B, since
the distance between the two support vectors corresponding to A is larger. This figure
is based on [29].

The SVM is a classifier proposed by Boser et al. [10]. The SVM is
used to distinguish two classes from each other, given labeled data. The
classifier distinguishes these classes using separating hyperplanes. An SVM
specifies that the classes are best distinguished when the margin between the
hyperplane separating the classes is maximized. This hyperplane is defined
by

wTxi + b = 0,

where w is the weight vector and b is the bias, which are among the param-
eters to be optimized. In case wTxi + b < 0, the classifier predicts that the
data belongs to the first class. In case wTxi + b > 0, the classifier predicts
that the data belongs to the second class.

In order to find the optimal parameters, the soft margin classifier is used.
This corresponds to the following optimization problem:

min
w,b,ζ

1
2

wTw + C
n

∑
i=1

ζi

s.t.

yi(wTxi + b) ≥ 1− ζi (6)

ζi ≥ 0, i = 1, ..., n.

This shows that the margin is maximized (by minimizing wTw), while incur-
ring a penalty when a sample is misclassified or within the margin boundary.
In the ideal case, yi(wTxi) + b) ≥ 1 for all samples. However, the data is not
always perfectly separable with a hyperplane. Therefore, some samples are

3.2 compressed video action recognition 37

allowed to be at a distance ζi from the correct margin boundary. The penalty
term C controls the strength of the penalty, acting as an inverse regulariza-
tion parameter. The major role of C is to determine the trade-off between
increasing the margin size and misclassification of training examples.

In the case of multi-class classification, we use the one-against-rest approach.
We train one classifier against all the other classes, leading to a binary prob-
lem. We then train multiple classifiers, with the total number of classifiers
being equal to the number of classes. To classify unseen data xnew with the
obtained model for each classifier, each classifier obtains xnew as input. Each
classifier computes a score and we select the classifier having the highest
score. The scikit-learn package [85] is used to model the classifiers for the
binary problem and the multi-class problem.

3.2 compressed video action recognition

The deep learning algorithm we use in this research is CoViAR. Wu et
al. [125] proposed this algorithm, making use of deep neural networks in
combination with information provided by compressed videos to recognize
different actions. In this section, we describe how the algorithm works. To
implement the code, we use PyTorch [83], a Python library suitable for deep
learning.

3.2.1 Compression

CoViAR takes compressed videos as input. The compressed videos are
obtained from MPEG-4 compression. The compression algorithms use the
fact that successive frames are usually very similar. One frame can be stored
efficiently by reusing contents from another frame, storing the difference.
Modern codecs split a video into I-frames (the intracoded frames), P-frames
(predictive frames) and zero or more B-frames (bi-directional frames). I-
frames are regular images. P-frames reference the previous frames and
encode the change between frames. Both I-frames and P-frames are used by
CoViAR. The CoViAR algorithm does not use the B-frames to model actions.
For an detailed description of the MPEG-4 compression algorithm, we refer
to [98].

With CoViAR, we divide the P-frames into two parts. The first part consists
of the motion vectors. These are represented as the movements of block of
pixels from the source frame to the target frame at time t, denoted by T (t).

After compensating for block movement, a difference between the origi-
nal image and the predicted image at time t can occur. We denote this
residual difference by ∆(t). This is the second part of the P-frames. Con-
sequently, a P-frame consists of the motion vectors T (t) and the residual
∆(t):

I(t)i = I(t−1)

i−T (t)
i

+ ∆(t)
i (7)

for all pixels i, with I(t) denoting the RGB frame at time t.

Having obtained I-frames and P-frames, we feed the I-frames into a CNN. P-
frames are not fed directly into the CNN, since they depend on the reference

3.2 compressed video action recognition 38

frame. The reference frame is a frame of the compressed video which defines
future frames. The reference frame may be a P-frame itself. This chain of
dependency continues all the way back to a preceding I-frame. Therefore,
treating each P-frame as an independent observation violates the dependency
property.

A strategy to address this issue is to reuse features from the reference
frame. Now, features are only updated given the new information. The
CoViAR method makes use of a back-tracing technique decoupling individ-
ual P-frames. This is done by tracing all motion vectors back to the reference
I-frame, accumulating the residuals. Now, each P-frame depends only on the
I-frame and not on other P-frames. We can write this process in mathematical
form. Given a pixel at location i in frame t, let µT (i)(i) = i − T (t)

i be the
referenced location in the previous frame. The location traced back to frame
k < t is consequently given by

J (t,k)
i = µT (k+1) ◦ . . . ◦ µT (t)(i)

Then, the accumulated motion vectors D(t)
i ∈ R

H×W×2 and the accumulated

residuals R(t)
i ∈ R

H×W×3 at frame t are given by:

D(t)
i = i−J (t,k)

i

R(t)
i = ∆(k+1)

J (t,k+1)
i

+ . . . + ∆(t−1)

J (t,t−1)
i

+ ∆(t)
i .

Now, each P-frame has the dependency

I(t)i = I
i−D(t)

i
+R(t)

i ,

which ensures that P-frames only depend on the I-frame. The recurrence
relation shown in Equation (7) has been eliminated. Thus, P-frames can be
processed in parallel. Now, the three input sources I-frames, motion vectors
and residuals are modeled individually by a CNN: the I-frame CNN, the
motion CNN and the residual CNN. Having obtained the scores for each
CNN, we apply late fusion to combine the three networks to obtain final
results. Furthermore, Temporal Segment Networks (TSN) [121] are used to
model the long term dependency. The method of TSN is explained in Section
3.2.2.9. Late fusion is explained in Section 3.2.2.10.

Figure 8: Example of inputs for the three CNNs of CoViAR for a fall.

Figure 9: Example of inputs for the three CNNs of CoViAR for a non-fall.

Figures 8 and 9 show inputs for the three CNNs in CoViAR. The first
three images depict I-Frame inputs, the middle three images depict the
motion vectors and the last three images depict the residual frames.

3.2 compressed video action recognition 39

3.2.2 Convolutional Neural Network

Figure 10: Example of a CNN depicting multiple convolutional layers and a fully
connected layer. Note: The CNN in this image does not have the same architecture as
the CNN used in this paper. This figure is based on [3].

A CNN is a neural network with multiple layers performing different opera-
tions in each layer. The network employs, among others, convolutions in the
forward pass to compute a loss. The loss is computed using a loss function.
Forwarding the data and backpropagation are repeated for multiple epochs
in the network during training to obtain the optimal weights. We describe
the different operations used in our CNN architecture in this section.

3.2.2.1 Convolutional layer

The convolutional layer is used as a filter to learn structures found in the
frames. The filter itself is learned by iterating and updating the weights in
the filter. This filter is applied to the data it is being fed. Making use of a
convolution filter, we do not have to fully connect each pixel to a hidden
layer. This is different to a regular neural network, where full connection
occurs at each layer. Using convolution filters to train the model, the number
of weights are manageable for modern hardware. Further, the convolution
filter is shared among all elements of the input matrix in the current layer.
Therefore, CNNs make use of weight sharing. In each layer, multiple filters
are used to identify features.

The formula to compute the resulting element of convolution between X and
F is given by

(X ∗ F)(m, n) = ∑
j

∑
i

X(m, n) · F(m− i, n− j),

where i and j correspond to the filter height and width. Zero padding is
applied accordingly and the indices of m and n are determined by the stride
that is used.

In our first layer of the CNNs, the RGB-frames are used as input for the
I-frame CNN and residual CNN and two-dimensional motion vectors are
used as input for the motion CNN. Consequently, we have three different
channels, one for each primary color. This gives us three matrices for the

3.2 compressed video action recognition 40

I-frame CNN and residual CNN. For the motion CNN, we have two different
channels, as the motion vector is two-dimensional. This gives us two matrices.
Each matrix has its own filter matrix F, with learnable weights. In each CNN,
after performing the convolution on each matrix, we take the sum of the
resulting matrices. This yields a single matrix, i.e.

Xsum after conv =
nchannels

∑
i=1

Xi ∗ Fi.

Xi and Fi are the matrix and filter corresponding to channel i respec-
tively. Having performed this operation, we add bias b to each element
of Xsum after conv.

3.2.2.2 Batch Normalization

Having applied convolutions on the input matrix of each batch, we apply
batch normalization on the output matrix of the batch. Batch normalization
is performed as described by Ioffe and Szegedy [49]. This paper describes
how each element in the input matrix is normalized. Each input element xi
is updated to output element yi using the formula

yi =
xi − E(x)√
var(x) + ε

.

E(x) = 1
n ∑i xi is the mean taken over all the elements of a batch correspond-

ing to a certain output. var(x) = 1
n ∑i(xi − E(x))2 is the biased variance

estimator of the elements in an output batch. Further, ε = 10−5 is used for
numerical stability.

To illustrate, suppose a batch consists of two samples and we use two
filter matrices. After convolution, suppose that we obtain matrices X̃i,j,
i, j ∈ {0, 1}. Index i corresponds to the sample index in the batch and index
j corresponds to the filter used to compute the output. Then, applying
batch normalization, elements in X̃0,0 and X̃1,0 are normalized using the
mean and variance of all elements in X̃0,0 and X̃1,0. A similar procedure is
followed with X̃0,1 and X̃1,1. Thus, a full batch is used to apply normalization.

Furthermore, a layer keeps running estimates of its computed mean and
variance, used for the normalization step. The running estimates use a mo-
mentum of 0.1, a parameter to indicate importance of the running estimates.
For instance, having obtained the means E(x) in the previous computation
and obtaining E(x)t in the current computation, we use

Ê(x) = (1− 0.1) · E(x) + 0.1 · E(x)t

and Ê(x) is now used for batch normalization. The same procedure applies
to var(x).

3.2.2.3 Rectified linear unit

Another function used in a layer is the activation function. Activation
functions are used to introduce nonlinearity to the network, allowing nodes
in the network to learn more complex structures. The activation function

3.2 compressed video action recognition 41

used by CoViAR is ReLU, an activation function introduced by Glorot et al.
[37]. Its function is given by

f (x) = max{0, x},

thus returning zero or the positive part of the input.

3.2.2.4 Max pooling and average pooling

In some layers, we want to downsample the data for the next layer by
applying pooling methods. The pooling methods perform an operation
on a block within a matrix, downsampling this block to one element. For
max pooling, the maximum is taken of all elements in a block. For average
pooling, the average is computed over all elements in a block. For instance,
with a 4× 4 matrix and a stride of two, applying one of the pooling functions,
we have:

Poolf

(
x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44

)

=

f
([

x11 x12
x21 x22

])
f
([

x13 x14
x23 x24

])
f
([

x31 x32
x41 x42

])
f
([

x33 x34
x43 x44

])
 ,

with f (·) being the function returning the maximum or average of the
elements of its input block.

3.2.2.5 Fully connected layer

Having created the convolution layers, the final layer is the fully connected
layer. This layer is obtained by flattening the previous layer, i.e. reshaping
the tensor or matrix to a vector. Subsequently, each element in the vector is
assigned to a node. Each node in this layer is connected to all output nodes.
This is the fully connected layer. The number of output nodes is equivalent
to the total number of classes used for the classification problem.

We let the weight of the edges from node xi to node yj be denoted by
wij. We further use the bias bj for class j. Now, we can compute the score for
each node yj with the formula

yj = ∑
i
(wijxi) + bj.

3.2.2.6 Loss function

Having obtained the scores for each class from the fully connected layer,
probabilities for each class are computed. These probabilities are computed
with the SoftMax function, defined by the formula

pi =
eyi

∑C
j=1 eyj

.

yi is the score for class i and C is the number of classes. To obtain the
predicted class, we let the predicted class be the index corresponding to the
maximum of the SoftMax scores.

Using the output from the SoftMax function, we compute the loss using

3.2 compressed video action recognition 42

entropy. We use C as the number of classes and let the output obtained from
SoftMax be given by: [

p0 p1 . . . pC−1
]

.

Now, suppose that the correct class is 1, we compute the loss for a video
with the formula

loss = − log(p1).

In each epoch, we compute the losses for each batch of input videos. Then,
the average of the losses in the batch is computed. This average is used as
information to update the weights and biases using backpropagation.

3.2.2.7 Backpropagation

CNNs update their weights and biases in a similar fashion as regular neural
networks do. It is done by backpropagation. Using the loss function, the
partial derivatives are computed. The partial derivatives are taken over
the weights and biases in each layer. The weights and biases are updated
using Adaptive moment estimation (Adam), introduced by Kingma and Ba
[55]. The variant we use is the modified Adam using decoupled weight
decay, proposed by Loshchilov and Hutter [67]. The optimizer makes use of
learning rate α, exponential decay rates β1 and β2, λ for the weight decay
parameter and ε = 10−8 for numerical stability. Following the paper, we
set α = 0.001, β1 = 0.9, β2 = 0.999 and λ = 10−4. The algorithm runs as
follows:

1: initialize:
At time t← 0, initialize parameter vector θt=0 ∈ Rn, first
moment vector mt=0 ← 0, second moment vector v0 ← 0,
where 0 is a vector of zeros and schedule multiplier
ηt=0 ∈ R

2: repeat
3: t← t + 1
4: Compute gradient ∇ ft(θt−1)
5: gt ← ∇ ft(θt−1)
6: mt ← β1mt−1 + (1− β1)gt
7: vt ← β2vt−1 + (1− β2)g2

t
8: m̂t ← mt

1−βt
1

9: v̂t ← vt
1−βt

2
10: ηt ← SetScheduleMultiplier(t)
11: θt ← θt−1 − ηt(

αm̂t√
v̂t+ε

+ ληt−1)

12: until All epochs are evaluated
13: return optimized parameters θt

Note that we perform element-wise operations. For instance, g2
t =[

g2
1 g2

2 . . . g2
n
]
. Further, our SetScheduleMultiplier(t) method takes into

account the epochs and divides learning rate by ten when we reach a specified
set of epochs for the I-frame CNN, motion CNN or residual CNN.

3.2.2.8 Architecture

Having described the components of the CNN, the architecture of the three
CNNs is described next. Following the authors of CoViAR[125], we use the

3.2 compressed video action recognition 43

same architectures. The architecture used for the I-frame CNN is ResNet-152

and the ResNet-18 architecture is used for the motion and residual CNN.
Both architectures are proposed by He et al. [44]. Using these architectures,
we can make use of transfer learning. This means that we use pre-trained
models, such that we do not have to initialize weights randomly. Instead, we
can use the weights obtained from these pre-trained models.

Layer Output size I-frame CNN Motion and residual CNN
Conv1 112× 112 7× 7, 64, stride 2

Conv2 56× 56
3× 3 max pool, stride 2 1× 1, 64

3× 3, 64
1× 1, 256

× 3
[

3× 3, 64
3× 3, 64

]
× 2

Conv3 28× 28

1× 1, 128
3× 3, 128
1× 1, 512

× 8
[

3× 3, 128
3× 3, 128

]
× 2

Conv4 14× 14

 1× 1, 256
3× 3, 256

1× 1, 1024

× 36
[

3× 3, 256
3× 3, 256

]
× 2

Conv5 7× 7

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3
[

3× 3, 512
3× 3, 512

]
× 2

Final layer 1× 1 average pool, fully connected layer, SoftMax

Table 1: Architecture used for the three CNNs

In Table 1, we show the architectures used for the different CNNs. The
CNN starts by performing a 7× 7 convolution with stride 2. Next, batch
normalization and ReLU are applied. Finally, in conv1, max pooling is
applied to downsample the data. Moving on in the CNN, we immediately
observe that in layers conv2 - conv5, the cells are different per architecture.

For example, in conv2 of the I-frame CNN, we have the cell

 1× 1, 64
3× 3, 64

1× 1, 256

×
3. This cell denotes three so-called bottleneck blocks, which are executed
sequentially during the forward pass. In the bottleneck block, the following
operations are executed, denoted as a sublayer:

• Sublayer 1:

– Convolve input with 64 different 1× 1 filters.
– Apply batch normalization to the output. This output is used as

input for sublayer 2.

• Sublayer 2:

– Convolve input with 64 different 3× 3 filters.
– Apply batch normalization to the output. This output is used as

input for sublayer 3.

• Sublayer 3:

– Convolve input with 256 different 1× 1 filters.
– Apply batch normalization to the output and subsequently apply

the ReLU activation function, yielding the output of this bottleneck
block.

3.2 compressed video action recognition 44

In conv2 - conv5, after having performed the forward pass through the first
block, the data is downsampled by applying 1× 1 convolution with stride 2

to the input obtained. For the motion and residual CNN, ReLU is applied in
the first sublayer of each block, after performing batch normalization. For
these two CNNs, ReLU is not applied in the last sublayer.

In the final layer, we apply average pooling to each matrix. We let the
block size be equal to the matrix size, i.e. we take the average over all
elements in the matrix. Next, these obtained averages are assigned to the
nodes that are fully connected to the output nodes. For instance, the residual
CNN has 512 different matrices after completing the operations in the conv5

layer. After average pooling, 512 averages are computed and assigned to 512

nodes. Each of these nodes is connected to each final output node. The final
output node computes the final score for a corresponding class, as explained
in Section 3.2.2.5.

3.2.2.9 Keeping long term dependency with Temporal Segment Networks

Temporal Segment Networks (TSN), proposed by Wang et al. [121], enable
to model dynamics throughout the whole input tensor. The TSN algorithm
operates on a sequence of snippets sampled from the entire video. Each snip-
pet in this sequence produces its own prediction of the action classes. Next,
a consensus among the snippets is derived to obtain the final video-level
prediction. This is done by first dividing the input tensor into K segments,
{S1, S2, ..., SK}. Then, we randomly sample a snippet from each segment
Si, i = 1, ..., K. We next compute the scores in the CNN (before applying
SoftMax) for each snippet and subsequently take the average of these scores
to find the consensus score. Using this consensus score, we then compute
the loss and obtain the prediction for a given input video.

Besides randomly selecting snippets, data augmentation is used to gen-
erate training samples and prevent overfitting[121]. This is done by following
a few steps. First, the input image is resized to 256× 340. Next, the cropped
region is randomly selected from {256, 224, 192, 168} for the I-frame CNN
and randomly selected from {256, 224, 192} for the motion and residual CNN.
Having selected the region, the random crop is taken from the original frame.
This selected crop is resized to 224× 224. Next, random horizontal flipping
is applied on the selected crop. Having executed this process, the input for
the CNN is obtained.

3.2.2.10 Late fusion

Having obtained the outputs for the three different CNNs, we apply late
fusion to combine the scores into one score. Given a video, we obtain the
scores for each class in each CNN (before applying SoftMax). For instance,
given video i and having C classes, we obtain the scores

sI-frame =

s(0)I-frame
s(1)I-frame

...
s(C−1)

I-frame

 , sMotion =

s(0)Motion

s(1)Motion
...

s(C−1)
Motion

 , sResidual =

s(0)Residual
s(1)Residual

...
s(C−1)

Residual

 .

3.2 compressed video action recognition 45

We then obtain the combined scores

scombined = sI-frame + sMotion + sResidual.

Thus, late fusion adds the scores of the three different CNNs after obtaining
the score for each CNN individually. The class having the highest score is
selected as the predicted class.

4
E X P E R I M E N T S A N D R E S U LT S

In this chapter, we describe the data used, our experimental setup and show
the results obtained from our experiments.

4.1 data used in this research

Multiple participants were asked to simulate falls and other actions, wearing
a camera on the neck and on the waist. The participants were instructed
to perform an action. If this action was performed, the participant placed
its hand on the lens. Having obtained these videos, we preprocessed these
videos. After the preprocessing stage, we obtained 1459 videos. Each video
has one label. For example, a video is given the label ’walking’. In the binary
setting (fall versus non-fall), this video is relabeled to a non-fall.

Figure 11: Class distributions in the binary settings for videos filmed from both
camera mounting points, videos filmed from a camera mounted to the neck or videos
filmed from a camera mounted to the waist.

After relabeling, we obtain the bar plots in Figure 11. The two bars on
the left with index ’All cameras’ show the distribution of the classes when
videos filmed from both camera mounting points are used. The two bars on
the middle with index ’Filmed from neck’ show the distribution of classes
when videos filmed from a camera mounted to the neck are used. The two
bars on the right with index ’Filmed from waist’ show the distribution of
classes when videos filmed from a camera mounted to the waist are used.

Further, we investigate how the classifiers perform when using the orig-
inal classes. The original classes are:

46

4.1 data used in this research 47

• Sit: The person goes from a standing position to a sitting position.

• Walk: The person is walking.

• Lie in bed: The person goes from a standing position to lying in bed.

• Rise from bed: The person rises from its bed.

• Sit in chair: The person goes from a standing position to sitting in a
chair.

• Fall front left: The person falls to the front left from a standing posi-
tion.

• Fall back left: The person falls to the back left from a standing position.

• Fall back lying: The person falls on the back from a standing position.
The person ends op lying.

• Fall syncope wall: The person falls down, while sliding against the
wall. The syncope is simulated.

• Fall lateral right: The person falls to the right from a standing position.

• Fall down syncope: The person falls from a standing position, simu-
lating syncope.

• Fall front: The person falls to the front.

• Fall lateral left: The person falls to the left from a standing position.

• Fall front knee: The person falls to the front on its knees.

• Fall front right: The person falls to the front right from a standing
position.

• Fall back right: The person falls to the back right from a standing
position.

• Stumble: The person stumbles.

• Limp: The person walks with difficulty.

• Bending: The person bends and looks towards the floor.

• Squatting down: The person squats down.

This is the multi-class setting, used to further assess performance of the
selected algorithms.

4.1 data used in this research 48

Figure 12: Class distribution of videos for multiple classes filmed with cameras
mounted to the neck or waist.

The class distribution of this data set is shown in Figure 12. We observe
that we are dealing with an imbalanced data set, as videos with the class Sit
are overrepresented in the data set.

Having obtained the class distributions, we decided to create multiple data
sets for some problems. The first data set of each problem was created to find
the best performing classifier. These data sets are fall non-fall all-cameras,
fall non-fall neck 1, fall non-fall waist 1 and all-classes all-cameras 1. Each
data set is annotated by the type of problem and the camera used. For in-
stance the data set fall non-fall neck 1 refers to the binary problem with
videos filmed from cameras mounted to the neck. Further, we create
extra data sets: fall non-fall neck 2, fall non-fall waist 2 and all-classes all-

cameras 2. These are used to further assess the best performing classifier.
The data sets annotated with a 2 ensure that these data sets have the same
videos in the train and test set as fall non-fall all-cameras. The data sets an-
notated with a 2 are added to compare results with fall non-fall all-cameras.
Doing so, we can observe whether training the classifier using both camera
mounting points in the data set yields a different result compared to training
the classifier using a data set having videos with a specific camera mount-
ing point. Further, all-classes all-cameras 2 is used to evaluate whether it is
useful to train at the multi-class problem first and then relabel the predicted
classes to the binary classes.

Figure 13: Falls example

4.2 experimental setup 49

Figure 14: Non-falls example (squatting down)

In Figures 13 and 14 we show an example of a fall and a non-fall. In the
frames shown, it can be seen that the frames where the person is falling are
more chaotic due to sudden movements compared to the frames where the
person performs a controlled action.

4.2 experimental setup

In this section we describe how we setup the experiments and reason why
we chose this setup. To run the experiments, we use the Peregrine High
Performance Computing cluster.

4.2.1 Preprocessing of the videos

After obtaining the videos from subjects performing different actions using
an egocentric view, we preprocessed the videos manually. The persons sim-
ulating falls were instructed to put a hand on the camera once their action
stopped. We filtered out the frames where the hand enters the frame, as
these did not convey any information about the action.

Further, multiple actions were filmed within one video. Thus, multiple
frames showed a hand being placed on the lens to signal the ending of an
action. Starting a new action, the hand was removed from the lens. Removal
of the hand from the lens added a lot of lighting to the first few frames of
the video. We decided to filter out these frames as well.

Finally, we ensured that the distribution of falls and non-falls where dis-
tributed similarly in terms of frame length. Doing so, we ensured that the
classifiers do not distinguish falls from non-falls simply by evaluating the
number of frames.

4.2 experimental setup 50

Figure 15: Histogram depicting the distribution of frames for videos classified as a
fall and videos classified as a non-fall.

Figure 15 shows the distribution of the number of frames for videos
classified as a fall or non-fall. The two distributions are similarly distributed
in terms of frame length. Further, we resized all videos to 600× 400. Frames
are therefore smaller and thus can be faster processed by the algorithms.

4.2.2 Hyperparameter optimization

After preprocessing the videos, we trained the selected algorithms. The train-
ing process started by finding optimal hyperparameters for the algorithms
DT, IDT and CoViAR. DT and IDT are similar algorithms in terms of pa-
rameters. The difference between these algorithms is the way the descriptors
are retrieved. Therefore, we optimized the same hyperparameters for these
algorithms. For CoViAR, we optimized a different hyperparameter. This
hyperparameter is not used by DT and IDT.

To perform the hyperparameter optimization, we divided each data set
into a train and test set, using a 80/20 split. Subsequently, hyperparameter
optimization was performed within the train set, using ten-fold cross valida-
tion. Ten-fold cross validation is performed by splitting the train set into ten
folds. Nine of these folds are concatenated into one set. The classifiers were
trained on this set. Next, performance metrics are obtained by predicting
the classes in the fold, the validation set, that was not part of the nine folds.
This process was repeated ten times, where each fold is used as validation
set once. From the validation sets, we obtain a performance metric for each
validation set. The average of the performance metric over the validation
sets is taken. The hyperparameter corresponding to the highest performance
metric is selected for training on the full train set and prediction on the test
set.

For DT and IDT, we optimized the hyperparameter L, the number of result-

4.2 experimental setup 51

ing dimensions after executing the PCA algorithm. For an explanation of
this parameter, we refer to Section 3.1.3.1. L is varied by values

{10, 25, 50, 75, 100, 150, 200}.

We ensured that the proportional variance of the data after PCA is greater
than 95%.

Further, we optimized hyperparameter K, the number of clusters used by
GMM. This parameter was explained in Section 3.1.3.2. K is varied by values

{16, 32, 64, 96, 128, 192, 256, 384}.

Besides varying the hyperparameters L and K, we further varied the combi-
nations of the descriptors. Given that we have descriptors HOF, HOG, MBH,
and the trajectories, we have the combinations

{HOF, HOF− HOG, HOF− HOG−MBH,

HOF− HOG−MBH − Trajectory, HOF− HOG− Trajectory,

HOF−MBH, HOF−MBH − Trajectory, HOF− Trajectory,

HOG, HOG−MBH, HOG−MBH − Trajectory,

HOG− Trajectory, MBH, MBH − Trajectory, Trajectory}.

Note that some descriptor combinations have less than 50, 100, 150 or 200

dimensions. Therefore we could not reduce these sets to specific dimensions
chosen for PCA. Hence for some descriptor combinations, we do not use all
values of L. For instance, HOF has 108 dimensions. This descriptor can thus
not be reduced to 150 or 200 dimensions.

Furthermore, the hyperparameter C of SVM (Section 3.1.3.4) was opti-
mized. This was done with the method GridSearchCV from the scikit-learn
library[85]. This method performs a grid search using specified values
for parameter C. C is varied by values {1, 10, 100, 1000}. Subsequently,
GridSearchCV selects the optimal parameter by applying an internal cross
validation on the train set received. The hyperparameter is selected by max-
imizing the mean accuracy obtained from the internal folds. Five internal
folds are used for optimization.

For CoViAR, we varied the learning rate α, which is used in the Adam
optimizer for updating the weights. We only varied this parameter due to a
constraint in computational resources. This parameter is described in Section
3.2.2.7. We varied α by

{0.001, 0.005, 0.0003}.

for all three CNNs. We selected the learning rate for each CNN apart. Due to
the same constraint in computational resources, we decided to only perform
hyperparameter optimization on the data set fall non-fall all-cameras to find
the optimal learning rate. Next, this selected learning rate for each CNN was
used for all classification problems.

4.2.3 Remaining parametric settings

To estimate the GMM parameters, used in the DT and IDT algorithms, fea-
tures are randomly sampled. For the training procedure for hyperparameter

4.2 experimental setup 52

optimization, we sampled 108,000 features from the train set to estimate the
GMM parameters. When using our complete training set for final inference,
we sampled 120,000 features from the videos in the train set to estimate the
GMM parameters. Further, to prevent overfitting of the SVM classifier, we
follow the procedure as described in [46]. After cross validation, we compute
the average of the AUCs obtained after training in each fold. We further com-
pute the average of the AUCs obtained in the validation sets. Furthermore,
we compute the standard deviations over the folds. The obtained average
AUCs in the train sets and validation sets are compared. If these values
differ by a large margin, we do not select these classifiers with corresponding
hyperparameters, as a large margin suggests that the classifier is overfitting.

Other parameteric settings for CoViAR are set following [125]. All videos
are resized to 340× 256 at the start of the algorithm, but are later on resized
to 224× 224, as described in Section 3.2.2.9. The CNN is further fine-tuned
using the modified ADAM, as explained in Section 3.2.2.7. Further, to train
the CNN, we divide the video in three segments. For testing, we divide
the video in 25 segments. Besides optimizing the learning rate, we used the
standard settings as specified in 3.2.2.7. We further divided the learning
rate by ten after running the algorithm for a specific number of epochs. The
specific number depends on the CNN that is being trained. We use the
following settings for each CNN

• I-frame CNN: 220 epochs in total, divide the learning rate by ten after
every 55 epochs. A batch-size of 10 is used.

• Motion CNN: 360 epochs in total, divide the learning rate by ten after
every 80 epochs. A batch-size of 20 is used.

• Residual CNN: 300 epochs in total, divide the learning rate by ten after
every 60 epochs. A batch-size of 20 is used.

We further note that CoViAR is a deep learning algorithm, and that deep
learning algorithms are prone to overfitting. Therefore, we use a validation
set for CoViAR for the final training. While training, CoViAR is assessed on
the validation set. This validation set consists of 30% of the training samples.
The training set consists of the remaining 70%. We investigate the validation
loss during training. If we observe that the classifier starts overfitting, i.e.
the validation does not improve, while the training loss keeps decreasing,
we apply early stopping. If we observe that overfitting occurs, we save the
weights corresponding to the lowest validation loss.

4.2.4 Metrics used for evaluation

To decide which hyperparameters we should use for our binary classification
problems, a metric is needed for evaluation. The metric we use is the area
under the curve (AUC) of the receiver operating characteristic (ROC) curve.
The ROC curve is a plot illustrating the diagnostic ability to discriminate be-
tween two classes. The plot is created by varying the classification thresholds.
These thresholds are compared to the scores obtained from the classifier. The
ROC curve is created by plotting the true positive rate (TPR) against the false
positive rate (FPR) at various threshold settings. FPR is plotted at the x-axis
and TPR is plotted at the y-axis. TPR and FPR are given by

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

,

4.2 experimental setup 53

where TP is the number of true positives, FP is the number of false positives,
TN is the number of true negatives, and FN is the number of false negatives.
Thus, all types of correct predictions and errors are taken into account. We
further identify that both maximizing the number of correct and minimizing
the number of incorrect predictions is important. Therefore, the ROC curve
is an appropriate metric for evaluation. In the case of a fall and a non-fall,
we have the following definitions for TP, FP, TN, and FN:

• TP: Cases where the classifier predicts correctly that a fall occurs.

• FP: Cases where the classifier predicts that a fall occurs, while it does
not.

• TN: Cases where the classifier predicts correctly that a fall does not
occur.

• FN: Cases where the classifier predicts that a fall does not occur while
it does occur.

Having obtained the ROC curve, we observed how well the classifier per-
forms by obtaining a metric for the complete curve. This is done by com-
puting the AUC. The area under the ROC curve is obtained by aggregating
the performance across the classification thresholds. The AUC quantifies the
overall ability of the classifier to discriminate between, in our case, falls and
non-falls.

Other metrics reported for fall detection are metrics often used in the liter-
ature for fall detection [40]. These metrics are precision, recall, specificity,
and accuracy. Note that recall is the same metric as TPR (or sensitivity).
The formulas of the metrics precision, specificity, and accuracy are given, in
abbreviated form, by

prec =
TP

TP + FP
, spec =

TN
TN + FP

, acc =
TP + TN

TP + FP + TN + FN
.

Another metric evaluated is the FPR. Further, the precision-recall (PR) curve
is evaluated to further assess the algorithm. To obtain the PR curve, a similar
procedure as for the ROC curve is followed. For the PR curve, however,
we plot recall on the x-axis against precision on the y-axis under various
threshold settings. This shows how the algorithms perform under various
threshold settings, without taking into account the correctly identified non-
falls. Finally, confusion matrices are computed, obtained from the different
classifiers after testing.

Using the ROC curve for the multi-class problem, we could create K different
ROC curves, one for each class, where we have K classes. However, this
compromises the insensitivity to class skew of the ROC curve, as explained
in [33]. For instance, one class ck in the multi-class setting might be easy
to identify. Consequentially, this could produce low scores for the classifier
when the classifier trains for class ci, i 6= k. Then, increasing the number
of samples with class ck might alter performance, which alters the ROC
curve. However, it does not necessarily mean that classifier performance
of distinguishing classes is altered. Therefore, producing K different ROC
curves is sensitive to class skew, as it does not necessarily show that the
classifier is better or worse at distinguishing classes in the multi-class setting.

4.3 results 54

To select the hyperparameters for the multi-class problem, the ROC curve
and its AUC are computed as proposed by Hand and Till [43]. With this
method, the AUC is calculated for every pair of classes. The derivation of
the computation is based upon the principle that the AUC is equivalent to
the probability that the classifier ranks a randomly chosen positive instance
higher than a randomly chosen negative instance. Using this form, a metric
is devised that measures the unweighted pairwise discriminability of classes.
To compute this metric, we let

AUC(ci, cj) =
p(i|j) + p(j|i)

2
,

with p(i|j) being the probability that a randomly drawn member of class j
has a lower estimated probability of belonging to class i than a randomly
drawn member of class i. The formula to compute the total AUCtotal is
subsequently given by

AUCtotal =
2

|C|(|C| − 1) ∑
{ci ,cj}

AUC(ci, cj),

with C being the set of classes and |C| being the number of classes. For
details on AUCtotal and the computation of p(i|j), we refer to [43]. AUCtotal
is insensitive to changes in the class distribution [33], which is useful for our
case with the imbalanced data set in the multi-class problem.

Further, dealing with an imbalanced data set, we compute macro-averaged
metrics for the multi-class problem. Macro-averaged metrics are computed
by first computing each metric per class, using the one-vs-all principle. Next
the average of the metric is computed, treating all classes equally. For
example, suppose we compute the macro-averaged precision. Further, sup-
pose we obtain TP = 1, FP = 1 for class A, TP = 10, FP = 90 for class
B. and TP = 1, FP = 1 for class C. Then, the macro-averaged precision is
given by 1

3 (
1

1+1 + 10
90+10 + 1

1+1) = 11
30 ≈ 0.367. For our final results in the

multi-class problem, the confusion matrix is shown. Further, the accuracy,
macro-averaged recall and macro-averaged precision are given, along with a
bar plot of the recall and precision for each class.

4.3 results

Having performed the hyperparameter optimization, we find the following
optimal learning rates for CoViAR: 0.001 for the I-frame CNN; 0.005 for the
motion CNN; 0.005 for the residual CNN. Furthermore, for the traditional
algorithms, the optimal hyperparameters varied for each classification prob-
lem. The optimal hyperparameters are given in the tables in the following
subsections. These tables show the results obtained after predicting the
classes in the test set after training the different classifiers. We further show
the tables and graphs that correspond to the training phase of the classifiers.
Moreover, the ROC curves and PR curves are shown. Finally, the confusion
matrix corresponding to the best performing classifier is given. Remaining
results are given in Appendix A.

4.3 results 55

4.3.1 Results obtained from fall non-fall all-cameras

Classifier PCA dim Clusters C ROC-AUC training ROC-AUC validation
DT Trajectory 25 192 100 99.99 (0.01) 98.03 (1.06)

IDT HOF - HOG - MBH 150 256 1000 99.03 (0.14) 97.48 (1.54)

Table 2: Train and validation AUC for the traditional algorithms for the fall non-

fall all-cameras. Standard deviations are given in brackets.

Comparing the training and validation AUCs in Table 2, we do not observe
large differences between the values, suggesting that the classifiers do not
overfit.

Figure 16: Training and validation losses for the CoViAR CNNs obtained after
training on fall non-fall all-cameras.

Figure 16 shows both the training losses and validation losses for the three
CNNs of CoViAR, obtained during training. We see that both losses follow
the same path. The plot shows that the validation loss does not diverge from
the training loss for the I-frame and motion CNN. For the residual CNN,
there seems to be an increase after epoch 100, but this increase has decreased
to its old level around epoch 175, following a similar path as the training
loss. Thus, no early stopping is applied to this CNN.

Classifier PCA dim Clusters ROC-AUC Accuracy Recall (TPR) FPR Precision Specificity
DT Trajectory 25 192 97.58 90.78 88.37 7.32 90.48 92.68

IDT HOF - HOG - MBH 150 256 98.47 93.52 89.92 3.66 95.08 96.34

CoViAR I-frame CNN x x 99.54 97.95 99.22 3.05 96.24 96.95
CoViAR motion CNN x x 99.56 96.25 98.45 5.49 93.38 94.51

CoViAR residual CNN x x 99.61 96.59 96.12 3.05 96.12 96.95
CoViAR Late Fusion x x 99.82 97.95 99.22 3.05 96.24 96.95

Table 3: Performance metrics obtained after testing the different algorithms on
fall non-fall all-cameras.

4.3 results 56

Table 3 shows the performance of the algorithms using the different
performance metrics. The values are given in percentages. Bold values depict
the best results. Note that a low FPR is better than a high FPR. This is due
to the fact that FPR computes the rate of false positives out of all negatives.
Further, this table shows the selected hyperparameter settings for DT and
IDT.

Figure 17: ROC curve (left) and PR curve (right) obtained after testing on fall non-

fall all-cameras.

In Figure 17, we show the ROC curve and the PR curve, along with their
corresponding AUC for the different algorithms.

From these results, we observe that CoViAR after late fusion performs best.
We further observe that using IDT performs better than DT. The confusion
matrix for CoViAR after late fusion is given in the table below, Table 4.

Predicted class
Non-fall Fall Total

True class
Non-fall 159 5 164
Fall 1 128 129

Total 160 133 293

Table 4: Confusion matrix after executing CoViAR after late fusion on fall non-fall all-

cameras.

4.3.2 Results obtained from fall non-fall neck 1

Classifier PCA dim Clusters C ROC-AUC training ROC-AUC validation
DT Trajectory 25 128 100 99.99 (0.01) 97.54 (1.86)

IDT HOF - MBH - Trajectory 150 128 1000 98.73 (0.84) 96.56 (2.98)

Table 5: Train and validation AUC for the traditional algorithms for the fall non-

fall neck 1. Standard deviations are given in brackets.

Similar to the results for fall non-fall all-cameras, the training and validation
AUCs in Table 5 do not show large differences, suggesting that the classifiers
do not overfit.

4.3 results 57

Figure 18: Training and validation losses for the CoViAR CNNs obtained after
training on fall non-fall neck 1.

Figure 18 shows similar behaviour as observed in Figure 16. For the three
CNNs, both training loss and validation loss follow the same path. Further,
the validation loss does not diverge from the training loss.

Classifier PCA dim Clusters ROC-AUC Accuracy Recall (TPR) FPR Precision Specificity
DT Trajectory 25 128 99.26 93.84 97.01 8.86 90.28 91.14

IDT HOF - MBH - Trajectory 150 128 96.71 91.78 95.52 11.39 87.67 88.61

CoViAR I-frame CNN x x 99.26 95.89 95.52 3.8 95.52 96.20

CoViAR motion CNN x x 99.16 94.52 98.51 8.86 90.41 91.14

CoViAR residual CNN x x 99.97 99.32 98.51 0.0 100.0 100.0
CoViAR Late Fusion x x 99.96 97.95 97.01 1.27 98.48 98.73

Table 6: Performance metrics obtained after testing the different algorithms on
fall non-fall neck 1.

In Table 6 the performance of the algorithms are shown using the different
metrics. These values are given in percentages. Bold values depict the best
results. Further, the selected descriptors for DT and IDT and the selected
hyperparameters are given in this table.

4.3 results 58

Figure 19: ROC curve (left) and PR curve (right) obtained after testing on fall non-

fall neck 1.

In Figure 19 we show the resulting ROC curve and PR curve, along with
their corresponding AUC for the different algorithms.

Classifying falls versus non-falls with the camera mounted to the neck,
we observe that the residual CNN of CoViAR performs best. This is shown
in the confusion matrices, ROC curves, PR curves, and the table showing
the results on the test set. Comparing DT and IDT, results we observe that
DT outperforms IDT. Further, the CoViAR CNNs outperform both DT and
IDT.

Predicted class
Non-fall Fall Total

True class
Non-fall 79 0 79

Fall 1 66 67

Total 80 66 146

Table 7: Confusion matrix after executing the CoViAR residual CNN on fall non-

fall neck 1.

Table 7 shows the confusion matrix corresponding to the best performing
algorithm, the residual CNN of CoViAR.

4.3.3 Results obtained from fall non-fall waist 1

Classifier PCA dim Clusters C ROC-AUC training ROC-AUC validation
DT MBH - Trajectory 150 384 1000 98.75 (1.22) 97.89 (1.21)

IDT HOF - MBH - Trajectory 200 256 1000 98.82 (0.56) 97.65 (1.07)

Table 8: Train and validation AUC for the traditional algorithms for the fall non-

fall waist 1. Standard deviations are given in brackets.

Looking at Table 8, the results are similar as for training the traditional algo-
rithms on fall non-fall all-cameras and fall non-fall all-cameras. The results
suggest that the classifiers do not overfit.

4.3 results 59

Figure 20: Training and validation losses for the CoViAR CNNs obtained after
training on fall non-fall waist 1.

Similar to the other binary problems, similar behaviour of the losses is
shown in Figure 20. The validation loss does not diverge from the path of
the training loss as training loss decreases. Each CNN shows this behaviour
for the losses.

Classifier PCA dim Clusters ROC-AUC Accuracy Recall (TPR) FPR Precision Specificity
DT MBH - Trajectory 150 384 97.57 91.95 90.62 7.06 90.62 92.94

IDT HOF - MBH - Trajectory 200 256 97.85 94.63 90.62 2.35 96.67 97.65
CoViAR I-frame CNN x x 99.89 98.66 100.0 2.35 96.97 97.65
CoViAR motion CNN x x 98.27 93.29 100.0 11.76 86.49 88.24

CoViAR residual CNN x x 99.96 98.66 100.0 2.35 96.97 97.65
CoViAR Late Fusion x x 99.98 98.66 100.0 2.35 96.97 97.65

Table 9: Performance metrics obtained after testing the different algorithms on
fall non-fall waist 1

In Table 9 the performance of the algorithms are shown.

4.3 results 60

Figure 21: ROC curve (left) and PR curve (right) obtained after testing on fall non-

fall waist 1.

In Figure 21 we show the ROC curve and the PR curve, along with their
corresponding AUC for the different algorithms.

Both the residual CNN of CoViAR and CoViAR after late fusion perform
good when inspecting algorithms classifying falls versus non-falls with the
camera mounted to the waist. The difference between the two classifiers is
that the classifier using the residual CNN has one false positive and one false
negative, whereas CoViAR after late fusion has two false positives. Since
detecting falls is more important than detecting non-falls, we prefer CoViAR

after late fusion over the residual CNN. Further, we compare DT to IDT. We
observe that IDT performs better on this data set.

Predicted class
Non-fall Fall Total

True class
Non-fall 83 2 85

Fall 0 64 64

Total 83 66 149

Table 10: Confusion matrix after executing CoViAR after late fusion on fall non-

fall waist 1.

In Table 10, the confusion matrix obtained from executing CoViAR after
late fusion is shown.

4.3.4 Results obtained from all-classes all-cameras 1

Classifier PCA dim Clusters C ROC-AUC training ROC-AUC validation
DT HOG - MBH - Trajectory 200 256 1000 99.00 (0.58) 92.93 (1.11)

IDT HOG - Trajectory 100 64 1000 99.66 (0.31) 93.03 (1.49)

Table 11: Train and validation AUC for the traditional algorithms for the all-classes all-

cameras 1. Standard deviations are given in brackets.

Compared to the binary problem, the difference between the AUCs is now
larger for the multi-class problem. However, the difference is not large
enough to suggest that the classifiers are overfitting, as we still have good
average AUCs for the validation sets.

4.3 results 61

Figure 22: Training and validation losses for the CoViAR CNNs obtained after
training on all-classes all-cameras 1.

In contrast to the binary problem, we observe that the classifier starts
overfitting when training on all-classes all-cameras 1. This is the case for
all three CNNs. For the CNNs, early stopping is applied at the epoch
corresponding to the vertical black line.

Classifier PCA dim Clusters AUC Accuracy Recall macro-averaged Precision macro-averaged
DT HOG - MBH - Trajectory 200 256 93.22 73.04 64.32 67.04

IDT HOG - Trajectory 100 64 93.49 68.94 63.41 62.69

CoViAR I-frame CNN x x 93.12 62.88 55.81 53.78

CoViAR motion CNN x x 91.69 61.54 52.7 58.08

CoViAR residual CNN x x 93.85 63.21 56.68 64.6
CoViAR Late Fusion x x 95.09 70.9 65.5 70.5

Table 12: Performance metrics obtained after testing the different algorithms on
all-classes all-cameras 1.

Table 12 depicts the metrics obtained after executing the different algo-
rithms classifying all classes.

We observe that CoViAR after late fusion outperforms the other classifiers
when taking into account AUC, recall and precision. We further find that
DT outperforms IDT in terms of accuracy, macro-averaged recall and macro-
averaged precision.

4.3 results 62

Figure 23: Precision and recall of the different classes after training CoViAR after
late fusion on all-classes all cameras 1.

In Figure 23 we show the precision and recall for each class. We observe
that most of the classes having low precision or recall are falls, indicating
that these falls are hard to identify for the classifier.

4.3 results 63

Figure 24: Confusion matrix after executing CoViAR after late fusion on all-

classes all cameras 1.

In Figure 24, we show the normalized confusion matrix obtained after
executing CoViAR after late fusion.

5
D I S C U S S I O N

In this chapter we discuss the obtained results. Next, we discuss advantages
and disadvantages of this research. This chapter ends by discussing the
future research that one could conduct based on this research.

5.1 analysis of the results

This section discusses the results obtained in Chapter 4. The results are both
quantitatively and qualitatively discussed. This is done by summarizing the
quantitative results to get a clear view which classifier performed best. In the
qualitative analysis, we inspect which videos the best performing classifier
failed to classify correctly. We close this section by comparing our results to
results found in the literature.

5.1.1 Quantitative analysis of the results

From the results, we observe that all algorithms can be used for fall detection,
given their high performance on the data sets. Further, we find that the deep
learning algorithm performs better than the traditional algorithms. For each
constructed data set, CoViAR outperforms both DT and IDT.

For the traditional algorithms, we observe that the optimal descriptors are
not always the same for either DT or IDT. However, one pattern emerges:
Optical flow is used by the optimized classifiers, as each of the classifiers use
HOF, MBH, or the trajectories. This is as expected, as we are dealing with
motion detection.

Investigating CoViAR, we observe that late fusion boosts performance in
most cases. For the multi-class problems, late fusion improves performances
significantly. In some cases however, the residual CNN performs better by
itself than combining them with others. The I-frame and motion CNN do not
perform better than CoViAR after late fusion in any of the cases. Further, the
motion CNN is the least performing CNN out of the three CoViAR CNNs
for most data sets.

We further saw that, although being the best performing classifier, CoViAR

had low precision and low recall for many fall types when being trained on
all-classes all-cameras 1. We asked ourselves whether this also meant that a
lot of these fall types were misclassified as non-fall types. We investigate
this by relabeling the predicted classes. Doing so, suppose that the classifier
predicts a video as Fall front left, while its true class is Fall front right.
Then, the classifier would be correct when we relabel the predicted class to
one of the binary classes, since both a Fall front left and Fall front right are
falls. After relabeling all predicted classes, we obtain the following confusion
matrix

64

5.1 analysis of the results 65

Predicted class
Non-fall Fall Total

True class
Non-fall 164 2 166

Fall 2 131 133

Total 164 135 299

Table 13: Confusion matrix after executing the CoViAR after late fusion on all-

classes all-cameras 1 and relabeling

Thus, in this case, we have a low number of false positives and low
number of false negatives, indicating that the classifier mostly misclassified
the type of a fall, but still had good performance when classifying falls or
non-falls.

As CoViAR is our best performing classifier, we further trained CoViAR

on the data sets fall non-fall neck 2, fall non-fall waist 2 and all-classes all-

cameras 2. We further trained DT and IDT on fall non-fall neck 2 and
fall non-fall waist 2. The statistics and confusion matrices obtained are placed
in the appendix, Sections A.2.5-A.2.8.

For each classifier, we can take the sum of the confusion matrix in Sec-
tions A.2.5 and A.2.6 to compare it with the confusion matrices obtained
for the classifiers trained on fall non-fall all-cameras. These sums of the
confusion matrices are shown in Section A.2.7. Comparing these summed
confusion matrices to the matrices in Section 4.3.1 and A.2.1, we immedi-
ately observe that IDT performs better if we train on both camera mounting
points simultaneously. This is found by comparing the confusion matrix
in 17 to the confusion matrix in 43. We further observe that DT performs
similar to training using both camera mounting points simultaneously. This
can be observed by looking at Tables 16 and 42. For CoViAR, we find that
performance does not improve. The classifier has four false positives and two
false negatives. This indicates that training the classifier using videos from
a specific camera mounting point does not necessarily yield better results,
compared to training the classifier using videos from both camera mounting
points. These results can be observed in Tables 4 and 44.

5.1.2 Analysis of the misclassified videos of the best performing classifier

Next, we analyse which videos failed to be correctly predicted by CoViAR for
each problem. We analyse each of the misclassified videos to detect whether
there is a pattern in the videos that the classifier failed to detect. When in-
vestigating the binary problems, we also compute the absolute difference in
scores. This is defined as the absolute difference between the score for a fall
and the score for a non-fall. Further, we use the average softmax probabilities
for the predicted classes. A misclassified video can have a probability that is
significantly lower than the average probabilities for the correctly predicted
class. This difference in probability indicates that the classifier had problems
with correctly predicting the correct class, which led to a misclassification.

We start by investigating the videos when training on fall non-fall all-cameras.
For the combined CNN, the classifier has one false negative and five false
positives. The false negative is a fall that occurs by slowly sliding down
against a wall, i.e. the video has the class Fall syncope wall. The video is

5.1 analysis of the results 66

filmed with a camera mounted to the waist. In this video, we could not
clearly see whether a fall was occurring. It seems that the subject is either
slowly sitting down or lying down in the videos. For the correctly classified
videos having down syncope falls, we can see a fall occurring for most
videos, except for one correctly classified video. Further, inspecting the mean
absolute difference of the scores, we find that for the correctly classified
videos, this difference is 22.76. The mean of probabilities is 0.97. If we leave
out the correctly classified video not showing a fall, the mean of probabilities
is 1.0. For the misclassified video, the absolute difference is 2.46 and the
probability for the misclassified class is 0.92.

For the five false positives, all videos show a person limping. Four of
these videos are filmed with the camera mounted to the neck. The fifth video
is filmed with the camera mounted to the waist. Comparing the misclassi-
fied videos with the correctly classified videos, we cannot find large visual
differences between the correctly and incorrectly classified videos. Both
the correct and incorrect classified videos resemble the same strong sudden
movements. Next, we investigate the scores for these videos. The mean
absolute difference in scores is 20.48 for the correctly classified videos. The
corresponding average probability is 1.0. For the incorrectly classified videos,
the mean absolute difference between scores is 7.63. The corresponding
average probability for the misclassified class is 0.90. Given the number of
misclassified videos for limping, we find that the classifier is not good at
distinguishing a person limping from a person falling.

Inspecting the videos in the test set of fall non-fall neck 1 for the CoViAR

residual CNN, we observe that there is one video that the classifier failed
to classify correctly. This is a video where the person is falling to the front
left. Looking at the video, we see a clear fall. Comparing the video to the
correctly classified videos, we do not observe visual differences. Further,
the mean absolute difference in scores is 11.83. The corresponding average
probability is 1.0. The absolute difference in scores for the misclassified video
is 1.28 and the probability is 0.78. Thus, the classifier was uncertain whether
a fall or non-fall occurs.

Next, inspecting the combined CNN, we have two false negatives and one
false positive. The first false negative is a person falling to the front on
its knees. Looking at the correctly classified videos and the misclassified
videos, we do not observe visual differences. Next, looking at the scores, the
correctly classified videos have a mean absolute difference of 27.10 and a
corresponding average probability of 1.0. For the misclassified video, this
absolute difference is 0.83 with a corresponding probability of 0.70. Thus,
the classifier was uncertain whether the video was a fall or not.

The second false negative is a front fall to the right. Looking at the videos,
we do not observe visual differences between the misclassified videos and
the correctly classified videos. The mean absolute difference in scores for the
correctly classified videos is 19.33. Its corresponding average probability is
1.0. For the misclassified video, this difference is 0.51 with a probability of
0.63. Hence, the classifier was not confident that this video was a non-fall.

The false positive is a video where the person is limping. The mean ab-
solute difference in scores for the correctly classified videos is 27.02 with

5.1 analysis of the results 67

a corresponding average probability of 1.0. The absolute difference for the
misclassified video is 0.85. Its corresponding probability is 0.7. Thus, the
classifier was not confident that the video was a fall.

Having executed CoViAR on the test set of fall non-fall neck 2, we find
that three videos are misclassified. These videos all show a person limping.
These videos were also misclassified when training on the videos filmed
from both camera mounting points. The videos do not show substantial
visual differences from the other videos where a person is limping. Further,
the mean absolute difference for correctly classified videos is 17.91 with an
average probability of 0.93. For the misclassified video, this difference is 7.56

and has a probability of 0.93.

For results obtained from training CoViAR on fall non-fall waist 1, two non-
falls are falsely classified as falls. The first video shows a person limping.
For this video, we do not observe a visual difference between the video that
is misclassified and the videos that are correctly classified showing a person
limping. Investigating the scores, the classifier was not very confident that
this action was a fall. The mean absolute difference for the correctly classified
videos is 18.26. The corresponding average probability is 1.0. The absolute
difference in scores for the misclassified video is 1.39, and the probability is
0.80.

The other misclassified video shows that the person is stumbling. In this
video, the action was not fully finished. The person is not looking to the
front at the moment the video finishes. In other videos where the stumbling
occurs, this does happen. The mean absolute difference in scores for the
correctly classified videos is 8.58. It has an average probability of 1.0. For the
misclassified video, the absolute difference is 1.15 and the average probability
is 0.76. Comparing the score and the probability obtained for this video with
the other scores and probabilities for videos where the person is stumbling,
we thus observe that the classifier is not confident whether a fall or non-fall
occurs for this video.

Next, looking at the results obtained after training CoViAR on Fall non-

fall waist 2, we find that three videos are misclassified. Two misclassifica-
tions are false negatives and one misclassification is a false positive. The first
false negative is a front fall on the knees. This video was not misclassified
when using videos filmed from both camera mounting points. The mean
absolute difference of scores for this class is 24.66 with a corresponding
average probability of 1.0. The misclassified video has an absolute difference
of 2.28 with a softmax probability of 0.91.

The other false negative is a down-syncope fall against the wall. This video
was also misclassified when training from the videos filmed with a camera
mounted to either the neck or waist. We investigate this fall. This fall against
the wall has a soft fall. This soft fall is harder for the classifier to classify
correctly. Observing videos in the train set where the person performs
down-syncope falls as well, we notice that the videos in the test set are the
only videos having soft falls. Therefore, the classifier might not be well
trained on down-syncope falls against the wall having a softer fall. Further,
the mean absolute difference in scores for the correctly classified videos is
19.24 with a corresponding average probability of 1.0. For the misclassified

5.1 analysis of the results 68

video, this absolute difference is 3.68 with a corresponding probability of 0.98.

The false positive is a video where the person is limping. This video was
also misclassified when training CoViAR on the videos from both camera
mounting points. We have the same findings regarding visual differences.
Investigating the scores, the mean absolute difference of correctly classi-
fied videos is 17.31 with an average probability of 1.0. For the misclassified
video, this difference is 3.57. The probability of the misclassified video is 0.97.

We notice that the video of the class Fall syncope wall is wrongly clas-
sified for the waist, but not for the neck. We examined the videos in the test
set of fall non-fall waist 2. We find that the only videos showing soft falls in
the class Fall syncope wall are in the test set. These are not in the train set.
The videos filmed from a camera mounted to the neck all have videos where
a fall is not hard to identify by looking at the video. Therefore, the classifier
might not have learned correctly about these soft falls, thus misclassyfing
these videos as non-falls. This does not occur for the classifier training on
fall non-fall neck 2, as there are no videos with soft falls having the class Fall
syncope wall in this test set.

Finally, we investigate how the videos in the data sets all-classes all-cameras 1

and all-classes all-cameras 2 are classified. We find that most misclassified
videos are misclassified as classes with a different fall or non-fall type. For
instance, a video with class Squatting down is sometimes classified as Sit in
chair. Further, for the results on All-classes all-cameras 2, having predicted
the classes, we changed the multi-class labels to binary labels. Doing this,
we can infer whether the fall detection classifier improved if we let it train
on multi-class problem first and then relabel the predicted classes. We in-
vestigate whether there is an improvement by comparing these results to
the results on the fall non-fall all-cameras data set. Doing so, we obtain the
following confusion matrix corresponding to the classifier CoViAR after late
fusion:

Predicted class
Non-fall Fall Total

True class
Non-fall 163 0 164

Fall 2 127 129

Total 167 126 293

Table 14: Confusion matrix after executing the CoViAR after late fusion on all-

classes all-cameras 2 and relabeling

Comparing the confusion matrix in Table 14 to the confusion matrix in
Table 4, we do not see an improvement by looking at the confusion matrix,
since the number of false negatives is higher. One of these falls is the down
syncope falls with the very soft falls. This fall was classified as a person
limping. This video having a soft fall was not in the train set and is likely to
be misclassified due to this reason. This video was also misclassified when
training CoViAR after late fusion on fall non-fall all-cameras.

Further, we plotted the weights of the first layer of the three CNNs of
CoViAR to grasp what the classifier has learned. These plots are shown in
the appendix, in Section A.1.1. We observe that both the I-frame CNN and

5.1 analysis of the results 69

residual CNN learned similar patterns. We cannot really observe patterns in
the learned weights for the motion CNN.

5.1.3 Comparison of results with the literature

Taking into account the researches by Casares et al. [17], Ozcan et al. [78, 79,
80, 81] and Boudouane et al. [12, 13], we observe that our experiment shows
that the selected algorithms are capable of functioning as reliable fall detec-
tors. We use a different data set, thus we cannot directly compare our results
to the other researches conducted on fall detection with a wearable camera.
We further cannot compare our results directly to any other literature, since
we use a different data set. However, we can compare performance between
the classifiers to results obtained in the literature. Doing so, we can verify
whether the current literature agrees or disagrees with the classifier perfor-
mance found in this research.

In their research on IDT, Wang et al. [118] compared the results of DT

with IDT. Similar to this research, both DT and IDT are executed. In their
research, IDT outperformed DT. The data sets used for their comparison are
filmed from a third-person viewpoint. Each data set is used to recognize
actions. The data sets used are Hollywood2 [70], HMDB-51 [59], Olympic

Sports [75] and UCF-50 [97]. In our case, it is unclear whether DT always out-
performs IDT or vice versa. This result is in agreement with results obtained
by both Li et al. [63], and Lu et al. [68]. In these papers, results are shown,
where DT and IDT are compared. In the tables shown, we observe that DT

outperforms IDT on a specific split of the data set, but IDT outperforms DT

on another split of the data set. Both these researches are conducted on the
egocentric data set GTEA Gaze. Thus, comparing with current literature,
there is no real consensus whether IDT outperforms DT indefinitely. There
have been cases where DT outperforms IDT for egocentric data sets and
vice versa. For the data sets used in our research, there is also no consensus
whether DT outperforms IDT.

Next, we look at the descriptors used for DT and IDT. We do not combine
all descriptors for DT and IDT. For instance, for the data set fall non-fall all-
cameras, we use the trajectory descriptor for DT. For IDT, we combine the
HOF, HOG and MBH descriptors with each other. We cannot compare these
findings to current literature, as other literature used one of the descriptors
or combined all descriptors at once. In [87, 118, 119, 120], performance
of individual descriptors are compared, along with the performance after
combining the descriptors all together. Most of the results in these researches
show that combining all descriptors give the best results. In [119, 120]
however, the MBH descriptor outperforms the other descriptors or the com-
bination of all descriptors for the KTH data set. This data set consists of six
human actions, filmed from a third-person viewpoint. Our results indicate
that research using DT or IDT might improve results when using a different
combination of descriptors. An example of combinations could be HOG-

MBH or HOF-MBH-Trajectory. Using a certain combination of descriptors,
the classifier could outperform a classifier using individual descriptors or
a combination of all descriptors. Furthermore, we found that using optical
flow improved the results for DT and IDT. This is in agreement with the
literature, shown in [87, 118, 119, 120].

5.2 advantages and disadvantages of the proposed solution 70

In this research, we find that CoViAR outperforms both DT and IDT for
multiple classification problems. We compare this to current literature. Wu
et al. [125] compared their CoViAR algorithm directly to IDT. They find
that CoViAR outperforms IDT on the HMDB-51 data set. Further, the per-
formance of the proposed algorithms in [16, 116] were compared with IDT.
These algorithms have been compared to CoViAR in [125]. However, for
a direct comparison of these algorithms with CoViAR, the HMDB-51 and
UCF-101 data sets have been used. In [16, 116], data sets ASLAN[57] and
miniKinetics are used. Performance of CoViAR for these data sets are un-
known. Therefore, we cannot find results where it has been shown that
CoViAR outperforms IDT on data sets other than HMDB-51. Thus, we only
compare our results to the results found in [125]. Our results agree with
the results in [125], where CoViAR is compared, among others, to IDT. The
CoViAR algorithm outperforms the algorithms DT and IDT. We further
find that the motion CNN is outperformed by the residual CNN and the
I-Frame CNN in most occurrences, and that CoViAR after late fusion often
performs best. These findings are in agreement with results obtained in [125].

Current literature does not discuss what mounting point is optimal to detect
falls from a wearable camera. Ozcan et al. [80] have chosen the waist. In
their paper, it is stated that the waist is the optimal mounting point by
referring to [48]. This survey paper refers to [54] where the statement is
found. In this research, the authors compare fall detection algorithms for
accelerometers attached to different body parts. These body parts are the
wrist, head and waist. The algorithms for both head and waist obtain similar
results. However, they opt to mount the accelerometer to the waist, since
mounting the accelerometer to the head requires more detailed planning of
the hardware. Avoiding the detailed planning ensures usability and accep-
tance of the application among the end-users. In our case, results for both
mounting points were very similar, thus we cannot directly conclude that
one mounting point is better than the other. Furthermore, we asked our
selves whether classification improves when training the classifier on videos
being filmed from a specific camera mounting point, instead of training the
algorithm on videos independent of the camera mounting points. For the
three algorithms, we did not find any improvements using this approach.

5.2 advantages and disadvantages of the proposed solution

As the CoViAR method outperforms the DT and IDT methods, we propose
to use CoViAR for fall detection. Besides its good performance, the algorithm
only needs regular RGB-frames. It does not need to compute extra features,
such as optical flow. This reduces overhead. Therefore, once final weights
are obtained after training, CoViAR is a fast classifier, as investigated by
Wu et al. [125]. We did not compare the processing speeds of DT and IDT

to the processing speed of CoViAR, as DT and IDT were executed on the
CPU and CoViAR was executed on the GPU. However, we observed that the
computation of optical flow took quite some time, rendering it unable for
real-time fall detection. In [125], it is stated that computation of optical flow
is a bottleneck. We presume that this is the case for DT and IDT as well, as
these algorithms make use of optical flow. Similar statements regarding the
processing speed of optical flow are made in [20, 137].

Since CoViAR is a deep learning algorithm, it uses many different lay-

5.3 future work 71

ers. Therefore, it is hard to analyze why particular videos were classified
incorrectly by CoViAR. We further saw that in general, combining the CNNs
in CoViAR yields the best results. However, some CNNs generated such
high scores for the wrong class that as a result, the video was misclassified
after late fusion, while the video was not misclassified for an individual CNN.

In this research, we found that both algorithms achieve high performance
when distinguishing falls from non-falls using egocentric vision. However,
the actions were performed in a ’simulation’ setting. This leads to subjects
being more careful when performing a fall [40, 48]. Simulated falls may be
softer, as the simulators are more hesitant and do not want to risk injuries.
Being more careful during a fall leads to less strong movements, as one tries
to control the fall. In most of our obtained fall videos, clear falling motions
are shown. Nonetheless, this is still in a controlled setting. In an uncontrolled
setting, we might miss important movements occurring that did not occur
during a controlled fall. Furthermore, the subjects were young adults. In
reality however, it is mostly the older adults that are in danger of falling. As
younger adults are often more mobile than older adults, our input data does
not take into account the reduced mobility of older adults. The algorithms
did not learn about the reduced mobility.

Next, as the videos are filmed both indoors and outdoors, videos have
different intensities due to different lightning. This is important, as the
classifiers did not focus on one particular intensity. Therefore, the risk of
suddenly failing to correctly classify videos when these videos are filmed
with a different intensity was reduced. Nonetheless, using merely visual
input, we can not use these algorithms when there is limited or no lightning,
such as in the dark or during the night.

Finally, the videos in this research showed actions being performed. The
videos did not show what happened in between these actions or after these
actions had ended. For instance, once a person fell, the video stopped. We
note that more information can be retrieved by observing what happens
after the fall. For instance, if a person quickly stands up again after a fall,
no emergency help is needed. However, if a person falls and stays down
or tries to get up and falls again, we are in a different situation, where one
might need emergency help. This extra video information further aides in
constructing a robust fall detector. The CoViAR algorithm is able to process
these extra frames without too much extra additional computational cost.
For example, the algorithm can process the extra frames by increasing the
number of segments taken from a video.

5.3 future work

This research shows that falls can be detected at a high detection rate for
both a deep learning method and traditional methods. As the deep learning
method has better performance than the traditional methods and does not
need to compute optical flow explicitly, we argue that the CoViAR algorithm
is useful to detect falls. As mentioned in Section 2.2.2, we selected CoViAR

as it only needs RGB-frames, does not need to compute optical flow, has
high performance on other data sets and did not need a lot of computational
resources, compared to other well performing deep learning algorithms in
the computer vision space. In case computational resources are less of a

5.3 future work 72

concern, other deep learning algorithms can be employed. We find that
the motion CNN of CoViAR is often outperformed by the other two CNNs.
Further, note that the motion CNN is the CNN modelling the temporal
structure. From this finding, one can argue that using the motion CNN from
CoViAR is not optimal for motion detection.

Zhu et al. [137] proposed a deep learning algorithm estimating motions.
These motions are estimated by estimating optical flow. To estimate the
optical flow, a CNN is trained with the goal to generate optical flow from a
set of consecutive frames. This CNN is named MotionNet. The MotionNet is
capable of approximating optical flow. MotionNet can approximate this with-
out having the burden of computing optical flow using traditional methods,
which are often slow. This leads to a huge speedup in computing optical
flow, making it possible to approximate optical flow in real-time. Using
this approach, RGB-frames are fed into a two-stream CNN. The first stream
performs operations on the RGB-frames directly and the second stream com-
putes optical flow using the MotionNet. The approximated optical flows are
fed to the temporal CNN. Next, both streams are combined using late fusion.
The authors achieved high accuracy on the benchmark data sets HMDB-51

and UCF-101. They further combined their MotionNet with TSN [121] and
I3D [16] architectures. This combination further improved performance,
without having to compute optical flow using traditional algorithms.

Another deep learning algorithms using a similar approach is the MARS [20]
algorithm. This algorithm uses a 3D CNN architecture. Instead of learning
optical flow directly, it learns the flow by modifying the loss function of
the CNN such that optical flow is incorporated in the loss function. This
approach is capable of processing videos at real-time, using a GPU, and
achieved high performance on the data sets UCF-101, HMDB-51 and miniKi-

netics.

Besides examining other algorithms, we can also investigate the data that is
used as input. As mentioned in Section 5.2, it would be helpful to include
frames showing what happens after a fall. These extra frames add informa-
tion to certain actions.

Further, this research mainly focuses on detecting falls using videos without
sound as input. However, sound could be a valuable addition of information
for the fall detection algorithm. For instance, a person sitting down makes a
different sound than a person falling. By recognizing the sound of a fall, the
fall detector could improve its performance by incorporating this knowledge.
In [65, 138] sound sensing and floor vibration was used as data to recognize
falls. In these researches, it was found that sound is an important factor to
determine a fall.

Furthermore, accelerometers can be combined with the wearable camera to
further increase performance. For instance, Ozcan et al. [79] combined video
data with accelerometer data. They found that adding the accelerometer
data improved performance of the algorithm. A lot of research is conducted
to detect falls, using accelerometers. For instance, [14, 54, 62, 114, 134] used
accelerometers to detect falls. These researches all concluded that accelerom-
eters are useful to detect falls.

5.3 future work 73

Hence, adding sound and accelerometer data might further help improving
the performance of the fall detector and its data might be helpful in cases
where lightning is not available, such as during the night.

6C O N C L U S I O N

In this research, we have utilized different algorithms to detect falls with
videos filmed from a wearable camera. These algorithms were further used
in a multi-class setting. Two traditional algorithms were proposed. These
algorithms are DT and IDT. Further, one deep learning algorithm was
proposed. This algorithm is CoViAR. We explained why these algorithms
are useful for fall detection and useful for motion detection in general. Next,
a detailed description of the algorithms was given. After describing the
algorithms, the experimental settings were specified. Running the different
algorithms, multiple results were obtained. The best performing algorithm
was the CoViAR algorithm, for all classification problems. This was verified
by evaluating different performance metrics. We further observed that the
traditional algorithms also performed well. Given our first research question:

• Can the proposed algorithms be used for fall detection, taking false
negatives and false positives into account?

We confirm that this is indeed the case. All proposed algorithms can be used
for fall detection, given the low number of false negatives and low number of
false positives after predicting the videos in the test set. Since the proposed
algorithms have good performance, they can be used for fall detection.

Since the proposed algorithms can be used for fall detection, we asked
ourselves which algorithm would perform better. Recent research suggested
that the deep learning algorithm would perform better, given the results
obtained in those researches. With this information, we constructed the
research question:

• Does the deep learning algorithm outperform the traditional algorithms
when detecting falls with a wearable camera?

Investigating our results, we can indeed verify that this is the case. CoViAR

outperforms both DT and IDT for fall detection. Thus the deep learning
algorithm outperforms the traditional algorithms with the wearable camera.
Hence, we prefer to use the CoViAR algorithm when detecting the falls.

Next, we investigated the mounting position of the camera. We found that
the CoViAR algorithm outperforms DT and IDT for both camera mounting
points. We did not find whether using one mounting position is preferred
over the other, given the results in this research. Therefore, given our third
research question:

• Is there a difference in performance of the classification algorithms for
fall detection when mounting the camera to the neck or waist?

We cannot find evidence that there is a difference in performance when
mounting the camera to the neck or waist. Further, we investigated whether
training on videos filmed from a specific mounting point would improve the
performance of the classifiers, compared to training the classifiers on videos
filmed from both camera mounting points. We did not find evidence that
the performance improved. The classifier has less data when being trained

74

conclusion 75

on videos filmed by a specific camera mounting point. Having less data
could be a reason that the performance stagnates when comparing it to the
performance obtained when training the classifiers on videos filmed from
cameras independent of the mounting position. However, more data would
be needed to verify this claim.

Our last investigation was done by comparing the performance of the algo-
rithms when using more classes instead of the classes falls and non-falls. We
constructed the following research question:

• How do the algorithms compare in terms of performance when taking
into account the different classes of the data set?

We find that CoViAR after late fusion outperforms both DT and IDT in
terms of performance. This is in agreement with the results for the binary
problems and also in agreement with the literature, where deep learning
algorithms such as CoViAR outperformed the traditional algorithms such as
DT and IDT.

Having answered our research questions and performed analysis, we con-
clude that the selected algorithms are capable of distinguishing falls from
non-falls, when videos are filmed with a wearable camera. We found no
evidence whether there is an optimal camera mounting point. Given the
performance and properties of CoViAR, we prefer to use this algorithm over
DT and IDT for fall detection. This algorithm has the potential to be used in
fall detectors that make use of information retrieved from wearable cameras
mounted to the neck or waist.

B I B L I O G R A P H Y

[1] G. Abebe and A. Cavallaro. “A long short-term memory convolu-
tional neural network for first-person vision activity recognition”.
In: Proceedings of the IEEE International Conference on Computer Vision
Workshops. 2017, pp. 1339–1346.

[2] G. Abebe and A. Cavallaro. “Inertial-Vision: cross-domain knowledge
transfer for wearable sensors”. In: Proceedings of the IEEE International
Conference on Computer Vision Workshops. 2017, pp. 1392–1400.

[3] Aphex34. typical CNN architecture — Wikipedia, The Free Encyclopedia.
2015. url: https://commons.wikimedia.org/wiki/File:Typical cnn.png

(visited on Jan. 5, 2021). License: CC BY-SA 4.0.

[4] F. Bagalà et al. “Evaluation of accelerometer-based fall detection
algorithms on real-world falls”. In: PloS one 7.5 (2012), e37062.

[5] S. Bambach. “A survey on recent advances of computer vision al-
gorithms for egocentric video”. In: arXiv preprint arXiv:1501.02825
(2015).

[6] H. Bay, T. Tuytelaars, and L. Van Gool. “Surf: Speeded up robust
features”. In: European conference on computer vision. Springer. 2006,
pp. 404–417.

[7] H. Bay et al. “Speeded-up robust features (SURF)”. In: Computer vision
and image understanding 110.3 (2008), pp. 346–359.

[8] N. El-Bendary et al. “FALL DETECTION AND PREVENTION FOR
THE ELDERLY: A REVIEW OF TRENDS AND CHALLENGES.” In:
International Journal on Smart Sensing & Intelligent Systems 6.3 (2013).

[9] A. Betancourt et al. “The evolution of first person vision methods:
A survey”. In: IEEE Transactions on Circuits and Systems for Video
Technology 25.5 (2015), pp. 744–760.

[10] B. E. Boser, I. M. Guyon, and V. N. Vapnik. “A training algorithm for
optimal margin classifiers”. In: Proceedings of the fifth annual workshop
on Computational learning theory. 1992, pp. 144–152.

[11] A. L. Boskey and R. Coleman. “Aging and bone”. In: Journal of dental
research 89.12 (2010), pp. 1333–1348.

[12] I. Boudouane et al. “Fall detection system with portable camera”. In:
Journal of Ambient Intelligence and Humanized Computing (2019), pp. 1–
13.

[13] I. Boudouane et al. “Wearable camera for fall detection embedded
system”. In: Proceedings of the 4th International Conference on Smart City
Applications. 2019, pp. 1–6.

[14] A. Bourke, J. O’brien, and G. Lyons. “Evaluation of a threshold-based
tri-axial accelerometer fall detection algorithm”. In: Gait & posture 26.2
(2007), pp. 194–199.

[15] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software
Tools (2000).

76

https://commons.wikimedia.org/wiki/File:Typical_cnn.png

bibliography 77

[16] J. Carreira and A. Zisserman. “Quo vadis, action recognition? a new
model and the kinetics dataset”. In: proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2017, pp. 6299–6308.

[17] M. Casares et al. “Automatic fall detection by a wearable embedded
smart camera”. In: 2012 Sixth International Conference on Distributed
Smart Cameras (ICDSC). IEEE. 2012, pp. 1–6.

[18] D. Castro et al. “Predicting daily activities from egocentric images
using deep learning”. In: proceedings of the 2015 ACM International
symposium on Wearable Computers. 2015, pp. 75–82.

[19] K.-H. Chen et al. “Evaluating the specifications of built-in accelerome-
ters in smartphones on fall detection performance”. In: Instrumentation
Science & Technology 46.2 (2018), pp. 194–206.

[20] N. Crasto et al. “Mars: Motion-augmented rgb stream for action
recognition”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2019, pp. 7882–7891.

[21] N. Dalal and B. Triggs. “Histograms of oriented gradients for human
detection”. In: 2005 IEEE computer society conference on computer vision
and pattern recognition (CVPR’05). Vol. 1. IEEE. 2005, pp. 886–893.

[22] N. Dalal, B. Triggs, and C. Schmid. “Human detection using ori-
ented histograms of flow and appearance”. In: European conference on
computer vision. Springer. 2006, pp. 428–441.

[23] A. G. Del Molino et al. “Summarization of egocentric videos: A com-
prehensive survey”. In: IEEE Transactions on Human-Machine Systems
47.1 (2016), pp. 65–76.

[24] Y. S. Delahoz and M. A. Labrador. “Survey on fall detection and fall
prevention using wearable and external sensors”. In: Sensors 14.10

(2014), pp. 19806–19842.

[25] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum likelihood
from incomplete data via the EM algorithm”. In: Journal of the Royal
Statistical Society: Series B (Methodological) 39.1 (1977), pp. 1–22.

[26] J. Deng et al. “Imagenet: A large-scale hierarchical image database”.
In: 2009 IEEE conference on computer vision and pattern recognition. Ieee.
2009, pp. 248–255.

[27] J. Donahue et al. “Long-term recurrent convolutional networks for vi-
sual recognition and description”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2015, pp. 2625–2634.

[28] S. Elliott, J. Painter, and S. Hudson. “Living alone and fall risk factors
in community-dwelling middle age and older adults”. In: Journal of
community health 34.4 (2009), p. 301.

[29] Ennepetaler86. Two classes given as vectors with two possible separation
lines and their corresponding margin areas between the class areas. Line A has
a larger empty margin area than line B. — Wikipedia, The Free Encyclopedia.
2010. url: https://commons.wikimedia.org/wiki/File:Svm intro.svg

(visited on Jan. 5, 2021). License: CC BY 3.0.

[30] C. Fan and D. J. Crandall. “Deepdiary: Automatically captioning
lifelogging image streams”. In: European Conference on Computer Vision.
Springer. 2016, pp. 459–473.

https://commons.wikimedia.org/wiki/File:Svm_intro.svg

bibliography 78

[31] G. Farnebäck. “Two-frame motion estimation based on polynomial
expansion”. In: Scandinavian conference on Image analysis. Springer.
2003, pp. 363–370.

[32] A. Fathi, Y. Li, and J. M. Rehg. “Learning to recognize daily actions
using gaze”. In: European Conference on Computer Vision. Springer. 2012,
pp. 314–327.

[33] T. Fawcett. “ROC graphs: Notes and practical considerations for
researchers”. In: (2004).

[34] C. Feichtenhofer, A. Pinz, and A. Zisserman. “Convolutional two-
stream network fusion for video action recognition”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 1933–1941.

[35] M. A. Fischler and R. C. Bolles. “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography”. In: Communications of the ACM 24.6 (1981),
pp. 381–395.

[36] K. Gaßner and M. Conrad. “ICT enabled independent living for
elderly”. In: A status-quo analysis on products and the research landscape
in the field of Ambient Assisted Living (AAL) in EU-27. VDI (2010).

[37] X. Glorot, A. Bordes, and Y. Bengio. “Deep sparse rectifier neural
networks”. In: Proceedings of the fourteenth international conference on
artificial intelligence and statistics. 2011, pp. 315–323.

[38] L. Gorelick et al. “Actions as space-time shapes”. In: IEEE transactions
on pattern analysis and machine intelligence 29.12 (2007), pp. 2247–2253.

[39] D. Graham et al. “Convolutional drift networks for video classifica-
tion”. In: 2017 IEEE International Conference on Rebooting Computing
(ICRC). IEEE. 2017, pp. 1–8.

[40] M. A. Habib et al. “Smartphone-based solutions for fall detection
and prevention: challenges and open issues”. In: Sensors 14.4 (2014),
pp. 7181–7208.

[41] T. Hadjistavropoulos, K. Delbaere, and T. D. Fitzgerald. “Reconceptu-
alizing the role of fear of falling and balance confidence in fall risk”.
In: Journal of aging and Health 23.1 (2011), pp. 3–23.

[42] A. Hamid, A. Brahim, O. Mohammed, et al. “A survey of activity
recognition in egocentric lifelogging datasets”. In: 2017 International
Conference on Wireless Technologies, Embedded and Intelligent Systems
(WITS). IEEE. 2017, pp. 1–8.

[43] D. J. Hand and R. J. Till. “A simple generalisation of the area under
the ROC curve for multiple class classification problems”. In: Machine
learning 45.2 (2001), pp. 171–186.

[44] K. He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[45] F. Hijaz et al. “Survey of fall detection and daily activity monitor-
ing techniques”. In: 2010 International Conference on Information and
Emerging Technologies. IEEE. 2010, pp. 1–6.

[46] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al. A practical guide to support
vector classification. 2003.

bibliography 79

[47] S. Hua and Z. Sun. “Support vector machine approach for protein sub-
cellular localization prediction”. In: Bioinformatics 17.8 (2001), pp. 721–
728.

[48] R. Igual, C. Medrano, and I. Plaza. “Challenges, issues and trends in
fall detection systems”. In: Biomedical engineering online 12.1 (2013),
p. 66.

[49] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift”. In: arXiv preprint
arXiv:1502.03167 (2015).

[50] Y. Iwashita et al. “First-person animal activity recognition from ego-
centric videos”. In: 2014 22nd International Conference on Pattern Recog-
nition. IEEE. 2014, pp. 4310–4315.

[51] Y.-G. Jiang et al. “Trajectory-based modeling of human actions with
motion reference points”. In: European Conference on Computer Vision.
Springer. 2012, pp. 425–438.

[52] R. Kahani, A. Talebpour, and A. Mahmoudi-Aznaveh. “Time series
correlation for first-person videos”. In: 2016 24th Iranian Conference on
Electrical Engineering (ICEE). IEEE. 2016, pp. 805–809.

[53] M. Kalfaoglu, S. Kalkan, and A. A. Alatan. “Late Temporal Modeling
in 3D CNN Architectures with BERT for Action Recognition”. In:
arXiv preprint arXiv:2008.01232 (2020).

[54] M. Kangas et al. “Comparison of low-complexity fall detection al-
gorithms for body attached accelerometers”. In: Gait & posture 28.2
(2008), pp. 285–291.

[55] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[56] A. Klaser, M. Marszałek, and C. Schmid. “A spatio-temporal descrip-
tor based on 3d-gradients”. In: 2008.

[57] O. Kliper-Gross, T. Hassner, and L. Wolf. “The action similarity label-
ing challenge”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 34.3 (2011), pp. 615–621.

[58] A. KROONENBERG. “Hip impact velocities and body configurations
for experimental falls from standing height”. In: 39th Annual Meeting,
Orthopaedic Research Society. 1993.

[59] H. Kuehne et al. “HMDB: a large video database for human motion
recognition”. In: 2011 International Conference on Computer Vision. IEEE.
2011, pp. 2556–2563.

[60] I. Laptev et al. “Learning realistic human actions from movies”. In:
2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE.
2008, pp. 1–8.

[61] Y. J. Lee, J. Ghosh, and K. Grauman. “Discovering important people
and objects for egocentric video summarization”. In: 2012 IEEE con-
ference on computer vision and pattern recognition. IEEE. 2012, pp. 1346–
1353.

[62] Q. Li et al. “Accurate, fast fall detection using gyroscopes and accelerometer-
derived posture information”. In: 2009 Sixth International Workshop on
Wearable and Implantable Body Sensor Networks. IEEE. 2009, pp. 138–143.

bibliography 80

[63] Y. Li, Z. Ye, and J. M. Rehg. “Delving into egocentric actions”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2015, pp. 287–295.

[64] R. Ling. “Exclusion or self-isolation? Texting and the elderly users”.
In: The information society 24.5 (2008), pp. 1–9.

[65] D. Litvak, Y. Zigel, and I. Gannot. “Fall detection of elderly through
floor vibrations and sound”. In: 2008 30th annual international confer-
ence of the IEEE engineering in medicine and biology society. IEEE. 2008,
pp. 4632–4635.

[66] S. Lloyd. “Least squares quantization in PCM”. In: IEEE transactions
on information theory 28.2 (1982), pp. 129–137.

[67] I. Loshchilov and F. Hutter. “Decoupled weight decay regularization”.
In: arXiv preprint arXiv:1711.05101 (2017).

[68] M. Lu et al. “Deep attention network for egocentric action recogni-
tion”. In: IEEE Transactions on Image Processing 28.8 (2019), pp. 3703–
3713.

[69] M. Ma, H. Fan, and K. M. Kitani. “Going deeper into first-person
activity recognition”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2016, pp. 1894–1903.

[70] M. Marszalek, I. Laptev, and C. Schmid. “Actions in context”. In: 2009
IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 2009,
pp. 2929–2936.

[71] T. P. Moreira, D. Menotti, and H. Pedrini. “First-person action recog-
nition through visual rhythm texture description”. In: 2017 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2017, pp. 2627–2631.

[72] M. Mubashir, L. Shao, and L. Seed. “A survey on fall detection:
Principles and approaches”. In: Neurocomputing 100 (2013), pp. 144–
152.

[73] H. Nait-Charif and S. J. McKenna. “Activity summarisation and fall
detection in a supportive home environment”. In: Proceedings of the
17th International Conference on Pattern Recognition, 2004. ICPR 2004.
Vol. 4. IEEE. 2004, pp. 323–326.

[74] T.-H.-C. Nguyen, J.-C. Nebel, F. Florez-Revuelta, et al. “Recognition of
activities of daily living with egocentric vision: A review”. In: Sensors
16.1 (2016), p. 72.

[75] J. C. Niebles, C.-W. Chen, and L. Fei-Fei. “Modeling temporal struc-
ture of decomposable motion segments for activity classification”. In:
European conference on computer vision. Springer. 2010, pp. 392–405.

[76] J. C. Niebles, H. Wang, and L. Fei-Fei. “Unsupervised learning of hu-
man action categories using spatial-temporal words”. In: International
journal of computer vision 79.3 (2008), pp. 299–318.

[77] W. H. Organization, W. H. O. Ageing, and L. C. Unit. WHO global
report on falls prevention in older age. World Health Organization, 2008.

[78] K. Ozcan, A. K. Mahabalagiri, and S. Velipasalar. “Fall detection and
activity classification using a wearable smart camera”. In: 2013 IEEE
International Conference on Multimedia and Expo (ICME). IEEE. 2013,
pp. 1–6.

bibliography 81

[79] K. Ozcan and S. Velipasalar. “Wearable camera-and accelerometer-
based fall detection on portable devices”. In: IEEE Embedded Systems
Letters 8.1 (2015), pp. 6–9.

[80] K. Ozcan, S. Velipasalar, and P. K. Varshney. “Autonomous fall de-
tection with wearable cameras by using relative entropy distance
measure”. In: IEEE Transactions on Human-Machine Systems 47.1 (2016),
pp. 31–39.

[81] K. Ozcan et al. “Automatic fall detection and activity classification by
a wearable embedded smart camera”. In: IEEE journal on emerging and
selected topics in circuits and systems 3.2 (2013), pp. 125–136.

[82] F. Özkan et al. “Boosted multiple kernel learning for first-person ac-
tivity recognition”. In: 2017 25th European Signal Processing Conference
(EUSIPCO). IEEE. 2017, pp. 1050–1054.

[83] A. Paszke et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information Processing
Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019,
pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf .

[84] K. Pearson. “LIII. On lines and planes of closest fit to systems of
points in space”. In: The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 2.11 (1901), pp. 559–572.

[85] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[86] X. Peng et al. “Action recognition with stacked fisher vectors”. In:
European Conference on Computer Vision. Springer. 2014, pp. 581–595.

[87] X. Peng et al. “Bag of visual words and fusion methods for action
recognition: Comprehensive study and good practice”. In: Computer
Vision and Image Understanding 150 (2016), pp. 109–125.

[88] A. J. Perez, S. Zeadally, and S. Griffith. “Bystanders’ privacy”. In: IT
Professional 19.3 (2017), pp. 61–65.

[89] F. Perronnin, J. Sánchez, and T. Mensink. “Improving the fisher kernel
for large-scale image classification”. In: European conference on computer
vision. Springer. 2010, pp. 143–156.

[90] J. T. Perry et al. “Survey and evaluation of real-time fall detection ap-
proaches”. In: 2009 6th International Symposium on High Capacity Optical
Networks and Enabling Technologies (HONET). IEEE. 2009, pp. 158–164.

[91] A. Piergiovanni, C. Fan, and M. S. Ryoo. “Learning latent sub-events
in activity videos using temporal attention filters”. In: arXiv preprint
arXiv:1605.08140 (2016).

[92] H. Pirsiavash and D. Ramanan. “Detecting activities of daily living in
first-person camera views”. In: 2012 IEEE conference on computer vision
and pattern recognition. IEEE. 2012, pp. 2847–2854.

[93] Y. Poleg, C. Arora, and S. Peleg. “Temporal segmentation of egocentric
videos”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2014, pp. 2537–2544.

[94] Y. Poleg et al. “Compact cnn for indexing egocentric videos”. In: 2016
IEEE winter conference on applications of computer vision (WACV). IEEE.
2016, pp. 1–9.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

bibliography 82

[95] D. Purwanto, Y.-T. Chen, and W.-H. Fang. “Temporal aggregation
for first-person action recognition using Hilbert-Huang transform”.
In: 2017 IEEE International Conference on Multimedia and Expo (ICME).
IEEE. 2017, pp. 895–900.

[96] I. Putra et al. “An event-triggered machine learning approach for
accelerometer-based fall detection”. In: Sensors 18.1 (2018), p. 20.

[97] K. K. Reddy and M. Shah. “Recognizing 50 human action categories
of web videos”. In: Machine vision and applications 24.5 (2013), pp. 971–
981.

[98] I. E. Richardson. H. 264 and MPEG-4 video compression: video coding for
next-generation multimedia. John Wiley & Sons, 2004.

[99] I. Rodrıéguez-Moreno et al. “Video activity recognition: State-of-the-
art”. In: Sensors 19.14 (2019), p. 3160.

[100] C. Rougier et al. “Monocular 3D head tracking to detect falls of
elderly people”. In: 2006 international conference of the IEEE engineering
in medicine and biology society. IEEE. 2006, pp. 6384–6387.

[101] M. S. Ryoo, B. Rothrock, and L. Matthies. “Pooled motion features for
first-person videos”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2015, pp. 896–904.

[102] S. Sadanand and J. J. Corso. “Action bank: A high-level representation
of activity in video”. In: 2012 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE. 2012, pp. 1234–1241.

[103] S. Sadigh et al. “Falls and fall-related injuries among the elderly: a
survey of residential-care facilities in a Swedish municipality”. In:
Journal of community health 29.2 (2004), pp. 129–140.

[104] C. Schuldt, I. Laptev, and B. Caputo. “Recognizing human actions: a
local SVM approach”. In: Proceedings of the 17th International Conference
on Pattern Recognition, 2004. ICPR 2004. Vol. 3. IEEE. 2004, pp. 32–36.

[105] J. Shi et al. “Good features to track”. In: 1994 Proceedings of IEEE
conference on computer vision and pattern recognition. IEEE. 1994, pp. 593–
600.

[106] S. Singh, C. Arora, and C. Jawahar. “First person action recognition
using deep learned descriptors”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2016, pp. 2620–2628.

[107] S. Singh, C. Arora, and C. Jawahar. “Trajectory aligned features for first
person action recognition”. In: Pattern Recognition 62 (2017), pp. 45–55.

[108] I. Sobel and G. Feldman. “A 3x3 isotropic gradient operator for image
processing”. In: a talk at the Stanford Artificial Project in (1968), pp. 271–
272.

[109] K. Soomro, A. R. Zamir, and M. Shah. “UCF101: A dataset of 101

human actions classes from videos in the wild”. In: arXiv preprint
arXiv:1212.0402 (2012).

[110] E. H. Spriggs, F. D. L. Torre, and M. Hebert. Temporal Segmentation and
Activity Classification from First-person Sensing. 2009.

[111] E. H. Spriggs, F. De La Torre, and M. Hebert. “Temporal segmentation
and activity classification from first-person sensing”. In: 2009 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
Workshops. IEEE. 2009, pp. 17–24.

bibliography 83

[112] S. Sudhakaran, S. Escalera, and O. Lanz. “Lsta: Long short-term
attention for egocentric action recognition”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019, pp. 9954–
9963.

[113] A. Takamine, Y. Iwashita, and R. Kurazume. “First-person activity
recognition with C3D features from optical flow images”. In: 2015
IEEE/SICE International Symposium on System Integration (SII). IEEE.
2015, pp. 619–622.

[114] L. Tong et al. “HMM-based human fall detection and prediction
method using tri-axial accelerometer”. In: IEEE Sensors Journal 13.5
(2013), pp. 1849–1856.

[115] D. Tran et al. “A closer look at spatiotemporal convolutions for action
recognition”. In: Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition. 2018, pp. 6450–6459.

[116] D. Tran et al. “Learning spatiotemporal features with 3d convolu-
tional networks”. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 4489–4497.

[117] A. Vedaldi and B. Fulkerson. VLFeat: An Open and Portable Library of
Computer Vision Algorithms. http://www.vlfeat.org/. 2008.

[118] H. Wang and C. Schmid. “Action recognition with improved trajec-
tories”. In: Proceedings of the IEEE international conference on computer
vision. 2013, pp. 3551–3558.

[119] H. Wang et al. “Action recognition by dense trajectories”. In: CVPR
2011. IEEE. 2011, pp. 3169–3176.

[120] H. Wang et al. “Dense trajectories and motion boundary descriptors
for action recognition”. In: International journal of computer vision 103.1
(2013), pp. 60–79.

[121] L. Wang et al. “Temporal segment networks: Towards good practices
for deep action recognition”. In: European conference on computer vision.
Springer. 2016, pp. 20–36.

[122] X. Wang et al. “Deep appearance and motion learning for egocentric
activity recognition”. In: Neurocomputing 275 (2018), pp. 438–447.

[123] X. Wang, J. Ellul, and G. Azzopardi. “Elderly fall detection systems:
A literature survey”. In: Front. Robot. AI 7 (2020), p. 71.

[124] J. Willems et al. “How to detect human fall in video? An overview”.
In: Positioning and context-awareness international conference-POCA 2009,
Date: 2009/05/28-2009/05/28, Location: Antwerp, Belgium. 2009.

[125] C.-Y. Wu et al. “Compressed video action recognition”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2018,
pp. 6026–6035.

[126] G. Wu. “Distinguishing fall activities from normal activities by veloc-
ity characteristics”. In: Journal of biomechanics 33.11 (2000), pp. 1497–
1500.

[127] M. Xu et al. “Fully-coupled two-stream spatiotemporal networks for
extremely low resolution action recognition”. In: 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV). IEEE. 2018,
pp. 1607–1615.

[128] T. Xu, Y. Zhou, and J. Zhu. “New advances and challenges of fall
detection systems: A survey”. In: Applied Sciences 8.3 (2018), p. 418.

http://www.vlfeat.org/

bibliography 84

[129] Y. Yan et al. “Egocentric daily activity recognition via multitask clus-
tering”. In: IEEE Transactions on Image Processing 24.10 (2015), pp. 2984–
2995.

[130] G. Yavuz et al. “A smartphone based fall detector with online location
support”. In: International Workshop on Sensing for App Phones; Zurich,
Switzerland. 2010, pp. 31–35.

[131] B. Yin et al. “Indirect human activity recognition based on optical
flow method”. In: 2012 5th International Congress on Image and Signal
Processing. IEEE. 2012, pp. 99–103.

[132] H. F. Zaki, F. Shafait, and A. Mian. “Modeling sub-event dynamics in
first-person action recognition”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2017, pp. 7253–7262.

[133] K. Zhan, F. Ramos, and S. Faux. “Activity recognition from a wearable
camera”. In: 2012 12th International Conference on Control Automation
Robotics & Vision (ICARCV). IEEE. 2012, pp. 365–370.

[134] T. Zhang et al. “Fall detection by embedding an accelerometer in cell-
phone and using KFD algorithm”. In: International Journal of Computer
Science and Network Security 6.10 (2006), pp. 277–284.

[135] Z. Zhang, C. Conly, and V. Athitsos. “A survey on vision-based fall
detection”. In: Proceedings of the 8th ACM international conference on
PErvasive technologies related to assistive environments. 2015, pp. 1–7.

[136] Y. Zhou et al. “Cascaded interactional targeting network for egocentric
video analysis”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2016, pp. 1904–1913.

[137] Y. Zhu et al. “Hidden two-stream convolutional networks for action
recognition”. In: Asian Conference on Computer Vision. Springer. 2018,
pp. 363–378.

[138] Y. Zigel, D. Litvak, and I. Gannot. “A method for automatic fall
detection of elderly people using floor vibrations and sound—Proof
of concept on human mimicking doll falls”. In: IEEE transactions on
biomedical engineering 56.12 (2009), pp. 2858–2867.

AR E M A I N I N G R E S U LT S

a.1 training results

a.1.1 ROC-AUC obtained after performing cross-validation on the CoViAR CNNs

CNN / Learning rate 0.0003 0.001 0.005

I-frame 99.59 (0.30) 99.74 (0.26) 99.64 (0.32)
Motion 93.05 (3.40) 94.85 (2.47) 96.65 (1.69)

Residual 98.49 (1.07) 99.08 (0.77) 99.25 (0.63)

Table 15: Cross validation results under different hyperparameter settings for CoViAR.

In Table 15 we show the average ROC-AUC of each CNN for different learn-
ing rates. Standard deviations of the average AUC are given in parentheses.
The selected hyperparameters are selected based on the highest ROC-AUC.
The highest ROC-AUC is depicted in bold.

a.1.2 Learned weights of CoViAR after training on fall non-fall all-cameras

Figure 25: Weights learned by the CoViAR I-frame CNN.

85

A.2 test results 86

Figure 26: Weights learned by the CoViAR motion CNN.

Figure 27: Weights learned by the CoViAR residual CNN.

a.2 test results

a.2.1 fall non-fall all-cameras

Predicted class
Non-fall Fall Total

True class
Non-fall 152 12 164
Fall 15 114 129

Total 167 126 293

Table 16: Confusion matrix after executing DT on fall non-fall all-cameras.

A.2 test results 87

Predicted class
Non-fall Fall Total

True class
Non-fall 158 6 164
Fall 13 116 129

Total 171 122 293

Table 17: Confusion matrix after executing IDT on fall non-fall all-cameras.

Predicted class
Non-fall Fall Total

True class
Non-fall 159 5 164
Fall 1 128 129

Total 160 133 293

Table 18: Confusion matrix after executing the CoViAR I-frame CNN on fall non-

fall all-cameras.

Predicted class
Non-fall Fall Total

True class
Non-fall 155 9 164
Fall 2 127 129

Total 157 136 293

Table 19: Confusion matrix after executing the CoViAR motion CNN on fall non-

fall all-cameras.

Predicted class
Non-fall Fall Total

True class
Non-fall 159 5 164
Fall 5 124 129

Total 164 129 293

Table 20: Confusion matrix after executing the CoViAR residual CNN on fall non-

fall all-cameras.

Predicted class
Non-fall Fall Total

True class
Non-fall 159 5 164
Fall 1 128 129

Total 160 133 293

Table 21: Confusion matrix after executing the CoViAR after late fusion on fall non-

fall all-cameras.

A.2 test results 88

a.2.2 fall non-fall neck 1

Predicted class
Non-fall Fall Total

True class
Non-fall 72 7 79

Fall 2 65 67

Total 74 72 146

Table 22: Confusion matrix after executing DT on fall non-fall neck 1.

Predicted class
Non-fall Fall Total

True class
Non-fall 70 9 79

Fall 3 64 67

Total 73 73 146

Table 23: Confusion matrix after executing IDT on fall non-fall neck 1.

Predicted class
Non-fall Fall Total

True class
Non-fall 76 3 79

Fall 3 64 67

Total 79 67 146

Table 24: Confusion matrix after executing the CoViAR I-frame CNN on fall non-

fall neck 1.

Predicted class
Non-fall Fall Total

True class
Non-fall 72 7 79

Fall 1 66 67

Total 73 73 146

Table 25: Confusion matrix after executing the CoViAR motion CNN on fall non-

fall neck 1.

Predicted class
Non-fall Fall Total

True class
Non-fall 79 0 79

Fall 1 66 67

Total 80 66 146

Table 26: Confusion matrix after executing the CoViAR residual CNN on fall non-

fall neck 1.

A.2 test results 89

Predicted class
Non-fall Fall Total

True class
Non-fall 78 1 79

Fall 2 65 67

Total 80 66 146

Table 27: Confusion matrix after executing the CoViAR after late fusion on fall non-

fall neck 1.

a.2.3 fall non-fall waist 1

Predicted class
Non-fall Fall Total

True class
Non-fall 79 6 85

Fall 6 58 64

Total 85 64 149

Table 28: Confusion matrix after executing DT on fall non-fall waist 1.

Predicted class
Non-fall Fall Total

True class
Non-fall 83 2 85

Fall 6 58 64

Total 89 60 149

Table 29: Confusion matrix after executing IDT on fall non-fall waist 1.

Predicted class
Non-fall Fall Total

True class
Non-fall 83 2 85

Fall 0 64 64

Total 83 66 149

Table 30: Confusion matrix after executing the CoViAR I-frame CNN on fall non-

fall waist 1.

Predicted class
Non-fall Fall Total

True class
Non-fall 75 10 85

Fall 0 64 64

Total 75 74 149

Table 31: Confusion matrix after executing the CoViAR motion CNN on fall non-

fall waist 1.

A.2 test results 90

Predicted class
Non-fall Fall Total

True class
Non-fall 83 2 85

Fall 0 64 64

Total 83 66 149

Table 32: Confusion matrix after executing the CoViAR residual CNN on fall non-

fall waist 1.

Predicted class
Non-fall Fall Total

True class
Non-fall 83 2 85

Fall 0 64 64

Total 83 66 149

Table 33: Confusion matrix after executing CoViAR after late fusion on fall non-

fall waist 1.

a.2.4 all-classes all cameras 1

Figure 28: Distribution of the test set of classes of all-classes all cameras 1

A.2 test results 91

Figure 29: Precision and recall of the different classes after training DT on all-

classes all cameras 1.

Figure 30: Precision and recall of the different classes after training IDT on all-

classes all cameras 1.

A.2 test results 92

Figure 31: Precision and recall of the different classes after training the CoViAR

I-frame CNN on all-classes all cameras 1.

Figure 32: Precision and recall of the different classes after training the CoViAR

motion CNN on all-classes all cameras 1.

A.2 test results 93

Figure 33: Precision and recall of the different classes after training the CoViAR

residual CNN on all-classes all cameras 1.

Figure 34: Precision and recall of the different classes after training CoViAR after
late fusion on all-classes all cameras 1.

A.2 test results 94

Figure 35: Normalized confusion matrix after executing DT on all-

classes all cameras 1.

A.2 test results 95

Figure 36: Normalized confusion matrix after executing IDT on all-

classes all cameras 1.

A.2 test results 96

Figure 37: Normalized confusion matrix after executing the CoViAR I-frame CNN
on all-classes all cameras 1.

A.2 test results 97

Figure 38: Normalized confusion matrix after executing the CoViAR motion CNN
on all-classes all cameras 1.

A.2 test results 98

Figure 39: Normalized confusion matrix after executing the CoViAR residual CNN
on all-classes all cameras 1.

A.2 test results 99

Figure 40: Normalized confusion matrix after executing CoViAR after late fusion on
all-classes all cameras 1.

A.2 test results 100

a.2.5 fall non-fall neck 2

Figure 41: Training and validation losses for the CoViAR CNNs obtained after
training on fall non-fall neck 2.

Classifier PCA dim Clusters ROC-AUC Accuracy Recall (TPR) FPR Precision Specificity
DT Trajectory 25 128 98.36 93.29 94.37 7.69 91.78 92.31

IDT HOF - MBH - Trajectory 150 128 97.36 92.62 87.32 2.56 96.88 97.44
CoViAR Late Fusion x x 99.63 97.99 100.0 3.85 95.95 96.15

Table 34: Performance metrics obtained testing the different algorithms on fall non-

fall neck 2.

Figure 42: ROC curve (left) and PR curve (right) obtained after testing on fall non-

fall neck 2.

A.2 test results 101

Predicted class
Non-fall Fall Total

True class
Non-fall 72 6 78
Fall 4 67 71

Total 76 73 149

Table 35: Confusion matrix after executing DT on fall non-fall neck 2.

Predicted class
Non-fall Fall Total

True class
Non-fall 76 2 78
Fall 9 62 71

Total 85 64 149

Table 36: Confusion matrix after executing IDT on fall non-fall neck 2.

Predicted class
Non-fall Fall Total

True class
Non-fall 75 3 78
Fall 0 71 71

Total 75 74 149

Table 37: Confusion matrix after executing CoViAR after late fusion on fall non-

fall neck 2.

a.2.6 fall non-fall waist 2

Figure 43: Training and validation losses for the CoViAR CNNs obtained after
training on fall non-fall waist 2.

A.2 test results 102

Classifier PCA dim Clusters ROC-AUC Accuracy Recall (TPR) FPR Precision Specificity
DT Trajectory 150 384 94.65 88.89 86.21 9.3 86.21 90.7

IDT HOF - MBH - Trajectory 200 256 92.2 89.58 79.31 3.49 93.88 96.51

CoViAR Late Fusion x x 99.96 97.92 96.55 1.16 98.25 98.84

Table 38: Performance metrics obtained testing the different algorithms on fall non-

fall waist 2.

Figure 44: ROC curve (left) and PR curve (right) obtained after testing on fall non-

fall waist 2.

Predicted class
Non-fall Fall Total

True class
Non-fall 78 8 86
Fall 8 50 58

Total 86 58 144

Table 39: Confusion matrix after executing DT on fall non-fall waist 2.

Predicted class
Non-fall Fall Total

True class
Non-fall 83 3 86
Fall 12 46 58

Total 95 49 144

Table 40: Confusion matrix after executing IDT on fall non-fall waist 2.

Predicted class
Non-fall Fall Total

True class
Non-fall 85 1 86
Fall 2 56 58

Total 87 57 144

Table 41: Confusion matrix after executing CoViAR after late fusion on fall non-

fall waist 2.

A.2 test results 103

a.2.7 Sum of confusion matrices from the results of fall non-fall neck 2 and
fall non-fall waist 2

Predicted class
Non-fall Fall Total

True class
Non-fall 150 14 164

Fall 12 117 129

Total 162 131 293

Table 42: Sum of confusion matrices after executing DT on fall non-fall neck 2 and
fall non-fall waist 2.

Predicted class
Non-fall Fall Total

True class
Non-fall 159 5 164

Fall 21 108 129

Total 180 113 293

Table 43: Sum of confusion matrices after executing IDT on fall non-fall neck 2 and
fall non-fall waist 2.

Predicted class
Non-fall Fall Total

True class
Non-fall 160 4 164

Fall 2 127 129

Total 162 131 293

Table 44: Sum of confusion matrices after executing CoViAR after late fusion on
fall non-fall neck 2 and fall non-fall waist 2.

A.2 test results 104

a.2.8 all-classes all-cameras 2

Figure 45: Distribution of the test set of classes of all-classes all cameras 2

Figure 46: Training and validation losses for the CoViAR CNNs obtained after
training on all-classes all-cameras 2.

A.2 test results 105

Classifier AUC Accuracy Recall macro-averaged Precision macro-averaged
CoViAR I-frame CNN 94.08 66.55 56.52 55.92

CoViAR motion CNN 91.98 67.92 60.7 59.1
CoViAR residual CNN 92.5 64.16 56.72 61.62

CoViAR Late Fusion 95.0 72.7 65.04 62.99

Table 45: Performance metrics obtained after testing CoViAR on all-classes all-

cameras 2.

Figure 47: Precision and recall of the different classes after training CoViAR after
late fusion on all-classes all cameras 2.

A.2 test results 106

Figure 48: Normalized confusion matrix after executing CoViAR after late fusion on
all-classes all cameras 2.

	Abbreviations
	Introduction
	Problem definition
	Challenges
	Aims and objectives
	Proposed solution
	Scope of the thesis
	Thesis structure

	Background and Literature review
	Background
	Literature review
	Fall detection with a wearable camera
	Algorithms used to recognize action in videos

	Addition to the literature

	Methodology
	Traditional algorithms
	Dense trajectories
	Dense sampling
	Trajectories
	Oriented gradients
	Optical flow
	Motion boundaries
	Obtaining HOG, HOF and MBH

	Improved dense trajectories
	Speeded Up Robust Features
	Homography and RANSAC

	Encoding the descriptors and performing classification
	Principal component analysis
	Gaussian mixture model
	Fisher encoding
	Support Vector Machine

	Compressed Video Action Recognition
	Compression
	Convolutional Neural Network
	Convolutional layer
	Batch Normalization
	Rectified linear unit
	Max pooling and average pooling
	Fully connected layer
	Loss function
	Backpropagation
	Architecture
	Keeping long term dependency with Temporal Segment Networks
	Late fusion

	Experiments and results
	Data used in this research
	Experimental setup
	Preprocessing of the videos
	Hyperparameter optimization
	Remaining parametric settings
	Metrics used for evaluation

	Results
	Results obtained from fall_non-fall_all-cameras
	Results obtained from fall_non-fall_neck_1
	Results obtained from fall_non-fall_waist_1
	Results obtained from all-classes_all-cameras_1

	Discussion
	Analysis of the results
	Quantitative analysis of the results
	Analysis of the misclassified videos of the best performing classifier
	Comparison of results with the literature

	Advantages and disadvantages of the proposed solution
	Future work

	Conclusion
	Appendices
	Remaining results
	Training results
	ROC-AUC obtained after performing cross-validation on the CoViAR CNNs
	Learned weights of CoViAR after training on fall_non-fall_all-cameras

	Test results
	fall_non-fall_all-cameras
	fall_non-fall_neck_1
	fall_non-fall_waist_1
	all-classes_all_cameras_1
	fall_non-fall_neck_2
	fall_non-fall_waist_2
	Sum of confusion matrices from the results of fall_non-fall_neck_2 and fall_non-fall_waist_2
	all-classes_all-cameras_2

