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Abstract

In nature, protein possess the remarkable ability to fold spontaneously into precisely determined
three-dimensional structures. Understanding of this process requires the characterization of the
driving molecular interactions and intermediate states of the system. At a molecular level, the
backbone dihedral angles play an important role for the secondary structure formation, provid-
ing crucial informations about the three dimensional structure. Protein conformational energy
landscapes are complex, high-dimensional surfaces with many local minima and navigating them
requires efficient sampling methods. Molecular dynamics simulations of protein folding can provide
high-resolution data on the folding process, but intrinsic limitation of atomistic models render the
task extremely difficult. This is where enhanced sampling methods become useful to accelerate the
dynamics and sample the conformational space of such systems. In this study, an enhanced sam-
pling method, metadynamics, is employed to describe the behaviour or the torsional angles φ and
ψ in different tripeptide chains. The torsional angles are also evaluated with different force fields.
For all the force fields, local minima are commonly shared with small variations along the free
energy profiles. The presence of side chains yield to different maxima in the free energy profiles.
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1 Introduction

1.1 Protein Folding

The function of biomolecules is determined by both their 3D structure and dynamics. Proteins,
for example, are flexible systems which have a large range of dynamics with a timescale from the
picoseconds to seconds. With ribosomes, proteins are synthesized in their primary structure and
when released, fold to their native state (1). In 1969, the protein folding problem was built on the
Levinthal paradox, which essentially states that if the protein folding process is a random search
problem, all possible conformations can be equally probable and the solution can only be found by
an unbiased random search (2). For such a surface, the time required for folding would be much
larger than the actual time required for a protein to fold. The paradox was followed by the idea that
a kinetic, nucleation event must occur to allow for a structure formation in biological feasible time
(3). This theory was discarded because it was predicting the absence of folding intermediates, which
was the central idea on the topic in the 1980s. With the work of R. L. Baldwin to experimentally
define kinetic folding intermediates and pathways, the advances in protein folding turned towards a
new view of heterogeneous folding establishing the current paradigm of multi-path funneled energy
surface (4; 5). In a classical single pathway, the protein folds through distinct intermediates in
a distinct pathway which is the only possibility. In a multi-path solution, the protein must fold
energetically downhill (the Z axis) and shrink in conformational extent (the XY plane) as shown
in Figure 1.

Figure 1: (A) The clasical single pathway solution. (B) The multipath route constructed through
a funneled landscape (6).

Nowadays, the understanding of protein function at the atomic level has been revolutionized by
high resolution X-ray crystallography, but with this technique, the dynamical nature of proteins is
not captured (7). Spectroscopic methods such as circular dichroism or infra-red spectroscopy can
follow the kinetic folding in real time but are blind to the structure and possibilities of alternative
mechanisms (6). Due to its dynamic nature, a detailed description on the intermediate struc-
tures in the folding funnel requires a multidimensional energy landscape that defines the relative
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probabilities of the conformational states (thermodynamics) and the energy barriers between them
(kinetics) (7). This is where a computational approach as atomistic molecular dynamics (MD),
could in principle give meaningful insights on the folding mechanism of proteins and ultimately
predict the structure of a protein from its sequence.

A protein is a polymer of amino acids with each amino acid residue linked to its neighbor by a
specific type of covalent bond. All amino acids have a carbonyl group and an amino group bonded
to the same carbon atom (Cα). Figure 2 gives a representation of a general protein structure.

Figure 2: Schematic representation of a polypeptide structure. The dihedral angles of the backbone
are represented with small curved arrows.

A side chain (R) is linked to the Cα, which vary in structure, size and electric charge, giving
unique properties for the amino acid. Because of the tetrahedral arrangement, the Cα is a chiral
center and the four different groups can occupy two unique spatial arrangements (L and D). The
peptide bond is planar, rigid and shows a double bond character due to resonance between the
nitrogen lone pair and the carboxyl oxygen.

Figure 3: Resonance structure of a peptide bond.

For this reason, the omega (ω) torsional angle is always flat and fixed to almost 180◦. Rotation
is instead allowed in the N–Cα and the Cα–C bonds, therefore the backbone of a protein can be
seen as a series of rigid planes with a point of rotation at Cα. Those two torsional angles, phi
(φ) and psi (ψ) are free to rotate and therefore provide flexibility to the backbone of the protein.
The φ and ψ angles, also called Ramachandran angles (after the Indian physicist who worked on
modeling the interactions in polypeptide chains), can vary from -180◦ to 180◦, with 180◦defining
the polypeptide in its most extended conformation and all the peptide groups are in the same
plane. For the Ramachandran principle, the α-helices, β-strands and turns are the most likely
conformations that a polypeptide chain can adopt, since the other conformations are unfavorable
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due to steric collisions between atoms (8). A Ramachandran plot for a polypeptide chain is shown
in Figure 4.

Figure 4: Example of a Ramachandran plot. The small black dots show the φ and ψ angles for
each amino acid in a polypeptide.

Each small black dot in the plot represent torsional angles φ and ψ of an amino acid for a
polypeptide chain. The cluster of dots named α represents α-helices secondary structures while
the β cluster represents the β-strand. The green line at φ=0 shows that for any value of ψ, there
are steric clashes and no amino acids in the chain can adopt those conformations. The α-helix
and β-strand are therefore the most common folding patterns of a polypeptide backbone. The
reason is, in part, given by the optimal use of hydrogen bonds where in the α-helix are formed
between the hydrogen atom attached to the electronegative nitrogen atom of a peptide linkage and
the electronegative carbonyl oxygen atom of the fourth amino acid on the amino-terminal side of
that peptide bond while in the β-strand are formed between adjacent segments of the polypeptide
chain.

Alpha Helix

Beta Strand

Figure 5: New cartoon representation of an α helix and β sheet (PDB ID : 4R80)

Therefore the position of the side chains due to steric effects and the hydrogen bonds in the
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backbone are the main driving forces for a secondary structure formation. In the following study,
atomistic MD in combination with an enhanced sampling method, metadynamics, is employed
to study the behaviour and compare the φ and ψ dihedral angles of small tripeptide chains and
compare three different force fields.

1.2 Computational Methods

1.3 Molecular Dynamics

Computational methods based on molecular models have been playing an essential role in biology
and biophysics. The large growth of computer power and efficient algorithms have finally made
possible to compare experimental data and theoretical predictions of biomolecular systems (9).
Simulations can provide details concerning individual particle motion as a function of time and
often used to address specific questions about the properties of a model system (10). The first MD
simulation of a biomolecule, performed in the late 1970s, was less than 10 ps and with only 500
atoms (11). Current simulations are often ∼1000 times longer and contain systems of 104 to 106

atoms including membranes and explicit solvent.
In MD, an atomistic based description of a system is constructed and propagated deterministically
or stocastically to generate a series of frames (trajectory) which describes the evolution of the
particles over the simulation (12). Requirements to run a MD simulation are a model Hamiltonian
which describes the thermodynamics of a system and a sampling algorithm able to sample rele-
vant conformations from a chosen ensemble (13). In atomistic MD, a classical Hamiltonian that
incorporates fixed point charges, is split into a kinetic and potential contribution,

H(p, r) = K(p) + V (r) (1)

where p and r are the momentum and position of a particle, respectively, and K(p) and V (r) are
the kinetic and potential term of the Hamiltonian H(p, r). The kinetic term K(p) is written as

K(p) =

N∑
i=1

p2i
2mi

(2)

where mi is the mass of particle i and K(p) is independent of the position of the other particles.
The potential energy function V (r) describes the energy landscape of the system with respect to
atomic coordinates. Also defined as force field (FF), the energy function V (r) usually consists of a
sum of parametrized terms which describe the energy of interaction of a given configuration (14).
For example, the functional form of the gromos force field (15) can be written as,

V (r; s) = V b(r; s) + V nb(r; s) (3)

where s represents the force field parameters, V (r; s) is the potential describing physical interactions
split into bonded interactions and non-bonded pairwise interactions. The bonded and non-bonded
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interactions can be further split,

V b(r; s) = V bond(r; s) + V angle(r; s) + V har(r; s) + V trig(r; s) (4)

V nb(r; s) = V LJ(r; s) + V C(r; s) (5)

with V b(r; s) being the sum of bond, angle and dihedral angle interactions and V nb(r; s) the sum of
van der Walls and Coulomb interactions. With such model Hamiltonian, the Newtonian equation
of motion can be solved where the net force exerted on the atom i, Fi, is given by the negative
gradient of the potential energy function V (r),

Fi = −dV
dri

(6)

and Newton’s second law describing the acceleration is given as,

d2r(t)

dt2
=
Fi

m
(7)

Since there is no solution to the equation of motion for more than three interacting bodies, the
dynamics is approximated numerically,

r(t+ ∆t) = r(t) +
dr(t)

dt
∆t+

1

2

d2r(t)

dt2
∆t2 + ... (8)

with a truncation of this Taylor series after the second term. The velocity-Verlet algorithm, for
example, enables to find the trajectory of an object influenced by a force field by considering the
expansion of coordinates forward and backward in time (16). It requires the atomic positions and
accelerations at time t and the positions from the prior step, r(t − ∆t), to determine the new
position at t+ ∆t (16).

r(t+ ∆t) = r(t) +
dr(t)

dt
∆t+

1

2

d2r(t)

dt2
∆t2 (9)

r(t− ∆t) = r(t) − dr(t)

dt
∆t+

1

2

d2r(t)

dt2
∆t2 (10)

r(t+ ∆t) = 2r(t) − r(t− ∆t) +
d2r(t)

dt2
∆t2 (11)

where eq.(9) is a step forward in time and eq.(10) is a step backward in time. A popular algorithm
based on the Verlet’s equation is the leapfrog algorithm which uses the positions at time t and the
velocities at time t− (∆t/2) to update both position and velocities via the calculated forces, F (t)

as show in eq.(12) and (13).

r(t+ ∆t) = r(t) +
dr(t)

dt

(
t+

∆t

2

)
∆t (12)

dr(t)

dt

(
t+

∆t

2

)
=
dr(t)

dt

(
t− ∆t

2

)
+
d2r(t)

dt2
∆t (13)
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Additionally to a model Hamiltonian and an integrator, the system must estimate/predict the
thermodynamic behaviour of a real system. Simulations occurs in a cubic (or other geometrical
shapes) box in which periodic boundary conditions (PBC) are applied to remove hard edges and
virtually replace the box in every direction, to give better estimation of bulk properties, as shown
in Figure 6.

Figure 6: Periodic boundary conditions for a cubic box. The dashed arrow shows a particle exiting
the box from the right side and entering the box from the opposite side.

The particle exiting the box from one side, enters the box from the opposite side. MD is con-
ventionally performed under conditions of constant number of particles, volume and energy, i.e.,
microcanonical ensemble (NVE). However, experiments are usually performed at constant temper-
ature and volume (NVT), or constant pressure and temperature (NPT), hence those conditions
are simulated by the addition of external factors, thermostats and barostats (17).

1.4 Enhanced Sampling Methods and Well Tempered Metadynamics

A system with a large number of degrees of freedom (DoF) may not have a single global minimal en-
ergy configuration but can only be described by a statistical mechanical ensemble of configurations
in which the weight of each configuration r is given by the Boltzmann factor

P (r) ∼ exp(−V (r)/kbT ) = exp(−βV (r)) (14)

where P (r) is the probability of having a given configuration r with potential V (r), kb is the
Boltzmann constant and T is the temperature (9). The exponential factor implies that high
energy systems are less relevant to the state of the system and only regions of high probability
are visited. Those regions are usually separated by high energy barriers (much larger than kbT ),
so it is not likely that all important configurations are visited in a limited amount of time; this
is known as the problem of quasi-nonergodicity (13; 18). The enhanced sampling methods have
been developed to minimize the problem of quasi-nonergodicity. Those methods can be split in
two categories depending on the prior knowledge on the regions which are not well sampled. If
these important regions are not known, several approaches have been developed shown in Figure
7.
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Enhanced Sampling
Methods 

Changing the dynamics
without changing the 

potential energy surface
Deforming the potential

energy surfaceExtend the dimensionality 

Perturbing the forces
Multi-copy approaches 

Reducing number of
 degrees of freedom

Figure 7: Different approaches to enhance the sampling of the phase space.

For the purpose of this study, only the Deforming the potential energy surface will be further
explored. This category modifies the potential energy surface, V (r), by adding a bias potential to
the Hamiltonian, decreasing the energy barriers and increasing the sampling transitions (19). To
effectively guide the simulations, some of these methods (20; 21) uses predefined reaction coordi-
nates, also called collective variables (CVs). CVs are low dimensional functions of the atomistic
coordinates r which should capture the slowest motion occurring in the reaction. In CVs based
sampling, a bias potential V (s) is introduced in the system to jump over the energy barriers that
separate different minima in that configurational space (19). A recently developed method is meta-
dynamics which falls into the class of enhanced sampling methods which bias the potential that
acts on a selected number of DoF previously called CVs (21). Precisely, in metadynamics, an ex-
ternal history dependent bias potential which is a function of the CVs is added to the Hamiltonian
of the system (22). This potential is a sum of Gaussians which are deposited along the system’s
trajectory in the CVs space to discourage the already visited conformations. The bias at time t is
written as an integral on the past trajectory r(t),

VG(s, t) =

∫ t

0

dt′ωexp

(
−

d∑
i=1

si(r) − si(r(t
′))2

2σ2
i

)
(15)

where V (s, t) is the bias potential at time t in the space of the CV, ω is the energy rate at which
the bias grows, σi is the Gaussian width corresponding to the ith CV. The energy rate is expressed
in terms of the Gaussian height W and a deposition stride τG as,

ω =
W

τG
(16)

Figure 8 shows an example of a one dimensional potential in which three local minima are present
to understand the effect of VG in time.
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(1) (2)

Figure 8: Example of a 1D metadynamics model potential. (1) Schematic representation of the
progressive filling of the potential by the gaussians deposited along the trajectory. (2) Time
evolution of the CVs during the simulation.

The simulation starts at B, and in a normal atomistic MD simulation, the system would remain
in that minimum for a long time because the barriers are much larger than the thermal fluctuations,
kbT . Instead in this metadynamics simulation, Gaussian functions are deposited with time until
at t = 135 the system is pushed out of B into a new local minimum. Now the system is trapped in
A until at t = 810, it can access also region C. With this method, the sampling of rare events can
be accelerated by pushing the system away from local free energy minima, explore new reaction
pathways as the system escapes from the minima and no a priori knowledge of the landscape is
required. At the same time, the bias potential overfills the underlying FES and pushes the system
towards high energy regions of the CV space. Consequently, it is not trivial to know when to
stop the simulation. Also, as the system becomes more complex, it is also not trivial to choose an
appropriate CV to bias.

1.5 PLUMED

PLUMED is a flexible complement MD code which can be interfaced with most of the MD softwares
available (21). It is used both to analyze MD trajectories and also as a metadynamics code used
for enhanced sampling methods. Figure 8 below shows the way PLUMED is integrated into a MD
simulation.
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Figure 9: Schematic representation of the interface between plumed and an MD engine.

PLUMED is called during the initialization and its input file is read. It is then called after
each run, after the forces that describe the interactions between the atoms are calculated. At this
point, PLUMED allows the plugin to add the bias potential to the MD code so that they can be
integrated with the equations of motion. Also, the selected post-process analysis are performed
and printed in a file.

2 Computational Details

2.1 Atomistic molecular dynamics simulation details

All the modifications to the topology and trajectory files were performed with the MPI version
of gmx tool of GROMACS, tleap and cpptraj of Ambertools and PyTraj, a python library which
exposes cpptraj’s functions to the python environment (23; 24; 25). Visual Molecular Dynamics
(VMD) was used for visual inspection of the trajectories and build visual representations and
Python3.7 was used to produce plots (26).

2.1.1 Initial Structures

The structures of alanine tripeptide (3-p) (AAA) and pentapeptide (5-p) (AAAAA), glycine 3-p
(GGG) and 5-p (GGGGG), tryptophan 3-p (WWW) and 5-p (WWWWW), glutamic acid 3-
p (EEE) and 5-p (EEEEE) were built using tleap and Avogadro molecular editor (27). Those
peptides were chosen to have a sample of each of the amino acid classes. All of the peptides were
capped at the N-terminus with NH2 and at the C-terminus with CH3 to avoid artificial interaction
between the termini. The structures of the 3-p and 5-p were arranged in a periodic cubic box of
length 3nm and 5nm respectively and solvated with water molecules. For the EEE and EEEEE
systems, the solution was neutralized with addition of 3 and 5 Na+ ions. The boxes were composed
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of approximately 2600 and 12000 for all the 3-p and 5-p systems.

2.1.2 Molecular dynamics simulation details

All MD simulation were performed usign the MPI version of GROMACS with PLUMED plu-
gin. For the atomistic simulations, the potential parameters for the proteins were taken from the
Amber99SB-ILDN (28), Charmm27 (29) and Gromos54a7 (23) force field and the TIP3P model
(30) was employed for the water molecules. Initially the energy was minimized for 1000 steps with
the steepest descent method with 2 fs timestep, to find a local energy minimum and avoid large
atom’s distance shift in a single timestep. Electrostatic interactions were evaluated with reaction
field (31) with a short range Coulomb cutoff of 1.4 nm and vdW cutoff was set to 1.4 nm (32).
Subsequent simulation were run in a canonical ensemble (NVT) at 300 K over 10 ps with a modified
Berendsen thermostat followed by an isothermal-isobaric ensemble (NPT) at 300 K for 100 ps with
the addition of a Berendsen barostat at 1.00 bar and an isotropic pressure coupling (33). Finally
the production run was performed for 100 ns and snapshots of the simulations were recorded every
10 ps.

2.1.3 Well Tempered Metadynamics simulation details

Additionally, in the production run, the PLUMED plugin is used to add the biasing force to the
potential energy and to post-process the generated MD trajectories. The plumed algorithm is
activated with an additional −plumed flag in the mdrun engine. The peptides’ index numbers are
specified to allow PLUMED to apply the correct distances as demonstrated in Figure 10.

1
2 3

4

55

4
3

d
1

2 3
4

5

3
4

5d

Figure 10: Illustration showing how molecules can split by the periodic boundary conditions and
how this can cause a problem when computing collective variables. In the left figure, the distance
between atom 1 and 5 is computed from the periodic boundary condition. In the right figure, the
distance between atom 1 and 5 is computed ignoring the pbc condition.

A metadynamics bias is applied in the two CVs represented by the torsional angles φ and ψ of
all the 3-p and 5-p systems. Figure 11 shows an example of PLUMED file where the two torsional
angles φ and ψ are biased.
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Figure 11: torsional angles φ and ψ in the alanine tripeptide molecule.

The metadynamics arguments were applied depositing a Gaussian every 500 steps (1 ps), with
an height equal to 1.0 kcal/mol and a width of 0.3 for both the CVs in a grid going from −π to
π with 300 bins in each grid. The dihedral angles φ and ψ values and the bias were printed every
5000 steps.
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3 Results and Discussion

3.1 Convergence of the Collective Variables and the Free Energy

As explained above, all the solvated tripeptides’ and pentapeptides systems were simulated for
100 ns with the bias potential applied. To understand whether the calculation has converged, the
system should diffuse along the full CVs space during the simulation as shown in Figure 12.

Figure 12: Time evolution of the metadynamics φ CV for glutamic acid tripeptide in water.

Along the 100 ns, the system has well sampled the CVs space and all the local minima for this
variable have been visited. Figure 13 shows the first 4 ns of simulation for EEE system,

Figure 13: Time evolution of the metadynamics φ CV for glutamic acid tripeptide in water.

The system is initialized in one of the two metastable states of EEE and after 1600 ps (1.6 ns),
is pushed out of the basin by the metadynamics bias potential to visit another local minimum.
Another way to estimate convergence of the system can be observed from the free energy as a
function of the CV. Figure 14 shows the reweighted free energy profile of the system as a function
of the φ torsional angle for the Amber99SB-ILDN force field.
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GGG AAA

EEE WWW

Figure 14: Estimate of the free energy as a function of the dihedral φ from a 100ns of glycine,
alanine, glutamic acid and tryptophan at different simualtion times.

The free energy should not significantly change along the time of the trajectory. For the GGG,
AAA and EEE systems, at t = 10 ns the free energy profile has already reached a good convergence
and this is why the surface does not change significantly compared to t = 80 ns and t = 90 ns. For
the WWW system, there is a large change in free energy profile from t = 10 ns to t = 80 ns while
the difference between t = 80 ns and t = 90 ns is not large. This means that the simulation has
started at the minimum with φ = −2.5 and in the first 10 ns of simulation, the other basins were
not well sampled while at t = 80 ns the other two basins at φ = −1.5 and φ = 1.0 were sufficiently
sampled. For this reason, 10 ns are not sufficient to have an appropriate sampling, therefore 100

ns of simulation was the time selected for all the simulations, to also have the same simulation
time for all the peptides.
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3.2 Comparison between Force Fields

Different force fields were employed for the simulations of the peptide chains. Figure 15 shows the
reweighted free energy profiles of φ for the tripeptides with three different force fields.

GGG AAA

EEE WWW

Figure 15: Estimate of the free energy as a function of the dihedral φ from a 100ns for glycine , ala-
nine, glutamic acid and tryptophan tripeptide for Amber99SB-ILDN, Gromos54a7 and Charmm27
force fields.

In the glycine system, the minima at φ = −1 and φ = 1 and the maximum at φ = 0 are
commonly shared between the force fields. In the alanine, glutamic acid and tryptophan systems,
the minima at φ = −3, φ = −1 and φ = 1 are also commonly shared between the three force
fields. Overall, the force fields share the same common features, with small variations along the
free energy profiles.
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3.3 2D Free Energy Profiles and Block Analysis

The 2D reweighted free energy profiles are calculated for for all the peptides. The block analysis is
then applied to calculate, for different block sizes, the average free energy and the error associated
with each block. The error will increase with block size, until it reaches a plateau when there is
no more correlation between data points. Figure 16 shows the 2D-heat maps and the associated
block analysis for the tripeptides with the Amber99SB-ILDN force field.

GGG

AAA

EEE

WWW

Figure 16: 2D heat maps and block analysis for glycine, alanine, glutamic acid and tryptophan
tripeptide for the Amber99SB-ILDN force field.

18



In all four simulations, the error increases until it reaches a plateau showing the convergence of
the simulation. The 2D-heat maps of the CVs were compared also between the different tripeptides.
The same pattern is observed for the AAA, EEE and WWW system which is not present in the
GGG system. The glycine has only an H atom as a Cα substituent while the alanine, glutamic
acid and tryptophan have a methyl, a carboxylic acid and an indole group respectively. Figure 17
compares two points in the 2D heat maps of AAA and GGG.

AAA GGG

Figure 17: 2D heat maps for alanine and glycine tripeptides. Snapshot of the simuation at φ, ψ
=(-1.18, -0.40) and (2.45, -2.20) were extracted for both systems and compared.

The presence of a side chain on the Cα gives an additional maximum in the free energy profiles
of alanine, glutamic acid and tryptophan. Glycine is different from the other amino acids since
it lacks the presence of a side chain. In particular, it does not have a Cβ which induces many
steric clashes in a Ramachandran plot. For example, Figure 17 shows that the presence of the
methyl groups as a side chain in the alanine tripeptide creates a maximum for φ = 2.2 and all
values of ψ which is not present in the glycine tripeptide system. Alanine dipeptide’s φ and
ψ torsional angles were previously studied with metadynamics and an unconstrained enhanced
sampling method, Gaussian accelerated MD (34; 35). In the metadynamics case, the free energy
profile was compared to umbrella sampling showing a significant level of similarity with overall
shapes and topologically important points (minima, barriers, and transition pathways) located at
the same place.
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Figure 18: Free energy profile of alanine tripeptide with Amber99SB-ILDN. The three most favor-
able regions are shown as αR, αL and β.

The three most favorable regions αR, αL and β are found to be the same between the previ-
ously studied alanine dipeptide in both the metadynamics and Gaussian accelerated MD and the
currently studied alanine tripeptide providing the same energetic order for the minima. The 2D-
heat maps were compared also between the tripeptides and pentapeptides of glycine and alanine
as shown in Figure 19 below.

GGG GGGGG

AAA AAAAA

Figure 19: 2D heat maps for alanine and glycine tripeptides and pentapeptides.

In both glycine and alanine systems, no difference is observed in the central torsional angles φ
and ψ when the length of the peptide is increased from three to five amino acids. No secondary
structure formation is observed with a variation from 3 to 5 amino acids chain.
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4 Conclusions

Protein folding plays a fundamental role in nature for the understanding of the functionality of
polypeptides and proteins. Rotation around the torsional angles φ and ψ is limited by steric colli-
sions which together with hydrogen bonding between the amide hydrogens and carbonyl oxygens
of the backbone are the main driving forces for a secondary structure formation. In this study, the
φ and ψ torsional angles of four different tripeptides are compared and assessed with Amber99SB-
ILDN, Charmm27 and Gromos54a7 force fields. For the tested force fields, the local minima are
commonly shared with small variations along the free energy profiles. The presence of different side
chains in alanine, glutamic acid and tryptophan give an additional maximum in the energy profile
due to steric clashes between side chains. Increase in peptide length from three to five amino acids
in glycine and alanine do not change the energy profile for the torsional angles.
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5 Appendix

5.1 Tripeptides

Glycine tripeptide 2D maps and block analysis for Amber99SB-ILDN, Charmm27 and Gromos54a7
respectively.
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Alanine tripeptide 2D maps and block analysis for Amber99SB-ILDN, Charmm27 and Gro-
mos54a7 respectively.
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Glutamic acid tripeptide 2D maps and block analysis for Amber99SB-ILDN, Charmm27 and
Gromos54a7 respectively.
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Triptophan tripeptide 2D maps and block analysis for Amber99SB-ILDN, Charmm27 and Gro-
mos54a7 respectively.
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5.2 Pentapeptides

Glycine pentapeptide 2D maps and block analysis for Amber99SB-ILDN, Charmm27 and Gro-
mos54a7 respectively.
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Alanine pentapeptide 2D maps and block analysis for Amber99SB-ILDN, Charmm27 and Gro-
mos54a7 respectively. For alanine, tryptophan and glutamic acid pentapeptides the free energy
calculations did not reach covergence.
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Triptophan pentapeptide 2D maps and block analysis for Amber99SB-ILDN, Charmm27 and
Gromos54a7 respectively.
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Glutamic acid pentapeptide 2D maps and block analysis for Amber99SB-ILDN, Charmm27
and Gromos54a7 respectively.
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