
University of Groningen

Faculty of Science and Engineering

Industrial Engineering and Management

Design Project

Domain Knowledge Integration in
Object Detection Tasks

Author:
First supervisor:
Second supervisor:
Company supervisor:

R. S. Janssen (S2814188)
M. Mohebbi, MSc

prof. dr. ir. B. Jayawardhana
Maarten C. Stol, MSc

January 21, 2021

I

Abstract

While rapid innovations have greatly improved the quality of image classification
and object detection models, there still exists a large gap between the manner in
which humans and machines learn. While state-of-the-art machine learning models
are able to effectively find and learn patterns in data, they remain unable to reason
in a human manner. BrainCreators, an artificial intelligence company specialized
in object detection for visual quality and asset inspectors, wishes to lift knowledge
transfer to a higher level, by integrating domain knowledge in the trainable machine
learning pipeline. BrainCreators hopes that transferring knowledge to machine
learning models in more than one way might improve predictive performance and
decrease the amount of training data required to learn the patters in the data,
thereby improving the knowledge transfer process from the client domain to the
model. Domain knowledge can be represented by knowledge graphs, describing
objects, attributes and relationships. In this project, an exploration of frameworks to
integrate domain knowledge in the trainable machine learning pipeline was conducted,
after which the Hybrid Knowledge Routed Modules (HRKM) framework was chosen.

A new implementation of the framework was created, leading to a modular software
deliverable that could potentially be used in the BrainMatter platform.The framework
was applied to a dataset of a Dutch telecom company used for cabinet inspection,
in order to evaluate the framework on an industrial use case. Knowledge graphs
describing the client domain were created and integrated into the object detection
pipeline with the HKRM framework. The results show that the application of the
framework on the client case did not yield an improvement in predictive performance,
nor did the amount of training data required to achieve similar predictive performance
decrease. While the new implementation of the framework made for this project
was capable of replicating the results of the paper, unfortunately, the results did not
persist on more challenging industrial data.

II

Contents

Abstract I

Contents II

List of Figures IV

List of Abbreviations V

1. Research Design 1
1.1. Problem introduction . 1
1.2. Stakeholder analysis . 2

1.2.1. Requirements . 3
1.3. System description . 4
1.4. Research questions and problem statement 5

2. Theoretical Background 7
2.1. Object detection . 7

2.1.1. Training . 7
2.1.2. Faster R-CNN . 8

2.2. Knowledge graphs . 15
2.3. Integrating domain knowledge . 16

3. Implementation 18
3.1. Model . 18

3.1.1. Architecture . 19
3.1.2. Explicit knowledge . 19
3.1.3. Implicit knowledge . 21

3.2. Dataset description . 24
3.3. Testing . 25

3.3.1. Influence of knowledge modules 25
3.3.2. Hyper-parameter λ . 27
3.3.3. Ablation study . 27
3.3.4. Hypotheses . 28

4. Results 29
4.1. Influence of knowledge modules . 29
4.2. Influence of hyperparameter λ . 32
4.3. Ablation study . 35

5. Discussion 37

6. Conclusion 40

Bibliography 41

Contents III

A. Appendix 43
A.1. Machine learning terminology . 43
A.2. Dataset description . 44
A.3. Knowledge Graph Creation . 46

A.3.1. Attribute graph . 46
A.3.2. Relational graph . 48

A.4. Additional results . 50
A.4.1. Ablation study . 50

IV

List of Figures

1.1. Power interest grid displaying the stakeholders in the research, where
R denotes research, PD denotes product development, and C denotes
clients. 2

1.2. Depiction of system describing the context of the project 4

2.1. Illustration of bounding boxes around objects in an image 7
2.2. Faster R-CNN architecture . 8
2.3. Convolutional neural network (Saha, 2018) 9
2.4. Convolution operation with kernel 9
2.5. Max pooling operation . 10
2.6. The residual block (He et al., 2016) 11
2.7. Region Proposal Network (Ren et al., 2015) 11
2.8. Undirected and directed graph (Fionda and Palopoli, 2011) 15

3.1. Model architecture of implementation based on Faster R-CNN with
the addition of an explicit and implicit knowledge module 19

3.2. Depiction of the explicit knowledge module (where N is number of
proposals, F is number of features per proposal, M is the size of the
module) . 20

3.3. Depiction of the implicit knowledge module (where N is number of
proposals, F is number of features per proposal, M is the size of the
module, T is the amount of graphs in the module) 22

3.4. Example image of cabinet inspection dataset with bounding boxes . 24
3.5. Depiction and equation describing IoU 26

4.1. Average precision for model several model configurations with and
without knowledge modules . 30

4.2. Average recall for model several model configurations with and without
knowledge modules . 31

4.3. Average precision for model configurations with various levels of λ in
the loss function . 33

4.4. Average recall for model configurations with various levels of λ in the
loss function . 34

4.5. Average precision for model configurations with and without modules,
trained on various percentages of the original training data 35

4.6. Average recall for model configurations with and without modules,
trained on various percentages of the original training data 36

A.1. Multi-layer perceptron . 43
A.2. Step 1 of attribute graph creation . 46
A.3. Step 2 of attribute graph creation . 46
A.4. Step 3 of attribute graph creation . 47
A.5. Step 1 of relational graph creation 48
A.6. Step 2 of relational graph creation 49

V

List of Abbreviations

AI artificial intelligence

AP average precision

AR average recall

CNN convolutional neural network

Faster R-CNN faster regions with convolutional neural networks

GSNN graph search neural network

HKRM hybrid knowledge routed modules

IoU intersecion-over-union

ML machine learning

MLP multi-layer perceptron

MSE mean squared error

ResNet residual neural network

RoI region of interest

RPN region proposal network

SGD stochastic gradient descent

1

1.Research Design

1.1. Problem introduction

While rapid innovations in computer vision have greatly improved the quality of
image classification and object detection models, there still exists a large gap between
the manner in which humans and machines learn (Fang et al., 2017). Although
current state-of-the-art machine learning (ML) approaches are able to effectively
find and learn patterns in data, they remain unable to reason in a human manner.
Humans are able to recognize objects after seeing it only a few times or from
descriptions of the features of an object, reasoning with their knowledge of objects
with similar features (Marino et al., 2017). For example, a human would be able
to recognize a zebra, never having seen one before, if someone described it to them
as a horse with black and white stripes. In an effort to provide machine learning
models with similar reasoning capabilities within a specified domain, a major area
of research in contemporary artificial intelligence (AI) has emerged, focused on
combining explicit knowledge in the form of relational structure with the statistical
methods of AI.

Generally, domain knowledge can be represented in various forms that best describe
the relationships between variables, such as equations describing physical relations,
logic rules, and probabilistic relations. In the case of reasoning within a domain,
knowledge graphs have proven to be most useful (von Rueden et al., 2019).
Knowledge graphs are versatile modeling tools which can represent relationships
between various objects and attributes in a structured manner, allowing a machine
to conduct inference and reasoning over a graph to answer queries (Kejriwal, 2019).
Without reasoning abilities, machines need to have access to large amounts of labeled
training data to effectively learn patterns. In many situations, it is either simply
not possible or very time consuming to generate a vast amount of labeled training
data, evenly distributed among all identifiable classes or objects.

BrainCreators, an artificial intelligence company specialized in object detection in
images, is currently experiencing this very limitation. With their software platform
BrainMatter, BrainCreators aims to enable intelligent automation and enable the
process engineer or owner of the process at their client (hereafter domain expert) to
have access to AI without the help of a dedicated data team. An example application
of the software is a quality control project done at TATA Steel. The quality control of
the steel sheets was originally a manual process, which made the company heavily
reliant on the availability and experience of their quality control employees. To
automize this process, the original quality control employee now controls the process
by teaching the software to recognize defects in the surface of the sheets, by manually
labeling objects in images.

The main goal of BrainCreators is to transfer human domain knowledge to Brain-
Matter as efficiently as possible, which allows the back-end machine learning models
to learn to recognize objects. The platform is currently limited in the manner of

Stakeholder analysis 2

retrieving domain knowledge, which happens in two ways:

1. The domain expert manually labels objects in training images

2. Logic and conditional statements derived from consultation with the domain
expert can be used for post-processing decisions, on top of the ML pipeline
outcome

The first manner can be a strenuous process, especially if there are many possible
objects to be detected. Additionally, some objects might not appear in training
data often. The amount of training data that can be fed to the model without
creating a data imbalance is then limited (von Rueden et al., 2019), since very
imbalanced datasets will not teach the model to recognize all the patterns present
in the data, rather causing it to focus on the highly present objects or classes. The
second approach is effective, however, not favorable. The model is not trained on the
knowledge captured by the logic rules, but rather corrected if necessary. Therefore,
the quality of the prediction of the machine learning model will not improve. The
maintenance of the logic rules requires a lot of effort, since small changes such as
adding a new class of objects might change the set of rules.

BrainCreators wishes to lift knowledge transfer to a higher level and therefore
explore new manners of knowledge transfer. As described above, knowledge graphs
are a classic method to describe knowledge with the help of concepts and their
relationships, and therefore BrainCreators aims to utilize knowledge graphs to further
enable intelligent automation.

1.2. Stakeholder analysis

The stakeholders in the project are analyzed utilizing the power-interest grid introduced
by Ackermann and Eden (2011), displayed in Figure 1.1.

Figure 1.1.: Power interest grid displaying the stakeholders in the research, where R denotes
research, PD denotes product development, and C denotes clients.

Stakeholder analysis 3

• Research
The problem owner of the project is Maarten Stol, Principal Scientific Adviser
at BrainCreators. In his daily work, he is responsible for the research and
development of the company. His team finds new developments in literature
and assesses whether these developments can be implemented in their software
platform. Maarten has initiated this project due to the emergence of more
hybrid machine learning frameworks, as also described by von Rueden et al.
(2019). He thinks that integrating prior knowledge will be one of the major
research themes of AI in the coming years, would like to know the possible
opportunities for BrainCreators to adopt such frameworks. Therefore, his
interest in the project is very high, as can be seen in Figure 1.1. Although in
some ways his research department guides the future of the company, he does
not have the final say in whether or not an idea will actually be adopted by
product development, hence making his power in the project moderately high.

• Product development
Tommaso Gritti is head of product development, responsible for both the back-
end and front-end of the software. The artifact that will be designed during
the project ultimately has to be approved by him, to make sure it is usable
in the currentML pipeline. Many of the requirements of the artifact will be
determined by him, therefore, giving him significant influence in the project.
As head of product development, Tommaso is of course interested in new
innovations in the product. However, since feasible new ideas are sought and
provided by the research team, the overall interest in the project is moderate.

• Clients
Glenn Brouwer is the Chief Revenue Officer (CRO) of the company and mostly
in contact with potential and existing customers. In order to incorporate the
client perspective and wishes in the project, Glenn was interviewed. Clients
determine a large part of the context BrainCreators operates in, therefore
imposing requirements on the project. The power of clients is high, as they
are directly linked to the revenue stream, but their interest in the project is
low.

1.2.1. Requirements

The artifact to be delivered during this project is a modular software deliverable that
can be integrated in the platform and used in future client cases. The artifact will be
tested on an academic benchmark dataset, which are used for many machine learning
papers to make sure the performance of models can be compared accurately. Later,
experiments are performed using data and domain knowledge of a client dataset.
Next to that, an analysis added value of the method should be provided to support
the company’s business case.

System description 4

The first weeks of literature research, research within the company, and stakeholder
interviews have determined a preliminary list of requirements of the artifact that
will be designed during this project. This list of requirements is used to evaluate
the methods found during the literature review.

• Modularity
The artifact should be a modular software deliverable that is able to run in
BrainMatter on top of various object detection models.

• Generalizability
The artifact should not only be usable in the specific client use case, but should
be generalized to ensure applicability across domains.

1.3. System description

In order to describe the context the project is performed in, the system is depicted
in Figure 1.2. The colored blocks refer to the domain and responsibilities of each
player in the system. The blue block, ’Client domain’, describes how the client’s
domain knowledge and data is used in the system. The client is responsible for
delivering and capturing the data, as well as labeling objects in the training dataset.
When using the platform, the client’s new data is to be reviewed and classified by
the software.

Figure 1.2.: Depiction of system describing the context of the project

The green block, ’BrainMatter’, depicts the platform and distinguishes the back-end
and front-end (user interface) of the software. The client is not aware of the back-
end machine learning pipeline, but is only concerned with teaching the platform
to recognize images through labeling and viewing detected results when using the
platform.

Research questions and problem statement 5

The red block, ’BrainCreators consulting’, refers to the process where domain know-
ledge is extracted from the client. BrainCreators is currently in the process of
formalizing its knowledge transfer process to achieve uniform knowledge acquisition,
which is in part why this project was initiated. The domain knowledge acquired in
the knowledge transfer process should be transformed to a knowledge graph that
describes the client domain and object classes, in manner that is consistent across
projects.

The yellow arrow then indicates at which stages in the machine learning pipeline
knowledge can potentially be integrated. The scope of this project is limited to
red block and yellow arrows. During the project a decision will have to be made
regarding the knowledge extraction and knowledge graph creation. The second
decision to be made will decide where in the machine learning pipeline the domain
knowledge will be integrated.

1.4. Research questions and problem statement

The research questions to be answered during the project are stated below. The
literature research and rest of the project are structured according to the research
questions.

RQ1 How can domain knowledge be described through knowledge graphs?
Knowledge graphs can describe any relationship between two concepts or
between a concept and its attributes. Current client cases should be evaluated
to see which types of domain knowledge are available, and how this knowledge
can be captured by a graph. Knowledge types can include spatial relations, co-
occurrence of objects in images, and shared attribute knowledge (Jiang et al.,
2018). It should be decided whether all knowledge types can be captured in
one graph or, for example, modular knowledge graphs can be utilized whenever
required in the specific case, similar to the approach of Jiang et al. (2018).

RQ2 Where in the data pipeline can this knowledge be integrated?
There are various stages within the data pipeline where background knowledge
can be integrated. von Rueden et al. (2019) created a survey of existing
methods, which include:

a) Integration at the data engineering and pre-processing stage.

b) Integration during training of the machine learning models.

c) Integration of knowledge graphs in the design of the neural network itself.

d) Integration as a additional optimization step on the obtained results.

RQ3 What is the added value of adopting the framework?
Part of the research is aimed at quantifying the added value the technique
could offer, in case the technique proves to be technically favorable.

Research questions and problem statement 6

Summarizing the information described above, the problem can be formulated as:

Currently, BrainCreators is only capable of transferring domain knowledge to
BrainMatter through manually labeling images. This process of knowledge
transfer relies on labeling many images of each object to be detected, which
is not always possible due to a lack of data and the amount of man hours
required to generate sufficient samples for a training dataset.

The goal of the project can be formulated as:

To create a general, modular software deliverable that integrates domain know-
ledge in the form of knowledge graphs in the machine learning pipeline in the
BrainMatter platform, in order to become less dependent on training data and
impose explicit knowledge on the learning process.

7

2.Theoretical Background

In this section, the relevant literature and theoretical background will be discussed
to provide basis and grounds for the choices made during the design project.

2.1. Object detection

BrainCreators has chosen to specialize in processing visual image data to become the
number one option for automated visual inspection. The most common branch of
AI applied to images is image classification, which is the task of classifying the entire
image, thereby describing the scene or context of the image. A more specific task
is called object detection, which is aimed at locating and subsequently classifying
objects in an image. The position of the object is described with a bounding box,
which specifies the coordinates of the object in an image. The object inside the
bounding box is then classified, to attach a label to it. This section will be dedicated
to laying a foundation of knowledge regarding object detection, which the rest of
the report can build on. A basic level of machine learning knowledge is assumed
for the reader and common machine learning conventions are further explained in
Appendix A.1.

2.1.1. Training

Machine learning models require vast amounts of data to learn patterns in the data,
and to be able to predict numerical values from time-series data (regression) or
attach a label (classification) based on the input data. For object detection, the
data that the model learns from consists of input images in which bounding boxes
have been manually drawn around objects, such as in Figure 2.1.

Figure 2.1.: Illustration of bounding boxes around objects in an image

The model learns the required behavior through computing the loss between the
ground-truth, referring to the original label and bounding box in the training data,
and the label and bounding box predicted by the model. While iterating over the
dataset, the internal model weights of neurons and connections that compose the

Object detection 8

convolutional neural network, depicted in Figure 2.3, are then updated according to
the computed loss, until the model has converged to the most optimal settings.

2.1.2. Faster R-CNN

While a multitude of object detection models are available, the majority of them rely
on the same principles to be able to process the images and predict the bounding
boxes. For this project, an object detection model called faster regions with convolu-
tional neural networks (Faster R-CNN) is chosen as base architecture, since this
model is often applied at BrainCreators and many methods build on the architecture
of Faster R-CNN.

Figure 2.2.: Faster R-CNN architecture

Figure 2.2 depicts the main architecture of Faster R-CNN. The input of the model
is a set of images, which will pass through the residual neural network (ResNet).
It operates as feature extractor, which are found through the application of filters
and convolutional layers. These features are then shared with the Region Proposal
Network (RPN), which proposes regions of interest (RoI) which potentially hold
an object. The RPN provides proposals with bounding box coordinates and an
objectness score, which represents the likelihood of the region being an actual object.
The proposed regions and corresponding features are then passed to an RoI Pooling
layer, which crops the bounding boxes to fit the potential object. The cropped
regions are then fed to two fully connected linear layers. The output of the box
head is fed straight to the last two layers, which are the bounding box regression and
classification layers. Below, the components of the model will be explained in more
detail.

2.1.2.1. ResNet

The backbone network of Faster R-CNN are convolutional neural networks, which
are purposed to extract features from the input images. Since processing images can
be very computationally expensive, the purpose of convolutional neural networks
(CNN) is to reduce the images to a smaller size and format that is easier to process,
all the while maintaining the image’s critical features.

Object detection 9

Figure 2.3.: Convolutional neural network (Saha, 2018)

Figure 2.3 outlines the architecture of a convolutional neural network. The image
input is passed through several blocks comprised of convolutional layers, activation
functions, and pooling layers, which will be explained below. These layers have the
purpose of extracting image features and reducing the image’s size to a feature map,
which the classification layers will use to make a choice regarding the type of object
the image contains.

Convolution
An input image will be separated into three channels based on its color planes: red,
green, and blue (RGB). A filter, called the kernel, is applied to the different RGB
channels of the image (Michelucci, 2019). The Kronecker product of the filter and
the RGB layer of the image is averaged and placed at the center of the kernel in the
filtered image, as can be seen in Figure 2.4. This kernel is dragged over the image
to find patches of the image at which the pattern of the filter occurs.

Figure 2.4.: Convolution operation with kernel

The kernels that a CNN uses to filter the images and gather valuable features are
included in the trainable parameters of the network. While it is possible to use
handcrafted kernels, the CNNs are capable of finding an optimal configuration.

Object detection 10

Activation function
After convolution, the ReLU activation function is applied to the filtered image

f(x) =

{
0, for x < 0

x, otherwise

}
. (2.1)

It changes all negative values to zero, while all other values remain the same.
Applying the activation function ensures that non-linearity is introduced, which
allows for learning the complex mapping between input and output variables.

Max pooling
In order to reduce the size of the filtered image, a pooling operation is performed.
In the example in Figure 2.5, a window with size 2 by 2 is selected. Out of this
window, the maximum value is chosen and added to the feature map. The window
is moved with a stride of 2 in the example, to cover every pixel of the filtered image.

Figure 2.5.: Max pooling operation

Several configurations of convolutional neural networks (CNN) are available, however,
this project focuses on ResNet. The intuition behind deep neural networks is
that consecutive layers are capable of learning more complex features, figuratively
zooming in on the image. However, as research on deep neural networks was
progressing, a maximum depth threshold was found by He et al. (2016), for depth in
traditional CNN models. The authors empirically showed that a 20-layer network
had a lower training and test error than a 56-layer network (He et al., 2016).
These results have been blamed on the optimization function, the vanishing gradient
problem, or the network initialization. The authors have proposed a new neural
network layer, the residual block depicted in Figure 2.6, to alleviate these problems.
The framework presented is capable of adding significant depth to convolutional
neural networks, without compromising on complexity.

Object detection 11

Figure 2.6.: The residual block (He et al., 2016)

The authors theorized that not all layers in a CNN have significant influence on the
predictive performance, but some layers rather learn an identity function to copy
the results of previous layers, with F(x) = x. Learning the identity function provides
room for mistakes, since each kernel contains many trainable weights. Therefore, the
authors theorized that adding the skip connection in the residual block allows for the
network to learn transformation where it is deemed necessary and can skip the block
otherwise. In case the block is skipped, the layers in the block can converge its output
F(x) to zero, since the final output of the block summed with the skip connection
H(x) = F(x) + x will ensure an accurate mapping of the identity function. ResNet
networks can consist of up to 1001 layers, but common implementations consist of
up to 50, 101 or 152 layers, consisting of multiple blocks of layers with similar kernel
sizes.

2.1.2.2. Region Proposal Network

The RPN is purposed to propose regions of interest which potentially contain an
object. It takes an image as input and consequently outputs a set of object proposals,
with a corresponding objectness score (Ren et al., 2015). The objectness score
represents the likelihood that the region contains an object.

Figure 2.7.: Region Proposal Network (Ren et al., 2015)

The output feature maps of the backbone network are fed to a small fully convolution-
al network, which slides a window over the feature maps, as depicted in Figure
2.7. At each sliding window location, anchors of multiple scales and aspect ratios
are applied to predict multiple region proposals. The anchors are fed to two fully

Object detection 12

connected layers, a box regression layer and a box classification layer. The box
regression layer will refine the bounding box coordinates of the proposed region,
whereas the box classification layer of two units (background or foreground) will
calculate the objectness score.

This small network is trained with its own multi-task loss function (Ren et al., 2015).
Each anchor is given a binary class label, stating whether or not it is an object. A
positive label is assigned to the anchors with the highest Intersection-over-Union
(IoU) overlap with a ground-truth box (original labeled box), or to anchors that
have an IoU overlap with any ground-truth box that is higher than 0.7. A negative
label is assigned to anchors if the IoU overlap is lower than 0.3 for all ground-truth
boxes. Anchors that have IoU scores in between are not considered. The terms in
the loss function will be explained in more detail in Section 2.1.2.4 and IoU is further
explained in Section 3.3.1.

2.1.2.3. RoI pooling and fully connected layers

The object proposals from the RPN are fed to the RoI pooling layer, which extracts
a fixed-length feature vector from the feature map (Girshick, 2015). Max pooling is
used to convert the features inside the proposed RoI into a small feature map with
a fixed spatial size of H ×W, which are hyper-parameters. The feature maps are
pooled to a fixed size, because the fully connected layers that the RoIs will be fed
to are of fixed size as well.

The pooled feature maps are then flattened and fed to two fully connected linear
layers. The neurons in the fully connected layers are trained to determine which
features are likely to belong to which object class, and will generate a set of votes
which is used by the final classification layer.

2.1.2.4. Bounding box regression and classification layer

The proposed bounding box coordinates are passed through a bounding box regres-
sion layer, which uses a class specific regressor to refine the bounding box coordinates.
Given the coordinates of the predicted bounding box P = (Px,Py,Pw,Ph), with
(Px,Py) referring to the box’ center coordinates and (Pw,Ph) referring to the width
and height of the box. Together with the coordinates of the ground-truth box G =
(Gx,Gy,Gw,Gh), the regressor is configured to learn a scale-invariant transforma-
tion between the centers of the boxes P and G, and a log-scale transformation
between the boxes’ width and height (Girshick et al., 2015). The transformations
are parameterized by four functions dx(P),dy(P),dw(P), and dh(P). The proposed

bounding box P is then transformed into a predicted ground-truth box Ĝ with

Ĝx = Pwdx(P) + Px,

Ĝy = Phdy(P) + Py,

Ĝw = Pwexp(dw(P)),

Ĝh = Phexp(dh(P)).

(2.2)

Object detection 13

Each function d∗(P) (with ∗ one of x,y,w,h) is modeled as a linear function of the
pooled features from the RoI pooling layer of proposal P, which is denoted by φ(P).
This gives d∗(P) = wT

∗φ(P), where w∗ is a vector of trainable model parameters,
which is optimized with a least squares objective

w∗ = argmin
ŵ∗

N∑
i

(ti∗ − ŵT
∗φ(P

i))2 + λ‖ŵ∗‖, (2.3)

where λ represents the balancing factor for regularization and ŵ∗ represents the
predicted model parameters. The regression targets t∗ for training pair (P,G) are
defined as

tx = (Gx − Px)/Pw,

ty = (Gy − Py)/Ph,

tw = log(Gw/Pw),

th = log(Gh/Ph).

(2.4)

The classification layer has a unit for each of the classes and passes the features
obtained from the fully connected layers through a softmax activation function,
therefore obtaining a vector of probabilities stating that the object belongs to a
class.

Both the RPN and the R-CNN use an objective function aimed at minimizing a
multi-task loss function, which combines a regression and classification loss term.

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi,p
∗
i) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i). (2.5)

The difference in loss functions for the RPN and the R-CNN is in the amount of
classes in the classification layer and therefore the classification loss term. For the
RPN, it should predict either object or not an object, whereas for the R-CNN it
should predict a vector of probabilities for each object class. Therefore, for the RPN,
i represents the index of the anchor in a batch, pi is the predicted probability that
anchor i is an object or not an object, and p∗i is the binary ground-truth label.

For the R-CNN, i refers to the index of the proposal in the batch, and pi is a
vector of probabilities that an object belongs to a class, and p∗i is the ground truth
object class label. For both the RPN and R-CNN, ti is a vector representing the
parameterized predicted bounding box coordinates and t∗i represents coordinates of
the ground-truth box. The classification loss Lcls is a log loss over the classes and
the regression loss Lreg is a smooth L1 loss, which is given by:

Lreg(t, t
∗) =

∑
i∈{x,y,w,h}

smoothL1(ti, t
∗
i), (2.6)

in which

smoothL1(x) =

{
0.5x2, if|x| < 1

|x|− 0.5, otherwise

}
. (2.7)

Object detection 14

The terms are normalized by the batch size Ncls and the number of anchor locations
or bounding boxes Nreg, and weighted by a balancing parameter λ. According to
Ren et al. (2015), the value of λ = 10 provides the best results.

The final loss of the Faster R-CNN network is then a sum of the previously described
loss terms,

L = LRPN,cls + LRPN,reg + LR−CNN,cls + LR−CNN,reg. (2.8)

and is used to optimize all the trainable parameters in the model.

The architecture of the Faster R-CNN model was explained in the previous paragraphs
and will serve as a basis for the extensions of the model explained in the rest of the
report.

Knowledge graphs 15

2.2. Knowledge graphs

Extensive research effort has been conducted in encoding semantic knowledge, descri-
bing real-world concepts and their relationships, in machine readable forms such
as knowledge graphs (Paulheim, 2017). Knowledge graphs have been widely used
in many data-driven applications, such as web search, social networks, and natural
language processing (Dong et al., 2014). These applications use large-scale knowledge
which have been constructed using automated extraction from online data or other
relevant data sources. Recently, knowledge has also been deducted from other
data sources, such as images, in for example the Visual Genome dataset (Krishna
et al., 2017). While using such large-scale knowledge graphs has many advantages,
including improved generalizability across multiple domains (Fang et al., 2017),
they are not suitable for BrainCreators in most instances. Visual asset or quality
inspection, the core task BrainCreators performs for clients, is usually not aimed
at recognizing conventional objects, but rather domain specific objects and defects.
Since it is BrainCreators’ goal to lift knowledge transfer from domain expert to
machine learning models to a higher level, creating a knowledge graph with the
clients’ domain expert could help in improving the knowledge transfer process.
Therefore, it is favorable to select a method that allows for integration of custom
knowledge graphs.

Although many variations of knowledge graphs exist, this project only focuses on the
distinction between undirected (a) and directed (b) graphs, as displayed in Figure
2.8. Graphs, given by G = {N,V}, are composed of nodes N, representing objects or
attributes in this project, and are connected by edges V that represent a relationship.
In undirected graphs the relationship described by the edge is valued similarly by
the connecting nodes, while in directed graphs the relationship is only applicable
in the direction of the arrow. To give an example: in ”man rides bicycle”, the
relationship rides is not applicable in the other direction.

Figure 2.8.: Undirected and directed graph (Fionda and Palopoli, 2011)

Graph G can be transformed to an adjacency matrix of size (NxN), where the
elements of the matrix describe whether or not a relationship exists between the
nodes. The value of these matrix elements represent, in the case of knowledge
graphs, either semantic consistency between concepts or a co-occurrence measure of
concepts.

Integrating domain knowledge 16

2.3. Integrating domain knowledge

A literature review has been conducted to find state of the art frameworks that
integrate knowledge graphs in image classification or object detection networks. All
frameworks were reviewed on a number of aspects, the most important being:

• The application; BrainCreators would prefer a framework that is aimed at
object detection, since it relates to their core activities most strongly.

• Point of integration; the domain knowledge graph can be integrated at several
points in the machine learning pipeline and the way the integration is inter-
twined with the main object detection pipeline can have consequences for
future relevance of the framework. A framework that allows a modular appli-
cation to be added to several existing object detection pipelines would be
preferred.

• Type of knowledge graphs used; some frameworks allow for the integration of
a custom knowledge graph, fitting exactly to the area of application, whereas
others rely on large-scale knowledge graphs that are readily available.

• Availability of code; in case the paper’s code can be found online, it would
be considerably easier to implement the proposed framework in the amount of
time available for the project.

One of the simplest ways to insert knowledge graphs in object detection models
is to perform an additional optimization step on the proposed class labels of the
model, as proposed by Fang et al. (2017). The proposed probability vector P of
an object belonging to classes in the dataset is optimized by multiplying with the
adjacency matrix of semantic consistency, generating optimized prediction P̂. The
knowledge graph utilized is a large-scale knowledge graph called MIT ConceptNet
by Liu and Singh (2004), out of which the semantic consistency is extracted with
random walks with restart (Tong et al., 2006). Although code is not available for
this method, it should be realizable to implement the framework. The drawback of
the method is the fact that the knowledge graph is not integrated in the trainable
machine learning pipeline, therefore the object detection model does not learn to
generate better predictions based on the domain knowledge.

Contrarily, Marino et al. (2017) introduce a Graph Search Neural Network (GSNN)
purposed for multi-label image classification which is part of the trainable pipeline.
A detection network proposes detected objects, which are used as starting points
for propagation in a knowledge graph. Neighboring nodes in the graph are then
expanded based on a learned importance network in two iterations. After the final
iteration, a set of predictions per graph node is concatenated with the features from
the last fully connected layers. The final feature vector is then fed to the final
classification layer. Although results are promising and the method is modular,
the framework might not be suitable for the smaller graphs that BrainCreators
would like to construct, as propagating through those graphs might not be possible.
Additionally, the paper is focused on image classification and code for the paper is
not available, making it hard to realize in the given time frame.

Integrating domain knowledge 17

Another framework that incorporates the knowledge graph in the trainable pipeline
called Hybrid Knowledge Routed Modules (HKRM) was introduced by Jiang et al.
(2018). The authors make a distinction between knowledge forms; explicit and
implicit knowledge. Explicit knowledge is defined as object-to-attribute and relatio-
nal object-to-object knowledge, whereas implicit knowledge is defined as spatial
knowledge that is usually not defined linguistically, such as: ’the sea is always below
the ships’. Instead of propagating through the knowledge graphs, the edge values are
extracted from annotations of large object detection datasets and knowledge graphs
such as Visual Genome (Krishna et al., 2017). The visual features from the last fully
connected layers is routed through both explicit and implicit knowledge modules,
which are small neural networks themselves, to output knowledge enhanced features.
These knowledge enhanced features are concatenated with the original feature set
and send to the final classification step. HKRM is a modular method that can be
applied to any state of the art object detection pipeline and can either be used with
pre-existing large-scale knowledge graphs or smaller, custom knowledge graphs.

Combining the previously mentioned advantages and the fact that the authors have
published the code of the paper, the choice has been made to create a custom
implementation based on HKRM for BrainCreators.

18

3.Implementation

In this section, the several phases of implementation of the project are described.
First, the model is created and adjusted to match BrainCreators’ method of working.
After that, a client dataset is chosen and a corresponding knowledge graph is created.
The performance of the model is then evaluated, with the addition of various extents
of domain knowledge.

3.1. Model

The code that accompanied the original paper by Jiang et al. (2018), found on
https://github.com/chanyn/HKRM, turned out to be outdated in terms of used
packages. Therefore, a new implementation was made using Facebook’s Detectron2
library (Wu et al., 2019), which BrainCreators also uses in their BrainMatter platform.
(Tests have been conducted to verify that the new implementation is able to replicate
the same results as the original paper, compared on Microsoft COCO dataset (Lin
et al., 2014), and is therefore an accurate implementation of the framework.) This
section will be dedicated to explaining the general architecture used and how the
two modules that are integrated work.

https://github.com/chanyn/HKRM

Model 19

3.1.1. Architecture

Jiang et al. (2018) propose to build two modules that can be plugged into any object
detection network. Their implementation in the paper is build with Faster R-CNN,
of which the architecture is explained in Section 2.1.2. Detectron2 offers a base
implementation of Faster R-CNN with ResNet, which can be modified as required.

Figure 3.1.: Model architecture of implementation based on Faster R-CNN with the addition of an
explicit and implicit knowledge module

In this implementation, instead of feeding the output features of the fully connected
layers straight to the bounding box regression and classification layer, the features
are also routed through the implicit and explicit module, as can be seen in Figure
3.1. Both modules hold a form of domain knowledge that will be used to output
knowledge enhanced features, which will be concatenated with the original feature
set. This way, final layers should be able to make a more informed decision regarding
the object a proposal contains and make a knowledge-driven prediction.

3.1.2. Explicit knowledge

The explicit knowledge module is a supervised learning method that aims to use pre-
defined information regarding the objects, their attributes, and relationships within
the dataset. The knowledge is captured by a knowledge graph Q =< C,V >, where
C represents object class nodes in the graph and vi,j ∈ V the edge weights. Graph Q
is then transformed to an adjacency matrix, where each cell in the matrix describes
either the similarity between object classes in the dataset in terms of attributes

Model 20

and properties, or the probability of a relationship between objects. The explicit
knowledge module builds an adaptive region-to-region graph Ĝ =< N,E >, where
N represent the object class nodes and ei,j ∈ E represent the graph edges. Graph Ĝ
is adaptive in the sense that it is adapted to the object classes that are represented
in the batch of proposals.

The goal of the explicit knowledge module is to learn to encode the relationship
between the features belonging to each object class, and the relationship of between
features of different object classes. Learning to encode this knowledge assures that
the knowledge can be applied in the testing phase.

Figure 3.2.: Depiction of the explicit knowledge module (where N is number of proposals, F is
number of features per proposal, M is the size of the module)

In Figure 3.2, the explicit module is depicted. The output of the fully connected
layers is a list (NxF) of N proposed regions and F corresponding features per image.
The goal of the explicit knowledge module is to learn the edge weights ei,j to
approach the ground-truth edge weights vi,j, which is done with a stacked multi-layer
perceptron (MLP), composed of the convolutional layers of the module:

êi,j =MLPQ(α(fi, fj)), (3.1)

where α represents the pairwise L1 difference and (fi, fj) represents the features of
a region pair. The list of proposed regions and features is fed to explicit module,
denoted by f in Figure 3.2. The pairwise L1 difference between the features of each
proposed region is calculated with

fabs = |f− fT |. (3.2)

Model 21

In the training phase the region proposals are accompanied by ground-truth labels
out of the labeled training data, and these are used to create a ground-truth adjacency
matrix AGT (N×N), which contains all ground-truth edge weights vi,j, for all region
proposals in the batch. Four convolutional layers then apply filters to fabs and
reduce its size to a predicted adjacency matrix AP(N×N) for the proposed regions,
which contains all predicted edge weights êi,j. Through doing so, the model has
learned to deduct the similarities or relationships between object classes from the
features of each object.

Lastly, the knowledge enhanced features are computed by performing matrix multi-
plication, indicated with batched matrix multiplication () in the figure, with the
predicted edge weights and the list of input features:

fenhanced = Êf. (3.3)

These enhanced features are concatenated to the base model features and fed to the
bounding box regression and classification layers. The supervision of this module is
in the comparison of the edge weights of the predicted adjacency AP matrix and the
ground-truth adjacency matrix AGT , through computing the mean squared error
(MSE)

L(fabs,WQ,Q) =

N∑
i=1

N∑
j=1

1

2
(êi,j − vi,j)

2, (3.4)

where WQ represents the trainable model parameters of the MLP.

In the original paper and in the custom implementation, the knowledge graph is split
into two graphs, where one describes the similarity between objects based on their
attributes (attribute graph) and the other describes the likelihood of co-occurrence
of objects (relational graph).

3.1.3. Implicit knowledge

The implicit knowledge module is an unsupervised learning method, which aims to
capture spatial relationships between object classes in the dataset. The module is
based on the concept of multi-head attention, which was first introduced by Vaswani
et al. (2017). Attention mechanisms were first applied in networks dealing with
natural language processing. Including an attention mechanism in neural networks
should allow the model to learn the context of words in sentences and word sequences,
and therefore improve the ability to answer queries. Multi-head attention combines
multiple attention mechanisms in parallel, allowing each mechanism to focus on
learning different aspects of the context. Applied to the implicit knowledge module
in the network, multi-head attention is used to capture multiple spatial layouts of
objects with respect to other objects.

Model 22

Figure 3.3.: Depiction of the implicit knowledge module (where N is number of proposals, F is
number of features per proposal, M is the size of the module, T is the amount of graphs
in the module)

As input for the module, the proposed regions from the RPN are used to generate
region coordinate features based on the bounding boxes coordinates of the proposed
regions and their corresponding objectness score pi. The bounding box coordinates
are normalized with the image width w and height h:

r =

(
x1

w
,
y1

h
,
w

w
,
h

h
,pi

)
. (3.5)

The objectness score represents a calculated probability that the proposed region
is actually an object. The list of region features is then fed to T smaller neural
networks, which are all composed of two convolutional layers. Based on the region
features, each neural network builds a region-to-region undirected graph
Ĝ :=< N,E >, where N represent region proposal nodes and the edges ei,j ∈ E
a form of spatial knowledge between two nodes. Each network predicts its own
adjacency matrix for the input list of region features, representing the relationships
between the regions.

The learned edges ê
(t)
i,j of the individual graphs Ĝt, t = 1, ..., T , are averaged and an

identity matrix I is added to obtain the final edge connections êIi,j ∈ ÊI:

êIi,j =
1

T

T∑
t=1

ê
(t)
ij + I. (3.6)

Model 23

The adjacency matrix is then multiplied with the list of input features, similarly as
in the explicit knowledge module, to output knowledge enhanced features:

fenhanced = Êf. (3.7)

The weights of the T neural networks are updated according to the loss of the entire
model, and are not supervised independently, since there is no ground-truth available
for this module.

The loss of the entire model is an extension of the loss function of Faster R-CNN,
described in Equation 2.8, where the MSE losses of the predicted attribute and
relational graphs are added to the original loss function:

L = LRPN,cls + LRPN,reg + LR−CNN,cls + LR−CNN,reg + LAttr + LRela. (3.8)

While the HKRM framework aims to inform a machine learning model of explicit
knowledge, it does not provide the model with reasoning capabilities as humans are
capable of. Instead, it aims to guide the model in its quest for optimal settings by
imposing an inductive bias on the learning process, both by regularization in the
loss function, as well as the addition of extra features in the classification layer.
Through regularization, model settings that lead to results that are inconsistent
with the described domain will be penalized.

Dataset description 24

3.2. Dataset description

A dataset of one of BrainCreators’ clients, a Dutch telecom provider, is used to test
the performance of the implementation. The dataset contains images of cabinets,
displayed in Figure 3.4, which were taken with the purpose of training a model
which would be able to recognize the objects in the cabinets. An asset inspection
employee can then take a picture of the cabinet, and the model will determine
whether the items in the objects in the cabinet are present and in good condition.
This dataset is chosen because many objects are to be detected in one image, which is
what the modules were originally intended for. Additionally, the objects in cabinets
are positioned in a highly structured manner, and are therefore very suitable to be
described by a knowledge graph, as well as for capturing the spatial relations between
objects in the implicit knowledge module. Since the annotations of the objects in
the images were not complete, this project included initiating and coordinating a
new annotation process, which led to a dataset of 500 fully annotated images with
12 object classes.

Figure 3.4.: Example image of cabinet inspection dataset with bounding boxes

Similarly to the paper, two knowledge graphs will be constructed, one with attribute
knowledge and the other with relationship knowledge. The attribute knowledge
graph will describe the objects by their color, shape, material, texture, and other
noticeable attributes such as the presence of text or a barcode. The relationship
knowledge graph will describe the co-occurrence of objects in the dataset. The edge
weights can be deducted in two ways:

Testing 25

• Calculating the frequency of appearance of objects and their attributes and
object-object relationships in the dataset. Frequency data is, however, highly
reliant on the distribution among object classes in the dataset. If some objects
are unrepresented in the dataset, this could lead to inaccurate knowledge
representation in the knowledge graph.

• Consult with the domain expert to describe the likelihood of object-attribute
and object-object relationships.

In this project, the attribute knowledge graph was constructed with the knowledge
gathered from working with the dataset, operating as ’domain expert’ in the context.
The relational graph was deducted from the the frequency statistics of the dataset.
From the two knowledge graphs, two corresponding adjacency matrices are construc-
ted. A full description of the dataset and object attributes can be found in Appendix
A.2, and the description of adjacency matrix creation can be found in Appendix A.3.

3.3. Testing

Various tests will be conducted to assess the overall influence of the knowledge
modules on the predictive performance, the influence of hyper-parameter λ, and
an ablation study will determine whether less training data is required when the
knowledge modules are used. The setup of the individual tests is explained below.

3.3.1. Influence of knowledge modules

The performance of the model will be tested without modules, and with various
combinations of the explicit (attribute, relational) and implicit (spatial) knowledge
modules. The added value of each module and module combinations will be assessed.

Several metrics are used to evaluate the performance of an object detection model.
The metrics used are adopted from the Microsoft COCO dataset (Lin et al., 2014).

• Average precision (AP) and average recall (AR)
The precision metric measures how accurate the predictions are. It is given
by the fraction of true positive predictions out of all the positive predictions a
model did.

The recall metric evaluates how many times the model was able to find an
object out of all the labeled objects that were present in the data. The
mathematical definitions are given by

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

(3.9)

where TP is true positive, TN is true negative, FP is false positive, and FN refers
to the false negative samples. To obtain the average precision and recall, the
scores are averaged over all object classes.

Testing 26

• Intersection over Union (IoU)
IoU measures the overlap between the predicted bounding box and the ground-
truth bounding box, as seen in Figure 3.5.

Figure 3.5.: Depiction and equation describing IoU

To further specify the results, the COCO metrics are split up into several categories,
which specify results for different levels of IoU and different object areas as seen in
Table 3.1. To further explain the notation with two examples: AP50 refers to the
average precision calculated for objects with IoU of at least 50 %, whereas ARm
refers to the average recall calculated for objects with medium size. In the client
dataset used, there are no objects which have an area of < 322, therefore, measures
APs and ARs will not be present in the results.

Table 3.1.: COCO metrics used to evaluate results

Metric IoU Area (pixels)

AP 0.50:0.95 All

AP50 0.5 All

AP75 0.75 All

APs 0.50:0.95 Small (area < 322)

APm 0.50:0.95 Medium (322 < area < 962)

APl 0.50:0.95 Large (area > 962)

AR 0.50:0.95 All

ARs 0.50:0.95 Small (area < 322)

ARm 0.50:0.95 Medium (322 < area < 962)

ARl 0.50:0.95 Large (area > 962)

The results for each metric will be tested without knowledge modules, with the
addition of the attribute, relational, or spatial knowledge, and with all modules
together. Each model configuration will be trained 10 times, to make sure the
results are reliable, and average results will be reported.

Testing 27

3.3.1.1. Implementation details

As described above, the network used is a Faster R-CNN model with ResNet back-
bone, to which the knowledge modules have been added. The ResNet backbone
network is composed of 50 layers. The model is trained on two GPU’s with a batch
size of 2. The sizes of the modules are all set to Ma =Mr = 128 for the attribute
and relational modules, whereas it is set to Ms = 256 for the spatial module. The
dimension of the original feature vector is D = 1024 before concatenating with
the module features. Since the knowledge modules should be neither under- nor
overrepresented in the final feature vector, the module sizes should be balanced. In
the original paper, module sizes of 256 were chosen with an original feature vector
size of 2048. The explicit knowledge modules sizes were therefore scaled to match
the proportions, however, Jiang et al. (2018) argued that the implicit knowledge
module requires a size of 256 to accurately capture spatial relations and has therefore
retained its size.

T = 10 implicit knowledge modules are used, as the original paper indicated this
configuration is best capable of capturing spatial relations. The model is trained for
25 epochs (5000 iterations), with stochastic gradient descent (SGD) as optimizer.
A learning rate of 0.01 is used, which is reduced 8 times through multiplying
the learning rate with 0.1. Experiments are repeated five times for each model
configuration and training set size, all with fixed initialization but random batching,
after which results are averaged.

3.3.2. Hyper-parameter λ

The output of the explicit knowledge module will be learned to comply with the
values in the adjacency matrix that is used for supervision of the module. The values
of the matrix representing the relationships between objects are either frequency
statistics or estimations, and are therefore most likely not a completely accurate
representation of the domain. Forcing the module towards the values in the adjacency
matrix might therefore not be beneficial to the model prediction. Therefore, a
hyperparameter λ is introduced in the loss function,

L = LRPN,cls + LRPN,reg + LR−CNN,cls + LR−CNN,reg + λ(LAttr + LRela), (3.10)

to limit the influence of the domain knowledge on the final model predictions. The
influence of hyper-parameter λ is tested with values of 1, 0.1 and 0.01, and average
precision and recall will be evaluated.

3.3.3. Ablation study

If the model is guided in its quest to find relationships in the data through the
addition of domain knowledge, the model could potentially require less training
samples to learn to recognize objects. This test should assess whether this hypothesis
is actually correct and, potentially, the extent of the improvement. The training
dataset was reduced in size gradually, while maintaining the same distribution of
classes. The goal is to then find a break-even point.

Testing 28

Out of the original training set, subsets of 80, 50 and 20 percent of data were selected,
while maintaining a similar distribution of object classes. The exact details of the
training sets can be found in Appendix A.2. The learning rate schedule outlined
in Section 3.3.1.1 was scaled to match the subset, and ensure that all datasets
were trained for a similar number of epochs. Average precision and average recall
of a model with all knowledge modules and model without knowledge modules is
compared.

3.3.4. Hypotheses

Several hypotheses regarding the performance of the model will be formed, in order
to evaluate the results.

HP1 The presence of the knowledge modules will improve the overall
precision
Providing the model with reasoning capabilities should allow the model to take
advantage of object similarity and different to detect objects more accurately.

HP2 The presence of the knowledge modules will improve the overall
recall
Imposing inductive bias on the model and thereby guiding it with explicit
knowledge should allow the model to take advantage of known co-occurrence
and similarities of objects, and its learned spatial layouts from the implicit
knowledge module, to detect more object instances. To give an example, some
objects can only occur together with another object, since one is located on
the other.

HP3 The presence of the knowledge modules will lower the amount of
training data required to achieve similar average precision, compared
to a model without knowledge modules trained on all of the training
data
The framework should reduce the reliance of the model on training data to
learn patterns, and therefore the number of examples required could decrease.

HP4 The quality of the knowledge graph and its edge weights will be of
significant influence on the impact of the modules
The knowledge enhanced features comprise a large part of of the final feature
vector that is fed to the classification layer, and therefore has a big influence
on the final prediction. In case the edge weights of the knowledge graphs are
not valued in the correct way, the model might be taught invalid patterns.

29

4.Results

4.1. Influence of knowledge modules

In order to evaluate the influence of the knowledge modules and individual knowledge
graphs on the client dataset, multiple model configurations with the presence of the
attribute (Attr.), relational (Rela.), and spatial (Spat.) knowledge modules were
tested. Table 4.1 first outlines the baseline results on average precision, achieved
with a plain Faster R-CNN network on the dataset. The model with all knowledge
modules scores highest on AP, however, this is achieved by a 0.007% margin and is
therefore far from significant. Figure 4.1 depicts the difference in AP for all model
configurations, with corresponding standard deviation obtained from averaging the
results of five training runs. The standard deviation of the model with all modules
indicates that the difference of AP compared to the baseline could be attributed to
deviation across runs.

The model with all knowledge modules also scores highest on AP50, whereas the
baseline model achieves the highest scores on AP75 and APl, although all with small
margins. The model with all knowledge modules achieved the highest APm score,
indicating that smaller objects were detected more often, with a margin of 0.557%.
The model has most likely had to give up precision in other areas to achieve this
though, as the total AP does not reflect the same score. The individual presence of a
knowledge module did not significantly improve the score on all of the AP measures.

Table 4.1.: Comparison of average precision with various model configurations, showing performance
and the deviation from the baseline (all in %)

Modules Module size λ AP AP50 AP75 APl APm

Attr. Rela. Spat. (%) (%) (%) (%) (%)

None 45.923 77.139 50.205 46.303 15.165

All 128 128 256 1 45.930 77.312 50.130 46.257 15.722

(0.007) (0.172) (-0.076) (-0.046) (0.557)

Attr. 128 45.750 77.058 49.825 46.196 15.392

(-0.174) (-0.082) (-0.380) (-0.107) (0.227)

Rela. 128 45.680 77.186 49.307 45.932 15.029

(-0.243) (0.047) (-0.899) (-0.371) (-0.136)

Spat. 256 45.839 77.155 50.114 46.171 15.511

(-0.084) (0.015) (-0.091) (-0.133) (0.346)

Influence of knowledge modules 30

Figure 4.1.: Average precision for model several model configurations with and without knowledge
modules

Table 4.2 shows the scores and deviation from the baseline for multiple model
configurations, when evaluating the average recall. The baseline model performs
best for AR and ARm, although again with tight margins. Comparing to the
model with all knowledge modules, the difference cannot be attributed to standard
deviation, as displayed in Figure 4.2. However, the difference with the model with
attribute knowledge module can be connected to the standard deviation. The model
containing solely the spatial knowledge module achieves the highest score on ARl,
with a margin of 0.18%.

Table 4.2.: Comparison of average recall with various model configurations, showing performance
and the deviation from the baseline (all in %)

Modules Module size λ AR ARl ARm

Attr. Rela. Spat. (%) (%) (%)

None 54.70 27.02 54.26

All 128 128 256 1 53.90 26.62 53.30

(-0.80) (-0.40) (-0.96)

Attr. 128 1 54.56 27.08 54.08

(-0.14) (0.06) (-0.18)

Rela. 128 1 54.50 26.86 53.86

(-0.20) (-0.16) (-0.40)

Spat. 256 54.46 27.20 53.86

(-0.24) (0.18) (-0.40)

Influence of knowledge modules 31

Figure 4.2.: Average recall for model several model configurations with and without knowledge
modules

In conclusion, the influence of the knowledge modules on improving average precision
and recall is, even if present in a few of the metrics, not significant enough to state
that the knowledge modules have a positive effect on the model performance. The
margins are so small that the differences might have simply been caused by the
variance in training run results, which is always present since optimization does not
necessarily lead to one optimal state.

Influence of hyperparameter λ 32

4.2. Influence of hyperparameter λ

Hyperparameter λ was introduced to reduce the influence of the loss over the
attribute and relational graph in the total loss of the model. Table 4.3 shows the
AP scores achieved for models with various λ values. The first line of the table
again shows the baseline results achieved with a plain Faster R-CNN model, and
rows below show AP scores and the deviation from the baseline. The model with all
knowledge modules modules and λ value of 0.1 is shown to obtain the highest score
in AP, AP50, APl, and APm. On AP75, the model does not outperform the baseline
model. The margins of improvement or deterioration are again minimal, with values
of around 0.25%, except for the improvement on APm, which has a value of 0.641%.

Table 4.3.: Comparison of average precision for models with different λ values, showing performance
and the deviation from the baseline (all in %)

Modules Module size λ AP AP50 AP75 APl APm

Attr. Rela. Spat. (%) (%) (%) (%) (%)

None 45.923 77.139 50.205 46.303 15.165

All 128 128 256 1 45.930 77.312 50.130 46.257 15.722

(0.007) (0.172) (-0.076) (-0.046) (0.557)

All 128 128 256 0.1 46.167 77.482 49.972 46.553 15.806

(0.244) (0.342) (-0.233) (0.249) (0.641)

All 128 128 256 0.01 46.109 77.206 50.328 46.536 15.545

(0.185) (0.066) (0.123) (0.233) (0.380)

All 64 64 64 1 45.871 77.393 49.473 46.334 15.344

(-0.052) (0.254) (-0.732) (0.030) (0.178)

Evaluating the obtained results on AP with the standard deviation of training runs,
as depicted in Figure 4.3, it is again evident that there is overlap in the ranges
of the baseline model and the model with λ = 0.1. Therefore, the results are not
conclusive.

In order to evaluate the influence of the module size on the performance of the
model, a test run was also performed with a module size of 64 for all knowledge
modules. As shown in Table 4.3, a smaller module size did not yield more favorable
results than the larger module size.

Influence of hyperparameter λ 33

Figure 4.3.: Average precision for model configurations with various levels of λ in the loss function

In Table 4.4, the models with different λ values are compared on the average recall
scores. The baseline model outperforms the knowledge enhanced modules with
various levels of λ on AR and ARm, while the baseline model is outperformed by
the model with module size 64 on ARl with a very tight margin. Figure 4.4 again
shows that the results are inconclusive due to the standard deviation.

Table 4.4.: Comparison of average recall for models with different λ values, showing performance
and the deviation from the baseline (all in %)

Modules Module size λ AR ARl ARm

Attr. Rela. Spat. (%) (%) (%)

None 54.70 27.02 54.26

All 128 128 256 1 53.90 26.62 53.30

(-0.80) (-0.40) (-0.96)

All 128 128 256 0.1 54.40 27.04 53.82

(-0.30) (0.02) (-0.44)

All 128 128 256 0.01 54.20 26.94 53.56

(-0.50) (-0.08) (0.70)

All 64 64 64 1 54.66 27.24 54.20

(-0.04) (0.22) (-0.06)

Influence of hyperparameter λ 34

Figure 4.4.: Average recall for model configurations with various levels of λ in the loss function

Although the model with λ value of 0.1 was able to outperform the baseline model
in terms of average precision on nearly all AP metrics, the margins are, again, too
small to be of real significance. Since the results on AR do not reflect any significant
improvement in performance either, it can be concluded that even with the presence
of a balancing hyperparameter, the influence of the knowledge modules is not deemed
positive in the application to the client dataset.

Ablation study 35

4.3. Ablation study

Several experiments were conducted to assess the influence of the knowledge modules
on the amount of training data required to learn the correct patterns in the data.
Figure 4.5 depicts a comparison of AP score with a plain Faster R-CNN model and
a model with all the knowledge modules, trained with 100, 80, 50 and 20% of the
training data. While the AP scores are nearly identical for 100 and 20% of the
data, small differences in performance are visible for subsets of 80 and 50% of the
data. However, these results contradict each other, therefore not allowing for a clear
conclusion.

Figure 4.5.: Average precision for model configurations with and without modules, trained on
various percentages of the original training data

Figure 4.6 depicts the AR score of the baseline model and the model with all modules,
depicting the same contradicting results as where obtained for AP.

Ablation study 36

Figure 4.6.: Average recall for model configurations with and without modules, trained on various
percentages of the original training data

The purpose of this test was to assess whether the same predictive performance could
be upheld if training data was removed and knowledge was transferred through the
knowledge modules. However, since the performance decreases with similar steps
for both the baseline model and the model with all knowledge modules, it can
be concluded that the model is not capable of transferring knowledge through the
modules well enough to compensate for training data. Tables with results for all AP
and AR metrics can be found in Appendix A.4.1.

37

5.Discussion

This project has aimed to explore available frameworks that integrate domain know-
ledge in object detection pipeline, and to design a modular software deliverable
that can be used in future client cases. While designing the artifact, other design
choices that had to be made where concerned with the client dataset annotation and
evaluation, as well as the knowledge graph creation. Below, the results of Section 4
will be evaluated using the previously defined hypotheses.

The results in Section 4 have shown that the addition of knowledge modules to
a Faster R-CNN object detection network did not yield favorable results on the
telecom client dataset, thereby showing that hypotheses 1, 2, and 3 could not be
validated. The hypotheses refer to, respectively, an increase in average precision and
recall, and a decrease in the amount of training data required for similar accuracy.
All of these expected results could not be obtained in the use case that was tested,
as results for average precision and recall were not or not consistently higher than
the results for a plain Faster R-CNN network. Therefore, no clear conclusion can
be drawn, and the method does not offer enough improvement and generalization
to apply to other use cases with confidence.

Hypothesis 4 relates to the influence of the quality of the knowledge graphs and edge
weights on the impact of the knowledge modules on the final model accuracy. This
hypothesis can neither be deemed fully valid or invalid, since it is only possible to
speculate the reason for the results obtained regarding the influence of the modules,
hyper-parameter λ, and the ablation study. Jiang et al. (2018) were able to obtain
an improvement of 3.6% in average precision compared to Faster R-CNN results on
benchmark dataset Microsoft COCO, and those results have been replicated with
this implementation of the framework on the same dataset. However, there are a few
other differences in the manner of implementation in the paper and the application
of the client dataset in this project that could be a potential cause for the results
obtained:

1. Quality of the knowledge graph
Jiang et al. (2018) used a large-scale knowledge graph based on the annotations
of the VisualGenome dataset, which describes many attributes of objects and
relationships between objects. The edge values of the graphs were obtained by
using the frequency statistics of appearance of object-object or object-attribute
relationships in the images of the dataset. Since the client case application was
based on a custom made graph, the edge values were obtained in a different
manner, which could potentially lead to a different performance. For the
attribute graph, the similarity of objects was still obtained by computing the
Jensen-Shannon divergence over all attributes an object has, but the graph
was not enriched by counting frequency of appearance of object-attribute
relationships.

The relational graph was created in an entirely different manner than in the
paper, which was based on the same principle of counting the appearance of

38

object-object relationships, described in the knowledge graph, in images. For
the application on the client case, the graph was constructed through counting
the frequency of co-occurrence of objects in images and defining a probability
of occurrence of object A if B was present in the image.

These changes in graph creation could potentially lead to a representation of
the domain that is not as accurate as the knowledge graph used in the paper,
therefore lowering the quality of the knowledge inserted in the object detection
pipeline.

2. Quality of the dataset
The client dataset used in the application and tests was annotated for this
project with the help of the BrainCreators team. The final dataset created
consisted of 500 images, which is extremely small when comparing it to Micro-
soft COCO which consists of 118.000 images. It could potentially be the case
that the quality of the dataset was therefore too low for the model and modules
to effectively identify the patterns in the data and generalize well enough to be
of real significance in towards the final model accuracy. Quality of annotations
of objects in the dataset can also play a more significant role in small datasets,
since the model could essentially be fed biased data.

3. The framework
The authors of the HKRM framework have created it to alleviate problems
faced with large-scale object detection tasks, while the client case application
was focused on a limited set of 12 objects. Although there were always multiple
objects present in each image, this cannot be considered a large-scale object
detection dataset. It could potentially be the case that the knowledge graph
and the use of knowledge modules, in the large-scale object detection dataset,
helps the object detection network to identify sub-domains and differentiate
between contexts within the dataset in which object classes appear, through
taking into account object similarity and relationships between objects.
Through learning these contexts, the modules can help the model to find
objects that also often appear in this context. Contrarily, the client dataset
used in the application consisted of objects that all appear in the same context,
and therefore the knowledge modules might not be able to guide the model to
differentiate contexts, limiting its influence.

BrainCreators’ aim was to formalize and improve the knowledge transfer process,
by exploring other methods to transfer knowledge from domain to the BrainMatter
platform. The application on this client dataset is not capable of such knowledge
transfer, therefore, there is currently no added value for BrainCreators in the applica-
tion of the framework on this client case. The added value of this project lies,
therefore, in the first steps that were taken in the exploration of hybrid machine
learning methods for BrainCreators. In doing so, many lessons were learned with
regard to the challenges faced in creating knowledge graphs for client domain applica-
tions, the creation of valuable datasets and corresponding process of annotating the
data, and the implementation of the hybrid frameworks in the currently used object
detection pipelines in BrainMatter.

39

BrainCreators can continue this line of research by further formalizing the knowledge
transfer procedure from client domain to the BrainMatter platform, through further
research into knowledge graph creation and hybrid machine learning frameworks.
Potential areas of research include frameworks that perform graph propagation such
as the work of Marino et al. (2017) or frameworks that impose logical constraints
on the training process such as the work of Donadello et al. (2017).

40

6.Conclusion

The goal of this project was to find methods which could improve and expand
the knowledge transfer process. The HKRM framework was chosen because of its
modular character and since it allowed to incorporate a custom made knowledge
graph, which the use cases require. Even though preliminary experiments showed
promise, and the findings of the original paper on the Microsoft COCO dataset
were reproduced with the new implementation of the framework, unfortunately, the
results did not persist on more challenging industrial data. As there was not always
improvement in performance visible with the addition of the knowledge modules
and the results were not consistent, no conclusion can be drawn regarding the
effectiveness of the framework. Therefore, the desired business outcomes, referring
to an improved knowledge transfer process leading to potentially requiring less
training data, were not attained. This project was, however, aimed at performing
an exploration for BrainCreators, outlining methods available and testing one of
those methods. While choosing the HKRM framework involved certain risks from
the start, the relative ease of implementation of the framework in the knowledge
transfer process was considered to be worth the risk. Further testing and more
in depth research regarding hybrid machine learning frameworks should determine
whether the desired business outcomes can be attained in the future.

41

Bibliography

F. Ackermann and C. Eden. Strategic management of stakeholders: Theory and
practice. Long range planning, 44(3):179–196, 2011.

I. Donadello, L. Serafini, and A. D. Garcez. Logic tensor networks for semantic
image interpretation. arXiv preprint arXiv:1705.08968, 2017.

X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang. Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 601–610, 2014.

Y. Fang, K. Kuan, J. Lin, C. Tan, and V. Chandrasekhar. Object detection
meets knowledge graphs. IJCAI International Joint Conference on Artificial
Intelligence, 0:1661–1667, 2017. ISSN 10450823. doi: 10.24963/ijcai.2017/230.

V. Fionda and L. Palopoli. Biological network querying techniques: analysis and
comparison. Journal of Computational Biology, 18(4):595–625, 2011.

R. Girshick. Fast R-CNN. Proceedings of the IEEE International Conference on
Computer Vision, 2015 International Conference on Computer Vision, ICCV 2015:
1440–1448, 2015. ISSN 15505499. doi: 10.1109/ICCV.2015.169.

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Region-based convolutional
networks for accurate object detection and segmentation. IEEE transactions on
pattern analysis and machine intelligence, 38(1):142–158, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2016-December:770–778, 2016. ISSN 10636919. doi: 10.
1109/CVPR.2016.90.

C. Jiang, X. Liang, H. Xu, and L. Lin. Hybrid Knowledge Routed Modules for Large-
scale Object Detection. Advances in Neural Information Processing Systems, 2018-
Decem(Nips):1552–1563, 2018. ISSN 10495258.

Kejriwal. Domain-Specific Knowledge Graph. 2019. ISBN 9783030123741.

R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen,
Y. Kalantidis, L.-J. Li, D. A. Shamma, et al. Visual genome: Connecting language
and vision using crowdsourced dense image annotations. International journal of
computer vision, 123(1):32–73, 2017.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. Microsoft coco: Common objects in context. In European conference
on computer vision, pages 740–755. Springer, 2014.

H. Liu and P. Singh. Conceptnet—a practical commonsense reasoning tool-kit. BT
technology journal, 22(4):211–226, 2004.

Bibliography 42

K. Marino, R. Salakhutdinov, and A. Gupta. The more you know: using knowledge
graphs for image classification. Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, 2017-Janua:20–28, 2017. doi: 10.
1109/CVPR.2017.10.

U. Michelucci. Advanced applied deep learning: Convolutional neural networks and
object detection. 2019. ISBN 9781484249765. doi: 10.1007/978-1-4842-4976-5.

H. Paulheim. Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic web, 8(3):489–508, 2017.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

S. Saha. A comprehensive guide to convolutional neural networks-
the eli5 way, Dec 2018. URL https://towardsdatascience.com/

a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-\

way-3bd2b1164a53.

H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with restart and its
applications. In Sixth international conference on data mining (ICDM’06), pages
613–622. IEEE, 2006.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

L. von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch,
J. Pfrommer, A. Pick, R. Ramamurthy, M. Walczak, J. Garcke, C. Bauckhage,
and J. Schuecker. Informed Machine Learning – A Taxonomy and Survey of
Integrating Knowledge into Learning Systems. pages 1–20, 2019. URL http:

//arxiv.org/abs/1903.12394.

Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. Detectron2. https:

//github.com/facebookresearch/detectron2, 2019.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-\way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-\way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-\way-3bd2b1164a53
http://arxiv.org/abs/1903.12394
http://arxiv.org/abs/1903.12394
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

43

A.Appendix

A.1. Machine learning terminology

• Features
The features referred to in this project in the context of object detection refer
to the identifiers the object detection network has linked to the object classes
in the dataset. Features could be described as the result of filter operations
on the image, followed by multiple other operations such as the application
of activation functions and pooling. The same fixed list of features is applied
to every object proposal, and a numerical vector representing the relevance of
each feature for the object proposal is called the feature vector, also referred
to as features.

• Multi-layer perceptron
The term multi-layer perceptron represents a class of feed-forward neural
networks composed of only one or a few hidden layers, as depicted in Figure
A.1.

Figure A.1.: Multi-layer perceptron

• Hyper-parameters
Hyper-parameters are parameters that are used to control the training process
of a neural network. Much effort is put into finding an optimal set of hyper-
parameters for a training process, as they can greatly influence the outcome
of the results. An example of a hyper-parameter is the learning rate used in
training. A learning rate that is too high will not allow the model to optimally
find local or global loss minima, while a learning rate that is too low will not
be effective at decreasing the model loss.

• Model parameters
On the other hand, model parameters are derived from the training procedure.
They are the optimal settings a model has found to converge to the final result,
such the weights of the neural network’s node weights.

Dataset description 44

A.2. Dataset description

Table A.1.: Description of the visual features of all objects in the dataset, as they were observed.

Objects Description

Address label White sticker which states the address of the cabinet, located
against the backboard of the cabinet

Resistance cap Resistance placed on top of ’Multi-tap’ in case there are no
cables connected to the plugs

Amplifier 1 Grey, square amplifier box, located somehwat in the center
of the cabinet. Nearly identical to ’Amplifier 2’

Amplifier 2 Grey, rectangular amplifier box, located somewhat in the
center of the cabinet. Nearly identical to ’Amplifier 1’

Rock filling The presence of rocks at the bottom of the cabinet, to fill
up the cabinet

Label power cable Yellow labels around power cables, located at the bottom of
the cables and cabinet

Cabinet label White or yellow, rectangular label stating a code. Located
against the backboard of the cabinet

Measurement sticker White, rectangular sticker with information regarding the
cabinet. Located on either the left or right sideboard of the
cabinet

Multi-tap Silver, rectangular box out of which the power is tapped
with multiple cables. Located against the backboard

Power splitter 1 Grey, rectangular box with serves as a power splitter.
Located against the backboard of the cabinet, below the
amplifiers

Power sticker Triangular, yellow sticker with black sign for power, located
against the backboard of the cabinet

Power splitter 2 Silver splitter, which has a blue or white sticker on top.
Located against the backboard of the cabinet

Dataset description 45

Table A.2.: Description of the count and area sizes of all objects in the dataset

Object name Count Min area Max area Average area % of Data

(pixels2) (pixels2) (pixels2) (%)

Address label 505 138 576 310 6.36

Resistance cap 1585 24 176 72 19.97

Amplifier 1 660 327 1528 819 8.32

Amplifier 2 68 641 1723 972 0.86

Rock filling 432 252 1890 891 5.44

Label power cable 1391 37 378 128 17.53

Cabinet label 247 65 451 186 3.11

Measurement sticker 661 182 999 424 8.33

Multi-tap 1175 189 934 490 14.80

Power splitter 1 309 264 1049 456 3.89

Power sticker 689 73 410 205 8.68

Power splitter 2 215 101 560 285 2.71

Table A.3.: Description of the count and percentage of the data the objects occupy in the entire
train set and its subsets, in order to show the equal distribution.

100% 80% 50% 20%

Object name Count Data (%) Count Data (%) Count Data (%) Count Data (%)

Address label 409 6.36% 331 6.41% 202 6.07% 79 5.75%

Resistance cap 1335 20.75% 1076 20.85% 744 22.34% 285 20.73%

Amplifier 1 529 8.22% 424 8.22% 273 8.20% 113 8.22%

Amplifier 2 56 0.87% 44 0.85% 30 0.90% 10 0.73%

Rock filling 351 5.46% 276 5.35% 177 5.32% 73 5.31%

Label power cable 1124 17.47% 909 17.62% 546 16.40% 241 17.53%

Cabinet label 192 2.98% 152 2.95% 107 3.21% 44 3.20%

Measurement sticker 531 8.25% 425 8.24% 267 8.02% 113 8.22%

Multi-tap 930 14.45% 739 14.32% 486 14.59% 206 14.98%

Power splitter 1 263 4.09% 214 4.15% 127 3.81% 57 4.15%

Power sticker 550 8.55% 440 8.53% 280 8.41% 113 8.22%

Power splitter 2 164 2.55% 130 2.52% 91 2.73% 41 2.98%

Knowledge Graph Creation 46

A.3. Knowledge Graph Creation

A.3.1. Attribute graph

In order to create the attribute graph, the attributes are described by their visual
traits, such as color, material, and other specifications. A matrix is created, depicted
in Figure A.2, where attributes are assigned to objects. If the object always appears
with that attribute, a value of 1 will be assigned. In case an attribute of an object
varies, such as the color of ’Cabinet label’, which can be either white or yellow,
both get assigned a value of 0.5. The next step is to perform row normalization

Figure A.2.: Step 1 of attribute graph creation

over all assigned attributes. The third step is to compute the Jensen-Shannon

Figure A.3.: Step 2 of attribute graph creation

divergence, which calculates the difference between probability distributions, thereby
obtaining the difference between objects described by their attributes. To compute

Knowledge Graph Creation 47

the Jensen-Shannon divergence, first the Kullback-Leibler divergence should be
computed, comparing probability distributions P and Q, given by

KL(P||Q) =
∑
x∈X

P(x) ln(
P(x)

Q(x)
). (A.1)

The Jensen-Shannon divergence is computed by

JS(P||Q) =
1

2
KL(P||M) +

1

2
KL(Q||M),

where M =
1

2
(P +Q).

(A.2)

The final attribute graph is then obtained by subtracting the obtained result from
a matrix of ones, resulting in the adjacency matrix depicted in Figure A.4.

Figure A.4.: Step 3 of attribute graph creation

Knowledge Graph Creation 48

A.3.2. Relational graph

The relational graph is obtained through first counting the co-occurrence of objects
in images. If the relationship of object A to object B exists in an images, a value of
1 will be added to the corresponding matrix field. This leads to the frequency table
depicted in Figure A.5.

Figure A.5.: Step 1 of relational graph creation

The relational knowledge graph is a directed graph, since a chance of co-occurrence
does not necessarily have be valid in both ways. For example, some objects are
located on top of other objects and can therefore not appear without them. Therefore,
row normalization is performed on the obtained frequency table in step 1, which leads
to the result depicted in Figure A.6. This way, looking from the perspective of the
rows, if the object the row belongs to appears, the probabilities in the row indicate
the chance that the object belonging to the column will appear as well.

Knowledge Graph Creation 49

Figure A.6.: Step 2 of relational graph creation

Additional results 50

A.4. Additional results

A.4.1. Ablation study

% of Data Modules AP (%) AP50 (%) AP75 (%) APl (%)

100 All 45.930 77.312 50.130 46.257

100 None 45.923 77.139 50.205 46.303

80 All 45.728 76.936 49.858 46.062

80 None 45.528 76.879 49.143 45.890

50 All 44.974 76.047 48.677 45.266

50 None 45.202 75.901 49.654 45.535

20 All 41.857 72.543 43.242 41.904

20 None 41.806 72.327 43.911 41.763

Table A.4.: Results of average precision over various levels of IoU and object sizes

% of Data Modules AR (%) ARl (%) ARm (%)

100 All 53.90 26.62 53.30

100 None 54.70 27.02 54.26

80 All 54.54 26.76 54.32

80 None 54.62 26.56 54.46

50 All 54.54 26.76 54.32

50 None 54.16 25.78 53.78

20 All 52.50 22.52 51.36

20 None 52.20 23.44 50.98

Table A.5.: Results of average recall for various object sizes

	Abstract
	Contents
	List of Figures
	List of Abbreviations
	Research Design
	Problem introduction
	Stakeholder analysis
	Requirements

	System description
	Research questions and problem statement

	Theoretical Background
	Object detection
	Training
	Faster R-CNN

	Knowledge graphs
	Integrating domain knowledge

	Implementation
	Model
	Architecture
	Explicit knowledge
	Implicit knowledge

	Dataset description
	Testing
	Influence of knowledge modules
	Hyper-parameter
	Ablation study
	Hypotheses

	Results
	Influence of knowledge modules
	Influence of hyperparameter
	Ablation study

	Discussion
	Conclusion
	Bibliography
	Appendix
	Machine learning terminology
	Dataset description
	Knowledge Graph Creation
	Attribute graph
	Relational graph

	Additional results
	Ablation study

