
Detecting

Astronomical Objects with

Machine Learning

Master's Thesis Computing Science

January 27, 2021

Student: Michaël P. van de Weerd

Primary supervisor: dr. Michael H. F. Wilkinson

Secondary supervisor: prof. dr. Michael Biehl

Abstract

Over the years, Machine Learning (ML) has solidi�ed its reputation as a quick and easy solution
to all problems that are in some way, shape or form related to classi�cation. In a lot of cases, this
reputation is justi�ed, as the ratio of effort of implementation to the quality of the results is often
very low. As such, �nding new areas in which ML might play a role is a worthwhile endeavor.
In this master's thesis, an effort is made to apply ML in order to detect astronomical objects.
This is done by constructing a max-tree out of astronomical data, computing feature vectors
representing the component attributes found in the tree and determining the signi�cance of
these components using a Learning Vector Quantization (LVQ) classi�er, resulting in a segmen-
tation of the astronomical objects from the background and noise. Using an embedded Python
implementation of LVQ, theMTObjects (MTO) segmentation software has been extended in order
to produce these results from astronomical data in the optical domain, with their qualities being
measured and compared to that of other MTO using a statistical segmentation method. These
measurements show that LVQ does improve the recall of the segmentations, although at the cost
of a signi�cant amount of precision. Therefore, it is concluded that LVQ is not a suitable method
to classify astronomical objects. Future research is required to further investigate the possibility
of utilizing LVQ and ML in general in other ways.

Keywords: computer vision, max-trees, segmentation,
machine learning, learning vector quantization

Contents

1 Introduction 4
1.1 Segmentation of Astronomical Objects . 4
1.2 Reading this Document . 5

2 RelatedWork 7
2.1 Background . 7
2.2 Max-Trees . 7
2.3 Component Attributes . 8
2.4 Learning Vector Quantization . 12

3 Concept 15
3.1 Component Attributes . 15

3.1.1 Perimeter . 15
3.1.2 Composite Positional Attributes . 16
3.1.3 Intensity Attributes . 16
3.1.4 Attributes for Segmentation . 19

3.2 Segmentation Method . 22

4 Realization 23
4.1 Computing Component Attributes . 23
4.2 Segmentation with LVQ . 25

4.2.1 Embedding Python in C . 25
4.2.2 Training the LVQ Classi�er . 27

5 Evaluation 29
5.1 Hyperparameter Tuning . 29

6 Results 31
6.1 Segmenting Astronomical Data for Evaluation . 32
6.2 Quantifying Segmentation Quality . 32
6.3 Comparing Time Measurements . 33

7 Conclusion 36
7.1 Segmentation Quality . 36
7.2 Performance . 36

1

8 FutureWork 37
8.1 Determining Signi�cance . 37
8.2 Parameter Optimization . 37
8.3 LVQ Implementation . 38
8.4 Alternative Applications . 38
8.5 Improving Statistical Segmentation . 38

A Implementing Berger's Max-Tree Algorithm 42

B Implementing Component Attribute Computations 45

C Breaking the Python/C API 49
C.1 Debugging the Python Interpreter . 49
C.2 Considering Performance . 49

2

Acronyms

ML Machine Learning

LVQ Learning Vector Quantization, �rst proposed by Kohonen [9]

GLVQ Generalized LVQ, �rst proposed by Sato and Yamada [16]

sklearn Scikit-Learn, ML framework for the Python programming language by Pedregosa
et al. [12]

sklvq LVQ for sklearn1, LVQ extension for sklearn by Rick van Veen

MTO MTObjects, statistical, max-tree-based classi�er for the segmentation of
astronomical objects by Moschini et al. [11]

1 https://github.com/rickvanveen/sklvq

3

https://github.com/rickvanveen/sklvq

Chapter 1

Introduction

In this chapter, the subject of this master's thesis is introduced, leading up to the research
questions it aims to answer. Additionally, an outline of the thesis is provided to act as a reading
guide.

1.1 Segmentation of Astronomical Objects

The domains of radio astronomy and optical astronomy produce incredibly large amounts of
data on a daily basis. For example, the Vera C. Rubin Observatory is estimated to produce
images of 3200MP [14]. Information captured in these images is a textbook example of big
data in more than one way. In the case of radio astronomy, the data that is being collected
has a signi�cantly high bit depth and is structured in three-dimensional images of such a high
resolution that it is often measured in terms of gigavoxels [11]. It is evident that the extraction
of knowledge from this data requires some form of automation in order to ensure feasibility and
accuracy. Several methods and tools have been developed to observe a range of aspects and
phenomena in the astronomical data. For example, research tools such as the Source Finding
Application (SOFIA) and MTObjects (MTO) by Moschini et al. [11] can be used to determine the
location of astronomical objects in such data. The result of applying these methods is an image
in which each element (pixel of voxel) has been assigned a label, effectively grouping clusters of
elements together. An example of such a segmentation using three different methods has been
included in �g. 1.1.

This thesis mainly builds upon the works of Moschini et al. [11] and Haigh et al. [7], both of
whomfocuson theapplicationofMTOusinga statistical segmentationmethod. MTOdistinguishes
itself due to the fact that it buils a max-tree (MT) in order to represent the input data. The
statistical segmentation method �lters the nodes in the tree based on the computed ratio of
integrated power of the local background (�ux). The process of constructing a max-tree (MT)
is described in more detail in chapter 2. Using a statistical approach requires a well-de�ned
understanding of the objects under observation, which is not always available or hard to validate.
An alternative to the statistical method is the use of Machine Learning (ML), which leaves the
correlation of attributes of the objects and their signi�cance to an intelligent computational
system. This system is able to evaluate the data based on earlier observations of a ground
truth, which implicates the relation between signi�cance and attributes. This master's thesis
explores the applicability of ML to the segmentation problem of detecting astronomical objects.
To do so, two research questions are answered. First of all, the input of the ML system must be

4

Figure 1.1: Example of a segmentation of a data-set representing two merging galaxies. The
segmentations included have been performed by SExtractor (left), MTO with a background esti-
mation by SExtractor (middle) andMTOwith a statistical background estimation (right). Images
have been taken from [11].

well-de�ned. This input consists of the attributes of (potential) objects in the input data, leading
to

Research question 1. Which attributes can be considered in order to �lter astronomical
objects?

With the attributes, an ML classi�er can be trained to be used for the segmentation of astro-
nomical objects. Whether the attributes suf�ce for the classi�er to perform this segmentation
properly is however impossible to predict. Therefore, an implementation of this approach is
realized, allowing for comparisonswith other, statistical approaches, such as the onesmentioned
above. These experiments pose

Research question 2. Is Machine Learning a viable approach to the segmentation of astro-
nomical data?

1.2 Reading this Document

This master's thesis project build upon the work by many other research projects on subjects
such as computer vision, ML and attribute computation. A short description of the main related
works and the signi�cance of their contents is provided in chapter 2. In chapter 3, the concept
of this project is made concrete by de�ning the attributes to be considered during segmentation,
selecting an appropriate ML method and determining the approach to the implementation of a

5

proof of concept (POC). The actual realization of this concept is documented chapter 4, where
technical challenges and their solutions are highlighted. Chapter 5 provides an evaluation of the
POC in terms of quality and performance, making sure that the functionality that is required is
present. Having a working POC, its performance is compared to the alternatives in chapter 6,
providing an answer to research question 2. Before re�ecting upon opportunities in chapter 8,
the success of the master's thesis project is re�ected upon in chapter 7.

6

Chapter 2

RelatedWork

This chapter provides insight into relations between this master's thesis and other scienti�c
work. Furthermore, several concepts are described in more detail, such as MTO and Learning
Vector Quantization (LVQ), a promising ML technique.

2.1 Background

As mentioned in chapter 1, the research in this thesis mainly build upon the work by Moschini
et al. [11] and Haigh et al. [7]. In the prior, the concept of MTO is demonstrated and in the
latter MTO is intensively compared to other well known segmentation methods. This thesis can
be considered as an extension of Haigh et al. [7], providing an additional comparison between
MTO and another segmentation method. The manner of comparing different results will also be
based on the methods used by Haigh et al. [7], in order to make them comparable to the results
presented there. The application of ML requires a classi�er to be trained on labeled data. To
this end, attributes of connected components in a max-tree are to be computed. Several sources
to be consulted for these computations are Gonzalez and Woods [6] and Tushabe [19]. The
prior provides general de�nitions of connected component attributes while the latter concerns
attributes of components in the context of an actual max-tree, albeit constructed from colored
pictures. Still, many of the attributes de�ned in these works are transferable to components in
a max-tree constructed from optical or radio astronomical images.

2.2 Max-Trees

Internally, MTO constructs a max-tree from in images in either two or three dimensions. Salem-
bier, Oliveras, and Garrido [15] proposed the max-tree to be a structured representation of an
image in which the maxima within the image are the leaves of the tree (hence its name). The
max-tree is closely related to the concept of a component tree, the difference being the fact that
the parent nodes of a max-tree do not store the elements of their children as well, avoiding data
redundancy [1]. A max-tree can be constructed from a image using an algorithm �rst proposed
by Berger et al. [1], in addition to an algorithm that can be applied to produce a canonical
max-tree, given a max-tree. Here, the term canonical indicates that at every level in the tree,
connected elements are altered to share a single parent within their level, with the parent itself
having a parent in the subsequent level [1]. This allows each component to be represented
by a single node: the canonical root. A visual demonstration of this concept and of that of a

7

 3 3 5 5
1 1 2 5
4 2 3 1

 E F A B

J K H C
D I G L

Figure 2.1: Example gray-scale image f (top left) with its matrix representation (bottom left)
and the ordering of its elements (bottom right). An �exploded� view of f (top right) gives a
more explicit perspective on the order of the elements. The ordering characters indicate the
order in which elements are encountered when traversing through the image from highest to
lowest value. Level-roots (last encountered elements for their respective value) are marked in a
boldface font.

max-tree has been included in �g. 2.2. The algorithm proposed by Berger et al. [1] de�ned three
procedures: one that return the root for a given node, one that computes an ordering and parent
matrix for a given image and one that returns a canonical parent matrix for a given image and
parent matrix. Note that these parent matrices are simply matrix representations of max-trees.
The full de�nition of the Berger et al. [1] algorithm is included in algorithm 1.

For the implementation of MTO, a modi�ed version of the algorithm in [1] has been used.
Thesemodi�cations allow the algorithm to be executed in amulti-threaded fashion and are based
on the work by Moschini, Meijster, and Wilkinson [10]. Effectively, every level in the image is
re�ned in its own thread from a computed pilot tree, greatly improving the performance of
the procedure. In �g. 2.3, the difference in performance of MTO is visualized in a comb plot,
displaying the timemeasurements for thedistinct stageof segmentationwhenutilizing16 threads
and a single thread. Here, the speed at which a data set is segmented is improved to less than
half the speed of using a single thread for the stage in which the max-tree is re�ned. The stages
mentioned here are discussed in more detail in chapter 3.

2.3 Component Attributes

As mentioned in the previous sections, each level-root in a max-tree represents a connected
component within the image. Knowing which elements make up such a component allows for
the computation of attributes or descriptors [6] in order to describe its characteristics. An
obvious attribute that can easily be computed is the area. In Berger et al. [1], this attribute is
de�ned as the number of elements within the component. Tushabe [19] provides the formal

8

Algorithm 1 Pseudo-code notation of the max-tree algorithm proposed by Berger et al. [1].
Note that N(x) refers to the set of connected neighbors of elements x in f . A complete GNU
Octave implementation of this algorithm has been included in appendix A.

procedure FINDROOT(x)
if zpar(x) = x then

return x
else

zpar(x)← FINDROOT(zpar(x))
return zpar(x)

end if
end procedure

procedure COMPUTETREE(f)
for all x ∈ f do

zpar(x)← null
end for
R ← REVERSESORT(f)
for all x ∈ R do

parent(x)← x
zpar(x)← x
for all n ∈ N(x) : zpar(n) , null do

r← FINDROOT(n)
if r , x then

parent(r)← x
zpar(r)← x

end if
end for

end for
return (R,parent)

end procedure

procedure CANONIZETREE(parent, f)
for all x ∈ REVERSEORDER(R) do

y← parent(x)
if f (parent(y)) = f (y) then

parent(x)← parent(y)
end if

end for
return parent

end procedure

9

L K
J

I H

GF
E

D

C B
A

λ = 1

λ = 2

λ = 3

λ = 4

λ = 5

L K
J

I H

GF
E

D

C B
A

Figure 2.2: Max-tree representations of image f as seen in �g. 2.1, with the canonical variant
appearing on the right hand side. Again, level roots have been indicated by a boldface ordering
character. Here, λ indicates the level of the respective elements represented by the nodes (cf.
the matrix representation of f in �g. 2.1).

mathematical de�nition of area A(X) of component X as

A(X) =
∑
x∈X

1X(x). (2.1)

Here, 1X(x) is a so-called indicator function, resolving to 1 if x ∈ X or 0 otherwise. Note that
the term �area� spawned in the domain of two-dimensional components, but can be applied in
higher dimensions as well � e.g. indicating the volume of a cube in three dimensions. Berger et
al. [1] provides an algorithm for computing the area of a component in the context of a max-tree,
which is included in algorithm 2.

Algorithm 2 Pseudo-code notation for the computation of the area of a component in a max-
tree, as de�ned in eq. (2.1). Taken from [1] with the addition of the p , parent(p) condition. A
GNU Octave implementation of this algorithm is included in appendix B.

procedure COMPUTEAREA(f ,R,parent)
for all x ∈ R do

area(x)← 1
end for
for all x ∈ R : x , parent(x) in direct order do

area(parent(x))← area(parent(x)) + area(x)
end for

end procedure

Another attribute concept closely related � altough not at �rst glance � is that of the
perimeter. Gonzalez and Woods [6] describe the perimeter as the length of the boundary,
but unfortunately fail to provide a formal de�nition or algorithm. Interpreting the length of the
boundary as the number of elements that are not exclusively connected to elements within the
same components, a novel approach to computing the perimiter is presented in chapter 3. Again,
it should be noted that the concept of the perimeter is transferable in to dimensions higher than
two � e. g. in three dimension it can be interpreted as the surface of a cube.

10

0 100 200 300 400 500

Sorting

Create Quantized Image

Quantized Tree

Re�nement Tree

Image Background Operations

Level-Root Fix

Mark Signi�cant Nodes

Find Objects

Move Labels Up

Generate Output Image

s

MTO on 1 thread
MTO on 16 threads

Figure 2.3: Comparison of the time measurements of the segmentation of a data set (cluster 1)
withMTO using 16 threads and 1 thread for re�nement. Note that the stages in the segmentation
process are presented in chronological order on the y-axis, from bottom to top.

Using the attributes area A(X) and perimiter P(X), composite attributes can be computed
such as compactness and circularity ratio [6]. Gonzalez and Woods [6] provide the following
formal de�nitions of compactness C(X) and circularity ratio Rc(X) as

C(X) =
P(X)2

A(X)
, (2.2)

Rc(X) =
4πA(X)
P(X)2 . (2.3)

The values of these attributes provide an indication of the shape of the components that they
represent. E. g.Rc(X) approaches a value of 1 as the shape of the component approaches the
shape of a perfect circle [6].

In addition to the use of (relative) positional information about the elements of a component,
the value � also called intensity in [6, 19] � they represent can also be indicative of a compo-
nent attribute. Many examples are presented in literature, most of which are rather straight
forward such as the sum of (squared) intensities [6] and grayscale (i. e. average value within a
component) [19]. Tushabe [19] provides the following formal de�nition of the latter:

G(x) =

∑
x∈X f (x)
A(X)

. (2.4)

More sophisticated measurements based on intensity levels are the power [19]

P(X, f , α) =
∑
x∈X

(f (x) − α)2, (2.5)

for an image f and parent intensity level α, and volume [19]

V(X, f , α) =
∑
x∈X

(f (x) − α). (2.6)

11

Furthermore, Gonzalez and Woods [6] provide a de�nition of the entropy attribute, citing it to
be the average amount of information that each element in a component can convey. Given a
discrete set of the distinct grayscale values {a1, a2, ..., aJ} that appear in a component of sizeM×N,
the probability of such a grayscale value being encountered in the component is

P(a j) =
a j

MN
. (2.7)

This function can be used to compute a histogram of component X. Using this de�nition,
Gonzalez and Woods [6] provide the formal de�nition of entropy as

H(X) = −

J∑
j=1

P
(
a j

)
log P

(
a j

)
. (2.8)

Finally, a component set of attributes of interest is that of the four invariant moments: non-
compactness, elongation, �atness and sparseness. Westenberg, Roerdink, and Wilkinson [21]
provide de�nitions of these, suitable for usage for two- and three-dimensional components (as
opposed to themomentspresentedbyHu[8],whichonlyapply to two-dimensional components).
First of all, Westenberg, Roerdink, and Wilkinson [21] de�ne the non-compactness attribute
N(X) as

N(X) =
TrI(X)

3
5

A(X)
, (2.9)

with themoment of inertia tensor I(X) de�ned as

Ii j(X) =

∑

X
(
i − ī

)2
+

A(X)
12 if i = j∑

X
(
i − ī

) (
j − j̄

)
otherwise

(2.10)

for i, j ∈ {x, y, z}. Computing the eigenvalues λi(X) of I(X) and ordering them such that

|λ1(X)| ≥ |λ2(X)| ≥ |λ3(X)| (2.11)

allows the computation of the attributes elongation E(X), �atness F (X) and sparseness S(X)
with [21]

E(X) =

∣∣∣∣∣λ1(X)
λ2(X)

∣∣∣∣∣ (2.12)

F (X) =

∣∣∣∣∣λ2(X)
λ3(X)

∣∣∣∣∣ (2.13)

S(X) =
π

6A(X)

3∏
i=1

√
20 |λi(X)|

A(X)
. (2.14)

2.4 Learning Vector Quantization

A particularly interesting ML technique is that of LVQ, �rst proposed by Kohonen [9]. LVQ is
a framework for prototype- based classi�ers and can be considered to be a simpli�cation of a
Bayes classi�er [2, 3]. Biehl, Hammer, and Villmann [3] explain that the difference between
these methods is the fact that LVQ replaces the density estimation with a method where each of

12

the C classes is represented by one or more prototypes. This dichotomy of classes (i. e. labels
associated with a speci�c class) and prototypes is formally de�ned as{

w j, c j
}M

j=1
with w j

∈ RN and c j
∈ {1, 2, ...,C} . (2.15)

Here, N indicates the number of features of which the data-points consist, and M indicates the
number of prototypes to be used for classi�cation. Note that the di�ntion in [2, 3] requires
that M ≥ C. Having this mapping of prototypes and class labels, an arbitrary feature vector
ξ is assigned to the class associated with the nearest prototype w∗ � noted as the class where
c∗ = c(w∗) [3]. Formally, this provides the following de�nition of the closest prototype of ξ:

w∗(ξ) with d
(
w∗(ξ), ξ

)
= min

[
d
(
w j, ξ

)]M

j=1
, (2.16)

with distance measure d. This prototype is commonly refered to as the winner, or using the
shorthand w∗.

Having the means to store an LVQ classi�er still requires some meaningfull way determining
the values of the prototypes w. Several LVQ classi�ers have been de�ned in literature. In order
to introduce the general concept of an LVQ training algorithm, only the LVQ1 training scheme
by Kohonen [9] and Generalized LVQ (GLVQ) training scheme by Sato and Yamada [16] will be
featured in this section. In [2] the steps of the LVQ1 scheme are summarized as follows:

1. At time step t, select a random labeled feature vector ξµ and its label yµ from data-setD of
size P with a uniform probability 1

P ;

2. Find the winning prototype w∗µ and associated class label c∗µ;

3. Perform awinner-takes-all update, moving the prototype in order to increase its distance
to the feature vector when their associated labels do not match, or decreasing the distance
otherwise:

w∗µ(t + 1) = w∗µ(t) + ηwψ
(
c∗µ, y

µ
) (
ξµ −w∗µ

)
with ψ(c, y) =

+1 if c = y
−1 otherwise.

(2.17)

Intuitively, thisprocedure letsdata-points either attract or repulsewhicheverprototype is closest,
based on whether or not their labels match. The general idea of this concept is that data-
points of the same class can be identi�ed by their feature values and that a prototype can be
de�ned that is closest to all of them. Moving the prototypes in the aformentioned fashion is
supposed to �nd a value that allows this iteratively. The magnitude of these movements can be
controlled by the de�nition of the learning rate ηw. Several � sometimes quite sophisticated �
initialization methods are available for the values of the prototypes, such as placing them in the
class-conditional mean vectors vectors in the data-set or applying a K-means procedure on each
class separately [2, 3, 16].

The popular GLVQ training scheme is very similar to that of LVQ1. Instead of de�ning a single
winner prototype w∗, GLVQ de�ned a correct winner wJ and an incorrect winner wK, with the
prior being the prototype closest to arbitrary data-point ξ of an identical class label y and the
latter being the clostest prototype of any other class label [2, 3, 16]. Sato and Yamada [16]
provides the following formal de�nition (note their similarity to eq. (2.16)):

wJ(ξ) with d
(
wJ, ξ

)
= min

[
d
(
w j, ξ

)
: c j = y

]M

j=1
, (2.18)

wK(ξ) with d
(
wJ, ξ

)
= min

[
d
(
w j, ξ

)
: c j , y

]M

j=1
. (2.19)

13

Using these de�nitions, the classi�cation of a data-set of P data-points is evaluated:

EGLVQ =

P∑
µ=1

φ (eµ) with eµ =
d
(
wJ
µ, ξ

µ
)
− d

(
wK
µ , ξ

µ
)

d
(
wJ
µ, ξµ

)
+ d

(
wK
µ , ξµ

) . (2.20)

Here, φ(e) is a cost function, the return value of which is in the range [−1, 1] [2, 3, 16]. The
updating scheme itself is aimed atminimizing the value of EGLVQ, as a negative value of e indicates
a correctly classi�ed data-point. To this end, two prototypes are update at each step. Sato and
Yamada [16] provides the following de�nition of the GLVQ scheme:

1. At timestep t, select a random labeled feature vector ξµ and its label yµ from data-setD of
size P with a uniform probability 1

P ;

2. Find the respective correct and incorrect winners wJ and wK with class labels cJ
µ = yµ , cK

µ ;

3. Perform the update, moving the correct and incorrect respectively increasing and reducing
the distance to ξµ:

wJ
µ(t + 1) = wJ

µ(t) + ηw
∂ψ (eµ)

∂wJ
µ

, (2.21)

wK
µ (t + 1) = wJ

µ(t) − ηw
∂ψ (eµ)

∂wK
µ

. (2.22)

14

Chapter 3

Concept

As speci�ed in chapter 2, this master's thesis builds upon the research by Moschini et al. [11].
Here, the segmentation of 6-connected components in amax-tree is achieved by computing their
�ux attribute and using a χ2 statistical test to determine the signi�cance of the tree's nodes. The
goal of thismaster's thesis is to innovate on this concept by expanding the collection of attributes
that will be taken into account during segmentation. These attributes are selected in section 3.1
based on whether they can be computed given the data available during the construction of the
max-tree. Furthermore, the nature of the data and the application of this work requires the
attributes to be

� rotation invariant,

� translation invariant and

� scale invariant,

which is included in the decission of the �nal selection. In order to accommodate the segmenata-
tion using the computed attributes, a method needs to be selected that can determine whether
two given components belong to the same astronomical object. In section 3.2, a ML technique is
chosen to be able to perform this task.

3.1 Component Attributes

In chapter 2, several component attributes have been introduced that can be used to characterize
level-roots in amax-tree. In this section, the way in which thesemeasurements can be computed
in a practical sense will be layed out, as only one algorithm as been found in the literature (for
computing the area attribute). Note that the algorithms presented here store the attribute value
in a matrix of the same shape as the input image. The attribute value for a component can be
found at the location of its canonical root in the computed attribute matrix.

3.1.1 Perimeter

Computing the perimeter component attribute is a non-trivial task. As de�ned by Gonzalez and
Woods [6], a the perimiter indicates the length of the boundary of a component. In this thesis,
this de�nition is interpreted as the number of elements that are connected to elements that are

15

not part of the component to which they belong themselfs. The complexity of computing the
perimiter is mainly due to the fact it has to be taken into account that any element that is part
of the boundary of its its own component can also contribute to the boundary of its parent,
its parent parent, etc.. In order to solve this problem, a boundary vector B(X) is constructed,
which indicates the contribution of a component X to each layer in the tree. Obviously, these
contributions only apply to the direct and indirect parents of said component. To construct this
vector, we �rst compute the intermediate contribution set Λ(x) for each element x. This set is
composed of the layers in which x is part of the perimeter, computed as

Λ(x) =

y ∈ Z : arg min
n∈N(x)

λ(n) < y ≤ λ(x)

 , (3.1)

with N(x) the neighbors of x and λ(x) its level. With this contribution set Λ(x) computed for
every element x, the contribution of X to the perimeter of layer λ is equal to the count of λ
inclusions in the contribution set of elements in X:

B(X)λ =
∣∣∣{x ∈ X : λ ∈ Λ(x)

}∣∣∣. (3.2)

From this, the perimeter P
(
Xm
λ

)
of component Xm

λ in branch m and layer λ can be determined

by summing the contributions of all components to lambda:

P
(
Xµ
λ

)
=

∑
ν∈N

B

(
Xν
γ

)
λ
, (3.3)

where, N = {ν ∈ Z : µ � ν} and γ ≥ λ. Here, the set of branches N is constructed out
of all branches ν that are either equal to, or divarications of, branch µ, written as µ � ν.
Figure 3.1 is included to illustrate this procedure with and intuitive example, displaying the
relation between the components, layers, boundary vector and contribution set, leading up to
the �nal computation of the perimeter attribute. Note that, in order to consider elements on
the edges of the image as a whole as part of the perimeter of the root component, non-existing
neighbors are considered to be part of the level where λ = −1. In algorithm 3, an algorithm is
included in pseudo-code, demonstrating the procedure that can be applied in order to computer
the perimeter of a component in a max-tree.

3.1.2 Composite Positional Attributes

Being able to compute the area and perimeter of a compontent also allows the computation of the
compactness and circularity ratio de�ned byGonzalez andWoods [6]. No extensive algorithmics
are needed for this, as computing these attributes is as simple as applying the equations provided
in chapter 2.

3.1.3 Intensity Attributes

Moving on from the attributes related to the position of component elements, the sum of in-
tensities and its squared variant are rather simple to compute. This is done by adding all of
the (squared) gray-values of the elements in a component. Two procedures are presented in
algorithm 4 that compute the sum of intensities and sum of squared intensities respectively for a
given max-tree. The gray-scale attributes indicates the average value of its elements, as de�ned
in themathematical formulation presented in chapter 2, taken from Tushabe [19]. An algorithm
based on that of the area attribute de�ned by Moschini et al. [11] is included in algorithm 5.

16

Algorithm 3 Pseudo-code notation for the computation of the perimeter of a component in
a max-tree, as de�ned eq. (3.3). Note the use of the neighbor function N . A GNU Octave
implementation of this algorithm is included in appendix B.

procedure COMPUTEPERIMETER(f ,R,parent)
for all x ∈ R do
B(x)← 0, perimeter(x)← 0

end for
for all α ∈ R : α ∈ f do

for all x ∈ R : f (x) ≥ α do
for all n ∈ N(x) : f (x) > f (n) do
B(x)← B(x) + 1

end for
end for

end for
for all x ∈ R do

y← x
while B(x) > 0 do

perimeter(y)← perimeter(y) + 1, B(x)← B(x) − 1, y← parent(y)
end while

end for
end procedure

Algorithm 4 Pseudo-code notation for the computation of the sum of (squared) intensities of a
component in a max-tree, based on algorithm 2 taken from [1]. A GNU Octave implementation
for both procedures is included in appendix B.

procedure COMPUTESUMINT(f ,R,parent)
for all x ∈ R do

sum(x)← f (x)
end for
for all x ∈ R : x , parent(x) do

sum(parent(x))← sum(parent(x)) + sum(x)
end for

end procedure

procedure COMPUTESUMINTSQUARED(f ,R,parent)
for all x ∈ R do

sums(x)← f (x)2

end for
for all x ∈ R : x , parent(x) do

sums(parent(x))← sums(parent(x)) + sums(x)2

end for
end procedure

17

0

0

1

1

1
3

2
3

0

0

x0

x1

x2

x3

x4

x5

x6

x7

0 1 2 3

λ

X0
0 X0

1

X0
2

X1
2 X1

3

Λ (x0) = {y ∈ Z : −1 < y ≤ 0} = {0}

Λ (x1) = {y ∈ Z : 0 < y ≤ 0} = ∅

Λ (x2) = {y ∈ Z : 0 < y ≤ 3} = {1, 2, 3}

Λ (x3) = {y ∈ Z : 1 < y ≤ 3} = {2, 3}

Λ (x4) = {y ∈ Z : 1 < y ≤ 1} = ∅

Λ (x5) = {y ∈ Z : 0 < y ≤ 2} = {1, 2}

Λ (x6) = {y ∈ Z : 0 < y ≤ 0} = ∅

Λ (x7) = {y ∈ Z : −1 < y ≤ 0} = {0}

B

(
X1

3

)
= {0, 1, 2, 2}

B

(
X1

2

)
= {0, 0, 0, 0}

B

(
X0

2

)
= {0, 1, 1, 0}

B

(
X0

1

)
= {0, 0, 0, 0}

B

(
X0

0

)
= {2, 0, 0, 0}

P
(
X1

3

)
= B

(
X1

3

)
3

= 2

P
(
X1

2

)
= B

(
X1

3

)
2

= 2

P
(
X0

2

)
= B

(
X0

2

)
2

= 1

P
(
X0

1

)
= B

(
X0

2

)
1

+B
(
X1

3

)
1

= 2

P
(
X0

0

)
= B

(
X0

0

)
0

= 2

Figure 3.1: Illustration of the computation of the contribution sets Λ in one dimension, used to
determine the boundary vector B. The contribution of each element to a layer is marked in the
component structure.

Based on he intensity values in a component, a histogram can be computed, indicating the
number of times each intensity value occurs. In turn, the histogram enables the computation of
the power and entropy attributes. As described in more detail in chapter 2, the power attributes
indicates the effect of removing a component from its parent [19] and entropy entails the amount
of information that each element in a component can convey [6]. In algorithm 6, a pseudo-code
notation is included for each of the procedures that can be used to compute the histogram, power
and entropy of a given max-tree component.

The invariant moments non-compactness, elongation, �atness and sparseness can be com-
puted using the equations provided in chapter 2. This does however require the sums of the
(products of the) elements in every dimension to be known:

∑
x,

∑
y,

∑
z,

∑
x2,

∑
y2,

∑
z2,∑

xy,
∑

xz and
∑

yz. Computing these values is trivial, leaving only the application of the
aforementioned equations.

18

Algorithm 5 Pseudo-code notation for the computation of the gray-scale attribute of a compo-
nent in a max-tree. A GNU Octave implementation is included in appendix B.

procedure COMPUTEGRAYSCALE(f ,R,parent)
for all x ∈ R do

gray-scale(x)← 0
end for
for all x ∈ R do

y← x
loop

gray-scale(y)← gray-scale(y) +
f (x)

area(y)
if y = parent(y) then

break
else

y← parent(y)
end if

end loop
end for

end procedure

3.1.4 Attributes for Segmentation

Not all of the aformentioned attributes are suitable for useage in combination with MTO and a
ML method. E. g., the computation of a histogram is quite expensive in terms of computational
power, as it requires an additional processing step. Therefore, attributes dependent on his-
togram computation are excluded. An alternative computation method is however present in
the initial implementation of MTO for the power attribute, which can therefor be included after
all. Ultimately, this leaves the following attributes for the selection of attributes to be computed
for segmentation by a MLmethod:

� area,

� perimeter,

� power,

� compactness,

� circularity ratio,

� gray-scale,

� noncompactness,

� elongation,

� �atness and

� sparseness.

The code base developed byMoschini et al. [11] is extended with these attributes, as documented
in chapter 4. Here, a bottom-up �ooding and top-down merging approach is used to construct

19

Algorithm 6 Pseudo-code notation for the computation of the histogram, power and entropy
of a component in a max-tree.

procedure COMPUTEHISTOGRAM(f ,R,parent)
for all x ∈ R do

for all α ∈ R : α ∈ f do
histogram(x, α)← 0

end for
end for
for all x ∈ R in reverse order do

y← x
loop

histogram(y, f (x))← histogram(y, f (x)) + 1
if y = parent(y) then

break
end if
y← parent(y)

end loop
end for

end procedure

procedure COMPUTEPOWER(f ,R,parent)
for all x ∈ R do

for all α ∈ R : α ∈ f do
power(x)← power(x) + histogram(x, α)(f (x) − α)2

end for
end for

end procedure

procedure COMPUTEENTROPY(f ,R,parent)
for all x ∈ R do

for all v ∈ R : v ∈ f do
n← n + histogram(x, v)

end for
for all v ∈ R : v ∈ f do

t← histogram(p)
n

entropy(x)← entropy(x) + t log t
log 2

end for
end for

end procedure

20

the hierarchy of themax-tree and compute its attributes all at once. These two stages are referred
to as the compute and re�ne stages respectively.

In the �rst stage, a tree is constructed from a quantized image. Within such an image, each
element (a pixel in two-, or a voxel in three dimensions) is assigned to a level, based on their
gray value. The �ooding algorithms connects the elements as nodes in the max-tree, starting
at the bottom level (the root) and ending at the leafs. This approach allows for parallelization,
as shown by Moschini, Meijster, and Wilkinson [10], computing the hierarchy of each level in
a separate thread. The output yielded by this procedure is called a pilot tree and is passed
on to the second stage in which it is re�ned. Here, the tree structure is not altered, but the
computation of its attributes can be completed in order to retrieve the de�nite max-tree [10].
This allows for attributes that are dependent on other attributes to be computed as well, e.g. the
elongation attribute which is dependant on the sum of coordinates in each spatial dimension. In
�g. 3.2, the two stages and their output have been visualized. This illustration also indicates the
attributes of the pilot tree and the max-tree, and at which point in the process as a whole they
become available. Aside from the aforementioned selection of attributes, intermediate attributes
required by others are indicated here as well.

Compute Re�ne Filter

Area

Perimeter

Sum of int.

Sum of sq. int.

Min. pos.

Max. pos.

Sum pos.

Sum mul. pos.

Pilot Tree

Power

Dimensions

Mean pos.

Mean mul. pos.

Compactness

Circ. Ratio

Grayscale

Noncompact.

Elongation

Flatness

Sparseness

Max-Tree

Figure 3.2: Diagram of the three main subprocedures in the software by Moschini et al. [11] that
are relevant to the subject of this thesis. Note that the attributes of the pilot tree on the left are
also available to the max-tree on the right, as indicated by the inheritance relation. Attributes
that where already implemented in the initial version of the code have been indicated by a �lled
bullet, while attributes implemented as part of this thesis project are indicated by an empty
bullet.

21

3.2 Segmentation Method

After the max-tree is computed and re�ned, the components it contains are segmented in the
third relevant stage: �lter. The challenge here is to determine whether components on top of
other components should be considered to be part of the same object, or to be distinct objects,
one in front of the other. In the code by Moschini et al. [11], this is done by �agging nodes in
the tree that are �signi�cant�. Here, signi�cance is determined by the �ux (also referred to as
power) of a component, which has to exceed a certain threshold associated with its area. These
thresholds are not computed on-the-�y but hardcoded.

In order to support the extended collection of attributes, the mechanism that determines
whether two components are part of the same object or not is replaced with a ML method. For
this task, LVQ is chosen, as it is known to be simple, fast, con�gurable [16, 22] and provides
meaningfull insight into the signi�cance of individual attributes and correlation between them
[17] as the prototypes can be interpreted directly within the space of the features that are used
as input [3]. The latter characteristic will allow for later improvements in performance, by
removing insigni�cant attributes from the procedure. Additionally, this allows future research
and discussion on the thresholds found by the LVQ classi�er in terms of feature values. Fur-
thermore, Biehl, Hammer, and Villmann [3] state that the performance of LVQ has proven to be
competetive for many classi�cation problems (of which segmentation is a variant).

The speci�cs of LVQ and GLVQ classi�ers are discussed in chapter 2. The features to be used
as input for the classi�er are simply the attribute values for each component in themax-tree, i. e.

ξX =
{
A(X),P(X),C(X),Rc(X),G(X),N(X),E(X),F (X),S(X)

}
(3.4)

with its label yX
∈ {0, 1}, indicating whether the feature vector should be considered to be an

astronomical object or not. As a result, a minimum of two prototypes are to be used in order to
express the classi�er, given that there are two classes to identify.

22

Chapter 4

Realization

In this chapter, the concepts introduced in chapter 3will be implemented in the codeproducedby
Moschini et al. [11]. The code is written in C. Prior to any implementation, some restructuring of
the project �les has been done to improvemaintainability, as well as someminor documentation
in the form of comments. The �rst steps of the realization will focus on the computation of the
proposed attributes.

4.1 Computing Component Attributes

Asdescribed in chapter 3, the construction of themax-tree is done in two steps inMTO: compute
and re�ne. In order to augment the prior stage, new steps are added to the attribute functions
in the �le src/quanttree.c that are called to initialize, update and �nalize the attributes of a
component, based on a pixel (i. e. element) that is determined to be part of it. The attribute
struct itself is extended to support these new attributes. The new de�nition of this struct is
included in listing 1. Attributes such as minimum, maximum, summed, etc., positions in each
dimensions are updated each time a new pixel is added to the component. In order to be able
to compute the perimiter during the re�ne stage, the boundary of the component is tracked as
well in accordance with the de�nition of the algorithm presented in chapter 3. In order to be
able to detect neighboring pixels of a lower level, the level of the component is stored as well.
During the computation of the max-tree, MT can decide to merge components. In that case,
the attributes of the emergent component must be recomputed from the respective attributes
of the components to be merged. In the case of the minimum and maximum positions this is
easily solved by taking the lowest minimum and highest maximum and the positional sums are
added. In the case of the boundary, a new boundary vector can be constructed by added them
element-wise.

During the re�ne stage, attributes are stored in a different struct: Node. The de�nition
of the struct is included in listing 2. Here, computations can be made using the attributes
gathered in the previous stage such as the dimensions of the component, mean positions of
their elements, the composite attributes, etc.. Furthermore, the moment of intertia tensor is
computed in order to be able to compute the four invariant moments. This does require this
attributes to be computed before and of the moment can be computed, which in turn requires
the summed and mean positions and dimensions of the component to be known. For each
attribute, a separate function is de�ned. At three point during the re�nement of the pilot tree,
these function can be called in sequence: when the root node of the image is encountered, when

23

Listing 1 De�nition of the AttributeStruct, extended with the component attributes to be
computed in the compute stage of MTO as found in src/common.h. Note that this also includes
redundant attributes that where already de�ned in an earlier version of MTO, e. g. momVec,
centralMomVec, CentralNormMomVec, etc..

typedef struct {
long level;

long area;

long minX;
long minY;
long minZ;

long maxX;
long maxY;
long maxZ;

long sumX;
long sumY;
long sumZ;

long sumXX;
long sumYY;
long sumZZ;

long sumXY;
long sumXZ;
long sumYZ;

double sumIntSquare;
double sumInt;

long topleft_x, topleft_y, bottomright_x, bottomright_y;

double momVec[VECLEN];
double momVecGs[VECLEN];

double *centralMomVec;
double *centralMomVecGs;
double *centralNormMomVec;
double *centralNormMomVecGs;

long *perimeter;
long *boundary;

} AttributesStruct;

24

a child node is merged with its parent and when two sibling nodes are merged.

4.2 Segmentation with LVQ

As mentioned in chapter 3, the classi�cation method of choice is LVQ. However, implementing
a LVQ classi�er from scratch in C is not a trivial task. In order to verify that a classi�er performs
as expected requires a lot of testing and experimenting. Therefore, an existing implementation
is embedded into the source-code that is known to work correctly. Unfortunately, there are no
proper candidates for this task that have a convenient C application programming interface (API).
Therefore, another solution has been found in the form of LVQ for sklearn (sklvq), a Python
library implementing an LVQ and GLVQ. This library is build on top of the Scikit-Learn (sklearn)
toolset, which providesmany additional tools to �nd the optimal con�guration of a classi�er [12,
20]. In order to be able to use this library from a C code-base, the Python/C APImust be utilized
to communicate with the library living in the Python interpreter [4, 13]. This approach does
have an impact on the performance of MTO, as the conversion between C objects and objects in
the Python interpreter adds a signi�cant amount of time.

4.2.1 Embedding Python in C

The sklvq package exposes the GLVQClassifier class, which can be provided with a con�gu-
ration on initialization, specifying parameters such as the distance function, activation func-
tion, the number of prototypes per class, etc.. This class is an implementation of sklearns
BaseEstimator. Having an instance of this class, its method predict(data) is available, where
data is an array-like structure consisting of columns and rows. In the case of the current im-
plementation, rows represent individual components (or rather, the level-root nodes of each
component) and columns consist of the component attributes. During the segmentation stage,
the attributes of the node in the max-tree are extracted and stored in an intermediate Python
list. This allows all of the attributes to be sent to the Python interpreter � and in turn to the
LVQ classi�er � adding to the ef�ciency of the procedure. Unfortunately, during the implemen-
tation of this proces, it has become apparent that the values of the invariant moments are not
compatible with the Python interpreter. This might be caused by a fault in the computation of
these values or theymight simply be to high or require toomuch precision. In order to be able to
continue development, these attributes have ultimately been excluded from usage in the Python
interpreter.

For the bene�t of the maintainablity of the code base, a separate C �le has been created
to contain all of the LVQ related code: lvq.c, and its associated header �le lvq.h. These �les
provide a simple API that �wraps� the API of the GLVQClassifier object, following the façade
design pattern. This pattern allows future researchers and developers to be spared from the
troubles of dealing with the complicated setup and teardown procedures required by the Python
interpreter [5]. Furthermore, it allows for the nodes to be presented to an LVQ interface as-is,
without manualy extracting their attributes. The usage of lvq.c requires that the functions
initialize() and finalize() are called before and after performing training or classi�cation.
Supporting persistence of the classi�er, a �le is loaded during initialization and stored during
�nalization, containing an instance of GLVQClassifier. If such a �le does not exist, a new
classi�er is constructed upon initialization. As a result, the training of a classi�er and the actual
usage can be done in separate runs of the code and different models can be swapped between
sessions. An added beni�t is that these �les can also be loaded in a Python script, which allows
the values of the prototypes in the LVQ classi�er to be inspected.

25

Listing 2 De�nition of the Node, extended with the component attributes computed in the
re�ne stage of MTO as found in src/common.h.

struct Node {
pixel_t parent;
greyval_t filter;

long Area;

long Width;
long Height;
long Depth;

long double MeanX;
long double MeanY;
long double MeanZ;

long double MeanXX;
long double MeanYY;
long double MeanZZ;

long double MeanXY;
long double MeanXZ;
long double MeanYZ;

long double MomentOfInertia[3][3];

double Lambda[3];

double Power;

double PowerOld;
double VolumeOld;

double Compactness;
double CircularityRatio;
double Grayscale;

double NonCompactness;
double Elongation;
double Flatness;
double Sparseness;

AttributesStruct *attributes;
};

26

4.2.2 Training the LVQ Classi�er

The input for the GLVQClassifier.fit(data, labels) method consists of the computed at-
tributes of a given node in the max-tree and a �ag indicating whether that node is considered to
be signi�cant. This consideration is based on whether the node has been marked as an astro-
nomical object in the ground-truth. Such a ground-truth is simply the output to be expected for
a given input image and can be produced either manualy or using a simulation. To ensure that
the max-tree used during the training of the LVQ classi�er is identical to the one used during
segmentation, the same code is used for both processes. When the re�nement of the max-tree is
�nished, either the training or segmentation procedure is initiated, based on whether a ground-
truth has been speci�ed or not. An activity diagram has been included in �g. 4.1 to illustrate the
branching in the process described here. After the training has been completed, the classi�er is
stored and can either be trained more using other ground-truths or be used for segmentation.

27

substract mean

sort pixels

calc. quantized pixels

build max-tree

re�ne max-tree

load classi�er construct classi�er

[classi�er stored] [no classi�er stored]

LVQ training LVQ segmentation

[ground-truth speci�ed] [no ground-truth speci�ed]

store classi�er

Figure 4.1: Activity diagram of the produced code base, displaying the new LVQ training branch,
used to construct or update a classi�er.

28

Chapter 5

Evaluation

Here, the behaviour and con�guration of the MTO with LVQ classi�er is evaluated in order to
ensure optimal performance. This is mainly aimed at �nding the right parameters, but does
not go into great depths as many different con�gurations are possible. Furthermore, some
optimization of the source-code is evaluated.

5.1 Hyperparameter Tuning

The Python module sklvq features support for a grid search of the parameter values available
for the LVQ classi�er. This way, the optimal con�guration for a certain scoring parameter such
as accuracy, precision and recallibility can be found [12]. This tool is used to �nd the optimal
con�guration for the following LVQ classi�er parameters:

� Distance Type

� Activation Type

� Solver Type

� Prototypes per Class

In this section, each parameter is evaluated using a grid search. Parameters not being tested are
set to their respective default values, which is squared Euclidean for the distance type, identity
for the activation type, steepest gradient descent for the solver type and one prototype per class.
The grid search is performed using labeled data from the 200 × 200 × 4 data-set, optimizing for
the accuracy scoring objective. These comparisons will be based on the quality of the results
� the mean �t score � and the time required to achieve this results � the mean �t time. Two
distance types are available in sklvq: Euclidean and squared Euclidean. Performing the grid
search results in an identical mean score for both methods: 0.98. This indicates that either
method can be used to the same end for this speci�c type of data-set. Differences are found in
terms ofmean �t time however, as the Euclidean function is signi�cantly slower that the squared
Euclidean function, with times of 10.38 s and 7.48 s respectively. For the activation type, four
different method can be used: identity, sigmoid, soft+, and swish. Again, the grid search results
in identical mean score for all methods: 0.98. In terms of mean �t time some slight changes
are however noticable. The sigmoid, soft+ and swish functions require a time of 8.56 s, 8.27 s
and 8.91 s respectively. However, the identity function comes out as a clear winner with a mean

29

�t time of 7.95 s. The solver types available in sklvq are: steepest gradient descent, adaptive
gradient descent and adaptive moment estimation. The grid search tool returns an identical
score for each of these, namely 0.98. However, the time required to �t the prototypes to the
labeled data differs greatly. While adaptive gradient descend and adaptive moment estimation
have a mean �t time of 111.93 s and 105.95 s respectively, steepest gradient descent only requires
a mere 9.68 s. Increasing the number of prototypes does not improve the mean test score of
0.98. This does however increase the mean �t time, leading to the assumption that the number
of prototypes per class should be kept to a minimum of one.

30

Chapter 6

Results

In this chapter, the results produced by theMTOwith LVQ classi�er, given the research questions
prompted in chapter 1, are evaluated. In order to produce the results presented in this chapter,
MTO has been con�gured according to the optimum found byHaigh et al. [7], i. e. λ = 1, σ = 0.00
and a move-up factor of 0. Furthermore, 16 threads are used during the quantization of the
max-tree and 32 bit are allocated per pixel.

Figure 6.1: Input data set cluster_10.fits (top left), ground truth (rop right) and segmenta-
tions using the statistical method (bottom left) and the LVQ classi�er (bottom right).

31

6.1 Segmenting Astronomical Data for Evaluation

To evaluate the quality of the results of the LVQ classi�er, it is trained on one of the same labeled
data sets used by Haigh et al. [7]. A total of 10 data sets are available, named cluster[n].fits.
As stated, each data set has an associated ground truth, named gt_[n].fits. With these assets,
a classi�er can be trained on a �rst data set and ground truth and be used to classify a second
data set, with its ground truth available to evaluate the results. The training scheme has been
chosen as follows in order to mimic earlier work by Haigh et al. [7]: the classi�er is trained on
cluster1.fits and labels gt_1.fits and used to classify all other data sets. An example of such
a classi�cation is included in �g. 6.1. More of such classi�cations have been performed with the
same classi�er for the other data sets as well. Note that data set 5 turned out to be corrupted,
reducing the total amount of data sets by one. Given the fact that the attributes provided to
the LVQ classi�er consist of �ve values, one of which is of the data type long (32 bit) with the
remainder having data type double (64 bit), an estimation can be made of the total size to be
communicated between the C code and the Python interpreter. Assuming approximately nine
milion nodes � as is the case with data set cluster 1 � the total amount of data to be processed
is at least 9 × 106

× (32 bit + 4 × 64 bit) ≈ 26 × 109 bit, about 3.20 GB. It is evident that the time
needed for processing such an abbundance of data takes a lot of time, even thought the actual
information it represents is already contained in a subset of the total data set. Therefore, the
attributes to be provided to the classi�er is restricted to those of 10 % of the total number of
nodes. In the case of the example provided earlier, this reduces the the data to communicate to
at least 324 MB.

6.2 Quantifying Segmentation Quality

The presented segmentation produced by MTO with LVQ shows that the large structures are
identi�ed like they are in MTO using the statistical method. However, the LVQ classi�er also
marked a much higher number of noise structured as objects. As a result, the segmentation
is very much capable of recalling the structures in the input data, but is less precise in doing
so than its statistical counterpart. In order to quantify this behaviour such that both methods
can be compared, the quality of the segmentations is computed using a method presented by
Haigh et al. [7]. This method results in (among others) four metrics based on the number of true
positives, true negatives and false negatives:

� Detection recall or completeness: the proportion of objects in the ground-truth that have
actually been detected;

� Detection precision or purity: the proportion of detections that can be matched to objects
in the ground-truth;

� The F-score: the harmonic mean of precision and recall;

� The area score: an overall measure of the quality of the segmentation [7].

To compute these measurements, the position of the peak in each object de�ned in the ground-
truth is determined. Then, the number of detections at these position are counted. This number
is then devided by the total number of objects and total number of detections, resulting in
the recall and precision measurements respectively. This procedure has been applied to the
segmentations of eight data sets, using the MTO and LVQ classi�ers. A scatter plot has been
included in �g. 6.2, visualizing the precision vs. recall and the F-score vs. area score, as this is

32

also the way inwhich segmentation are compared in [7]. Classi�cations have been performed for
nine cluster data sets, for each classi�er trained on one of the remaining data sets. An obvious
difference between the measurements taken for MTO and MTO with LVQ is that the latter has a
much lower precision as hypothesized. Again, this is due to the much higher number of noise
structured being identi�ed as object by the LVQ classi�er. However, this classi�er performs
signi�cantly better in terms of recall, meaning more of the actual object are identi�ed as such as
well. Comparing the F-score of both methods, it is clear that the LVQ classi�er again performs at
a much lower quality level, although the area scores are nearly identical.

0.2 0.4 0.6 0.8 1

0.66

0.68

0.7

Precision

R
ec
a
ll

0.2 0.4 0.6 0.8

0.81

0.82

0.83

0.84

F-score

A
rea

-sco
re

MTO

MTO with LVQ

Figure 6.2: Comparison of the measurements computed for segmentations producted by MTO
with LVQ and MTO using a statistical segmentation method. Here, LVQ classi�ers have been
trained for 10% of each cluster data set. For each classi�er, segmentations have been produced
for the remaining eight cluster data sets, resulting in 9× 8 = 72 segmentations forMTOwith LVQ.

A potential explenation for the lowprecision score of LVQ is the decision to train each classi�er
on a fraction (10 %) of the data sets. This might not be enough information for the classi�er
to learn the rule that separates noise from actual astronomical objects. To test the signi�cance
of this design choice, a single LVQ classi�er has been trained on 100 % of the nodes found in
the �rst cluster data set. Next, segmentations have been produced using this classi�er for
all of the remaining data sets. The measurements computed from these segmentations have
been presented in �g. 6.3, together with the measurements computed from the segmentations
produced with the LVQ classi�er trained on 10 % of the nodes in cluster 1. Here it becomes
apparent that there is little change in results when increasing the percentage of nodes considered
during training. Bar two of the measurements, all have remained unchanged, proving that the
low precision and F-score cannot be attributed to the number of nodes taken into consideration.

6.3 Comparing Time Measurements

Due to the usage of the Python interpreter to perform the LVQ classi�cation, it is probable that
MTOwith LVQ requires more time tomark the signi�cant nodes in themax-tree. Themuch larger
number of nodes that are marked as objects will most likely also in�uence the post-processing of

33

1.15 1.16
·10−1

0.68

0.69

Precision

R
ec
a
ll

1.96 1.97 1.98 1.99 2
·10−1

0.82

0.83

0.84

F-score

A
rea

-sco
re

LVQ on 10 %
LVQ on 100 %

Figure 6.3: Comparison of the measurements computed from the segmentations of all data set
bar 1 and 5, using MTO and LVQ trained on both 10 % and 100 % of the nodes in the cluster data
set 1. Data points for the latter have been reduced in size to make overlaps with the prior visible.

the max-tree. In order to test this hypothesis, time measurements have been collected per stage
of the segmentation process, as described in chapter 3. Data for both segmentation using LVQ
and the statistical method has been recored, both of which are presented in a box plot in �g. 6.4.
Here it is apparent thatMTOwith LVQ indeed takes a lot more time to mark the signi�cant nodes.
The difference in measurements before this stage are all comparable, but after most stages take
longer for MTO with LVQ, even the generation of the output image. This is best explained as a
result of the increase in nodes that have been marked as signi�cant.

34

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

S
o
rt
in
g

C
re
a
te
Q
u
a
n
ti
ze
d
Im

a
g
e

Q
u
a
n
ti
ze
d
T
re
e

R
e�
n
em

en
t
T
re
e

Im
a
g
e
B
a
ck
g
ro
u
n
d
O
p
er
a
ti
o
n
s

L
ev
el
-R
o
o
t
F
ix

M
a
rk

S
ig
n
i�
ca
n
t
N
o
d
es

F
in
d
O
b
je
ct
s

M
o
v
e
L
a
b
el
s
U
p

G
en
er
a
te
O
u
tp
u
t
Im

a
g
e

s

M
T
O

M
T
O
w
it
h
L
V
Q

F
ig
u
re

6
.4
:
C
o
m
p
a
ri
so
n
o
f
th
e
ti
m
e
m
ea
su
re
m
en
ts
ta
k
en

fo
r
th
e
se
g
m
en
ta
ti
o
n
o
f
th
e
cl
u
st
er

d
a
ta
se
ts
u
si
n
g
M
T
O
w
it
h
L
V
Q
a
n
d
M
T
O
w
it
h

th
e
st
a
ti
st
ic
a
l
m
et
h
o
d
.
T
o
co
n
st
ru
ct
th
is
b
o
x
p
lo
t,

72
a
n
d

9
m
ea
su
re
m
en
ts
h
a
v
e
b
ee
n
u
se
d
fo
r
M
T
O
w
it
h
L
V
Q
a
n
d
M
T
O
w
it
h
th
e
st
a
ti
st
ic
a
l

m
et
h
o
d
re
sp
ec
ti
v
el
y
.
N
o
te
th
a
t
th
e
st
a
g
es

in
th
e
se
g
m
en
ta
ti
o
n
p
ro
ce
ss

h
a
v
e
b
ee
n
p
re
se
n
te
d
in

ch
ro
n
o
lo
g
ic
a
l
o
rd
er

o
n
th
e

y-
a
x
is
,
fr
o
m

b
o
tt
o
m

to
to
p
.

35

Chapter 7

Conclusion

Given the results gathered in chapter 6, research question 2 as posed in chapter 1 canbe answered
in this chapter. Recall that research question 1 has been answered in chapter 3 Furthermore, the
result that have been produced are discussed in order to evaluate the knowledge that has been
gained during the research.

7.1 Segmentation Quality

Although the segmentation produced by MTO with LVQ results in a classi�cation of astronomical
object in a visual sense, measurements indicate that the quality of MTO with a statistical method
is far superior. This observation can be attributed to the tendency of LVQ tomark small structures
in the background noise to be object as well, resulting in a very low precision and F-score. The
results are improved in terms of recall and area-score, but as such low rates that the loss in
precision and F-score are not justi�ed. Similar behaviour of ML techniques for segmentation
problems have been observed in other research, such as the segmentation of tumors in positron
emission tomography (PET) scans by Tata [18]. This leads to the conclusion that ML is unsuited
for the segmentation of astronomical data, at least on its own. This provides an answer to
research question 2.

7.2 Performance

Besides the quality of the segmentation results, MTO with LVQ also increases the time and
resources required for segmentation. Measurements show computation time up to ten times as
long as MTO using the statistical method. This increase in time needed would be acceptable in
case of an improvement in quality of the results. However, improvements in implementation
of the LVQ classi�cation might still result in faster segmentation than MTO. This could lead to
MTO with LVQ being used as a preliminairy segmentation method, potentially justifying further
research.

36

Chapter 8

FutureWork

In this chapter, possible subjects for future research and development is discussed, based on the
�ndings presented in this master's thesis.

8.1 Determining Signi�cance

With the current implementation, all nodes in the max-tree are presented to the LVQ classi�er.
Not only does this slow down the process of learning and segmentation, it also results in a
lot of redundancy in terms of new information presented to the classi�er. Developing a more
sophisticated procedure in which only relevant nodes make it to the classi�er will most likely
improve the results. For example, instead of whole branches in the max-tree, only nodes at
which new branches diverge could be considered, as this is where objects are more likely to be
observed. More approaches can be formulated by examining the behaviour of MTO andMTOwith
LVQ and determining where it makes mistakes. Using this information, the way in which nodes
are �agged to be signi�cant can be improved.

8.2 Parameter Optimization

As discussed in chapter 6, many options are available for the con�guration of an LVQ classi�er.
In this thesis, only the impact on the time measurements has been considered for the selection
of these options. Furthermore, only the options that are implemented in sklvq at the time
of writing have been considered. Future research might focus on further optimization of the
parameters in order to improve the actual quality of the results presented by the LVQ classi�er.
To this end, the measurements considered in section 6.2 can be used to evaluate the impact of
different con�gurations.

In addition to optimizing the parameters of the LVQ classi�er, alternative distance functions
might also be considered. In this work, the Euclidean distance has been used, but other distance
measures might be more sensible, given the nature of the data. Some promising candidates for
distance measures are the Minkowski distance, the Mahalanobis Distance and the kernalized
distance [3]. Of these, the Mahalanobis distance shows the most potential, as it is noted to
perform better with respect to the Euclidean distance when features correspond to different
properties in both a quantitative or qualitative sense.

37

8.3 LVQ Implementation

The time measurements suggest that the use of the Python interpreter is a major impact on the
run-timeof theMTOwith LVQ software. Moremethods of implementing an LVQ classi�erwithMTO
should be explored in order to �nd one which reduces the required computation power and time.
Possible solutions of interest are implementing both MTO and LVQ in Python, rewriting parts in
C for optimization (instead of the other way around as done in this thesis), implementing LVQ
in C as a whole or �nding a more suitable language than C or Python altogether. Additionally,
the implementation object detection algorithm might be improved as well. In the current
implementation, every node is used as input for the LVQ classi�er. However, it is not unlikely
that only nodes appearing at points in the tree where new branches appear are probable to be
an object. More sophisticated approaches to selecting nodes on which the classi�er is trained
can be imagined as well. Limiting the data to use as input for the classi�er training procedure to
these nodes only might increase precision while reducing the amount of computational power
required. More research is required to verify whether such a sophistication of the software will
be an improvement in terms of quality.

8.4 Alternative Applications

In this research it has been shown thatMTOwith LVQ does not perform well when it comes to the
segmentation of astronomical data. Whether this behaviour is limited to astronomical data only
is unclear, although other research does report on similar observation in medical scans at least
[18]. Still, other types of data sets might be suit the LVQ classi�er better that the aformentioned
types. Therefor, further research is needed to investigate the performance of LVQ for different
data-sets. Possibly, increasing the number of nodes to consider during training might result
in better results in some cases. Furthermore, in this thesis, only optical data-sets have been
used for training and segmentation. Another interesting group of data-sets are those containing
radio-astronomical data. Different from optical data, radio data can contain certain patterns
in the noise that make it hard to �nd segments. It is possible that LVQ is capable of classifying
objects in these data-sets, extracting valuable information. Therefore, more research into the
performance of LVQ in a radio-astronomical context is worth looking into as well. In addition
to astronomical data, MTO with LVQ might prevail in other �elds of applied computer vision as
well. For example, analyzing medical scans might lead to the detection of certain deceases. In
order to explore the extent in which this technique can be used in other domains, more research
is required.

8.5 Improving Statistical Segmentation

Although MTO with LVQ has shown to perform less well than MTO using a statistical method, it
might still be of some use as an additional step in the segmentation process. To put this idea to
the test, the a data set can be segmented by MTO, the output of which is used as a ground truth
to train an LVQ classi�er. Then, this classi�er can be used to segment the input image again,
hopefully resulting in an improvement with resepect to the result by MTO on its own due to the
combination of the high precision provided by MTO and the high recall by MTO with LVQ. In
�g. 8.1 a diagram is featured, illustrating this process. Using the comparison methods featured
in this thesis, the effect of this approach can be inspected by future researchers.

38

MTO

Segmentation
LVQ

Training
MTO with LVQ

Segmentaion

Image

Segmentation

LVQ �Ground Truth� LVQ Classi�er

Figure 8.1: Diagram of the proposed process in whichMTOwith LVQ andMTO using the statistical
methodcanbecombined inorder topotentially increase thequalityof the resulting segmentation.

39

Bibliography

[1] Christophe Berger et al. �Effective Component Tree Computation with Application to
Pattern Recognition in Astronomical Imaging�. In: Proc. International Conference on
Image Processing. Vol. 4. San Antonio, Texas, US: IEEE, Sept. 2007, pp. 41�44. ISBN:
978-1-4244-1436-9. DOI: 10.1109/ICIP.2007.4379949.

[2] Michael Biehl. �Learning from Examples. An Introduction to Neural Networks and Com-
putational Intelligence�. Lecture materials for the course Neural Networks and Compu-
tational Intelligence. Jan. 2, 2019.

[3] Michael Biehl, Barbara Hammer, and Thomas Villmann. �Prototype-Based Models in
Machine Learning�. In:WIREs Cogn. Sci. 7 (2016), pp. 92�111. DOI: 10.1002/wcs.1378.

[4] Extending and Embedding the Python Interpreter. Python 3.8.2 Documentation. Python
Software Foundation. 2020. URL: https://docs.python.org/3/exending/ (visited on
04/21/2020).

[5] Eric Freeman et al. Head First. Design Patterns. A Brain-Friendly Guide. Ed. by Mike
Hendrickson andMike Loukides. Sebastopol, CA, US: O' Reilly, 2004. ISBN: 978-0-5960-
07126.

[6] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Ed. by Michael
McDonald. 3rd ed. Upper Saddle River, New Jersey, US: Pearson Education, 2008. ISBN:
978-0-13-505267-9.

[7] CarolineHaigh et al. �Optimizing andComparing SourceExtractionToolsUsingObjective
Segmentation Quality Criteria�. 2020.

[8] Ming-Kuei Hu. �Visual Pattern Recognition by Moment Invariants�. In: IRE Trans. In-
formation Technology 8 (2 Feb. 1962), pp. 179�187. DOI: 10.1109/tit.1962.1057692.

[9] Teuvo Kohonen. �The Self-Organizing Map�. In: Neurocomputing 21 (1�3 Nov. 1998),
pp. 1�6.

[10] Ugo Moschini, Arnold Meijster, and Michael H. F Wilkinson. �A Hybrid Shared-Memory
Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images�. In: IEEE Trans. Pat-
tern Analysis and Machine Intelligence 40.3 (Mar. 2018), pp. 513�526. DOI: 10.1109/
TPAMI.2017.2689765.

[11] UgoMoschini et al. �Towards Better Segmentation of Large Floating Point 3D Astronom-
ical Data Sets: First Results�. In: Proc. 2014 Conference on Big Data from Space. Ed. by
P. Soille and P. G. Marchetti. European Comission. Luxembourg, LU: European Union,
Nov. 2014, pp. 218�221. ISBN: 978-92-79-43252-1. DOI: 10.2788/1823.

[12] Fabian Pedregosa et al. �Scikit-Learn. Machine Learning in Python�. In: Journal of Ma-
chine Learning Research 12 (2011), pp. 2825�2830.

40

https://doi.org/10.1109/ICIP.2007.4379949
https://doi.org/10.1002/wcs.1378
https://docs.python.org/3/exending/
https://doi.org/10.1109/tit.1962.1057692
https://doi.org/10.1109/TPAMI.2017.2689765
https://doi.org/10.1109/TPAMI.2017.2689765
https://doi.org/10.2788/1823

[13] Python/C API Reference Manual. Python 3.8.2 Documentation. Python Software Foun-
dation. 2020. URL: https://docs.python.org/3/c-api/ (visited on 04/15/2020).

[14] RubinObservatory.FirstNationalUSObservatory tobeNamedAfteraWoman!National
Science Foundation. Jan. 6, 2020. URL: https://www.lsst.org/news/vro- press-
release (visited on 07/01/2020).

[15] Philippe Salembier, Albert Oliveras, and Luis Garrido. �Antiextensive Connected Opera-
tors for Image and Sequence Processing�. In:Trans. on Image Processing 7.4 (Apr. 1998),
pp. 555�570. DOI: 10.1109/83.663500.

[16] Atsushi Sato andKeiji Yamada. �Generalized Learning VectorQuantization�. In:Proc. 8th
International Conference on Neural Information Processing Systems. NIPS'95. Ed. by
David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo. NeurIPS. Cambridge,
Massachusetts, US: MIT Press, Nov. 1995, pp. 423�429.

[17] Petra Schneider. �Advanced Methods for Prototype-Based Classi�cation�. PhD thesis.
Groningen, NL: University of Groningen, 2010. ISBN: 978-90-367-4405-8.

[18] Elsie Tata. �Segmentation of NSCLC Tumors in PET Scans Using Component-Trees and
Machine-Learning�. Unpublished MSc thesis. Groningen, NL: University of Groningen,
2020.

[19] Florence F. Tushabe. �Extending Attribute Filters to Color Processing and Multi-Media
Applications�. PhD thesis. Groningen, NL: University of Groningen, Nov. 2010. ISBN:
978-90-367-4630-4.

[20] User Guide. Scikit-Learn 0.22.2 Documentation. Scikit-Learn Developers. 2019. URL:
https://scikit-learn.org/stable/user_guide.html (visited on 04/15/2020).

[21] Michael A. Westenberg, Jos B. T. M. Roerdink, andMichael H. F. Wilkinson. �Volumetric
Attribute Filtering and Interactive Visualization Using theMax-Tree Representation�. In:
IEEE Trans. Image Processing 16.12 (Dec. 2007), pp. 2943�2952. DOI: 10.1109/TIP.
2007.909317.

[22] Whenjun Zhang. Computational Ecology. Arti�cial Neural Networks and Their Appli-
cations. Toh Tuck, SG: World Scienti�c Publishing, 2010. ISBN: 978-981-4282-62-8.

41

https://docs.python.org/3/c-api/
https://www.lsst.org/news/vro-press-release
https://www.lsst.org/news/vro-press-release
https://doi.org/10.1109/83.663500
https://scikit-learn.org/stable/user_guide.html
https://doi.org/10.1109/TIP.2007.909317
https://doi.org/10.1109/TIP.2007.909317

Appendix A

Implementing Berger's
Max-Tree Algorithm

As part of the exploratory research for this master's thesis, the max-tree construction algorithm
proposed by Berger et al. [1] has been implemented for GNU Octave. This implementation is
mainlymeant to gain understanding of the innermechanisms of the algorithm and does therefor
notmake any promises regarding performance or ef�ciency. However, it might be usefull for the
construction and inspection of max-trees for small images. Therefor, the code is made available
in the Git repository of this thesis as well as in this appendix. Additionally, the repository
provides a few example data-sets as well as a visualization script to display the max-tree of an
image, such as the one presented in �g. A.1. The implementations of the procedures listed in
chapter 2 are included in listings 3 to 5.

Figure A.1: Example tree plots of example data-set src/attr/eg.mat in the �correct� (left) and
canonized (right) form. Plotted using the src/attr/show.m GNU Octave function. Note that
the trees are upside-down and that the layer (λ value) is not re�ected in the vertical positions of
the nodes of the tree.

42

Listing 3 Implementation of the FINDROOT procedure, as found in the �le src/attr/root.m.

function [r, zpar] = root(x, zpar)
if zpar(x) == x

r = x;
else

zpar(x) = root(zpar(x), zpar);
r = zpar(x);

end
end

Listing4 Implementationof theCOMPUTETREEprocedure, as found in the�lesrc/attr/tree.m.
Note that themain loop iterates over the indices of the reverse sorted elements as opposed to the
formal de�nition of the algorithm by Berger et al. [1], where the elements are iterated directly.

function [R, parent] = tree(f)
parent = zpar = nan(size(f));

[_, s] = sort(f(:), "descend");
[_, R] = intersect(s, [1:numel(f)]);

for p = s'
parent(p) = p;
zpar(p) = p;

for n = N(p, f)
if isnan(zpar(n))

continue;
end

[r, zpar] = root(n, zpar);

if r != p
parent(r) = p;
zpar(r) = p;

end
end

end

R = reshape(R, size(f));
end

43

Listing 5 Implementation of the CANONIZETREE procedure, as found in the �le src/attr/
canonize.m. Similar to listing 4, the main loop iteration does not iterate over the elements
directly but their indices instead.

function parent = canonize(parent, f)
[_, s] = sort(f(:), "descend");
[_, R] = intersect(s, [1:numel(f)]);

for p = fliplr(s')
q = parent(p);

if f(parent(q)) == f(q)
parent(p) = parent(q);

end
end

parent = reshape(parent, size(f));
end

44

Appendix B

Implementing Component
Attribute Computations

In order to investigate the way in which the computation of component attributes could be
realized, several of them have been implemented in GNU Octave, based on the algorithms
provided in chapters 2 and 3. The function provided in this appendix are also available in the
Git repository of this master's thesis and can be used to computed their respective attribute
for the components in a max-tree constructed using the source-code provided in appendix A. A
selection of the implementation have been included in listings 6 to 10.

Listing 6 Implementation of the COMPUTEAREA procedure, as found in the �le src/attr/attr/
area.m.
function a = area(f, R, parent)

a = ones(size(R));

[_, v] = sort(R(:));

for x = v'
if parent(x) == x

continue
end

a(parent(x)) = a(parent(x)) + a(x);
end

end

45

Listing 7 Implementation of the COMPUTEPERIMETER procedure, as found in the �le src/attr/
attr/per.m.

function l = per(f, R, parent)
b = zeros(size(f));
l = zeros(size(f));

for a = unique(f)'
g = f >= a;
c = zeros(size(f));

c = c | g > [zeros(1, size(g, 2)); g(1:end-1, :)]; % n
c = c | g > [zeros(size(g, 1), 1), g(:, 1:end-1)]; % e
c = c | g > [g(2:end, :); zeros(1, size(g, 2))]; % s
c = c | g > [g(:, 2:end), zeros(size(f, 1), 1)]; % e

b = b + c;
end

[_, s] = sort(f(:), "descend");

for x = s'
y = x;

while b(x) > 0
l(y) = l(y) + 1;
b(x) = b(x) - 1;
y = parent(y);

end
end

end

Listing 8 Implementation of the COMPUTECOMPACTNESS procedure, as found in the �le src/
attr/attr/comp.m.

function c = comp(f, R, parent)
a = area(f, R, parent);
p = per(f, R, parent);
c = (p .^ 2) ./ a;

end

Listing 9 Implementation of the COMPUTECIRCULARITYRATIO procedure, as found in the �le
src/attr/attr/ratioc.m.

function r = ratioc(f, R, parent)
a = area(f, R, parent);
p = per(f, R, parent);
r = (4 * pi .* a) ./ (p .^ 2);

end

46

Listing 10 Implementation of the COMPUTEPOWER procedure, as found in the �le src/attr/
attr/pow.m. Note that this implementation does not follow the computation provided by
Tushabe [19], as it follows the procedure as it appeared in MTO developed by Moschini et al.
[11].

function c = pow(f, R, parent)
c = zeros(size(f));
h = zeros(numel(f), length(unique(f)));

[_, s] = sort(f(:), "descend");

for x = fliplr(s')
y = x;

while true
h(y, f(x)) = h(y, f(x)) + 1;

if y == parent(y)
break;

end

y = parent(y);
end

end

for x = s'
for v = unique(f)

c(x) = c(x) + h(x, v) * (f(x) - v);
end

end
end

Listing 11 Implementation of the COMPUTESUMINT procedure, as found in the �le src/attr/
attr/sum.m.

function s = sum (f, R, parent)
[_, i] = sort(f(:), "descend");

s = f;

for x = i'
if x != parent(x)

s(parent(x)) = s(parent(x)) + s(x);
end

end
end

47

Listing 12 Implementation of the COMPUTESUMINTSQUARED procedure, as found in the �le
src/attr/attr/sums.m.

function s = sums (f, R, parent)
[_, i] = sort(f(:), "descend");

s = zeros(size(f));

for x = i'
s(x) = f(x) ^ 2;

end

for x = i'
if x != parent(x)

s(parent(x)) = s(parent(x)) + s(x);
end

end
end

Listing 13 Implementation of the COMPUTEGRAYSCALE procedure, as found in the �le src/
attr/attr/grayscale.m.

function g = grayscale(f, R, parent)
g = zeros(size(f));
a = area(f, R, parent);

[_, s] = sort(f(:), "descend");

for x = s'
y = x;

while true
g(y) = g(y) + f(x) / a(y);

if y == parent(y)
break;

end

y = parent(y);
end

end
end

48

Appendix C

Breaking the Python/C API

Spam, Spam, Spam, Spam, Spam, Spam,

baked beans, Spam, Spam, Spam and

Spam

Monty Python

While working with the Pytohn/C API, several setbacks have occured due to undocumented,
indistinct technical problems. In this appendix, these challenges are described and the solution
that has been found is explained (if applicable).

C.1 Debugging the Python Interpreter

During software development, debugging is vital in order to detect and inspect potential issues
in the code. During thismaster's thesis project, the CLion1 integrated development environment
(IDE) has been used, which provides tools to place breakpointswithin the C code. Unfortunately,
debugging the behaviour of the Python Interpreter is less straightforward. Moreover, errors are
not even printed to the terminal out of the box. This can lead to a lot of initial frustration when
code simply stop execution, only providing an exit code. Attaching a debugger to the Python
Interpreter when constructing using the Python/C API has proven to be unfeasible. However, a
solution has been found to get a hold of errors that occur within the interpreter. To this end,
after every execution within the Python Interpreter, the error �ag has to be checked and � if it
has been set � the error message is printed and �ushed[13]. A demonstration of this approach
has been included in listing 14.

C.2 Considering Performance

In early implementation of MTO with LVQ, data-points where sent to the Python interpreter one
by one. This turned out to be a major delaying step within the process. However, allocating
memory to store all data-points and sending all afterwards was not viable, as the amount of
space required is unknown. This problem has ultimately been solved by the construction of a
Python list, which can be expanded whenever necessary. Although this practice is discouraged

1https://www.jetbrains.com/clion/

49

https://www.jetbrains.com/clion/

Listing 14 Demonstration of the way in which errors that occur in the Python Interpreter can
be inspected when using the Python/C API.

PyObject_CallMethod(pJobLin, "dump", "O, s",
pClassifier, classifier);

if (PyErr_occurred() != NULL) {
PyErr_Print();
PyErr_Clear();

}

in literature such as [13] due to performance issues, the performance lost is still signi�cantly
less, with the time required for training the LVQ classi�er being reduced to roughly 6%.

50

	Introduction
	Segmentation of Astronomical Objects
	Reading this Document

	Related Work
	Background
	Max-Trees
	Component Attributes
	Learning Vector Quantization

	Concept
	Component Attributes
	Perimeter
	Composite Positional Attributes
	Intensity Attributes
	Attributes for Segmentation

	Segmentation Method

	Realization
	Computing Component Attributes
	Segmentation with lvq
	Embedding Python in C
	Training the lvq Classifier

	Evaluation
	Hyperparameter Tuning

	Results
	Segmenting Astronomical Data for Evaluation
	Quantifying Segmentation Quality
	Comparing Time Measurements

	Conclusion
	Segmentation Quality
	Performance

	Future Work
	Determining Significance
	Parameter Optimization
	lvq Implementation
	Alternative Applications
	Improving Statistical Segmentation

	Implementing Berger's Max-Tree Algorithm
	Implementing Component Attribute Computations
	Breaking the Python/C api
	Debugging the Python Interpreter
	Considering Performance

