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Abstract

This thesis treats network systems of diffusively coupled nonlinear oscillators and in particular,

model order reduction by means of node clustering. The question whether there are any natural

choices of nodes that may be clustered together such that the reduced-order model has similar

dynamical features as the original one is addressed for an example network. Results on passivity-

based cluster synchronization theory are reviewed. Based on this and by exploiting symmetries

present in the network, a criterion is formulated which identifies groups of nodes that can be

considered natural candidates for clustering. In the case of a modular directed ring network, it is

demonstrated that this criterion predicts preservation of the emergence of a modular travelling

wave when comparing the original and reduced-order systems. In the case that the modular

travelling wave is preserved, it is demonstrated that its local stability region with respect to

the system parameters is reproduced almost exactly. The results support the hypothesis that

emergent dynamical features are related to the symmetries present in the network and that this

can be exploited for purposes of model order reduction by node clustering.
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Chapter 1

Introduction

With the technological revolution that had its roots in the early 20th century came the rise of

network systems: power grids, telephone networks and, not least, the Internet are examples of

systems in which individual agents communicate with one another. But not only human-made

systems can be understood in terms of their network structure. Many natural systems, such as

systems of neurons or gene regulatory mechanisms in biological cells, can be modelled as network

systems. While the importance of network structure has been recognized for a long time, only

the advancements of the past decades have brought the necessary computational capacities to

describe, study and control the behaviour of complex network systems.

In particular, the phenomenon of synchronization in network systems has gained substantial

attention. Be it networks of pacemaker cells of the heart (see Mirollo & Strogatz [16]), power

grids (see Motter et al. [18]) or robotic systems (see Nair & Leonard [20]), the study of syn-

chronization has proved invaluable for applications. A particular variant of synchronization is

referred to as cluster synchronization. While (full) synchronization is characterized by uniform

behaviour of all subsystems, cluster synchronization describes the case in which synchronization

occurs for clusters of subsystems, rather than for the whole system in its entirety. The mech-

anisms that lead to the various types of synchronization have been studied by many authors,

among them Pogromsky et al. [22, 25, 26], Sorrentino et al. [30] and Aminzare et al. [1].

Since many network systems are very large in size, the modelling of such systems at full scale

is often untenable. However, methods of model order reduction have proven to be effective in

deriving reduced-order models which still capture the overall behaviour of the original network

system (see Antoulas [2] for an overview). One approach to arrive at a reduced-order model is by

the clustering of subsystems: a number of subsystems in the original network are clustered to-

gether and a new, less complex network is derived from it. Along these lines, significant progress

has been made in describing input-output relations for network systems with linear dynamics

(see Monshizadeh et al. [17]). In linear network systems, a typical phenomenon of interest is

consensus dynamics, i.e. the convergence of all trajectories of the subsystems to a common equi-

librium state. This phenomenon can be regarded as a special kind of synchronization. Results

of clustering-based model order reduction have been applied successfully to preserve consensus

dynamics for linear systems. Much less is known about nonlinear systems and in particular

the relationship between network topology and emergent dynamical phenomena such as the

(dis)appearances of “non-equilibrium” attractors in the system.
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In this thesis, we will study nonlinear network systems and address the question whether

there is a way of identifying node clusters that, upon clustering-based model order reduction,

yield reduced-order models which are good approximations of the original network. How good

or bad a reduced-order model is will be evaluated on the basis of how well the bifurcation

structure is preserved. In its full generality, the problem of judging how well the bifurcation

structure is preserved under model order reduction is extremely complicated. Therefore, the

scope of this thesis is restricted to the exploration of this problem for two example networks of

nonlinear oscillators in which the subsystems are modelled as FitzHugh-Nagumo neurons. The

networks under consideration are a cube network of 8 subsystems and a modular ring network

of variable size. The networks have been selected due to their simplicity and limited number

of symmetries. Further, the modular ring network is a straightforward modification of a simple

ring which can be regarded as a building block for more complicated network structures. The

modular ring network features multi-stability of the fully synchronous solution together with

a modular travelling wave solution. We study the preservation of the multi-stability region in

parameter space under clustering-based model order reduction. The symmetries of the example

networks are exploited to apply arguments from cluster synchronization theory. The intuition

behind the approach is the following: if nodes in a certain cluster tend to synchronize, then

representing this cluster by a single node in the reduced-order network should result in a good

approximation of the original network. If nodes tend to synchronize in multiple clusters, we

would like to reduce those clusters in which the nodes synchronize fastest. Aiming to formalize

this intuition, upper bounds on the convergence rates of state trajectories associated with the

different choices of clustering nodes are derived and compared. For the example networks, it

is demonstrated that the spectral properties of a certain matrix associated with the network

structure are related to these convergence rates. This leads to a rough classification of node

clusterings according to how well-suited they are for purposes of clustering-based model order

reduction.

The contents of this thesis are arranged as follows:

• Chapter 2 Modelling aims to introduce the problem in a more mathematically rigorous

way. Relevant notions from graph theory will be reviewed and a precise characterization

of network systems with diffusive coupling will be given. The FitzHugh-Nagumo (FHN)

model for neuronal activity will be discussed briefly and two networks consisting of FHN

oscillators with different topologies will be introduced. These two network system will

serve as running examples throughout the thesis. Further, the notion of clustering-based

model order reduction will be introduced in a precise manner. The problem statement will

be reformulated in terms of the introduced concepts.

• In chapter 3 Cluster Synchronization, we will review results pertaining to cluster synchro-

nization in network systems as described by Sorrentino et al. [30] and Pogromsky [22, 23].

To do so, we review the notion of symmetry of a graph and we will see how these symme-

tries give rise to invariant manifolds of the underlying network system. These invariant

manifolds in turn are associated with cluster synchronization. Employing the notion of

passivity, Pogromsky’s argumentation results in a stability criterion that can be used to

assess whether a network system displays cluster synchronization. From Pogromsky’s more
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general result, a variant which holds true for network systems of FHN oscillators is de-

rived. This variant also allows for the computation of upper bounds on the convergence

rates associated with convergence towards the mentioned invariant manifolds.

• As the name suggests, Chapter 4 Application to Example Networks deals with the ap-

plication of the theory presented in chapter 3 to the example networks as introduced in

chapter 2. The conditions that allow for the application of the results from chapter 3 will

be verified explicitly. It is then demonstrated that in the case of the example networks,

the theory on cluster synchronization can be used to predict which groups of nodes in

a network are good candidates for clustering, or at least which groups of nodes are bad

candidates.

• Finally, in chapter 5 Conclusion and Discussion, we recapitulate the contents of the thesis

and conclude. Directions for further research will be outlined.

This thesis is largely self-contained, albeit with the occasional reference to one of the appendices

which contain supplementary material. However, the reader is expected to be familiar with basic

group theory, linear algebra and the theory of ordinary differential equations.
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Chapter 2

Modelling

The aim of this chapter is to introduce all mathematical concepts needed to study clustering-

based model order reduction for nonlinear network systems with diffusive coupling. In particular,

this chapter aims to:

1. Review some basic graph theory and make precise the notion of network systems with

diffusive coupling.

2. Introduce Steur’s network and Pogromsky’s network of FitzHugh-Nagumo oscillators.

These example networks will be the focus of our investigations.

3. Familiarize the reader with the notion of clustering-based model order reduction.

4. Formulate a precise problem statement.

Let us begin with an exposition of basic graph theory.

2.1 Preliminaries from Graph Theory

We will consider both weighted undirected graphs as well as weighted directed graphs. A

weighted undirected graph is an ordered triple G = (V,E,A). The set V is referred to as

the vertex set (or node set) and we usually consider V = {1, 2, . . . , N}. The edge set E is a set

of unordered pairs {i, j} with i 6= j and indicates which vertices are connected to one another.

We say that nodes i and j are neighbors if {i, j} ∈ E. Finally, the adjacency matrix A = [aij ]

has non-negative elements and the element aij indicates the weight of the connection between

vertex i and j. Note that aij = aji and aij = 0 if there is no edge between vertex i and j, or

equivalently

aij > 0 ⇐⇒ {i, j} ∈ E.

A weighted directed graph is an ordered triple G = (V,E,A). To contrast against the case of

undirected graphs, for directed graphs, we refer to E as the arc set. The arc set contains ordered

pairs (i, j) with i 6= j. If (i, j) ∈ E then we call node i an in-neighbour of node j. Likewise,

we call node j an out-neighbour of node i. Given an arc (i, j) ∈ E we say that i is the tail and

j is the head of the arc. The adjacency matrix A = [aij ] is again similarly defined as before,
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however, now aij is the weight of the arc from vertex j to i. In general aij 6= aji and aij = 0, if

there is no arc from j to i, or equivalently

aji > 0 ⇐⇒ (i, j) ∈ E.

Remarks.

i) We consider simple graphs, that is graphs without multiple edges/arcs between vertices

and no self-connections. Moreover, since we will be dealing with weighted graphs only, we

omit the word “weighted” and simply refer to undirected and directed graphs.

ii) We call a directed graph symmetric whenever (i, j) ∈ E ⇐⇒ (j, i) ∈ E. Note that in this

case aij and aji may be distinct.

For both undirected and directed graphs, we define the degree matrix D = diag(d1, . . . , dN ) with

di =
N∑
j=1

aij .

In the case of an unweighted graph, or equivalently a weighted graph with all weights equal to

one, the quantity di is simply the number of neighbours of vertex i. In general, the number

di conflates information about the number of neighbours of vertex i and the associated edge

weights. In the case of a directed graph, the matrix D is also referred to as the in-degree matrix

as only arcs which have vertex i as their head contribute to di. We define the Laplacian matrix

L = D −A.

As we will soon see, the Laplacian matrix is a very useful mathematical object in the description

of network systems.

Remarks.

i) Any undirected graph can be associated with a symmetric directed graph with aij = aji.

ii) For undirected graphs, the Laplacian matrix is always symmetric and positive semi-

definite, as can be concluded from Gershgorin’s circle theorem.

iii) If a matrix M is positive semi-definite, we will denote this as M < 0. Similar notation is

used if M is negative semi-definite (M 4 0), positive definite (M � 0) or negative definite

(M ≺ 0).

We are now equipped with the basic graph theory necessary to start our investigation of diffu-

sively coupled networks. For further reading on graph theory, see for example Bollobás [4] and

Egerstedt & Mesbahi [15]. As we move along, we will eventually make use of additional concepts

from graph theory but the introduction of more advanced machinery will be postponed until

later sections.
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2.2 Diffusively Coupled Networks

In 1976, Smale [29] studied a model of concentrations of chemicals in two identical cells which are

separated by a membrane and interact via diffusion. While concentrations in each individual

cell by itself would approach an equilibrium, introducing a diffusive interaction between the

cells allowed the coupled system to exhibit more complicated phenomena such as oscillatory

motion. Inspired by these observations, networks in which the individual systems are coupled

via diffusion-like terms, e.g. based on output differences, have been studied extensively. Let us

introduce the notion of a diffusively coupled network more formally.

We consider systems of the formẋj = f(xj) +Buj ,

yj = Cxj ,
(2.1)

with j = 1, 2, . . . , N , where xj(t) ∈ Rn is the state, uj(t) ∈ Rm is the input and yj(t) ∈ Rm

is the output of the j-th system. We require that f(0) = 0 and B,C are constant matrices of

appropriate dimension. Further, we assume that the matrix CB is positive definite. The N

subsystems are interconnected via some underlying graph G = (V,E,A). We think of individual

subsystems as nodes in the graph G and the interaction between two subsystems is represented

by the edges/arcs between the corresponding nodes in G. This interconnection structure is

reflected in the feedback terms

uj = −
N∑
i=1

aji(yj − yi), (2.2)

where aij are the elements of the adjacency matrix associated with G. Note how subsystem j

interacts with the other subsystems solely based on output differences. For this reason, we call

this kind of coupling diffusive. Exploiting the fact that we are dealing with identical subsystems,

we can simplify equations (2.1) and (2.2) considerably by introducing more convenient notation:

recall that the Laplacian matrix associated with G was defined as

L = D −A =



N∑
i=1

a1i −a12 . . . −a1N

−a21

N∑
i=1

a2i . . . −a2N

...
...

. . .
...

−aN1 −aN2 . . .

N∑
i=1

aNi


.
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We now define

x = col(x1, . . . , xN ) ∈ RNn,

y = col(y1, . . . , yN ) ∈ RNm,

u = col(u1, . . . , uN ) ∈ RNm,

F (x) = col(f(x1), . . . , f(xN )) ∈ RNn.

where col(·, . . . , ·) denotes the “vertical stacking” of vectors. Our original system (2.1), together

with the feedback defined in (2.2), can now be written asẋ = F (x) + (IN ⊗B)u,

y = (IN ⊗ C)x,
(2.3)

with feedback

u = −(L ⊗ Im)y.

Remark. Here we have used the Kronecker product (denoted by ⊗) to enable compact notation.

Given some p× q matrix Q and r × s matrix R, their Kronecker product is the pr × qs matrix

defined by

Q⊗R =


Q11R Q12R . . . Q1qR

Q21R Q22R . . . Q2qR
...

...
. . .

...

Qp1R Qp2R . . . QpqR

 .
With this notation, the closed-loop system now takes the form

ẋ = F (x)− (L ⊗BC)x. (2.4)

Note how in equation (2.4), the two terms nicely separate the contribution coming from the

dynamics of the individual subsystems and the contribution coming from the network structure.

2.3 Introduction to Example Networks

Throughout this thesis, we will keep coming back to two example networks. On the basis of

observations about these examples, we will try to extract more general principles. As already

pointed out, diffusively coupled networks with identical subsystems will be considered. Since

we are interested in networks of artificial neurons, each subsystem will be a so-called FitzHugh-

Nagumo oscillator; a common choice in modelling neuronal activity in recent literature.

2.3.1 The FitzHugh-Nagumo Oscillator

The FitzHugh-Nagumo oscillator (short: FHN oscillator) is a two-dimensional simplification of

the famous Hodgkin-Huxley model for action potentials in neurons. The model is named after

Richard FitzHugh [7], who first proposed the model in 1961, and Jin-Ichi Nagumo [19] who built

a corresponding electrical circuit in 1962. The FHN oscillator has recently gained popularity

9



in the study of networks of nonlinear systems due to its simplicity: the qualitative behaviour

of solutions can largely be described by studying the z and y nullclines. The FHN oscillator is

given by the following set of coupled ordinary differential equationsż = α(y − βz),
ẏ = y − γy3 − z + u,

(2.5)

where y represents the membrane potential of the neuron, z a recovery variable and u an external

stimulus. A common choice for the parameters is

α =
8

100
, β =

8

10
, γ =

1

3
.

Let us have a first look at what solutions of the FHN oscillator look like. The typical behaviour

of a single FHN oscillator without any external stimulation (u ≡ 0) is summarized in Figure 2.1.

0 50 100 150 200
−2

−1

0

1

2

t

z(
t)
,y
(t
)

−2 −1 0 1 2
−1

−0.5

0

0.5

1

y

z

Figure 2.1: Left panel: Solutions z(t) (blue) and y(t) (red) of a single FHN oscillator as time series.
Right panel: Solutions z(t) and y(t) plotted together in state space. In both plots the initial condition is
(z(0), y(0)) = (0.5, 0) and the external stimulus is u ≡ 0.

As long as the initial condition is chosen to be different from the equilibrium at the origin, we will

observe oscillatory behaviour as in Figure 2.1. There is a lot to be said about the dynamics of a

single FHN oscillator when considering external stimuli and how this represents the excitation

of a physical neuron. However, this is not in the scope of this thesis and the interested reader

is referred to Rocşoreanu et al. [28] for a comprehensive review and the original papers by

FitzHugh [7] and Nagumo [19].

Let us now see what the equations for a network of such oscillators look like. As derived in

section 2.2, the equation for a diffusively coupled network takes the form

ẋ = F (x)− (L ⊗BC)x.

What are F (·), B and C in the case of FHN oscillators? Letting xj = col(zj , yj) we see that
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equations (2.5) can be written asẋj = Axj − γy3
jB +Buj ,

yj = Cxj ,

with

A =

[
−αβ α

−1 1

]
, B =

[
0

1

]
, C =

[
0 1

]
.

This means that

f(xj) = Axj − γy3
jB,

and so with x = col(x1, . . . , xN ) we have

F (x) = (IN ⊗A)x− γ(IN ⊗B)Φ((IN ⊗ C)x),

where Φ : RN → RN is defined by component-wise cubing, i.e.

Φ(y) =
[
y3

1 y3
2 . . . y3

N

]>
.

It follows that a network of diffusively coupled FHN oscillators is described by the equation

ẋ = F (x)− (L ⊗BC)x

= (IN ⊗A)x− γ(IN ⊗B)Φ((IN ⊗ C)x)− (L ⊗BC)x.

Having chosen the FHN oscillator as the basic element of our nonlinear network, the function

F together with matrices B and C are now determined. The only remaining unknown is the

Laplacian matrix L of the underlying network structure. We proceed with an exposition of two

example networks that we will be analyzing throughout this thesis.

2.3.2 Steur’s Network

In their research, Steur et al. [8, 9, 31] study networks of coupled nonlinear oscillators. Among

other things, they investigate the influence of the network topology on certain dynamical fea-

tures. In particular, they study two very basic network types: The directed chain and the

directed cycle. These are of special interest as they can be thought of as basic building blocks

for more complicated network structures. Generalizing from directed chains and cycles, Steur

and colleagues then consider networks with so-called modular structure.

A module of size M̄ is a symmetric directed graph with equal arc weights, i.e. for any two

nodes i and j in the module, we have (i, j), (j, i) ∈ E with aij = aji. So the de facto structure

of a module is that of a complete graph of M̄ nodes. A modular network comprises a number of

modules of potentially different sizes. In each module, only a single node is connected to nodes

from other modules but apart from that, the inter-modular coupling structure is not subject to

further restrictions. We will now introduce a particular modular network for which the inter-

modular coupling structure is that of a directed ring. This network will henceforth be referred

to as Steur’s network.
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1

2

3

M̄

σ :

µ :

Module 1

Module 2

Module N̄

Module 3

Figure 2.2: Steur’s network. For purposes of visual clarity, the arcs within the modules are illustrated as
undirected edges.

Let us derive the graph Laplacian of Steur’s network. As is depicted in Figure 2.2, Steur’s

network is a modular network with N = N̄M̄ nodes consisting of N̄ modules where each module

contains M̄ nodes. The inter-module coupling structure is that of a directed cycle where only

the first node in each module is connected to the next/previous module as depicted. The graph

Laplacian Lmodule for a single module is given by

Lmodule =


M̄ − 1 −1 . . . −1

−1 M̄ − 1 . . . −1
...

. . .
. . .

...

−1 −1 . . . M̄ − 1

 ∈ RM̄×M̄ ,

while the graph Laplacian Lring for the directed ring structure is given by

Lring =



1 0 0 . . . −1

−1 1 0
. . .

...
...

. . .
. . .

. . . 0

0 . . . −1 1 0

0 0 . . . −1 1


∈ RN̄×N̄ .

Note that the matrix Lmodule is symmetric while Lring is a circulant matrix. In order to combine

these Laplacians and arrive at the Laplacian of Steur’s network, we introduce the matrix

BL =


1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 ,

with BL ∈ RM̄×M̄ and again make use of the Kronecker product. It is readily checked that the

12



graph Laplacian of Steur’s network is given by

Lring ⊗BL + IN ⊗ Lmodule,

where IN̄ is the N̄ × N̄ identity matrix. We go one step further and introduce an intra-module

coupling strength µ and an inter-module coupling strength σ. Depending on these two parame-

ters, the Laplacian of Steur’s network becomes a function of σ and µ, i.e.

LS(σ, µ) = σLring ⊗BL + µIN ⊗ Lmodule.

To understand the influence of σ and µ, let us consider two extreme cases: In the case of

σ = 0 the Laplacian LS is simply that of N̄ disconnected modules, each of which is essentially a

complete graph. On the other hand, if µ = 0, then LS represents a simple directed ring network

together with (M̄ − 1)N̄ disconnected subsystems. Varying both σ and µ continuously means

to consider a network whose characteristics lie somewhere between these two extremes.

Having found the Laplacian, the dynamics of Steur’s network of FHN oscillators is then

described by the equation

ẋ = F (x)− (LS(σ, µ)⊗BC)x. (2.6)

Let us take a moment to have a look at what solutions to the equation (2.6) might look like.

We consider Steur’s network with M̄ = 5 nodes per module and N̄ = 5 modules in total. This

0 50 100 150 200
−2

−1

0

1

2

t

y j
(t
)

0 50 100 150 200
−2

−1

0

1

2

t

y j
(t
)

Figure 2.3: Time series for Steur’s network with M̄ = N̄ = 5 and σ = µ = 1. Left panel: Full synchro-
nization of oscillators in Steur’s network. Starting off from distinct initial conditions, the oscillators soon
fully synchronize. Right panel: Cluster synchronization of oscillators in Steur’s network. After an initial
transient, some nodes synchronize while others do not.

yields a network with a total of N = 25 coupled oscillators, each having two components, yj and

zj . If we wanted to understand the motion in the 50-dimensional state space, we might run into

some trouble visualizing this. As an alternative, we will simply plot the solutions of y1, . . . , y25

as functions of time. The results are summarized in Figure 2.3, Figure 2.4 and Figure 2.5.
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Figure 2.4: Zoomed version of the solution displaying cluster synchronization as illustrated in the right
panel of Figure 2.3. Left panel: The membrane potentials of oscillators in each module quickly converge
on one another. Right panel: After the initial transit, the solution starts to exhibit a periodic character.
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Figure 2.5: Hovmöller diagram of the solution displayed in the right panel of Figure 2.3. The membrane
potentials yj(t) of the oscillators are indicated by colour. Oscillators in the modules of Steur’s network
synchronize and a modular travelling wave emerges.

Overall, we find two distinct behaviours of solutions: full synchronization and a solution which

displays cluster synchronization. As the name suggest, in the full synchronization regime, all

oscillators synchronize after some time as illustrated in the left panel of Figure 2.3. For the

solution characterized by cluster synchronization, the Hovmöller diagram in Figure 2.5 reveals

that this solution is in fact a modular travelling wave. The modular travelling wave solution

is characterised by cluster synchronization of the oscillators in each module. However, the

individual modules then do not synchronize but rather converge to a solution where each module

has the same period with a phase shift. Figure 2.4 shows the same modular travelling wave as

the right panel of Figure 2.3, plotted for different time windows. Both solution types (full

synchronization and modular travelling wave) correspond to periodic solutions in state space.

Which behaviour is to be observed depends on the values of the parameters σ and µ, as well as

the chosen initial condition. As was shown in earlier work by Raven [27], there is a region in

the parameter plane for which both full synchronization and modular travelling waves can occur
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and another region in which only the full synchronization behaviour exists. We will return to

this later on.

In conclusion, there are a number of reasons that make Steur’s network an interesting object

of study: its modular structure leads us to natural choices of nodes to be clustered together for

model order reduction as we will soon see. Even though the network has a fairly simple structure,

complex behaviour such as bi-stability of both full synchronization and modular travelling wave

solutions have been observed in previous work. For now, let us move on and introduce one more

example network.

2.3.3 Pogromsky’s Network

The next example network has also been studied by Pogromsky [22] and we will therefore refer

to it as Pogromsky’s network. The network has a cube structure, as is illustrated in Figure 2.6.

1 4

32

85

6 7

k1 :

k2 :

k3 :

k4 :

Figure 2.6: Pogromsky’s network.

Pogromsky’s network is undirected and there are 4 coupling parameters, k1, k2, k3 and k4, which

govern the, very symmetric, coupling relations in this network. Denoting

k =
[
k1 k2 k3 k4

]>
,

the graph Laplacian is given by

LP (k) =



∆1 −k1 0 −k1 −k2 −k4 0 0

−k1 ∆1 −k1 0 −k4 −k2 0 0

0 −k1 ∆1 −k1 0 0 −k2 −k4

−k1 0 −k1 ∆1 0 0 −k4 −k2

−k2 −k4 0 0 ∆2 −k3 0 −k3

−k4 −k2 0 0 −k3 ∆2 −k3 0

0 0 −k2 −k4 0 −k3 ∆2 −k3

0 0 −k4 −k2 −k3 0 −k3 ∆2]


, (2.7)

with

∆1 = 2k1 + k2 + k4,

∆2 = 2k2 + k3 + k4.
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Pogromky’s network of FHN oscillators is then governed by

ẋ = F (x)− (LP (k)⊗BC)x. (2.8)

We will again have a brief look at what typical solutions of this network system might be.

As before, rather than trying to make sense of motion in 16 dimensions, we will simply plot

the time series yj(t) of the membrane potential for each oscillator in the network, given some

initial condition. From various trials with randomized parameter values and randomized initial
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Figure 2.7: Left panel: Solution of Pogromsky’s network with k1 = k2 = k3 = k4 = 0.3. The oscillators
fully synchronize eventually. Right panel: Zoomed version of the solution in the left panel. Cluster
synchronization sets in before the oscillators fully synchronize.

conditions, it appears that the situation as presented in Figure 2.7 is the most generic, if not

the only one: in a short transient period, groups of oscillators first partially synchronize until,

eventually, full synchronization sets in. As can be seen in the right panel of Figure 2.7, in this

particular case, oscillators 1, 2, 5 and 6 synchronize early. The same holds for oscillators 3, 4, 7

and 8. Only after a while, these two groups of four oscillators each, then synchronize and the

overall system attains full synchronization. Recall that synchronization of groups of oscillators

has also been observed in Steur’s network.

Pogromsky’s network has been chosen as a second example for two reasons: Firstly, the

network has an overseeable amount of symmetry which is conveniently regulated by the four

system parameters. Secondly, the small number of nodes allows for numerical simulations with

short running times. Having introduced the two example networks and being more familiar with

the type of solutions they generate, we turn to the question of how one could approximate the

behaviour of network systems.

2.4 Model Order Reduction Techniques

To begin with, we should answer the following more general questions:

1. What is model order reduction?

2. Why are we interested in this?
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As alluded to in the introduction, complex and large networks are not only the products of

technological advancements, examples are power grids, computer chips and the Internet, but

life itself also tends to generate them, think of physical neural networks or gene regulatory

networks. The study of network systems has many important applications and the networks

involved tend to be massive in size. Very large networks become difficult to analyze simply

because of their size. Consider, for example, Pogromsky’s network with 8 model neurons. We

can give a nice visual representation of this network and our attention and memory capacity is

sufficient to keep all the nodes and connections of the network in mind at once. Numerically

solving the associated equations can take up to a few seconds with a standard home computer

but this is still sufficiently fast for us to get an idea of what the solutions might look like. If we

consider the adult human brain with roughly 86 billion neurons (see Azevedo et al. [3]), it is

utterly hopeless to try and make intuitive sense of such a network, not to speak of running any

full-scale simulations. To be able to analyze large networks nonetheless, we require model order

reduction techniques.

Model order reduction is the process of obtaining a simpler model from a more complicated

one. Ideally, the reduced model then still captures characteristics of the object to be modelled

while being significantly simpler. This usually results in a trade off between model complexity

and the degree to which the object is faithfully represented. Since we are interested in network

systems, the model complexity is simply the number of nodes in the network. The notion of

“faithful representation” is a more complicated matter and we will return to the issue at the

end of this chapter. Having outlined what model order reduction is and why we need it, let us

now return to the study of Steur’s and Pogromsky’s network.

In the introduction to the example networks it has become clear that certain oscillators in

the networks tend to synchronize while others do not. The phenomenon of synchronization

depends on the network structure and in particular also on the coupling strengths. We will

see in chapter 3 that these different modes of synchronization can be linked to the symmetries

which are present in the graph of the underlying network. For now, let us explore how these

observations could relate to model order reduction: For diffusively coupled networks, in which

certain subsystems tend to synchronize, we could argue that these subsystems have a “similar

function” in the context of the full network. After an initial transit, solutions of the full network

become restrained to a lower dimensional subspace as the individual subsystems synchronize.

Clustering-based model order reduction aims to exploit this behaviour: instead of modelling

the full network, we “cluster together” subsets of nodes, i.e. we consider a network with fewer

nodes in which each node represents a group of nodes from the original network. We then use

solutions of the smaller network to approximate solutions of the full network. This immediately

raises two questions:

1. How can we obtain a reduced network from the original one?

2. Given the reduced network, what are the governing equations?

To answer these questions, we review the basic ideas of projection-based model order reduction

with clustering-based model order reduction as a special case.
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2.4.1 Projection-Based Model Order Reduction

We consider the general case of a system with state and output equationsẋ = g(x, t),

y = h(x, t),
(2.9)

where x ∈ RN , y ∈ Rm and x(0) = x0. If such a system has a high-dimensional state space

(i.e. N is large), it is often the case that, as time goes to infinity, its solutions tend towards

trajectories which are restricted to some lower-dimensional subspace S with dim(S) = kS < N .

After a sufficiently long transient time, we can then approximate

x(t) ≈ ξ1(t)v1 + . . .+ ξkS (t)vkS ,

where the vectors vi form a basis for S and the functions ξi : R → R describe the component

wise time evolution. Introducing ξ(t) = col(ξ1(t), . . . , ξkS (t)) and

VS =
[
v1 . . . vkS

]
,

we can write

x(t) ≈ VSξ(t).

However, in general, the basis for S, represented by the matrix VS , is unknown as well and so

we need to approximate it with some matrix V ∈ RN×k where k is potentially different from kS .

A candidate for V can often be arrived at with an empirical approach. We then approximate

x(t) ≈ V ξ(t). (2.10)

Substitution of approximation (2.10) into equations (2.9) yieldsV ξ̇ = g(V ξ(t), t) + r(t),

y(t) = h(V ξ(t), t),
(2.11)

where r(t) is a residual term accounting for the approximation. We now try to recover an

expression for the dynamics of ξ which does not involve the residual term r(t): left-multiplying

the state equation in system (2.11) by the transpose of an arbitrary matrix W ∈ RN×k yields

W>V ξ̇ = W>g(V ξ(t), t) +W>r(t).

If we now solve

W>V ξ̇ = W>g(V ξ(t), t), (2.12)

we enforce that ξ(t) and r(t) are such that

W>r(t) = 0, ∀t.
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In the case that W>V is invertible, we can express the equations of the reduced system explicitly

as ξ̇ = (W>V )−1W>g(V ξ(t), t),

y(t) = h(V ξ(t), t).
(2.13)

For V = W , this method is referred to as Galerkin projection and in the general case V 6= W ,

it is called Petrov-Galerkin projection. Knowing the general framework for projection-based

model order reduction techniques, we now consider the special case of clustering-based model

order reduction for network systems. To do so, we need to introduce a few more graph theoretic

tools.

2.4.2 Graph Partitions

In order to introduce clustering-based model order reduction, we review the notion of graph

partitions (see chapter 2.5 in Egerstedt & Mesbahi [15]).

Definition 2.4.1. Given some undirected or directed graph G with vertex set V = {1, 2, . . . , N},
we call a nonempty subset C ⊆ V a cell of V . A collection of cells π = {C1, . . . , CK} is called a

partition if
K⋃
i=1

Ci = V and Ci ∩ Cj = ∅ for i 6= j.

With a slight abuse of terminology, we will say that π is a “partition of G” and mean that it is

a partition of the associated vertex set.

Definition 2.4.2. Given a cell C belonging to some partition π, we define the characteristic

vector p(C) ∈ RN by

(p(C))i =

1, if i ∈ C,
0, otherwise.

Given a partition π = {C1, . . . , CK}, the characteristic matrix P (π) is then defined as

P (π) =
[
p(C1) p(C2) . . . p(CK)

]
.

Example 1. Consider the graph of Pogromsky’s network as introduced in section 2.3. The set

π = {{1, 3}, {2, 4}, {5, 6, 7, 8}}

is a partition of this graph and the associated characteristic matrix is

P (π) =



1 0 0

0 1 0

1 0 0

0 1 0

0 0 1

0 0 1

0 0 1

0 0 1


.
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We now have a framework that allows us to talk about node groupings of a graph in a very

general and abstract way. The next step is to combine this with projection-based model order

reduction to arrive at clustering-based model order reduction.

2.4.3 Clustering-Based Model Order Reduction

Clustering-based model order reduction for a network system is essentially Petrov-Galerkin pro-

jection with a special choice of V and W : Suppose we are given some diffusively coupled network

with equations ẋ = g(x(t), t) = F (x)− (L ⊗BC)x,

y = h(x(t), t) = (IN ⊗ C)x
(2.14)

and G is the graph associated with the Laplacian L. Further, assume we are given some graph

partition π of G with K cells where K ≤ N . This means P (π) ∈ RN×K . For convenience, we

will drop the argument in P (π) from now on. To ensure that the reduced system can again be

thought of as a network of (now fewer) oscillators, we set

P̄ = P ⊗ In

and consider a Galerkin projection with

V = W = P̄ .

In the case K = N , we have P̄ = INn and no reduction takes place.

What can we say about the reduced system in the general case? Note that the columns of P

are orthogonal and so the matrix P>P is diagonal where [P>P ]ii is the number of nodes in Ci.
This means that P>P is invertible and hence P̄>P̄ is invertible as well. Invoking the derivations

which culminated in the arrival at equations (2.11), it follows that the reduced system is governed

by ξ̇ = (P̄>P̄ )−1P̄>(F (Pξ)− (L ⊗BC)P̄ ξ),

ζ = (IN ⊗ C)P̄ ξ.

A direct computation shows that the reduced state equation takes the form

ξ̇ = F̄ (ξ)− (L̄ ⊗BC)ξ,

where L̄ = (P>P )−1P>LP and we use that

F (P̄ ξ) = P̄ F̄ (ξ),

with F̄ (ξ) = col(f(ξ1), . . . , f(ξK)) ∈ RKn analogously defined to F (·). Finally, we conclude that

the reduced system is of the formξ̇ = F̄ (ξ)− (L̄ ⊗BC)ξ,

ζ = (P ⊗ C)ξ,
(2.15)
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which is very similar in its form to the original system given by equations (2.14).

Let us pause and take a moment to understand what happened here. Using a partition π,

we approximated the state of the full network by x ≈ P̄ ξ. Using the properties of P (π), we

could explicitly determine the governing equations for the reduced state ξ. As shown, we have

ξ̇ = F̄ (ξ)− (L̄ ⊗BC)ξ

and so the equation for the reduced state has precisely the same form as the state of the original

network. The differences are that we are now dealing with a lower dimensional analogue F̄ (·) of

F (·) and the Laplacian matrix transformed according to

L̄ = (P>P )−1P>LP. (2.16)

What is this new Laplacian and how does the corresponding network relate to our original one?

By left-multiplication of L with P> and right-multiplication with P , we add together all the

connections of nodes in a cell and combine them into a single node. As pointed out, P>P

contains the cardinalities of the cells on its diagonal and so by left-multiplication with (P>P )−1

we divide each row by the number of nodes in the associated cell. This means that L̄ is the

Laplacian of the network in which each node represents a cell from the original network and the

connections between the nodes are the averaged connections between the cells of the original

network.

Example 2. We consider Steur’s network with M̄ = 5 and N̄ = 3 with unspecified σ and µ.

The set

π = {{1}, {2, 3, 4, 5}, {6}, {7, 8, 9, 10}, {11}, {12, 13, 14, 15}}

is a partition with associated characteristic matrix P = I3 ⊗ P̂ where

P̂ =

[
1 0 0 0 0

0 1 1 1 1

]>
.

Transforming the Laplacian according to equation (2.16) yields

L̄(σ, µ) =



σ + 4µ −4µ 0 0 −σ 0

−µ µ 0 0 0 0

−σ 0 σ + 4µ −4µ 0 0

0 0 −µ µ 0 0

0 0 −σ 0 σ + 4µ −4µ

0 0 0 0 −µ µ


.

We see that the row sums are still 0, so this matrix can indeed be interpreted as the Laplacian

of a (weighted) directed graph, namely of the graph as depicted on the right in Figure 2.8. After

clustering, we are left with a network of similar structure. While the connections associated

with σ “stayed the same”, all connections associated with µ are now split into two parts: µ1 = µ

and µ2 = 4µ. Note that the first node has two incoming arcs, one from node 2 with weight

µ2 = 4µ and one from node 5 with weight σ. Node 2 of the reduced network represents the
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Figure 2.8: Clustering-based model order reduction on Steur’s network.

clustered cell {2, 3, 4, 5} of the original network and so has an associated weight of 4µ, since the

original weights are all µ and there are 4 nodes in this cell. This explains the difference between

µ1 and µ2. Node 5 of the reduced network corresponds to node 11 of the original one. Since

this cell contains only one element, the associated weight is simply σ. This explains why the

inter-modular coupling σ stayed the same. In this manner, we see how the reduced network

represents the averaged connections between the cells of the original network.

2.5 Summary and Problem Statement

In this chapter, we laid the groundwork for the investigation of clustering-based model order

reduction in diffusively coupled network systems. We reviewed some basic graph theoretical

notions and used these to define precisely what is meant when we talk about diffusively cou-

pled network systems. To model dynamics at the individual nodes of our network, we chose

the FitzHugh-Nagumo (FHN) oscillator. The FHN oscillator is a common choice in modelling

neuronal activity. Having established the individual node dynamics, we introduced two exam-

ple networks which we will analyse throughout this thesis. On the one hand, we have Steur’s

network, which is essentially a directed modular ring network. On the other hand, we have

Pogromsky’s network, which has a cube-like character with very symmetric coupling which is

controlled by 4 system parameters. For both systems, we observed both full and cluster synchro-

nization, i.e. depending on parameter configuration and initial conditions, some oscillators in

the network would synchronize while others would not. Finally, we introduced clustering-based

model order reduction, a model order reduction technique for network systems in which we ap-

proximate the behaviour of a given network by a reduced network with fewer nodes. Nodes in

this reduced network represent groups of nodes from the original network. We are now able to

give a precise and concise problem statement.

Problem Statement

The purpose of this thesis is to study the performance of clustering-based model order reduction

for network systems of nonlinear oscillators with diffusive coupling. Different choices of node
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clusterings in the network will be investigated with respect to how well the associated reduced-

order system approximates the behaviour of the original system. The question then becomes:

how does one evaluate the performance of a choice of node clustering? For selected dynamical

phenomena, such as the travelling wave in Steur’s network, the (dis)similarity of bifurcation plots

of the full and reduced-order system will be invoked to evaluate the choice of node clustering.

This approach reduces our investigation to a case-by-case analysis.

In Steur’s network and Pogromsky’s network, cluster synchronization phenomena have been

observed, and it seems like certain nodes tend to synchronize “more easily” and quicker than

others. Motivated by these observations, this thesis aims to provide formal argumentation to

support the intuition that clustering together nodes which are likely to synchronize (quickly)

will result in a reduced-order system that approximates the original system well. However, the

treatment of this problem in full generality is out of the scope of this thesis and so the analysis

is restricted to the study of this problem for Steur’s network and Pogromsky’s network.

It is clearly not useful to consider any arbitrary choice of node clustering for model order

reduction and so this leaves three overall tasks:

1. Reduce the number of candidates for node clustering to be considered for clustering-based

model order reduction.

2. Investigate what kind of node clustering produces the best approximations.

3. Predict which node clusterings will generate the best approximations to the original system.

In summary, the purpose of this thesis is to study Steur’s network and Pogromsky’s

network, where the subsystems are identical FitzHugh-Nagumo oscillators, to find

out if certain node clusterings are better suited for clustering-based model order

reduction than others, and if so, why.

As it turns out, the symmetries of a network system are intimately related to the occurrence

of cluster synchronization phenomena. This means that node clusterings associated with these

symmetries make for a great starting point of our investigations. The next chapter dives further

into the theoretical underpinnings of this relationship.
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Chapter 3

Cluster Synchronization

In chapter 2, we started our investigation of diffusively coupled networks and saw that, after

the introduction of more convenient notation, the dynamics for such a network system takes the

form ẋ = F (x) + (Ik ⊗B)u,

y = (Ik ⊗ C)x,
(3.1)

with feedback

u = −(L ⊗ Im)y.

The closed-loop form of this system is then given by

ẋ = F (x)− (L ⊗BC)x. (3.2)

This chapter revolves entirely around equation (3.2). Motivated by our observations from chap-

ter 2, we will try to understand the mechanism that makes certain groups of nodes in the network

synchronize and others not. We refer to this phenomenon as cluster synchronization, which gives

this chapter its name. Naturally, the interconnection structure of the network plays a key role

in understanding cluster synchronization and we will see that the symmetries of a network are

intimately related to cluster synchronization.

The contents of this chapter are arranged as follows: In section 3.1 we will review the con-

cept of symmetry of a graph and how symmetries give rise to linear invariant manifolds of

system (3.2). Further, we explore a group-theoretic approach to finding all valid node config-

urations in which cluster synchronization can occur. In section 3.2, we explore an approach

for obtaining a sufficient condition for global asymptotic stability of the symmetry-associated

linear invariant manifolds as presented in Pogromsky [22, 23]. Then, in section 3.3, we derive a

modified sufficient condition that is applicable for network systems of FHN oscillators.

3.1 Graphs and Symmetries

In this first section, we will review the notion of symmetry of a graph and a method that allows

to identify all groupings of nodes in which cluster synchronization may occur. We will see that

with each such grouping, there is associated a linear invariant manifold of the network system.
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To study cluster synchronization is to study these linear invariant manifolds and, in particular,

their stability. For now, let us get started with the mathematical description of symmetries of

a graph.

3.1.1 Symmetries of a Graph

We consider both undirected and directed graphs G = (V,E,A) and wish to make precise the

notion of a symmetry of this graph.

Definition 3.1.1. A symmetry of the directed graph G is a permutation g : V → V that acts

on the set of vertices such that (i, j) ∈ E if and only if (g(i), g(j)) ∈ E with aij = ag(i)g(j).

The notion of symmetry for undirected graphs is defined analogously. Definition 3.1.1 essentially

says that if g is a symmetry of G, then rearranging the vertices according to g does not change

the structure of the graph. An example to illustrate this notion is in order.

Example 3. Consider Steur’s network with M̄ = 3 and N̄ = 3 and in particular the first

module, so nodes 1, 2 and 3, as illustrated in Figure 3.1. Let g : V → V be the permutation

that transposes vertices 2 and 3 and leaves the other vertices unchanged, i.e.

g(2) = 3, g(3) = 2, g(i) = i for i ∈ V \{2, 3}.

In a single module of Steur’s network, we have (i, j) ∈ E for distinct i, j ∈ {1, 2, 3} and so clearly

(g(i), g(j)) ∈ E for distinct i, j ∈ {1, 2, 3}.

Further, note that aij = aji = µ for distinct i, j ∈ {1, 2, 3} and so, by Definition 3.1.1, g is

indeed a symmetry.

1

σ :

µ :

1

σ :

µ :

symmetry

3 232

Figure 3.1: A simple symmetry of Steur’s network.

Remark. There are different notions of the concept of symmetry to be found in the literature.

For example, Pogromsky et al. [26] refer to the kind of symmetry given in Definition 3.1.1 as

global symmetries. They contrast this against the notion of internal symmetries, by which they

mean symmetries which are present in the individual subsystems of the network. In the context

of this thesis, the distinction between global and internal symmetries is not necessarily useful

and so we restrict our attention to global symmetries which shall henceforth simply be referred

to as symmetries.
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The symmetries of a graph come with their own convenient structure: Suppose a graph has two

symmetries g1 and g2, then also their composition g1 ◦ g2 is a symmetry. It should not come as

a surprise that the set of all symmetries of a graph has a group structure.

Definition 3.1.2. The symmetry group of G, denoted by G, is the group of all symmetries of

G.

We now have made precise what is meant when we talk about the symmetry of a graph and

also recalled that the symmetries of a graph form a group. These abstract notions are useful,

however we also need to establish how they enter the equations that we use to describe the

dynamics of network systems.

If we consider the dynamics in equation (3.2) then rather obviously, the underlying graph

structure enters this equation through the associated Laplacian L. As is well known from

spectral graph theory, the graph Laplacian contains a lot of information about the topology

of the underlying network: The dimension of the square matrix L is equal to the number of

individual subsystems in the network. The number of disconnected components of the network

is equal to the dimension of the subspace ker(L). The number of subsystems connected to a

specific other subsystem, as well as coupling strengths are represented by the nonzero elements

found in a specific row or column of L. Lastly, also symmetries that are present in the network

graph can be found by studying L.

3.1.2 Symmetries and Linear Invariant Manifolds

Suppose we are given a graph G with associated Laplacian L. Now we would like to find out if

the symmetries of G somehow tell us something about system (3.2). So far, we considered the

symmetries of G in a rather abstract sense, so let us introduce a more tangible way of thinking

about these symmetries. We will use matrices to represent permutations.

Let g be a permutation of the set V = {1, 2, . . . , N} and

Πg ∈ RN×N ,

be such that the columns of Πg are given by eg(1), eg(2), . . . , eg(N) where e1, e2 . . . , eN are the

columns of the identity matrix IN . Note that the set of permutation matrices forms a group

with respect to matrix multiplication. This group is isomorphic to the group of permutations.

In addition, note that permutation matrices are unitary, i.e. we have

Π>g Πg = IN .

Rather than thinking about symmetries of G in terms of abstract permutations on the set of

nodes, we now consider them as permutation matrices acting on the node space. We then need to

establish how the notion of “symmetry of a graph” (Definition 3.1.1) translates to permutation

matrices.

Lemma 3.1.1. Let G = (V,E,A) be a graph, L be the associated Laplacian matrix and G be
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the symmetry group of G. Then for any g ∈ G, it holds that

ΠgL = LΠg. (3.3)

The proof of this lemma can be found in Appendix A. With a slight abuse of terminology, we will

say that a permutation matrix Π is a symmetry of the graph G (with Laplacian L) if ΠL = LΠ.

Let us now return to the question of how symmetries of the underlying graph lead to linear

invariant manifolds of the system

ẋ = F (x)− (L ⊗BC)x. (3.4)

We recall the definition of a linear invariant manifold.

Definition 3.1.3. Given a system of the form (3.4) and some matrix M ∈ RNn×Nn, the linear

manifold

AM = {x ∈ RNn|Mx = 0}

is invariant if Mẋ = 0 whenever Mx = 0.

What this definition says is that if at some time t0 some trajectory lies onAM , then the trajectory

will remain on the manifold for all time, i.e.

x(t0) ∈ AM =⇒ x(t) ∈ AM , ∀t ≥ t0.

Given F (·) and (L ⊗ BC), identifying linear invariant manifolds of the system (3.4) then boils

down to finding matrices M such that

MF (x)−M(L ⊗BC)x = 0, (3.5)

for all x such that Mx = 0. Unfortunately, there is no general approach on how to find such

matrices M , however, it is possible to exploit the symmetries of the underlying graph to find a

class of matrices that solve (3.5). We will make use of the following lemma.

Lemma 3.1.2. (Pogromsky et al. [26]) Given a permutation matrix Π such that

ΠL = LΠ,

the set

SΠ := ker(INn −Π⊗ In)

is a linear invariant manifold of system (3.4).

Proof. For brevity of notation, let Σ = Π⊗ In. Assume that x ∈ SΠ, i.e.

(INn − Σ)x = 0. (3.6)

Recall that F (·) has a special structure, namely

F (x) = col(f(x1), . . . , f(xN )),
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and thus ΣF (x) = F (Σx). By assumption, and making use of the properties of the Kronecker

product, we then have

Σ(L ⊗BC) = (ΠL ⊗BC) = (LΠ⊗BC) = (L ⊗BC)Σ.

A direct computation shows

(INn − Σ)ẋ = 0,

since we assumed that equation (3.6) holds. So indeed, SΠ is a linear invariant manifold of

system (3.4). �

This lemma shows how symmetries of the underlying graph give rise to linear invariant manifolds

in the network system. However, it is a possibility that there are permutation matrices with

ΠL 6= LΠ and yet the set SΠ still turns out to be invariant. Consider the following extension of

Lemma 3.1.2.

Lemma 3.1.3. (Pogromsky [22]) Given a permutation matrix Π such that

(IN −Π)L = X(IN −Π), (3.7)

has a solution X, the set SΠ is a linear invariant manifold of system (3.4).

The proof is analogous to the proof of Lemma 3.1.2.

We now know how symmetries of the underlying graph give rise to linear invariant manifolds.

In the case that a certain permutation matrix Π commutes with the Laplacian L, we associate

with Π the invariant set SΠ. As shown in Lemma 3.1.3, permutation matrices which correspond

to symmetries of the graph are not necessarily the only ones for which SΠ is invariant. Before

moving on to the investigation of the stability properties of these invariant sets, we will study

an approach to find all permutation matrices for which SΠ is invariant.

3.1.3 Cluster Synchronization Patterns

We previously saw that for permutation matrices Π such that equation (3.7) can be solved, the

set

SΠ := ker(INn −Π⊗ In)

is a linear invariant manifold of system (3.4). Given such a matrix Π, we will refer to the set of

pairs of indices (i, j) for which

xi − xj = 0

whenever x ∈ SΠ, as the cluster synchronization (CS) pattern associated with Π and denote it

as IΠ, i.e.

IΠ = {(i, j) | x ∈ SΠ =⇒ xi − xj = 0}.

In this way, a natural way to partition the vertex set arises: Given a permutation matrix Π,

we define the orbit partition πΠ associated with Π. The defining feature of this partition is

that nodes i and j belong to the same cell if and only if (i, j) ∈ IΠ. The following example

28



illustrates the relationship between a permutation matrix Π, the associated orbit partition and

the characteristic matrix of the orbit partition.

Example 4. Let

Π =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0


.

We see that this permutation transposes nodes 1 and 2, while leaving node 3 unchanged. Further,

nodes 4, 5 and 6 are all cyclically shifted by one place (4 → 5, 5 → 6, 6 → 4). The associated

orbit partition is thus

πΠ = {{1, 2}, {3}, {4, 5, 6}}

and the characteristic matrix of the orbit partition is

P (πΠ) =



1 0 0

1 0 0

0 1 0

0 0 1

0 0 1

0 0 1


.

Remark. The notation P (πΠ) seems quite cumbersome and to involve too many variants of the

letter P. However, permutation matrices as well as partitions are commonly denoted by Π and

π respectively. Recalling from section 2.4 that we use the characteristic matrix of a partition

for purposes of projection, this kind of notation does, after all, seem fitting.

We saw earlier that we need to make a fundamental distinction between CS patterns which

arise as a direct consequence of symmetries present in the graph, i.e. for which ΠL = LΠ, and

those for which

(IN −Π)L = X(IN −Π),

can merely be solved for X 6= L. We will refer to the clusters giving rise to these fundamentally

different patterns as symmetry clusters and Laplacian clusters respectively. The term “symmetry

cluster” is self-explanatory, while the term “Laplacian cluster” has been introduced by Sorrentino

et al. [30, 21].

In their work, Sorrentino et al. outline an approach that allows to identify all admissible CS

patterns. They distinguish two types of network coupling, one involving the adjacency matrix

of the underlying network and one involving the Laplacian matrix. In the case of adjacency

coupling, they show that all admissible CS patterns stem from the symmetries of the underlying

network. So in this case, given the adjacency matrix A, all admissible CS patterns can be

obtained by finding all permutation matrices such that ΠA = AΠ. Even though the problem of

finding these matrices Π has not been shown to be solvable in polynomial-time, there are discrete

algebra routines available that allow for solving this problem on graphs with relatively many
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nodes (e.g. N = 22, 322 nodes for the Internet at the level of Autonomous Systems, MacArthur

et al. [14]).

In the case of Laplacian coupling, which is the type of coupling we are concerned with in

this thesis, the CS patterns due to symmetry are still valid. This is because, given an adjacency

matrix A and corresponding Laplacian L, we have

ΠA = AΠ ⇐⇒ ΠL = LΠ,

as the row sums of A are not affected by the permutation operations. As already discovered,

Laplacian coupling allows for more CS patterns than just those arising by symmetry, hence the

name “Laplacian clusters” for the (possibly) additional clusters. It is not immediately obvious

how these patterns can be obtained. Let us see how Sorrentino et al. [30] use the symmetry

patterns to construct all valid Laplacian patterns.

Given a graph G, it is possible to decompose the symmetry group G into subgroups Hi, i =

1, . . . , v where each of the subgroups acts only on some subset of clusters but not on any of the

other clusters (see MacArthur et al. [14]). We will refer to the subgroups Hi as cluster groups.

Note that G can be written as a direct product

G = H1 ×H2 × . . .×Hv.

Uniqueness (up to isomorphism) of this decomposition is shown in MacArthur et al. [14]. De-

composing each Hi into all of its possible subgroups yields all valid CS patterns for symmetry

clusters. Finally, to construct all valid Laplacian patterns, Sorrentino et al. devised the following

three-step method:

1. From each cluster group Hi choose either the full cluster group or a subgroup thereof.

Together this yields a subgroup G′ of the original symmetry group G.

2. Merge some of the clusters/sub-clusters associated with the selected subgroups from the

first step. These merged clusters are candidates that might yield an additional CS pattern.

3. Given a merged cluster, set all xi that belong to the new cluster equal to one another and

check whether the equations of motions are identical in which case the linear manifold

associated with the new CS pattern is flow-invariant.

Remarks.

i) In step 2: Note that the merged clusters cannot arise due to the original symmetries of

the network, yet they may yield CS patterns that are dynamically valid in the case of

Laplacian coupling.

ii) In step 3: For larger networks, this step of checking the equations of motion can become

intractable when done by hand. Making again use of available discrete algebra tools,

Sorrentino et al. provide an elegant way of implementing this last step computationally.

The interested reader is referred to the original article [30] for details.
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iii) A word on computational complexity of the proposed method: If κ is the number of

clusters and sub-clusters, then the number of tests that need to be performed is bounded

above by, the κth Bell number Bκ where

B0 = 1, Bκ+1 =
κ∑
i=0

(
κ

i

)
Bκ.

In general, this behaviour is of course very undesirable. We conclude that the application

of this algorithm is feasible for networks with few nodes or networks with few symmetries,

i.e. κ << N .

The following example illustrates this procedure.

Example 5. Consider a graph G as depicted in Figure 3.2.

5

1 2

4 3

Figure 3.2: Undirected example graph. All edges have a weight of 1.

Decomposing the symmetry group of G as proposed gives G = H1 × H2 where H1 is the set

of permutations acting on {1, 2, 3, 4} and H2 simply contains the identity on the set {5}. Note

that the permutations in H1 indeed only act on the subset {1, 2, 3, 4} and not on {5} and vice

versa for the identity element in H2. Examples of partitions with symmetry patterns would be

π1 = {{1, 2, 3, 4}, {5}} and π2 = {{1, 3}, {2, 4}, {5}}. Let us now apply the mentioned three-step

method to arrive at partitions with Laplacian patterns:

1. We have the decomposition G = H1 × H2. We simply select H1 and H2 to arrive at G′
which is in this case simply G, so G′ = G.

2. We now consider {1, 2, 3, 4} ∪ {5} = {1, 2, 3, 4, 5} as a candidate for a Laplacian cluster.

3. Indeed, setting x1 = x2 = . . . = x5 the coupling term disappears and the associated set is

invariant.

A more complicated situation is the following:

1. Decompose G = H1×H2 and choose H̄1 ⊆ H1 and H2 where H̄1 is the subgroup generated

by the permutation transposing both nodes 1 and 3 as well as 2 and 4. This yields

G′ = H̄1 ×H2 ⊆ G (here ⊆ denotes “is a subgroup of”).

2. The partition with associated symmetry pattern is π = {{1, 3}, {2, 4}, {5}}. Candidates

for Laplacian clusters in this case are {1, 3} ∪ {5} = {1, 3, 5} and {2, 4} ∪ {5} = {2, 4, 5}.
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3. Checking the equations of motion, we see that setting x1 = x3 = x5 and x2 = x4 is

dynamically valid, i.e. the associated manifold is indeed invariant. The same holds for

x1 = x3 and x2 = x4 = x5. This yields two new partitions with Laplacian patterns,

namely {{1, 3, 5}, {2, 4}} and {{1, 3}, {2, 4, 5}}.

This illustrates how Laplacian clusters can be formed by combining symmetry clusters.

Before moving on to matters of stability analysis, let us briefly review the contents of this

section: We recalled the concept of the symmetry group G associated with a graph G. Given

some permutation g ∈ G, we saw that the associated permutation matrix Πg commutes with

the Laplacian L of the underlying graph. For a network system of diffusively coupled oscillators

with dynamics

ẋ = F (x)− (L ⊗BC)x,

the symmetries of the underlying graph give rise to linear invariant manifolds. However, net-

work symmetries are not the only way to identify linear invariant manifolds: There might be

additional linear invariant manifolds which arise due to diffusive coupling and the appearance of

the Laplacian matrix in the coupling term. We distinguish between these two cases by referring

to the associated clusters as symmetry clusters and Laplacian clusters. Finally, we explored an

algorithm that allows for the construction of all valid CS patters, involving both symmetry and

Laplacian clusters.

3.2 A Passivity-Based Approach

We previously saw how a group-theoretic approach can be used to identify a class of linear

invariant manifolds of the system (3.2), i.e. of the system

ẋ = F (x)− (L ⊗BC)x.

These linear invariant manifolds are associated with (generalized) symmetries of the underlying

graph. We now turn to the stability analysis for these linear invariant manifolds. In this, the

central result which we make use of is presented in an article by Pogromsky [22]. The result

essentially states that for diffusively coupled networks with strictly semi-passive subsystems, an

arbitrary linear invariant manifold associated with a symmetry of the underlying graph becomes

globally asymptotically stable provided the overall coupling strength is sufficiently large.

Before diving into the details, let us briefly outline the overall strategy that Pogromsky

follows in proving his result:

1. Establish that there are linear invariant manifolds of system (3.2) which are associated

with symmetries of the underlying graph (see section 3.1 of this thesis).

2. Introduce the notion of passive systems to arrive at a sufficient condition that guarantee

that solutions of the network system exist and are ultimately bounded.

3. Introduce the notion of convergent systems and state a sufficient condition which guaran-

tees that a given system is in fact convergent.
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4. State and prove a sufficient condition which guarantees global asymptotic stability of a

linear invariant manifold associated with a particular symmetry.

All important notions and steps will be presented in detail and where appropriate, the reader

will be referred to the original material for further detail.

3.2.1 Passivity and Boundedness of Solutions

As was introduced in chapter 2, we consider network systems where the the individual subsystems

are described by equations of the formẋ = f(x) +Bu,

y = Cx,
(3.8)

with x ∈ Rn, u ∈ Rm and y ∈ Rm. Further, we required that f(0) = 0 and B,C are constant

matrices of appropriate dimension.

The notion of (semi-)passivity is commonly employed in the control theory literature to arrive

at sufficient conditions which guarantee the existence and ultimate boundedness of solutions of

systems such as (3.8). Therefore, the notion of semi-passivity will play a key role in the stability

analysis we are about to undertake.

Definition 3.2.1. We call system (3.8) passive, if there exists a differentiable and non-negative

function S : Rn → R such that S(0) = 0 and, along the solutions of (3.8), the function satisfies

Ṡ(x, u) :=
∂S

∂x
(x)(f(x) +Bu) ≤ y>u. (3.9)

We refer to the function S as the storage function and inequality (3.9) as the dissipation in-

equality.

What is the intuition behind this definition?

In physical systems such as mechanical or electrical ones, the function S can often be chosen

to be the energy stored in the system. If we consider the solutions of the system on some time

interval [0, t] then the dissipation inequality implies that

S(x(t)) ≤ S(x(0)) +

∫ t

0
y>(τ)u(τ)dτ,

which essentially means that the energy stored in the system at some time point t is always less

than or equal to the energy at the initial time t = 0 plus whatever energy has been supplied

to the system through the external input u. Passive systems thus do not “produce energy”

internally, where the notion of energy is to be understood in a more abstract way rather than

in the conventional physical one. In this sense, we can already get an idea of how passivity may

become useful when considering the problems of existence and boundedness of solutions. Let us

consider a handy variation of passivity.

Definition 3.2.2. We call system (3.8) semi-passive, if there exists a differentiable and non-
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negative function S : Rn → R such that, along the solutions of (3.8), the function satisfies

Ṡ(x, u) ≤ y>u−H(x),

where the function H : Rn → R has the property that there exists r > 0 and a continuous and

non-negative function ρ, defined for |x| ≥ r, such that

|x| ≥ r =⇒ H(x) ≥ ρ(x). (3.10)

If, moreover, inequality (3.10) holds for some positive function ρ, then we refer to system (3.8)

as strictly semi-passive.

Pogromsky [22] gives a concise characterization of passive-systems: “In brief, a semi-passive sys-

tem behaves like a passive system for sufficiently large |x|”. This conceptualization is particularly

illuminating.

Regarding the problem of existence and boundedness of solutions for system (3.8), if we

assume that the system is strictly semi-passive and the storage function S is radially unbounded,

i.e.

|x| → ∞ =⇒ S(x)→∞,

then any choice of feedback of the form

y>φ(y) ≤ 0,

will render solutions of the closed loop system ultimately bounded. This can be shown by

considering S as a Lyapunov function candidate and applying standard arguments from stability

theory (see e.g. chapter 4 of Khalil [11]). We can derive the following lemma.

Lemma 3.2.1. (Pogromsky et al. [24]) We consider a diffusively coupled network

ẋ = F (x)− (L ⊗BC)x, (3.11)

as introduced at the beginning of this chapter. If each individual system of the form (3.8) is

strictly semi-passive and if the Laplacian L is such that L + L> is positive semi-definite, then

the solutions of (3.11) exist for all t ≥ 0 and are ultimately bounded.

A proof of a slightly more general result is given in Pogromsky et al. [24].

Let us briefly recapitulate, what has been discussed: we introduced the notion of passive

systems and in particular the notion of strictly semi-passive systems. With this notion, we can

formulate a sufficient condition which guarantees the existence and ultimate boundedness of

solutions of diffusively coupled networks. This sufficient condition decouples into two parts: on

the one hand, we require that the individual subsystems within the network are strictly semi-

passive, on the other hand, we need the symmetrized Laplacian to be positive semi-definite.

As we will soon see, Lemma 3.2.1 is a key element that allows for the stability analysis of

synchronized states in network systems with diffusive coupling.

34



3.2.2 Convergent Systems

We consider systems of the form

ż = q(z, w(t)), (3.12)

with z ∈ Rl and w(t) a bounded external signal.

Definition 3.2.3. We call system (3.12) convergent if for any bounded function w(t) defined

for t ∈ (−∞,∞) there is a unique, bounded and globally asymptotically stable solution z̄(t),

defined also for t ∈ (−∞,∞), such that

lim
t→∞
|z(t)− z̄(t)|= 0,

for all initial conditions.

The existence of the unique limit mode z̄(t) which only depends on the external signal and

not on the initial condition makes convergent systems closely related to the study of cluster

synchronization: Consider two trajectories z1 and z2 of system (3.12) with potentially different

initial conditions. For their difference we have

lim
t→∞
|z1(t)− z2(t)| ≤ lim

t→∞
(|z1(t)− z̄(t)|+ |z̄(t)− z2(t)|) = 0.

In order to be able to apply this notion of convergent systems to our stability analysis, we

consider the following sufficient condition as formulated by Pogromsky et al. [26] as a variation

on the original result by Demidovich [6].

Theorem 3.2.1 (Pogromsky et al. [26]/Demidovich [6]). Suppose there exists a positive definite

symmetric l × l matrix P such that all eigenvalues λi(Q(z, w)) of the symmetric matrix

Q(z, w) =
1

2

[
P
(∂q
∂z

(z, w)
)

+
(∂q
∂z

(z, w)
)>
P
]

(3.13)

are negative and separated from zero, i.e. there exists a δ > 0 such that

λi(Q(z, w)) ≤ −δ < 0, (3.14)

for i = 1, . . . , l and for all z, w ∈ Rl, then system (3.12) is convergent and the quadratic function

W (ζ) = ζ>Pζ satisfies

∂W (z1 − z2)

∂ζ
[q(z1, w)− q(z2, w)] ≤ −ᾱ|z1 − z2|2 (3.15)

for some ᾱ > 0.

We are now ready to state and prove the main theorem of this section.

3.2.3 Stability Analysis

To show stability of the set SΠ, we will try to find a Lyapunov function. In particular, we will

construct this Lyapunov function as the sum of a term which depends on input-output relations
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of the individual subsystems and another term which depends on the interconnection structure.

To do this, it will be useful to apply a change of coordinates

x 7→ col(z, y) (3.16)

such that only the equation for y involves the interconnection structure. Recall again the

dynamics of the subsystems as in system (3.8), i.e.ẋ = f(x) +Bu,

y = Cx.
(3.17)

Differentiating y with respect to time yields

ẏ = Cf(x) + CBu.

It is not immediately obvious, but it can be shown that if CB is non-singular, then we can find

a set of n−m complementary variables z such that system (3.17) takes the formż = q(z, y),

ẏ = a(z, y) + CBu,
(3.18)

with a and q vector functions. This transformation is globally defined due to the linear input-to-

output relation and an explicit construction of such a transformation can be found in Pogromsky

et al. [24]. From the equation for z in system (3.18), it now also becomes apparent how the

notion of convergent systems becomes applicable.

For a diffusively coupled network system with associated Laplacian L and with equationsẋj = f(xj) +Buj ,

yj = Cxj ,
(3.19)

and feedback

uj = −
N∑
i=1

aji(yj − yi),

we consider the following sufficient condition for global asymptotic stability.

Theorem 3.2.2 (Pogromsky [22]). Suppose that

1. Each system (3.19) in the network is strictly semipassive with respect to the input uj and

output yj with a radially unbounded storage function.

2. There exists a positive definite matrix P such that equation (3.14) holds with some δ > 0

for the matrix Q as defined in equation (3.13) for q as in equation (3.18).

3. CB is positive definite.

4. The symmetrized Laplacian L+ L> is positive semi-definite.

36



5. There is an N ×N matrix solution X of the following linear equation

(IN −Π)L = X(IN −Π).

Let λ′ be the largest number such that the inequality

1

2
ξ>(IN −Π)>(X +X>)(IN −Π)ξ ≥ λ′ξ>(IN −Π)>(IN −Π)ξ

holds for all ξ ∈ RN .

Then all solutions of system (3.2) are ultimately bounded and there exists a positive threshold

λ̄ such that if λ′ > λ̄, then the set ker(INn − Π ⊗ In) contains a globally asymptotically stable

compact subset.

Remark. In the case that X + X> commutes with Π, the number λ′ is the minimal eigenvalue

of 1
2(X +X>) under the restriction that the eigenvectors of 1

2(X +X>) are taken from the set

im(IN −Π).

Proof. We present a brief outline of the proof. For the full derivation, the reader is referred to

Pogromsky [22].

First note that, strictly speaking, we require the matrix CB to be only similar to a positive

definite matrix. However, in this case we could simply apply the similarity transformation to

input and output of system (3.18) and rename our variables. Using assumption 3, we define

z = col(z1, . . . , zN ),

y = col(y1, . . . , yN ),

where xi 7→ col(zi, yi) is such that the equations governing the individual subsystems take the

form (3.18). We consider the Lyapunov function candidate

V (z, y) = V1(z) + V2(y),

with

V1(z) =
∑

(i,j)∈IΠ

W (zi − zj),

V2(y) =
1

2
y>(INm −Π⊗ Im)>(INm −Π⊗ Im)y

=
1

2

∑
(i,j)∈IΠ

|yi − yj |2.

By assumption 2, W (ξ) can be chosen such that inequality (3.15) is satisfied. Assumption 5

guarantees that SΠ is invariant and by construction

V (z, y) = 0, ∀x ∈ SΠ,
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so it remains to show that

V̇ (z, y) < 0, x /∈ SΠ,

whenever λ′ exceeds a certain threshold value. Assumptions 1 and 4 together with Lemma 3.2.1

guarantee that the solutions of the network system exist, are ultimately bounded and thus enter

some compact region Ω in finite time. Straightforward computation of the derivative shows that

on this compact region Ω, we have

V̇ (z, y) ≤ −ᾱ
∑

(i,j)∈IΠ

|zi − zj |2 + V2(y)(C1 − 2λ′β) + (C2 + C3)
∑

(i,j)∈IΠ

|zi − zj ||yi − yj |, (3.20)

where β̄ is the minimal eigenvalue of CB and C1, C2 and C3 are positive constants such that on

Ω we have, respectively,

|a(zi, yi)− a(zi, yj)| ≤ C1|yi − yj |, ∀(i, j) ∈ IΠ,

|a(zi, yj)− a(zj , yj)| ≤ C2|zi − zj |, ∀(i, j) ∈ IΠ,∣∣∣∣∂W (zi − zj)
∂ζ

(q(zj , yi)− q(zj , yj))
∣∣∣∣ ≤ C3|zi − zj ||yi − yj |, ∀(i, j) ∈ IΠ.

From equation (3.20) it follows that

λ′ > λ̄ =
1

β̄

[C1

2
+

(C2 + C3)2

4ᾱ

]
=⇒ V̇ (z, y) < 0, x /∈ SΠ,

which proves the statement. �

Let us take a moment to ponder the implications of this theorem. Suppose we are given the

Laplacian L0 of some network and assume that all conditions of Theorem 3.2.2 are met. We

consider the scaled Laplacian of the same network

L(s) = sL0, s > 0,

where s is to be considered a bifurcation parameter. Let 0 = λ1 < λ2 ≤ . . . ≤ λN be the

eigenvalues of 1
2(L(s) +L>(s). If we consider permutation matrices Π such that ΠL = LΠ then

we can take X = L and for each Π, we have λ′ ∈ {λ2, . . . , λN}. Note that the value of λ′

depends on Π and so we will denote λ′ = λ′(Π) for the moment. Theorem 3.2.2 predicts that

there is a threshold value which only depends on the dynamics of the individual subsystems.

This threshold is upper bounded by λ̄. It can thus happen that for two distinct permutation

matrices Π1 and Π2, we have that λ′(Π1) exceeds the actual threshold while λ′(Π2) does not.

In this case, we observe cluster synchronization associated with Π1 but not with λ′(Π2). This

means that, as s grows, we can expect a maximum of N − 1 bifurcations in which different

cluster synchronization manifolds become globally asymptotically stable, one after the other.

This is the case since λ′ always takes its values from the set {λ2, . . . , λN}.
Suppose again that s is such that λ′(Π1) exceeds the threshold value while λ′(Π2) does

not and we keep increasing s until also λ′(Π2) exceeds the threshold. In this case the cluster

synchronization manifolds associated with both Π1 and Π2 are globally asymptotically stable,
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which can only be the case if their intersection is globally asymptotically stable. As s increases,

λ′(Π) surpasses the threshold value for an ever-growing number of permutation matrices Π until

the intersection of all cluster synchronization manifolds is globally asymptotically stable. In

this sense, the theorem could be useful in discerning symmetries for which the associated nodes

synchronize “more easily”, from those for which larger coupling strengths would be required.

Practically speaking, this could be done as follows: Given some Laplacian matrix L we may

find the symmetries of the underlying network graph. Using Theorem 3.2.2, the symmetries can

be categorized into a maximum of (N − 1) groups. Each group is characterized by the minimal

eigenvalue λ′ of the symmetrized Laplacian under the restriction that the eigenvectors lie in

im(IN − Π). Note that the set im(IN − Π) might be identical for a number of permutation

matrices Π. We would then prefer groups of symmetries with a larger λ′ in the context of

clustering-based model reduction, as cluster synchronization associated with these symmetries

sets in for smaller coupling strengths.

Before moving on to the application of Theorem 3.2.2 to the example networks, we will make

a slight modification to the theorem: Theorem 3.2.2 is formulated for network systems where

subsystems are of the general form as given in equation 3.17 and its proof relies on “worst case”

estimates for the behaviour of the nonlinearities involved. It can therefore be expected that

additional information about the subsystems would lead to less conservative results in terms of

the required coupling strength to ensure cluster synchronization. In the following section, we

derive a modified sufficient condition for cluster synchronization for networks of FHN oscillators.

3.3 A Modified Result for the FHN Oscillator

By explicitly incorporating the available information about the FHN oscillator, we derive a

modified sufficient condition from Theorem 3.2.2.

In the general case of the passivity-based approach, as presented in Theorem 3.2.2, the proof

involves the Lyapunov function candidate

V (x) = V1(z) + V2(y), (3.21)

with

V1(z) =
∑

(i,j)∈IΠ

W (zi − zj),

V2(y) =
1

2
y>(INm −Π⊗ Im)>(INm −Π⊗ Im)y.

In the case of a network system consisting of FHN oscillators, we have n = 2 and m = n−m = 1.

Further, W (ζ) = pζ>ζ is a valid choice for any positive number p. This will be shown explicitly

in chapter 4. It follows that we can write

V1(z) = pz>(IN −Π)>(IN −Π)z,

V2(y) =
1

2
y>(IN −Π)>(IN −Π)y.
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We will now introduce a Lyapunov function candidate which is less restricted than the one

proposed in the proof of Theorem 3.2.2: Let R be a diagonal and positive definite matrix, then

the functions

V1(z) = pz>Mz,

V2(y) =
1

2
y>My,

with

M = (IN −Π)>R(IN −Π), (3.22)

are again such that

z ∈ ker(I −Π) =⇒ V1(z) = 0 and z /∈ ker(I −Π) =⇒ V1(z) > 0,

y ∈ ker(I −Π) =⇒ V2(y) = 0 and y /∈ ker(I −Π) =⇒ V2(y) > 0.

We now compute V̇ = ∂V
∂x ẋ and derive a sufficient condition which guarantees that V̇ < 0. To

cancel out cross terms zy, we let p = 1
2α and find

V̇ (x) = −βz>Mz +
1

2
y>M(I − L)y +

1

2
y>(I − L)>My − γy>MΦ(y).

For the FHN oscillator, we have Φ(y) = col(φ(y1), . . . , φ(yN )) with φ(s) = s3. Using the following

lemma, we can make use of the monotonicity of φ.

Lemma 3.3.1. Let Π be an arbitrary permutation matrix. If R is diagonal and positive definite

and Φ is (component-wise) monotonically increasing, then

y>(I −Π)>R(I −Π)Φ(y) ≥ 0, ∀y.

The proof of Lemma 3.3.1 can be found in Appendix A. Using Lemma 3.3.1, we see that

−γy>MΦ(y) ≤ 0

and hence

V̇ (x) ≤ y>M(I − L)y, (3.23)

since evidently −βz>Mz ≤ 0. The following lemma gives a sufficient condition for the negative

definiteness of the matrix M(I − L).

Lemma 3.3.2. Let P be the characteristic matrix associated with the orbit partition of some

Π 6= I with LΠ = ΠL. Suppose there exists a ρ ∈ R such that

2R−RL − L>R− ρPP> ≺ 0. (3.24)

Then the matrix M(I − L), with M as defined in equation (3.22), is negative definite.

The proof of Lemma 3.3.2 can be found in Appendix A. From Lemma 3.3.2 and equation 3.23,

it is clear that if there exists a diagonal and positive definite matrix R together with some ρ ∈ R
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such that linear matrix inequality (LMI) (3.24) is satisfied, then V̇ < 0 and global asymptotical

stability of the cluster synchronization manifold ensues. The issue of finding such R and ρ can be

formulated as a LMI feasibility problem with respect to LMI (3.24). Software to solve such LMI

problems is widely available and MATLAB also comes with a number of built-in functionalities

to solve LMI feasibility and optimization problems.

Not only does this approach give us a modified criterion to check for cluster synchronization,

in the case that cluster synchronization is guaranteed, we can also find an upper bound on the

convergence rate with which the solution converges to the associated linear invariant manifold.

Lemma 3.3.3. Let P be the characteristic matrix associated with the orbit partition of some

Π 6= I with LΠ = ΠL. If global asymptotical stability of the set SΠ can be shown by means of

Lemma 3.3.2, then an upper bound for the convergence rate of the Lyapunov function, as defined

in equation (3.21), along any trajectory is given by

δeff =

−2αβδ0, 0 < δ0 ≤ 1,

−2αβ, δ0 > 1,

where δ0 is determined as

δ0 = max {δ > 0 | (1 + αβδ)I − 1

2
(L+ L>)− ρPP> ≺ 0, ρ ∈ R}. (3.25)

We will make use of this result in chapter 4, when discussing cluster synchronization in the

example networks.

3.4 Summary

This chapter aimed to shed some light on the mechanisms that give rise to cluster synchronization

in diffusively coupled network systems. We saw that with each symmetry of the network graph,

we can associate a certain linear invariant manifold. Moreover, we discussed a method that

allows to identify additional linear invariant manifolds which are not directly associated with

the symmetries but arise as a consequence of diffusive/Laplacian coupling.

Finally, we reviewed a theorem which provides a sufficient conditions for cluster synchroniza-

tion in the case of strictly semi-passive subsystems. From this theorem, we derived a modified

sufficient condition for cluster synchronization which applies in the special case of the FHN

oscillator. Moreover, in the case that global asymptotical stability can be shown by means of

this modified sufficient condition, an estimate for the convergence rate has been derived as well.

In the following chapter, we apply the discussed theory to the example networks as introduced

in chapter 2.
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Chapter 4

Application to Example Networks

This chapter aims to make a connection between the contents of chapter 2 and chapter 3. The

stability results as derived in chapter 3 are applied to Steur’s network and Pogromsky’s network,

as introduced in chapter 2. In particular, Theorem 3.2.2, which gives a sufficient condition for

cluster synchronization, will be applied to the example networks. We will try to extract a general

principle that allows to predict which nodes in a network are good candidates to be clustered

together in the context of clustering-based model reduction.

The content of this chapter is arranged as follows: In section 4.1, we show that the FHN

oscillator meets the conditions on the individual subsystems as posed in Theorem 3.2.2. We

then discuss the remaining conditions of Theorem 3.2.2, which pertain to the underlying network

structure, as well as the implications of this theorem. Pogromsky’s network will be treated in

section 4.2 and Steur’s network in section 4.3. Finally, we conclude the chapter with a brief

summary in section 4.4. For readability’s sake, a number of proofs to results as presented in

this chapter are omitted here but given in Appendix A.

4.1 Conditions on the Subsystems

In this section, we show that the FHN oscillator is a strictly semi-passive system with respect to

its input and output with a radially unbounded storage function (condition 1 in Theorem 3.2.2).

Furthermore, we show that in the model of the FHN oscillator, the dynamics of the recovery

variable z can be considered convergent in the sense of Definition 3.12 (condition 2 in Theo-

rem 3.2.2). Moreover, we show the FHN oscillator also meets condition 3, which is of a rather

technical nature. Finally, we discuss the threshold value λ̄ and find upper bounds on it.

Condition 1

Recall that the governing equations for the FHN oscillator are given byż = α(y − βz),
ẏ = y − γy3 − z + u,

(4.1)

and so the dimensions of the subsystem components are n = 2 and n − m = m = 1. The

following lemma establishes strict semi-passivity of the FHN oscillator.
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Lemma 4.1.1 (cf. Lemma 1, Steur et al. [31]). The FHN oscillator is strictly semi-passive with

respect to input u and output y with a radially unbounded storage function.

The proof of this lemma can be found in Appendix A. Having checked the first condition of

Theorem 3.2.2, we move on to conditions 2 and 3.

Conditions 2 and 3

Note that in the case of the FHN oscillator, we have B =
[
0 1

]>
and C =

[
0 1

]
and so

CB = 1 > 0. The implications are twofold: on the one hand we see that condition 3 is met,

on the other hand, the equations of the FHN oscillator are already of the form as prescribed in

equation (3.18), i.e. ż = q(z, y) = α(y − βz),
ẏ = a(z, y) + CBu = y − γy3 − z + u.

(4.2)

To show that the dynamics of z is convergent, we make use of Demidovich’s criterion (Theo-

rem 3.2.1). We now need to show that there exist a positive definite matrix P such that all

eigenvalues of

Q(z, y) =
1

2

[
P
(∂q
∂z

(z, y)
)

+
(∂q
∂z

(z, y)
)>
P
]

are negative. However, note that in our case all involved quantities are scalar: we have ∂q
∂z = −αβ

and thus

Q(z, y) = −αβp,

where p is a m × m matrix with m = 1. It follows that p is a scalar and the conditions of

Demidovich’s criterion are met for any real number p > 0. We conclude that the dynamics of

the recovery variable z is indeed convergent.

The Threshold Value

The threshold value λ̄ plays a central role in the formulation of Theorem 3.2.2. Recall that

λ̄ =
1

β̄

[C1

2
+

(C2 + C3)2

4ᾱ

]
,

and that the involved quantities C1, C2 and C3 are such that

|a(zi, yi)− a(zi, yj)| ≤ C1|yi − yj |, ∀(i, j) ∈ IΠ,

|a(zi, yj)− a(zj , yj)| ≤ C2|zi − zj |, ∀(i, j) ∈ IΠ,∣∣∣∣∂W (zi − zj)
∂ζ

(q(zj , yi)− q(zj , yj))
∣∣∣∣ ≤ C3|zi − zj ||yi − yj |, ∀(i, j) ∈ IΠ,

where the functions a(z, y) and q(z, y) are as in system (4.2) and W (ζ) = pζ>ζ with p as in

Demidovich’s criterion. In the case of the FHN oscillator, we have

C1 = max
x∈Ω,(i,j)∈IΠ

∣∣1− γ(y2
i + yiyj + y2

j )
∣∣ (4.3)
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where Ω is the region of absorption for the full network system and IΠ is the synchronization

pattern associated with Π. Furthermore,

C2 = 1, C3 = 2αp, ᾱ = 2pαβ, β̄ = 1.

A direct computation shows that for p > 0, the value of λ̄ is minimal for p = 1
2α . This yields

λ̄ =
C1

2
+

1

β
.

We see that the threshold value λ̄ not only depends on the kind of subsystems present in the

network system but also on the network structure and the permutation matrix Π. It is however

possible to obtain an upper bound for C1 which only depends on the number of nodes in the

network graph and the parameters associated with the FHN oscillator. In this way, we can

arrive at an upper bound for λ̄ which depends only on the type of subsystem and the number of

subsystems. To do so, we simply estimate the absorption region Ω and maximize the expression

in equation (4.3) over all pairs of i and j rather than only those in IΠ. The following lemma

and corresponding corollary give the desired results.

Lemma 4.1.2. Assume that the Laplacian matrix L associated with a diffusively coupled network

of N subsystems is such that L + L> is positive semi-definite. If the subsystems are FHN

oscillators, then trajectories of the network system are ultimately bounded and the region of

absorption Ω is contained in the ball of radius R =
√

2N (αβ+1)√
4α2βγ

.

The following corollary is a direct consequence of Lemma 4.1.2.

Corollary 4.1.1. Assume that all conditions of Theorem 3.2.2 are met. For the FHN oscillator,

we have

C1 ≤

1, R ≤
√

2
γ ,

γR2 − 1, R >
√

2
γ .

where R is as in Lemma 4.1.2.

The proofs of Lemma 4.1.2 as well as Corollary 4.1.1 can be found in Appendix A.

For the chosen values of α = 8/100, β = 8/10 and γ = 1/3, we have

(αβ + 1)√
4α2βγ

≈ 12.9,

and thus R >
√

2
γ . Finally, it follows that

C1 ≤ γR2 − 1 = 2N
(αβ + 1)2

4α2β
− 1.

However, numerical simulations suggest that this upper bound is very conservative. In fact,

the modified approach of producing a suitable Lyapunov function, as described in section 3.3,

suggests that even C1 = 1 is a conservative estimate in the case of the FHN oscillator. We will

address this issue with regard to the example networks in the upcoming sections.
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Having verified that the FHN oscillator meets the conditions on the subsystems as posed in

Theorem 3.2.2, we move on to discuss the conditions relating to the network structure.

4.2 Pogromsky’s Network

In this section, we apply Theorem 3.2.2 and the derived modified sufficient condition in order

to study cluster synchronization in Pogromsky’s network as introduced in section 2.3. We

previously saw that conditions 1, 2 and 3 of Theorem 3.2.2 are met for the FHN oscillator.

Before moving on to discuss the stability of the linear invariant manifolds associated with the

symmetries of the network, we verify that conditions 4 and 5 of Theorem 3.2.2 are indeed met

as well.

Conditions 4 and 5

Since Pogromsky’s network is undirected, it follows that the associated Laplacian matrix LP is

symmetric and positive semi-definite. It follows that LP+L>P = 2LP is also positive semi-definite

and hence condition 4 is met.

The last condition stated that, given some permutation matrix Π, there exists an N × N
matrix solution X to

(IN −Π)L = X(IN −Π). (4.4)

At the end of section 3.1, we reviewed an approach on how to find permutation matrices Π such

that equation (4.4) has a solution X. For now we restrict to the case in which X = L, i.e. we

consider the symmetries of Pogromsky’s network.

4.2.1 Symmetries

Using numerical tools, we find that Pogromsky’s network has a maximum of 48 symmetries.

This is of course only the case if all parameters are identical, i.e. k1 = k2 = k3 = k4. Weakening

this restriction, the number of symmetries in the network decreases. For example, in the case of

k1 = k3 6= k2 = k4, there are 16 symmetries which are always present for an arbitrary parameter

configuration adhering to the imposed restriction. If we set k2 = k4 and impose no further

conditions, then 8 symmetries remain.

In order to better understand the symmetries of Pogromsky’s network, we consider the

simpler version with fixed k2 = k4 which has at least 8 symmetries regardless of the values of

k1 and k3. Let us denote these 8 symmetries Π1,Π2, . . . ,Π8. The permutation matrices are

explicitly given in Appendix B. It so happens that the characteristic matrices associated with

the orbit partitions of these permutation matrices are all mutually distinct. If there had been

any duplicates, we would simply discard all but one of them since we are interested in the

different ways one may cluster together nodes and duplicate characteristic matrices imply that

the associated reduced-order models would be identical.

There are 3 “types” of symmetries for k2 = k4: The first one is simply the identity permu-

tation. The second kind leaves 4 nodes unchanged and permutes the remaining 4 nodes in pairs

45



of 2 (Π2 and Π3). The third type permutes all nodes in pairs of 2 (Π4,Π5,Π6,Π7 and Π8). The

respective network reduction situation for Π2 is illustrated in Figure 4.1.

1 4

32

85

6 7

1 4

32

65

Figure 4.1: Model reduction when clustering according to the orbit partition of Π2. Nodes of the same
colour in the original network are clustered together in the reduced network.

4.2.2 Stability Regions

We consider Pogromsky’s network with fixed k2 = k4 = 0.5 which leaves k1 and k3 as effective

network parameters. Having checked all the conditions, we can finally apply Theorem 3.2.2 and

the derived modified sufficient condition.

Recall that Theorem 3.2.2 involves the quantity C1 which is a worst case estimate for the

behaviour of the FHN oscillator in the region of absorption Ω. An approximation of this region

resulted in the upper bound

C1 ≤ γR2 − 1 = 2N
(αβ + 1)2

4α2β
− 1.

Pogromsky’s network has N = 8 nodes and so

C1 ≤ 883.45

is a valid upper bound. As we will see in a moment, this estimate is extremely conservative. In

fact, integration of the system suggests that trajectories actually do enter a region in which C1

can be bounded above by 1 (see Corollary 4.1.1). Let us see how this compares to the modified

sufficient condition which was derived in section 3.3.

By making explicit use of the dynamics of the FHN oscillator, we observed that the nonlinear

term involved can be neglected when it comes to finding a suitable Lyapunov function (see

section 3.3). Since a lot of conservatism in the predictions of Theorem 3.2.2 can be expected to

be caused by accounting for potentially “very badly behaved” nonlinear terms, we expect the

modified sufficient condition to be significantly less restrictive. This is indeed the case, as is

demonstrated in the following numerical experiment.

Experimental Setup

We create a grid for a portion of the parameter plane with k1 = 0, 0.025, 0.05, ..., 1.5 and k3 =

0, 0.025, 0.05, ..., 1.5. For each value, we construct the associated Laplacian matrix and for a

certain symmetry Π and check whether Theorem 3.2.2 or the derived modified sufficient condition
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guarantee cluster synchronization as prescribed by Π. More explicitly, given Π, for each pair

(k1, k3), we check the following two conditions:

• We calculate λ′ which is the largest number such that the inequality

1

2
ξ>(IN −Π)>(X +X>)(IN −Π)ξ ≥ λ′ξ>(IN −Π)>(IN −Π)ξ

holds for all ξ ∈ RN and check if λ′ > λ̄ = 1
2 + 1

β (i.e. C1 = 1).

• We check whether there exist a diagonal matrix R � 0 and ρ ∈ R such that

2R−RL − L>R− ρPP> ≺ 0, (4.5)

where P is the characteristic matrix associated with the orbit partition of Π.

For each Π we thus find the region of guaranteed cluster synchronization. The results are

summarized in Figures 4.2 and 4.3.
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Figure 4.2: Left Panel: cluster synchronization regions for Π2. Right panel: cluster synchronization
regions for Π3. In both panels region 2 corresponds to the parameter values for which the modified
sufficient condition guarantees cluster synchronization and in region 3, both Theorem 3.2.2 and the
modified sufficient condition guarantee cluster synchronization.

Remark. The criteria described are merely sufficient, so the actual stability regions contain the

depicted regions. The converse is not necessarily true.

We note that in all cases, the modified criterion is less restrictive than Theorem 3.2.2 (even

with C1 = 1). This is in accordance with our predictions. In terms of the differences between the

symmetries, we note that for symmetries Π1,Π2,Π3 and Π4, the modified condition guarantees

cluster synchronization for all pairs (k1, k3), while for Π5,Π6,Π7 and Π8 cluster synchronization

sets in only for comparatively larger values of k1 and k3. Let us have a closer look at what is

going on.
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Figure 4.3: Left Panel: cluster synchronization regions for Π4. Right panel: cluster synchronization
regions for Π5,Π6,Π7 and Π8. Region 1 corresponds to parameter configurations for which neither
Theorem 3.2.2 nor the modified sufficient condition guarantee cluster synchronization. In region 2, the
modified sufficient condition guarantees cluster synchronization and in region 3, both Theorem 3.2.2 and
the modified sufficient condition guarantee cluster synchronization.

The orbit partitions of Π2 and Π3 are

πΠ2 = {{1}, {2}, {3}, {4}, {5, 6}, {7, 8}},
πΠ3 = {{1, 2}, {3, 4}, {5}, {6}, {7}, {8}}.

According to Figure 4.2, the associated cluster synchronization manifolds are asymptotically

stable for all values of k1 and k3. We can thus expect that nodes in the cells {1, 2}, {3, 4}, {5, 6}
and {7, 8} will always synchronize. Note however, that the orbit partition of Π4 is

πΠ4 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}

and cluster synchronization for this symmetry is guaranteed only for larger values of k1 and k3

(see Figure 4.3). Furthermore, if we consider the orbit partitions of Π4, . . . ,Π8, given by

πΠ4 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}},
πΠ5 = {{1, 3}, {2, 4}, {5, 7}, {6, 8}},
πΠ6 = {{1, 3}, {2, 4}, {5, 8}, {6, 7}},
πΠ7 = {{1, 4}, {2, 3}, {5, 7}, {6, 8}},
πΠ8 = {{1, 4}, {2, 3}, {5, 8}, {6, 7}},

which all have the same region of guaranteed stability as shown in Figure 4.3, then we must

conclude that nodes in the cells {1, 2, 3, 4} and {5, 6, 7, 8} synchronize as well. The existence

of the associated linear invariant manifold is not explicitly predicted by our analysis of the

symmetries. However, the approach of constructing Laplacian orbit partitions from symmetry

orbit partitions as reviewed at the end of section 3.1 should prove useful in this regard and might

be an interesting starting point for future research.
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4.2.3 Convergence Rates

We established that Theorem 3.2.2 and the modified sufficient condition separate the symmetries

into a number of groups according to their regions of guaranteed stability. We now return to the

idea that in a model reduction setting, we would like to cluster together nodes that synchronize

quickly.

Not only was demonstrated that the modified sufficient condition, as discussed in section 3.3,

is less restrictive than Theorem 3.2.2 in terms of the regions of guaranteed cluster synchroniza-

tion: Lemma 3.3.3 also gives us the means to estimate the convergence rate of the Lyapunov

function which is employed to prove stability. This estimate of the convergence rate is an upper

bound but it may be precise enough to say something about the convergence of trajectories as

they approach the linear invariant manifolds. If there are significant differences in these conver-

gence rates, the symmetries associated with quicker convergence might be better candidates for

clustering.

To investigate whether there actually are meaningful differences between the symmetries, we

study trajectories by means of straightforward integration of the system. We then approximate

the rates at which trajectories converge to the symmetry associated linear invariant manifolds

and compare them with the upper bounds as given by Lemma 3.3.3.

Experimental Setup

Given an initial condition x0, we will denote the associated solution of

ẋ = F (x)− (LP ⊗BC)x, x(0) = x0,

as x(t;x0). We are interested in the distance between x(t;x0) and the subspace ker(INn−Π⊗In).

Following the approach from chapter 3, we characterize this distance by means of the Lyapunov

function

V (x) =
1

2α
z>Mz +

1

2
y>My,

with x = col(z, y) and M = (IN −Π)>(IN −Π). Based on this Lyapunov function, estimates for

the convergence rate at which trajectories approach the associated subspaces have been derived.

We will now investigate the convergence rate by means of straightforward integration and the

inspection of plots for V (x).

The distance of a trajectory x(t;x0) to the subspace associated with the symmetry Π is

now characterized by V (x(t;x0)). Of course, which subspace a given trajectory tends towards

is also dependent on the initial condition. To still be able to say something about the overall

convergence rates, rather than considering a single trajectory, we consider many and average

over the number of initial conditions. Given a set of random initial conditions xi0, i = 1, . . . , s,

we introduce the quantity

d(t; Π) =
1

s

s∑
i=1

V (x(t;xi0)).

In the case of full synchronization, we will observe d(t; Π) → 0 as t → ∞ for all permutation

matrices Π, however, in principle the overall rate at which d(t; Π) → 0 is expected to vary for
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different choices of Π. How large we choose the individual parameters k1, . . . , k4 will influence

the converge rates. For example, by means of inspection of the network (see Figure 2.6), if

we pick k1 very large and the other parameters very small, we would expect the trajectories

to quickly converge to the subspaces associated with synchronization involving nodes 1, 2, 3

and 4. To account for this, we again consider Pogromsky’s network with maximal symmetry,

i.e. with k1 = k2 = k3 = k4 = k. This yields 48 symmetries in total and from these, we can

derive a set of 32 symmetries Π1, . . . ,Π32, which have mutually distinct characteristic matrices

associated with them. For each of the symmetries, we plot d(t; Π) with s = 1000 for t ∈ [0, 100]

and k = 0.1, 0.2, 0.3, 0.4. The results are summarized in Figure 4.4.
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Figure 4.4: Each plot has the time t on the abscissa and the quantity d(t; Π) on the ordinate. Initial
conditions have been sampled uniformly such that |zj(0)| ≤ 1 and |yj(0)| ≤ 2 for all j = 1, ..., 8. The
quantity d(t; Π) is then computed with s = 1000 independently sampled initial conditions. Plotted is
d(t; Πi) for the previously discussed 32 symmetries Π1, . . . ,Π32 of Pogromsky’s network with all parame-
ters equal. Each coloured solid line corresponds to d(t; Πi) for a different symmetry. A logarithmic scale
for the ordinate is used in each plot. Read from the top left to the bottom right, the parameters are
k = 0.1, 0.2, 0.3 and k = 0.4. In each plot, we use a linear fit to approximate the average slope of the
curve with the highest and smallest value d(100; Πi). These linear fits correspond to the black and white
dotted/dashed lines. The slopes of these lines are given by ∆1 and ∆2.

In Figure 4.4, we see that the symmetries again split into two groups. The curves appear to

be roughly linear and the ones associated with symmetries from the same group have identical

“overall slopes”. Since we are using a logarithmically scaled ordinate, the slopes of the “lines”

indicate the rate of exponential decay of d(t; Π). For all selected values of k, one group of lines

always has an overall smaller slope than the other group and the difference in slope decreases
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as k increases from 0.1 to 0.4.

Following a similar argumentation as in the previous section, we now investigate the difference

between symmetries belonging to the different groups in terms of cluster synchronization, if such

a difference exists. Indeed, we find that the group with faster convergence is associated with the

synchronization of nodes in the cells {1, 2, 5, 6} and {3, 4, 7, 8}, while the other group contains

two symmetries that respectively have orbit partitions

{{1, 4, 5, 6, 7, 8}, {2, 3}},
{{1, 2}, {3, 4, 5, 6}, {7, 8}}.

As cluster synchronization associated with the these two orbit partitions implies full synchroniza-

tion, we conclude that the second, less steep group of lines is associated with full synchronization.

Let us now compare these observations with the upper bounds as predicted by Lemma 3.3.3.

We select the two permutation matrices Πfast := Π25 and Πslow := Π32 to represent the two

groups of symmetries and compare the observed approximations of the convergence rates ∆1

and ∆2 to the upper bounds δeff as predicted by Lemma 3.3.3. The values are summarized in

Table 4.1.

k = 0.1 k = 0.2 k = 0.3 k = 0.4

Πfast
∆1 -0.186 -0.261 -0.209 -0.190
δeff - - -0.128 -0.128

Πslow
∆2 -0.091 -0.182 -0.205 -0.185
δeff - - - -

Table 4.1: Observed approximate convergence rates and upper bounds.

As can be seen in Table 4.1, for k = 0.1 and k = 0.2 the modified criterion cannot guarantee

stability for symmetries of either group. For k = 0.3 and k = 0.4 the situation is different: the

values of δeff for Πfast are negative and equal to −2αβ = −0.128. This means that the criterion

does guarantee stability and the convergence rate is bounded above by −2αβ. This is in line

with the observed approximated convergence rates ∆1. For Πslow, the criterion still does not

guarantee stability and so there is also no upper bound on the convergence rate listed. We can

draw two conclusions from these observations:

• The proposed criterion giving an upper bound on the convergence rate is conservative:

while clearly trajectories converge to the associated linear invariant manifolds for all values

of k, the method predicts convergence only for the group associated with faster convergence

and this only for k = 0.3 and k = 0.4.

• The proposed criterion characterizes the qualitative difference between the two groups of

symmetries correctly: for k = 0.3 and k = 0.4 the method predicts convergence for Πfast

and not for Πslow.

We move on to apply the same type of analysis to Steur’s network.
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4.3 Steur’s Network

In addition to the discussion of cluster synchronization regions and associated convergence rates,

we take a closer look at the modular travelling wave solution in Steur’s network. As before, we

start by checking conditions 4 and 5 of Theorem 3.2.2.

Conditions 4 and 5

Recall that Steur’s network is a directed graph with N = M̄N̄ nodes and that the associated

Laplacian matrix is given by

LS(σ, µ) = σLring ⊗BL + µIN̄ ⊗ Lmodule.

Condition 4 of Theorem 3.2.2 requires that LS(σ, µ) + LS(σ, µ)> be positive semi-definite but

since Steur’s network is directed, it is not immediately obvious that this is indeed the case.

Lemma 4.3.1. The matrix LS(σ, µ) + LS(σ, µ)> is positive semi-definite for σ, µ ≥ 0.

The proof of this lemma can be found in Appendix A.

By Lemma 4.3.1 it follows that condition 4 is met for any σ, µ ≥ 0. As before, we restrict

the permutation matrices under consideration to the symmetries of the network. Since all

symmetries satisfy ΠL = LΠ, condition 5 is met as well. We continue with an exposition of the

symmetries present in Steur’s network.

4.3.1 Symmetries

Since the number of nodes in Steur’s network is variable, we should think about how many

symmetries there are, given the number of nodes per module M̄ and the number of modules N̄ .

To arrive at the general expression for the number of symmetries in Steur’s network, we consider

symmetries stemming from the individual modules and symmetries stemming from the directed

ring structure.

Each module contains M̄ nodes and only one of these nodes is connected to the previous

and the following module. This means that for each module there are (M̄ − 1)! symmetries

which simply stem from the complete subgraph contained in each module. Since there are N̄

modules, this yields [(M̄ − 1)! ]N̄ symmetries. Now we need to account for the fact that the

modules are connected to one another in a directed ring structure. The undirected ring with N̄

nodes can be thought of as the regular N̄ -gon and so the associated group of symmetries is the

dihedral group containing 2N̄ elements. This means that the directed ring has half as many,

i.e. N̄ , symmetries. Combining the number of symmetries stemming from the modules together

with the ones stemming from the directed ring structure, we conclude that Steur’s network has

N̄ [(M̄ − 1)! ]N̄

symmetries in total.

As previously discussed, in general, the number of symmetries in a graph is maximized if

all edge/arc weights are identical and parameter configurations with nonidentical values will
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generically yield less symmetries. Recall that this is indeed the case of Pogromsky’s network.

However, for Steur’s network, this is not true: any choice of σ > 0 and µ > 0 will yield the same

number of symmetries.

For a number of choices for the network size parameters M̄ and N̄ , the number of symmetries

are listed in Table 4.2. Note that for M̄ < 3, the network loses its modular structure and for

N̄ < 3, the network loses its ring structure. We thus only consider M̄, N̄ ≥ 3.

µ, σ > 0 N̄ = 3 N̄ = 4 N̄ = 5

M̄ = 3 24 64 160

M̄ = 4 648 5184 38880

M̄ = 5 41472 1327104 39813120

Table 4.2: Number of symmetries of Steur’s network for a selection of values M̄ and N̄ .

Involving the factorial of M̄ − 1, it is clear that even for relatively small M̄ and N̄ , Steur’s

network has too many symmetries for us to investigate each one of them. However, it is not

necessary to study all symmetries individually: We are interested in the orbit partitions of the

permutation matrices associated with the symmetries. If two permutation matrices Π1 and

Π2 have identical orbit partitions, i.e. πΠ1 = πΠ2 , we will consider them equivalent. Having

computed all symmetries of a graph, our next step is then to compute a subset such that the

associated set of orbit partitions does not contain any duplicates. Using a brute force method,

the number of symmetries with mutually distinct orbit partitions has been computed again for

the same values of M̄ and N̄ . However, due to excessive run time for larger values of M̄ and N̄ ,

the number of symmetries with mutually distinct orbit partitions has been computed only for

the values as indicated in Table 4.3.

µ, σ > 0 N̄ = 3 N̄ = 4 N̄ = 5

M̄ = 3 13 34 49

M̄ = 4 189 1179 -

M̄ = 5 - - -

Table 4.3: Number of symmetries of Steur’s network with mutually distinct orbit partitions for a selection
of values M̄ and N̄ . Run times ranged from 0.23 seconds for M̄ = N̄ = 3 to 256 seconds for M̄ = N̄ = 4.

For simplicity, we will restrict our study of the symmetries to the simplest nontrivial case

M̄ = N̄ = 3. Steur’s network then has 24 symmetries which can be reduced to a set of 13

with mutually distinct orbit partitions, as can be read from Tables 4.2 and 4.3. We will denote

the associated permutation matrices Π1,Π2, . . . ,Π13. We will now have a closer look at these

symmetries.

A comprehensive listing of all 13 symmetries together with visual representations of the

associated reduced-order models can be found in Appendix B. We study a selected few of these

13 symmetries in more detail: The first symmetry is simply the trivial symmetry Π1 = I9 and no

clustering of nodes takes place. The fourth symmetry and the associated characteristic matrix
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are given by

Π4 =


1 0 0

0 0 1

0 1 0

I6

 , P (πΠ4) =


1 0

0 1

0 1

I6

 .
The Laplacian matrix of the resulting reduced network is given by

L̄S =



3 −2 0 0 0 −1 0 0

−1 1 0 0 0 0 0 0

−1 0 3 −1 −1 0 0 0

0 0 −1 2 −1 0 0 0

0 0 −1 −1 2 0 0 0

0 0 −1 0 0 3 −1 −1

0 0 0 0 0 −1 2 −1

0 0 0 0 0 −1 −1 2


.

The symmetry Π4 corresponds to transposing nodes 2 and 3. Clustering according to the orbit

partition of this symmetry would then lead to the reduced network as illustrated in Figure 4.5.
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Figure 4.5: Model reduction when clustering according to the orbit partition of Π4. Nodes of the same
colour in the original network are clustered together in the reduced network.

The 9th symmetry and the associated characteristic matrix are given by

Π9 =



0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0


, P (πΠ9) =



1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1


.
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The Laplacian matrix of the resulting reduced network is given by

L̄S =

 2 −1 −1

−1 2 −1

−1 −1 2

 .
Symmetry Π9 corresponds to moving all nodes 6 positions further, i.e. node 1 goes to 7, node

2 to 8 and so on. This “rotational” symmetry stems from the directed ring character of the

network.

Remark. Note that shifting all nodes by 3 positions is also a valid symmetry, however the

associated characteristic matrix is the same as for the shift by 6 and so only one of them made

it into the reduced set of symmetries.

The model reduction situation associated with Π9 is illustrated in Figure 4.5.
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Figure 4.6: Model reduction when clustering according to the orbit partition of Π9. Nodes of the same
colour in the original network are clustered together in the reduced network.

The remaining symmetries can be understood as variations and/or combinations of symme-

tries Π4 and Π9. For example, Π4 permutes the nodes in module 1 while Π2 permutes the nodes

in module 3. Similarly, Π13 corresponds to permuting nodes in the modules while also rotat-

ing the whole network. The resulting reduced network only has 2 nodes: one representing the

nodes in the directed ring and one representing the nodes in all the modules (see Appendix B).

Table 4.4 contains an overview of the symmetries of Steur’s network together with a quali-

tative description of the associated clustering. We move on to study their associated cluster

synchronization regions.

Symmetry Description of clustering

Π1 = I9 no clustering

Π2,Π3,Π4 nodes in individual module, single module

Π5,Π6,Π7 nodes in individual module, two modules

Π8 nodes in individual module, three modules

Π9,Π10,Π11,Π12 nodes with same relative position in module

Π13 nodes in directed cycle vs. rest

Table 4.4: Summary of types of symmetries in Steur’s network and what kind of clustering they correspond
to.
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4.3.2 Stability Regions

We perform the same numerical experiment as previously for Pogromsky’s network. Note that

in order to make use of Theorem 3.2.2, we again need to obtain λ̄. Similarly as before, the

upper bound on C1, as suggested by Corollary 4.1.1, seems unreasonably conservative and under

consideration of numerical simulations, we try C1 = 1 which yields λ̄ = 1
2 + 1

β . We will see that

also in this case, this can still be regarded as a conservative estimate.

Experimental Setup

We create a grid for a portion of the parameter plane with σ = 0, 0.15, 0.3, ..., 10.05 and

µ = 0, 0.15, 0.3, ..., 10.05 and check whether Theorem 3.2.2 or the modified sufficient condi-

tion guarantee cluster synchronization at any pair (σ, µ). In this way, we estimate the region in

which cluster synchronization is guaranteed. The results are summarized in Figures 4.7 and 4.8.
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Figure 4.7: Cluster synchronization regions for Π2,Π3, . . . ,Π8. Left panel: Synchronization regions for
(σ, µ) ∈ [0, 10] × [0, 10]. At this scale, the regions are hard to differentiate. The dotted lines indicate
the zoom window ([0, 1] × [0, 1]) which is depicted in the plot of the right panel. Right panel: Zoomed
version of the plot in the left panel. Region 1 corresponds to parameter configurations for which neither
Theorem 3.2.2 nor the modified sufficient condition guarantee cluster synchronization. In region 2, the
modified sufficient condition guarantees cluster synchronization and in region 3, both Theorem 3.2.2 and
the modified sufficient condition guarantee cluster synchronization.

Let us make a few observations. In all cases, the modified sufficient conditions yields less

conservative results, just like for Pogromsky’s network. So again, we have indication that the

modified sufficient condition is less restrictive. Further, there are two groups of symmetries for

which the associated cluster synchronization regions are identical namely Π2,Π3, ...,Π8 (group

1) and Π9,Π10, ...,Π13 (group 2).

In the case of the first group, the region of guaranteed cluster synchronization is bounded

by a line of constant µ. This is plausible since all symmetries in group 1 are associated with

synchronization of nodes within the individual modules and coupling in modules is governed by

µ. In fact, for parameter values in this region, the nodes in the cells

{2, 3}, {5, 6} and {8, 9}
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Figure 4.8: Cluster synchronization regions for Π9,Π10, . . . ,Π13. Region 1 corresponds to parameter
configurations for which neither Theorem 3.2.2 nor the modified sufficient condition guarantee cluster
synchronization. In region 2, the modified sufficient condition guarantees cluster synchronization and in
region 3, both Theorem 3.2.2 and the modified sufficient condition guarantee cluster synchronization.

are guaranteed to synchronize. Indeed, the orbit partition of Π8 is

πΠ8 = {{2, 3}, {5, 6}, {8, 9}},

which can be thought of as the “coarsest” orbit partition of the first group.

For the second group, sufficiently large values of σ and µ guarantee synchronization of the

nodes 1, 4 and 7 which are the nodes making up the directed ring. However, the region of

guaranteed cluster synchronization is contained in the one for the first group and so all nodes

within the modules are also guaranteed to synchronize. This means that the nodes in the cells

{1, 4, 7}, {2, 3, 5, 6, 8, 9}

are guaranteed to synchronize. Indeed, the orbit partition of Π13 is

πΠ13 = {{1, 4, 7}, {2, 3, 5, 6, 8, 9}},

which can be thought of as the “coarsest” orbit partition of the second group. We continue our

investigation of these two groups of symmetries in the next section.

4.3.3 Convergence Rates

We repeat the experiment as described in section 4.2.3, this time for Steur’s network. For σ = µ

taking values 0.4, 0.6, 0.8 and 1, we plot the quantity d(t; Π) for the 13 symmetries of Steur’s

network with M̄ = N̄ = 3.

As can be seen from Figure 4.9, again two groups of symmetries appear. The first group

with faster overall convergence consists of the permutation matrices Π2, . . . ,Π8 which act on the

nodes in the modules only. The second group with slower overall convergence is Π9, . . . ,Π13.

We again see the same split into two groups as in the analysis of the regions of guaranteed
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Figure 4.9: Each plot has the time t on the abscissa and the quantity d(t; Π) on the ordinate. Initial
conditions have been sampled uniformly such that |zj(0)| ≤ 1 and |yj(0)| ≤ 2 for all j = 1, ..., 9. The
quantity d(t; Π) is then computed with s = 1000 independently sampled initial conditions. Plotted is
d(t; Πi) for the previously discussed 13 symmetries Π1, . . . ,Π13 of Steur’s network. Each coloured solid
line corresponds to d(t; Πi) for a different symmetry. A logarithmic scale for the ordinate is used in each
plot. Read from the top left to the bottom right, the parameters are σ = µ = 0.4, 0.6, 0.8 and σ = µ = 1.
In each plot, we use a linear fit to approximate the average slope of the curve with the highest and lowest
value d(100; Πi). These linear fits correspond to the black and white dotted/dashed lines. The slopes of
these lines are given by ∆1 and ∆2.

cluster synchronization. Let us see how the observed approximate convergence rates compare

to the upper bounds given by Lemma 3.3.3. We consider Πfast := Π8 and Πslow := Π13 as

representatives of the two groups. The values are summarized in Table 4.5.

σ = µ = 0.4 σ = µ = 0.6 σ = µ = 0.8 σ = µ = 1

Πfast
∆1 -0.250 -0.204 -0.184 -0.173
δeff -0.128 -0.128 -0.128 -0.128

Πslow
∆2 -0.073 -0.113 -0.150 -0.168
δeff - - - -

Table 4.5: Observed approximate convergence rates and upper bounds.

The predicted values of δeff in the row Πfast are all negative and give valid upper bounds on

the convergence rate. Moreover, we see that all values of δeff are equal to −2αβ which is the

minimal value for the upper bound which can be derived using Lemma 3.3.3.

For the second group, represented by Πslow, the situation is again different: for no value of
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the parameters σ and µ the modified sufficient condition guarantees stability, yet the trajectories

converge towards the cluster synchronization manifolds. The conclusions we can draw from this

case are the same as before: the proposed criterion is conservative, yet it characterizes the

qualitative difference between the two groups of symmetries, which is visible in the observed

convergence rate approximations ∆1 and ∆2, faithfully.

Having established that the modified criterion seems to make meaningful distinctions between

groups of symmetries in terms of their observed convergence rates, we move on to investigate

possible implications for clustering-based model reduction for Steur’s network.

4.3.4 Stability of the Travelling Wave in Steur’s Network

In the introduction of Steur’s network in section 2.3, we noted that for M̄ = N̄ = 5 and

σ = µ = 1, the oscillators in the network either fully synchronize or only the oscillators in the

modules synchronize and a modular travelling wave emerges. In both cases, the trajectories

approach a periodic solution in state space. We refer to these solutions as limit cycles. If a limit

cycle attracts nearby solutions, we say that it is locally asymptotically stable.

From our observations, we conclude that there are parameter values for which both limit

cycles are locally asymptotically stable. The chosen initial condition determines to which limit

cycle the associated trajectory will converge. In this case we speak of multi-stability as there

are multiple attractors present.

Using the theory presented in chapter 3 and the observations made in the previous sections,

we must conclude that the modular travelling wave is not always locally asymptotically stable:

Theorem 3.2.2 implies that for sufficiently strong coupling, i.e. for sufficiently large values of

σ and µ, the fully synchronous solution is globally asymptotically stable which means that,

independent of the choice of initial condition, the oscillators will always synchronize. Conversely,

this implies that the modular travelling wave loses its local stability somewhere. We proceed to

investigate for which parameter values this is the case.

In the following analysis, we make use of the Poincaré map associated with a limit cycle and

apply basic Floquet theory to determine a region of local asymptotic stability for the modular

travelling wave. In case the reader is not familiar with these concepts, Appendix C contains a

brief review.

In principle, if a limit cycle can be parameterized explicitly, it is possible to study the local

stability “by hand”. Using the Poincaré map we could compute the Floquet multipliers and

their dependencies on the system parameters explicitly and simply check when such a multiplier

leaves the unit circle. However, the FHN oscillator does not allow for such a paramterization.

It is yet possible to carry out a local stability analysis: Numerical continuation software such

as AUTO or MATCONT allow for the computation of Floquet multipliers and track them for

varying system parameters when the explicit parametrization of limit cycles is impossible. For

reasons of familiarity with MATLAB, we decide to use MATCONT for our analysis.

MATCONT allows for the continuation of limit cycles from a previously computed solution.

This means that we can employ a method of trial and error with regard to coupling strengths

σ and µ, as well as initial conditions to find a solution that converges to the modular travelling

wave and then simply continue the associated limit cycle from there. To avoid unnecessary
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complexity, we want to find the smallest values of M̄ and N̄ such that this trial and error

method is feasible. As is demonstrated by Steur et al. [31], for N̄ = 5 and M̄ between 2 and 10,

a substantial proportion of solutions converge to a modular travelling wave, as detected in their

experiments.

Indeed, for N̄ = 5, using our trial and error method, we easily find parameter configurations

and initial conditions that converge to a modular travelling wave for values of M̄ between 2 and

10.

Example 6. For N̄ = 5 and M̄ = 3 we find (for some suitable initial conditions) a modular

travelling wave solution for (σ, µ) = (0.5, 1). Feeding this solution to MATCONT, we can now

continue this limit cycle for varying σ and µ while tracking the Floquet multipliers of the limit

cycle. It is to be noted that initially, all multipliers lie in the unit circle and so the limit cycle

is locally stable.

Continuing the limit cycle for increasing σ, MATCONT indicates that around (σ, µ) =

(0.7, 1), a conjugate pair of multipliers lies on the unit circle, marking a Neimark-Sacker bifur-

cation. At this point, the modular travelling wave loses its local stability. MATCONT then

allows to continue this Neimark-Sacker point throughout the parameter plane which yields a

smooth curve. At each point of this curve, a Neimark-Sacker bifurcation occurs and the limit

cycle associated with the modular travelling wave loses its local stability. Effectively, this curve

is the boundary of the region of local stability for the modular travelling wave.

We obtain the curve of Neimark-Sacker bifurcations, as described in Example 6, for N̄ = 5

and M̄ = 2, 3, 4, 5 and plot the curves together with the regions of guaranteed stability, as

obtained from the modified sufficient condition. The results are summarized in Figure 4.10.

A few observations about Figure 4.10: In the “U”-shaped region enclosed by the Neimark-

Sacker curves, the modular travelling wave is locally stable, while on the outside, only fully

synchronous solutions have been observed. It is unknown if, besides the modular travelling wave

and fully synchronous solution, there exist any more attractors in the system, however, none

have become apparent in the course of this analysis.

In each case, the Neimark-Sacker curve is fully contained in region 2. This is the region for

which the modified sufficient condition guarantees cluster synchronization of the nodes in the

modules. For fixed N̄ = 5, as we increase M̄ from 3 to 5, we see that the overall “U”-shape

of the Neimark-Sacker curve stays the same, yet it appears to become somewhat wider. This

widening also makes intuitive sense: as M̄ increases, the modules become larger and so the

relative influence of the inter-module coupling strength σ becomes less. Consequently, larger

values of σ are required to attain full synchronization and the “U”-shaped stability regions

become wider.

The Neimark-Sacker curves do not cross into region 3 in any case. This also makes sense

because in region 3, the parameter configurations are such that the nodes within the directed

ring are guaranteed to synchronize and a travelling wave could not possibly emerge.
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Figure 4.10: Plotted are the curves of Neimark-Sacker bifurcations for N̄ = 5 and M̄ = 3, 4, 5 (top to
bottom, in green, orange and red respectively). Further, the regions of guaranteed cluster synchronization
as derived from the modified sufficient condition are shown. In region 1, cluster synchronization is
not guaranteed for any symmetry. In region 2, cluster synchronization of the nodes in the modules is
guaranteed and in region 3, the nodes making up the directed ring synchronize and at the same time, the
nodes in all across all modules synchronize. In each row, the plot on the right corresponds to the region
marked by the dotted lines in the plot on the left.

What does this means in terms of clustering-based model reduction? To evaluate how well a

reduced system approximates the original system, we will consider to what degree the region of

local stability of the travelling wave translates faithfully from the original to the reduced-order

model. Evidently, clustering the network according to any of the symmetries associated with

region 3 (Π9, . . . ,Π13) would result in a reduced-order model with too little complexity in the

sense that the directed ring structure would be destroyed and a “modular” travelling wave is

impossible to attain. Not so for the symmetries associated with region 2: clustering according

to any of the symmetries Π2, . . . ,Π8 would leave the directed ring structure intact. For these
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symmetries, “modular” travelling waves should exist and there is hope that the region of local

stability is similar to that of the original system.

To check if this is indeed the case, we once more consider Steur’s network with N̄ = 5

and M̄ = 2, 3, 4, 5. Note that this time, we also include M̄ = 2. This we do since clustering

together the nodes in the modules results in reduced networks that have the same topology as

Steur’s network with M̄ = 2. For each combination of N̄ and M̄ , we then perform clustering-

based model reduction according to Π8. The stability region of the modular travelling wave

is computed for each version of Steur’s network and its associated reduced-order model. The

results are summarized in Figure 4.11.
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Figure 4.11: The Neimark-Sacker curves associated with the modular travelling wave solution for N̄ = 5
and M̄ = 2, 3, 4, 5 (top left to bottom right). In each plot, the Neimark-Sacker curve of the complete
network is shown in colour, while the Neimark-Sacker curve for the clustered network is shown as a dotted
line. Note that for M̄ = 2, the complete system and the clustered system are identical, thus only one
curve is shown.

As can be seen in Figure 4.11, the local stability regions of the corresponding clustered

systems are virtually identical to the ones of the complete systems. This indicates that the

interaction of nodes within the modules has little to nothing to do with the emergence of “mod-

ular” travelling waves, which can be considered a characteristic emergent dynamical feature of

the inter-modular directed ring structure. This poses the question if this is a persistent phe-

nomenon that can be observed for arbitrary inter-modular network structures and associated

characteristic emergent dynamical features. This issue will be addressed in more detail in the
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discussion (see chapter 5).

What do these results mean in terms of the two groups of symmetries as discerned by

Theorem 3.2.2 and Lemma 3.3.3? Theorem 3.2.2 and Lemma 3.3.3 can be used to make a

distinction between the symmetries of a network system. This distinction boils down to which

eigenvalue of the symmetrized graph Laplacian a group of symmetries is associated with. The

larger the eigenvalue, the lower the required overall coupling strength which guarantees cluster

synchronization (Theorem 3.2.2). As was demonstrated in Lemma 3.3.3, the association with

these eigenvalues also impacts the convergence rates of trajectories approaching the associated

cluster synchronization manifolds, albeit only provable in terms of upper bounds. However,

as was demonstrated with the numerical experiments involving the approximations of these

convergence rates by means of straightforward integration of the system, the group distinction

actually impacts convergence rates directly: plotting the time-series for the involved Lyapunov

functions, we saw that the group of symmetries which was identified by Theorem 3.2.2 and

Lemma 3.3.3 as the “faster” group, actually did converge more quickly even though cluster

synchronization could not be guaranteed by means of Theorem 3.2.2 or Lemma 3.3.3. We then

saw that clustering according to symmetries of the “faster” group resulted in a well-approximated

region of local stability for the modular travelling wave in Steur’s network. This implies that

the spectral properties of the symmetrized graph Laplacian might be a suitable tool to identify

possible node clusterings which result in good reduced-order models.

4.4 Summary

In this chapter, we aimed to apply the insights about cluster synchronization from chapter 3

to the problem as stated in chapter 2. It was demonstrated that the FHN oscillator as well as

the example networks satisfy the conditions of Theorem 3.2.2 and the derived modified suffi-

cient condition. In order to make use of these results, we investigated the symmetries for both

Pogromsky’s network and Steur’s network. We saw that the symmetries for both networks could

be placed into two groups where each group has distinct features associated with cluster syn-

chronization. This was reflected in the regions of guaranteed stability as well as the observed

approximate convergence rates. Qualitative differences between the groups were predicted by

Theorem 3.2.2 and Lemma 3.3.3 and are associated with the spectral properties of the sym-

metrized graph Laplacian. Finally, in the case of Steur’s network, we studied the local stability

region for the modular travelling wave using the numerical continuation software MATCONT.

It was demonstrated that by clustering together nodes in the same modules, the local stability

region is nearly perfectly preserved when applying clustering-based model order reduction.
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Chapter 5

Conclusion and Discussion

Conclusion

In this thesis, we studied network systems of diffusively coupled oscillators and, in particular,

model order reduction by means of node clustering. We addressed the question whether there

are any natural choices for nodes that may be clustered together such that the reduced-order

model has similar dynamical features as the original one. Intuition suggests to cluster together

nodes which tend to synchronize quickly in the original model and we investigated whether this

intuition can be backed by more formal argumentation.

To identify groupings of nodes that synchronize with one another in the original model, we

studied the symmetries of the graph underlying the network system. Orbit partitions associated

with these symmetries function as a starting point to determine groups of nodes that synchronize

faster than others. In particular, we reviewed a result by Pogromsky [22, 23] that divides the set

of symmetries into groups according to how strong the overall coupling needs to be, such that

cluster synchronization with respect to the associated partitions is ensured. For two example

networks, it was then shown that in both cases, the symmetries separate into two groups.

Further, it was demonstrated that the convergence rate of a certain Lyapunov function, evaluated

along state trajectories, is again related to the underlying symmetry and in particular, which

group this symmetry belongs to. In this way, Pogromsky’s result can be used to separate the

symmetries in a network into a number of groups, each of which is associated with an eigenvalue

of the symmetrized graph Laplacian. The larger the associated eigenvalue, the quicker the

cluster synchronization.

In the case of a modular directed ring network, we saw that clustering according to symme-

tries from one group produced reduced-order models in which the local stability region of the

modular travelling wave is well preserved. Clustering nodes according to any symmetry from

the other group resulted in reduced-order models which do not even allow for the emergence of a

travelling wave in the first place, not to speak of the preservation of the associated region of local

stability. From this, we conclude that in the modular directed ring network, the travelling wave

solution is distinctly associated with the directed ring structure: any symmetry-based clustering

which destroys this structure leads to a reduced-order model in which this special solution does

not exist. In terms of clustering-based model order reduction, this gives a practical approach on

how to decide which nodes to cluster: given a network Laplacian, we find the symmetries, we
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compute the associated eigenvalues and then cluster according to symmetries associated with

the larger eigenvalues.

Discussion

The analysis as laid out in this thesis, with particular emphasis on the discussed result by

Pogromsky [22, 23], suggests that the symmetries can be divided into groups where each group

has certain cluster synchronization properties associated with it. These properties are:

1. Symmetries within the same group are associated with a certain threshold such that if the

overall coupling exceeds this threshold, cluster synchronization sets in.

2. Convergence rates of trajectories, approaching the linear invariant manifolds associated

with cluster synchronization, are identical for symmetries within the same group and

differ between the groups.

Both these properties are related to the eigenvalues of the symmetrized Laplacian matrix and

so it appears that, in network systems with diffusive coupling, the spectral properties of the

symmetrized Laplacian matrix can be used to predict the outcome of clustering-based model

reduction. However, this proposition comes with a number of caveats:

A central issue for this kind of analysis is the lack of a uniform method by which to compare

the behaviour of the full-order model and the reduced-order model. While for input-output

systems the performance of model order reduction can be quantified by means of comparing

transfer functions, this is of course not possible when treating autonomous systems. For Steur’s

network, the modular travelling wave is a characteristic dynamical feature. Therefore, comparing

how well its local stability region translates under model order reduction can be regarded as

an appropriate means to measure performance. For an arbitrary network however, it is not

clear what would constitute a “characteristic dynamical feature”. In this sense, the analysis

reduces to a case-by-case method. However, it would not be surprising if the existence of certain

symmetries in a network is associated with the emergence of certain dynamical features in a

more general setting. Repeating the kind of analysis as proposed in this thesis for a wider

variety of networks might yield additional insight with regard to this issue. Another approach of

comparing autonomous behaviour for simple ring networks is sketched out in Appendix E: Here,

the relationship between the directed ring network and its undirected counterpart is explored.

Throughout this thesis, symmetries and their relationship to cluster synchronization have

played a key role. Pogromsky’s result introduces a natural hierarchy for groups of symmetries,

however, it is not clear how this hierarchical structure relates to the group structure of the

symmetries. An interesting starting point for further research in this direction might be to

study this relationship, e.g. by means of finding generators of the symmetry group and then

investigating the eigenvalues of the symmetrized Laplacian matrix which are associated with

these generators.

A further limitation of this research is the restriction to the treatment of partitions which are

associated with symmetries only. As has been discussed in section 3.1, there are more partitions

that are associated with invariant synchronization manifolds. However, finding the symmetries
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of a given network is a nontrivial problem in itself, not to mention the construction of additional

valid cluster synchronization patterns. For smaller networks, finding partitions beyond those

relating to symmetries should be feasible and the analysis as proposed in this thesis could yield

more insight on the relationship between the different kinds of cluster synchronization patterns.

Finally, the requirement that the individual subsystems are identical and strictly semi-passive

is a limitation as well. Another line of research, employing a contraction-theoretic approach to

guarantee cluster synchronization, has been developed by Aminzare et al [1]: First described

by Lohmiller & Slotine [13] and inspired by fluid-mechanical principles, contraction theory rep-

resents a slightly different take on stability analysis. In the classical sense, stability analysis

is dealing with the convergence of trajectories to some reference motion or equilibrium point.

However, to talk about stability, it is not necessary to know what this reference motion actually

is. In this sense, contraction theory is concerned with the convergence of nearby trajectories

rather than the convergence to some prescribed reference motion. This shift in perspective al-

lows for a different mathematical approach to the problem of stability: rather than dealing with

motion integrals (like in Lyapunov stability theory), contraction theory allows for a differential

description, which simplifies the stability analysis in certain cases considerably.
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Appendix A

Proofs

Proof of Lemma 3.1.1

Lemma. Let G = (V,E,A) be a graph, L be the associated Laplacian matrix and G be the

symmetry group of G. Then for any g ∈ G, it holds that

ΠgL = LΠg. (A.1)

Proof. Recall that L = D − A where D = diag(d1, . . . , dN ) with di =
∑N

j=1 aij and A is the

adjacency matrix. Let

Πg =
[
eg(1) . . . eg(N)

]
,

then

ΠgLΠ>g =
[
eg(1) eg(2) . . . eg(N)

]


d1 −a12 . . . −a1N

−a21 d2 . . . −a2N

...
...

. . .
...

−aN1 −aN2 . . . dN



e>g(1)

e>g(2)
...

e>g(N)



=
[
eg(1) eg(2) . . . eg(N)

]

d1e
>
g(1) −

∑N
j 6=1 a1je

>
g(j)

d2e
>
g(2) −

∑N
j 6=2 a2je

>
g(j)

...

dNe
>
g(N) −

∑N
j 6=N aNje

>
g(j)


=

N∑
i=1

eg(i)

(
die
>
g(i) −

N∑
j 6=i

aije
>
g(j)

)

=
N∑
i=1

dieg(i)e
>
g(i) −

N∑
i=1

N∑
j 6=i

aijeg(i)e
>
g(j).

Now let k = g(i) and l = g(j). Since g is a permutation and thus a bijection, we have i = g−1(k)

and j = g−1(l). Since g ∈ G, we have that aij = ag(i)g(j) and hence aij = ag−1(i)g−1(j). It follows
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that the row sums of L are invariant under the permutation g, i.e. di = dg(i) and thus

ΠgLΠ>g =

N∑
i=1

dieg(i)e
>
g(i) −

N∑
i=1

N∑
j 6=i

aijeg(i)e
>
g(j)

=
N∑
k=1

dg−1(k)eke
>
k −

N∑
k=1

N∑
l 6=k

ag−1(k)g−1(l)eke
>
l

=
N∑
k=1

dkeke
>
k −

N∑
k=1

N∑
l 6=k

akleke
>
l

= D −A = L,

which proves the lemma. �

Proof of Lemma 3.3.1.

Lemma. Let Π be an arbitrary permutation matrix. If R is diagonal and positive definite and

Φ is (component-wise) monotonically increasing, then

y>(I −Π)>R(I −Π)Φ(y) ≥ 0, ∀y.

Proof. Let σ be the permutation associated with Π, i.e.

Π = [eσ(1), eσ(2), ..., eσ(N)],

where ei denotes the ith column of the identity matrix. Since Φ(y) = col(φ(y1), . . . , φ(yN )), we

have

(I −Π)y =


y1 − yσ(1)

y2 − yσ(2)
...

yN − yσ(N)

 , (I −Π)Φ(y) =


φ(y1)− φ(yσ(1))

φ(y2)− φ(yσ(2))
...

φ(yN )− φ(yσ(N))

 .
So if R is a diagonal matrix with entries ri > 0, we see that

y>(I −Π)>R(I −Π)Φ(y) =

N∑
i=1

ri(yi − yσ(i))(φ(yi)− φ(yσ(i))). (A.2)

Moreover since Φ is monotonically increasing in its components, we have

yi − yσ(i) > 0 =⇒ φ(yi)− φ(yσ(i)) > 0,

yi − yσ(i) < 0 =⇒ φ(yi)− φ(yσ(i)) < 0.

This means that all the terms in the sum from equation (A.2) are non-negative and hence

y>(I −Π)>R(I −Π)Φ(y) ≥ 0 ∀y.
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Proof of Lemma 3.3.2.

In the proof of Lemma 3.3.2, we make use of Finsler’s Lemma.

Finsler’s Lemma. (See e.g. [5]) Let x ∈ Rn, Q ∈ Sn and B ∈ Rm×n such that rank(B) < n.

The following statements are equivalent:

1. x>Qx < 0, ∀Bx = 0, x 6= 0.

2. (B⊥)>QB⊥ ≺ 0.

3. ∃ρ ∈ R s.t. Q− ρB>B ≺ 0.

4. ∃X ∈ Rn×m s.t. Q+XB +B>X> ≺ 0.

Lemma. Let P be the characteristic matrix associated with the orbit partition of some Π 6= I

with LΠ = ΠL. Suppose there exists a ρ ∈ R such that

2R−RL − L>R− ρPP> ≺ 0.

Then the matrix M(I − L), with M as defined in equation (3.22), is negative definite.

Proof. Recall that

M = (I −Π)>R(I −Π).

Since Π 6= I, for the characteristic matrix of the associated orbit partition, we have rank(P>) < N .

Assuming that

2R−RL − L>R− ρPP> ≺ 0,

and using the equivalence between the first and third statement in Finsler’s Lemma, it follows

that

ξ>(2R−RL − L>R))ξ < 0, ∀ξ ∈ ker(P>).

Noting that ker(P>) = im(I −Π), it follows that

ξ>(2R−RL − L>R))ξ < 0, ∀ξ ∈ im(I −Π),

which can be rewritten to

y>(I −Π)>(2R−RL − L>R))(I −Π)y < 0, ∀y.

Using that for arbitrary square matrices Q, we have x>Qx = 1
2x
>(Q+Q>)x, together with the

assumption LΠ = ΠL, it follows that

y>M(I − L)y < 0, ∀y.

�
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Proof of Lemma 3.3.3.

Lemma. Let P be the characteristic matrix associated with the orbit partition of some Π 6= I

with LΠ = ΠL. If global asymptotical stability of the set SΠ can be shown by means of

Lemma 3.3.2, then an upper bound for the convergence rate of the Lyapunov function, as defined

in equation (3.21), along any trajectory is given by

δeff =

−2αβδ0, 0 < δ0 ≤ 1,

−2αβ, δ0 > 1,

where δ0 is determined as

δ0 = max {δ > 0 | (1 + αβδ)I − 1

2
(L+ L>)− ρPP> ≺ 0, ρ ∈ R}. (A.3)

Proof. The proof follows a similar line of reasoning as the proof for Lemma 3.3.2. Given the

Lyapunov function candidate V (x) = 1
2αz
>Mz + 1

2y
>My with

M = (IN −Π)>(IN −Π),

it was shown that

V̇ (x) = −βz>Mz + y>M(I − L)y − γy>MΦ(y)

≤ −βz>Mz + y>M(I − L)y,

= −2αβ
[ 1

2α
z>Mz − 1

2αβ
y>M(I − L)y

]
where the inequality follows by Lemma 3.3.1. If we can find a δ > 0 such that

y>M(I − L)y < −αβδy>My, ∀y, (A.4)

then we can write

V̇ (x) ≤ −2αβ
[ 1

2α
z>Mz +

δ

2
y>My

]
.

Remark. At this point it becomes clear that for this approach to work, we cannot use M as

defined in Lemma 3.3.2: we would end up with a term δR, where both δ and R are variable and

the problem could not be formulated in terms of optimization with LMI constraints anymore.

Making a case distinction, we can now recover the Lyapunov function V (x) on the RHS as

follows:

Case 1: If 0 < δ ≤ 1, then can we write

V̇ (x) ≤ −2αβ
[ 1

2α
z>Mz − δ

2α
z>Mz +

δ

2α
z>Mz +

δ

2
y>My

]
= −2αβ

[ 1

2α
(1− δ)z>Mz + δV (x)

]
≤ −2αβδV (x).
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Case 2: On the other hand, if δ > 1, then

V̇ (x) ≤ −2αβ
[ 1

2α
z>Mz +

1

2
y>My − 1

2
y>My +

δ

2
y>My

]
= −2αβ

[
V (x) +

1

2
(δ − 1)y>My

]
≤ −2αβV (x).

In conclusion, this means that

V̇ (x) ≤

−2αβδV (x), 0 < δ ≤ 1,

−2αβV (x), δ > 1.

Using Finsler’s Lemma in the same way as in the proof of Lemma 3.3.2, we find that the maximal

δ > 0, such that inequality A.4 holds can be determined by means of maximization problem A.3.

This proves the claim. �

Proof of Lemma 4.1.1

Lemma (see Lemma 1, Steur et al. [31]). The FHN oscillator is strictly semi-passive with respect

to input u and output y with a radially unbounded storage function.

Proof. By the definition of strict semi-passivity, we need to show that there exists a non-negative

function S : R2 → R such that, along the solutions of system (4.1), the function satisfies

Ṡ(x, u) ≤ y>u−H(x),

where H : R2 → R has the property that there exists r > 0 and a continuous and non-negative

function ρ, defined for |x| ≥ r, such that

|x| ≥ r =⇒ H(x) ≥ ρ(x). (A.5)

Let S(z, y) = 1
2(α−1z2 + y2) then Ṡ = yu−H(z, y) where

H(z, y) = βz2 + γy4 − y2.

Note that S(z, y) is evidently radially unbounded. Writing

H(z, y) = βz2 + γy4 − y2 + βy2 − βy2

= β(z2 + y2) +
(√

γy2 − β + 1

2
√
γ

)2
− (β + 1)2

4γ
,

we see that H(z, y) > 0 for values of z and y outside the ball z2 + y2 ≤ (β+1)2

4βγ which clearly

shows that there exist a number r > 0 and some positive function ρ such that statement (A.5)

holds. �
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Proof of Lemma 4.1.2

Lemma. Assume the Laplacian matrix L associated with a diffusively coupled network of N

subsystems is such that L+L> is positive semi-definite. If the subsystems are FHN oscillators,

then the region of absorption Ω for trajectories of the network system is contained in the ball of

radius R =
√

2N (αβ+1)√
4α2βγ

.

Proof. As was shown in the proof of Lemma 4.1.1, the function

S(zj , yj) =
1

2
(α−1z2

j + y2
j )

is a valid storage function for the FHN oscillator and Ṡ = yjuj −H(zj , yj) where

H(zj , yj) = βz2
j + γy4

j − y2
j .

Let xj = col(zj , yj) and x = col(x1, . . . , xN ) as well as y = col(y1, . . . , yN ) and u = col(u1, . . . , uN ),

and define

V (x) =

N∑
i=1

S(zj , yj).

Observe that
1

2
||x||2≤ V (x) ≤ 1

2α
||x||2,

since α < 1. A direct computation shows that

V̇ :=
∂V

∂x
(x)ẋ = −

N∑
i=1

H(zj , yj)− y>Ly,

where we use that y>u = −y>Ly. By assumption we have

y>Ly =
1

2
y>(L+ L>)y ≥ 0

and hence

V̇ ≤ −
N∑
i=1

H(zj , yj).

Using a completion of the square, similar to how it was done in the proof of Lemma 4.1.1, we

find

V̇ ≤ −αβV +N
(αβ + 1)2

4γ

≤ −αβ 1

2
||x||2+N

(αβ + 1)2

4γ
.

Requiring this RHS to be negative, we arrive at the following sufficient condition

||x||>
√

2N
(αβ + 1)√

4αβγ
=⇒ V̇ (x) < 0.
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By [11, Theorem 4.18], it follows that Ω must be contained in the ball with radius

R =
√

2N
(αβ + 1)√

4α2βγ
.

�

Proof of Corollary 4.1.1

Corollary. Assume all conditions of Theorem 3.2.2 are met. For the FHN oscillator, we have

C1 ≤

1, R ≤
√

2
γ ,

γR2 − 1, R >
√

2
γ .

Proof. Lemma 4.1.2 guarantees that trajectories of the network system enter the ball ‖x‖ ≤ R

in finite time and then stay there. An upper bound for C1 is thus given by

C1 ≤ max
(yi,yj)∈BR

∣∣1− γ(y2
i + yiyj + y2

j )
∣∣,

where BR = {(yi, yj) ∈ R2 | y2
i + y2

j ≤ R2}. Let r =
√
y2
i + y2

j then we see that

∣∣1− γ(y2
i + yiyj + y2

j )
∣∣ ≤

1, r ≤
√

2
γ ,

γr2 − 1, r >
√

2
γ .

�

Proof of Lemma 4.3.1.

Lemma. The matrix LS(σ, µ) + LS(σ, µ)> is positive semi-definite for σ, µ ≥ 0.

Proof. As shown by Steur et al. [31], denoting

a = µM̄, bj =
σ(1− ωj−1

N̄
)

M̄
, ωN̄ = exp

(2πi

N̄

)
,

dj =
√
a2 + M̄2(Re(bj))2 + (2M̄ − 4)aRe(bj),

the eigenvalues of

LS(σ, µ) + LS(σ, µ)>
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are given by

λ1 = 0,

λj = a+ M̄Re(bj)− dj ,
λN−1+j = a+ M̄Re(bj) + dj ,

λl = 2a,

where j = 2, ..., N̄ and l = 2N̄ , 2N̄ + 1, ..., N̄M̄ . For M̄ ≥ 2, all involved terms are nonnegative

and we see that the expressions for λ1, λN̄−1+j and λl are nonnegative. Further note that

λj ≥ 0 ⇐⇒ a+ M̄Re(bj)

2
≥ dj ,

⇐⇒
(
a+ M̄Re(bj)

)2
≥ a2 + M̄2(Re(bj))

2 + (2M̄ − 4)aRe(bj),

⇐⇒ 4aRe(bj) ≥ 0.

Since both a ≥ 0 and Re(bj) ≥ 0 we thus also have λj ≥ 0. It follows that LS(σ, µ) +LS(σ, µ)>

is positive semi-definite for σ, µ ≥ 0. �
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Appendix B

Symmetries of the Example Network

Symmetries of Pogromsky’s Network

This section provides some additional material on the symmetries of Pogromsky’s network for

k2 = k4. For k2 = k4 there are at least 8 symmetries, call them Π1,Π2, . . . ,Π8, which are

independent of the values of k1 and k3. The associated permutation matrices are given below:

Π1 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


, Π2 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


,

Π3 =



0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


, Π4 =



0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


,

Π5 =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0


, Π6 =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0


,
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Π7 =



0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0


, Π8 =



0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0


.

Symmetries of Steur’s Network

This section provides some additional material on the symmetries of Steur’s network for M̄ =

N̄ = 3. As has been previously established, Steur’s network has

N̄ [(M̄ − 1)! ]N̄

symmetries (24 for M̄ = N̄ = 3). With each of these symmetries is associated a permutation

matrix Π. Since we are interested in the orbit partitions of these symmetries and some of these

24 matrices might have identical orbit partitions, we reduce the set of symmetries to a set such

that the associated orbit partitions are mutually distinct and for each symmetry in the original

set, the associated orbit partitions is indeed represented in the reduced set. Note that such a

reduced set is not unique. In the case of M̄ = N̄ = 3 it is viable compute such a set in a brute

force manner while for networks with larger numbers of symmetries, more elegant ways of doing

this need to be considered. It turns out, that a reduced set as previously described contains 13

matrices. One possible choice for such a set is listed below: The permutation matrix associated

with a certain symmetry is listed on the right, while the Laplacian matrix of the associated

reduced network is listed on the right. For a number of representative cases, Figures B.1 through

B.5 give a visual representation of the symmetry and the associated reduced network.

Π1 =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


, L̄S =



3 −1 −1 0 0 0 −1 0 0

−1 2 −1 0 0 0 0 0 0

−1 −1 2 0 0 0 0 0 0

−1 0 0 3 −1 −1 0 0 0

0 0 0 −1 2 −1 0 0 0

0 0 0 −1 −1 2 0 0 0

0 0 0 −1 0 0 3 −1 −1

0 0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 −1 2


,
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Π2 =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0


, L̄S =



3 −1 −1 0 0 0 −1 0

−1 2 −1 0 0 0 0 0

−1 −1 2 0 0 0 0 0

−1 0 0 3 −1 −1 0 0

0 0 0 −1 2 −1 0 0

0 0 0 −1 −1 2 0 0

0 0 0 −1 0 0 3 −2

0 0 0 0 0 0 −1 1


,

Π3 =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


, L̄S =



3 −1 −1 0 0 −1 0 0

−1 2 −1 0 0 0 0 0

−1 −1 2 0 0 0 0 0

−1 0 0 3 −2 0 0 0

0 0 0 −1 1 0 0 0

0 0 0 −1 0 3 −1 −1

0 0 0 0 0 −1 2 −1

0 0 0 0 0 −1 −1 2


,

Π4 =



1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


, L̄S =



3 −2 0 0 0 −1 0 0

−1 1 0 0 0 0 0 0

−1 0 3 −1 −1 0 0 0

0 0 −1 2 −1 0 0 0

0 0 −1 −1 2 0 0 0

0 0 −1 0 0 3 −1 −1

0 0 0 0 0 −1 2 −1

0 0 0 0 0 −1 −1 2


,
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Figure B.1: Model reduction when clustering according to the orbit partition of Π4. Nodes of the same
colour are clustered together in the reduced network. For this type of symmetry, two nodes in a single
module get clustered together. Other symmetries that yield a similar clustering of nodes in a single
module are Π2 and Π3.

Π5 =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0


, L̄S =



3 −1 −1 0 0 −1 0

−1 2 −1 0 0 0 0

−1 −1 2 0 0 0 0

−1 0 0 3 −2 0 0

0 0 0 −1 1 0 0

0 0 0 −1 0 3 −2

0 0 0 0 0 −1 1


,

Π6 =



1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0


, L̄S =



3 −2 0 0 0 −1 0

−1 1 0 0 0 0 0

−1 0 3 −1 −1 0 0

0 0 −1 2 −1 0 0

0 0 −1 −1 2 0 0

0 0 −1 0 0 3 −2

0 0 0 0 0 −1 1


,
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Π7 =



1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


, L̄S =



3 −2 0 0 −1 0 0

−1 1 0 0 0 0 0

−1 0 3 −2 0 0 0

0 0 −1 1 0 0 0

0 0 −1 0 3 −1 −1

0 0 0 0 −1 2 −1

0 0 0 0 −1 −1 2


,
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Figure B.2: Model reduction when clustering according to the orbit partition of Π7. Nodes of the same
colour are clustered together in the reduced network. For this type of symmetry, two nodes in the same
module get clustered together and this happens for a total of 2 modules. Other symmetries that yield a
similar clustering of nodes are Π5 and Π6.

Π8 =



1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0


, L̄S =



3 −2 0 0 −1 0

−1 1 0 0 0 0

−1 0 3 −2 0 0

0 0 −1 1 0 0

0 0 −1 0 3 −2

0 0 0 0 −1 1


,
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Figure B.3: Model reduction when clustering according to the orbit partition of Π8. Nodes of the same
colour are clustered together in the reduced network. For this type of symmetry, the nodes in the modules
get clustered together.

Π9 =



0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0


, L̄S =

 2 −1 −1

−1 2 −1

−1 −1 2

 ,
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Figure B.4: Model reduction when clustering according to the orbit partition of Π9. Nodes of the same
colour are clustered together in the reduced network. For this type of symmetry, nodes belonging to
the directed cycle are clustered together. Furthermore, nodes having similar relative locations inside the
modules are clustered together. Other symmetries that yield a similar clustering of nodes are Π10, Π11

and Π12.
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Π10 =



0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0


, L̄S =

 2 −1 −1

−1 2 −1

−1 −1 2

 ,

Π11 =



0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0


, L̄S =

 2 −1 −1

−1 2 −1

−1 −1 2

 ,

Π12 =



0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0


, L̄S =

 2 −1 −1

−1 2 −1

−1 −1 2

 ,

Π13 =



0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0


, L̄S =

[
2 −2

−1 1

]
.
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Figure B.5: Model reduction when clustering according to the orbit partition of Π13. Nodes of the same
colour are clustered together in the reduced network. For this symmetry, nodes are classified into two
groups: those belonging to the inner structure of the directed cycle and those which do not. Nodes in
the same group are then clustered together, yielding a network consisting of merely two nodes.
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Appendix C

Bifurcations of Limit Cycles

In the following, we will briefly review the concept of the Poincaré map associated with a limit

cycle and recall a few basic facts from Floquet theory that allow us to track the stability prop-

erties of a limit cycle as parameters in the underlying dynamical system are varied continuously.

The Poincaré Map

The following exposition of the Poincaré map closely follows the corresponding chapter in

Kuznetsov’s “Elements of Applied Bifurcation Theory” [12]. The Poincaré Map is a power-

ful tool in the analysis of limit cycle bifurcations. We use it to determine the stability of limit

cycles. Let us consider some continuous-time system

ẋ = f(x), x ∈ Rn, (C.1)

with a smooth function f . We assume the system (C.1) has a limit cycle L0. Let x0 be a point

on L0 and introduce a cross section to the limit cycle at x0. This cross section, let us call it Σ, is

a smooth n− 1-dimensional hyper-surface intersecting L0 at a nonzero angle. We assume that,

near x0, the cross section Σ is defined as the zero-level set of some smooth function g : R → R
with g(x0) = 0, i.e.

Σ = {x ∈ Rn | g(x) = 0}.

In terms of this function g, we can express the nonzero intersection angle requirement as

〈∇g(x0), f(x0)〉 6= 0,

with 〈·, ·〉 being the usual scalar product in Rn. Of course, a possible and very simple choice

for Σ would then be to take it as the hyper-plane orthogonal to L0 passing through x0. The

corresponding function g is then given as

g(x) = 〈f(x0), x− x0〉.

We will now take a closer look at orbits of system (C.1) which pass through Σ close to x0.
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P (x)

Figure C.1: Cross section at limit cycle and Poincaré map.

The limit cycle L0 is such an orbit which starts on Σ at x0 and of course also return to x0. Since

solutions of system (C.1) depend smoothly on their initial conditions we can make the following

observations:

1. Take a point x ∈ Σ sufficiently close to x0, then the flow of system (C.1) will take the

point x to another point x̃ ∈ Σ near x0.

2. Orbits close to L0 will also intersect Σ transversally (with nonzero angle).

These two facts taken together allow us to define a map P : Σ→ Σ by

x 7→ x̃ = P (x).

We call this map the Poincaré Map associated to the cycle L0.

The Poincaré map P is locally well defined, it is as smooth as the function f and it is invertible.

The point x0 clearly is a fixed point of P , i.e.

P (x0) = x0.

Let us now see what the Poincaré map has to do with the stability of the limit cycle. We

introduce local coordinates ξ = (ξ1, ..., ξn−1) on Σ such that ξ = 0 corresponds to x0. Then

locally, we can write the map P in terms of ξ, i.e. P : Rn−1 → Rn−1 is the map that takes a ξ

which corresponds to x to a ξ̃ which corresponds to x̃,

P (ξ) = ξ̃.

By construction, the origin ξ0 = 0 is then a fixed point and the stability of the cycle L0 is

equivalent to the stability of this fixed point. We denote the eigenvalues (multipliers) of the

Jacobian matrix of P

A =
dP

dξ

∣∣∣
ξ=0

,

as µ1, µ2, ..., µn−1.

It is shown in “Elements of Applied Bifurcation Theory” that the multipliers of the Jacobian
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matrix of the map P are independent of the choice of x0 on L0 as well as the choice of cross

section and local coordinates. This of course is very convenient. Let us now investigate what

this means for solutions of system (C.1).

Suppose x0(t) is a periodic solution (x0(t + T0) = x0(t)) of system (C.1) which corresponds to

the limit cycle L0. Consider a solution of the form

x(t) = x0(t) + u(t),

with u(t) a deviation from the periodic solution. The deviation then evolves according to

u̇(t) = ẋ(t)− ẋ0(t) = f(x0(t) + u(t))− f(x0(t)) = A(t)u(t) +O(‖u(t)‖2).

Neglecting all higher order terms, i.e. nonlinear terms, we arrive at the T0-periodic, linear system

u̇ = A(t)u(t) (C.2)

where A(t) = fx(x0(t)) and A(t + T0) = A(t). We call system (C.2) the variational equation

about the cycle L0.

Sufficiently close to the cycle L0, the variational equation characterizes the dominant term

describing the time evolution of an arbitrary perturbation. This means that the variational

equation is closely related to the stability properties of L0. The time-varying matrix M(t) is

called the fundamental solution matrix of system (C.1) if it satisfies

Ṁ = A(t)M,

with M(0) = I, the identity matrix. It can be shown that any solution u(t) to (C.2) satisfies

u(T0) = M(T0)u(0).

The matrix M(T0) is called a monodromy matrix of the cycle L0. Provided that we know M(T0),

we can now explicitly describe what happens to a perturbation after one period. In particular,

we have the following result

Theorem C.0.1 ([12], p. 29). The monodromy matrix M(T0) has eigenvalues

1, µ1, ..., µn−1,

where µi are the multipliers of the Poincaré map associated with the cycle L0.

This theorem is the fundamental tool which will allow us to study the stability of limit

cycles. The eigenvalues of the monodromy matrix are also referred to as Floquet multipliers.

Given some limit cycle, we can simply compute the multipliers of the associated Poincaré map,

which together with the eigenvalue 1 make up the Floquet multipliers. The monodromy matrix

governs what happens to perturbations of solutions close to the limit cycle, so the Floquet

multipliers can be used to study the stability of the cycle. We arrive at the following theorem.
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Theorem C.0.2 ([12], p. 27). The cycle L0 is stable if all eigenvalues (multipliers) µ1, µ2, ..., µn−1

of the Jacobian matrix of P

A =
dP

dξ

∣∣∣
ξ=0

,

are located in the unit circle |µ|= 1.

In the following, we will consider bifurcations of limit cycles in continuous-time systems

which can be detected by monitoring the associated Floquet multipliers.

Floquet Multipliers and Bifurcations

When looking at a limit cycle of some continuous-time dynamical system which depends on

a number of parameters, we can compute the associated Floquet multipliers. As we vary the

parameter continuously, the Floquet multipliers also vary continuously. Invoking theorem C.0.2,

we recall that for a stable limit cycle all Floquet multipliers are located inside the unit circle. It

follows that generically there are three ways in which a limit cycle can lose its stability:

1. A Floquet multiplier leaves the unit circle at µ = 1. This is called a fold/tangent bifurca-

tion.

2. A Floquet multiplier leaves the unit circle at µ = −1. This is called a flip/period doubling

bifurcation.

3. A pair of Floquet multipliers leave the unit circle with µ1,2 = e±iθ0 with 0 < θ0 < π. This

is called a Neimark-Sacker bifurcation.

The corresponding situations are depicted in figure C.2. While both fold and flip bifurcations

can be observed in one-dimensional systems, the Neimark-Sacker bifurcation occurs only in sys-

tem with a least two dimensions.

Note that these bifurcations technically occur for the discrete-time system defined by the

Poincaré map, however, if such a bifurcation occurs in the Poincaré map of an associated limit

cycle, we will also say that the limit cycle itself undergoes the corresponding bifurcation.

µ1 µ1

µ1

µ2

θ0

1 −1

Figure C.2: Bifurcation scenarios for fold, flip and Neimark-Sacker bifurcation.
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Appendix D

MATCONT

This appendix aims to familiarize the reader with the MATCONT continuation toolbox for

MATLAB. In particular, this appendix contains a step-by-step explanation of the MATLAB

script which was used to analyze Steur’s network with MATCONT. An example from the results

as discussed in section 4.3, will be used to demonstrate how MATCONT has been utilized.

The versions in use are MATLAB R2020a and MATCONT version 7p2. MATCONT can be

downloaded for free from SourceForge.net.

What is MATCONT?

MATCONT is a numerical bifurcation analysis tool for MATLAB which was first developed in

2000. There exists a command line version called CL MATCONT and a GUI version simply

called MATCONT. For most intends and purposes, the two versions have equivalent function-

ality, so in the remainder of this section we will simply refer to both as MATCONT.

Features of MATCONT are the continuation of equilibria and limit cycles of systems of

Ordinary Differential Equations (ODEs), as well their bifurcations. MATCONT can compute

Poincaré maps, as well as phase response curves for limit cycles. The toolbox supports compu-

tation of critical normal form coefficients for all codimension 1 and 2 bifurcations for equilibria.

For limit cycles, computation of critical coefficients of periodic normal forms for codimension 1

bifurcations are supported. In fact, MATCONT has many more functionalities and a detailed

documentation can be found in the official MATCONT manual [10].

A MATCONT tutorial

In this section, it will be outlined how MATCONT has been used in this thesis. In particular,

this section aims to explain how the results as presented in section 4.3 were arrived at. In

general, computations were carried out using CL MATCONT, however, certain features of the

GUI version were also employed.

This tutorial aims to explain the basics in using MATCONT in general terms, while at the

same time working out an illustrative example. In this running example, a bifurcation analysis

on Steur’s network of FHN oscillators for one set of values for M̄ and N̄ will be carried out.

The occurrence of modular travelling wave solutions will be in the focus.
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The actual MATLAB files that have been used are available upon request. At the end of

this tutorial, the reader will be able to reproduce all results as presented in section 4.3 using the

provided MATLAB scripts and by adjusting parameters where necessary. While trying to give

a complete description of the process involved in using MATCONT, only the most important

commands and variables are being explained. The description of a number of commands, option

settings and variables are not explicitly explained for the sake of brevity. However, in detail

explanations of these can be found in the MATCONT manual [10].

Step 1: System Definition in MATCONT

Our first task will be defining our system in MATCONT. In the main MATCONT folder there

exists a sub-folder called “Systems” which contains all the information about the individual

systems handled by MATCONT. Each system has associated to it a specific folder, a MATLAB

“.m” file and a MATLAB “.mat” file. Given a system of ODEs, we can in principle use the

template file “standard.m” and fill in the right-hand side of our system of ODEs together with a

number of extra information about the system, like Jacobian and Hessian matrices with respect

to variables and parameters, if available. When defining a system manually like this, there are

a number of things that one needs to pay close attention to, like the ordering of variables and

parameters in the definition of the system of ODEs among other things. For smaller systems

this is a feasible approach, however, for larger systems another way to define a system might

be preferable: The GUI version has a build-in function, which allows to type in the equations

of our system of ODEs in a rather straightforward way and then automatically create the

aforementioned “.m” and “.mat” files, as well as a corresponding folder. There are two big

advantages in using the automatic system file generation of the GUI:

1. The formatting of the system files is automatically taken care of.

2. When typing in the equations in the GUI, one can select that derivatives are computed

symbolically, rather than numerically, up to the 5th order.

However, the symbolic computation of derivatives is only possible if the “Symbolic Math Tool-

box” for MATLAB is installed. Let us now have a look at how this works in detail.

Example. We consider Steur’s network with M̄ = 2 nodes per module and N̄ = 5 modules in

total. This will give us a system of ODEs with 20 equations and two free parameters σ and µ.

With this many equations, we can already anticipate that continuation run-times will become

very long.

To define this system in MATCONT we open MATLAB, change the directory to the MAT-

CONT folder and type matcont. This starts the GUI. We now define a new system by click-

ing Select and then System → New. A new window should pop up in which we can now

specify our system. We name our system “FHN M2N5” to represent the fact that we con-

sider Steur’s network of FHN oscillators with M̄ = 2 and N̄ = 5. As coordinates we type in

y1,z1,y2,z2,...,y10,z10, note that we actually have to type out all coordinates, so no

“...” notation. Further note that for all numerical computations we list the y component before

the z component of each oscillator while in the main body of the thesis, we list z first and then
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y which is more in line with the existing literature.

For parameters we type sigma,mu and as time we simply take t. Given the size of our system

we only select symbolic derivatives of first order while the rest is computed numerically. Finally,

we type in the ODEs individually. Here are the first two equations as an example:

1 y1'=(1-sigma-mu)*y1+(-1)*z1+(mu)*y2+(sigma)*y3-(1/3)*y1*y1*y1

2 z1'=(2/25)*y1+(-8/125)*z

These are the equations for the first FHN oscillator in Steur’s network. Proper bracketing is

particularly important at this point. Further note that the differential equations have to be

specific in accordance with the order in which the coordinates were specified. It is also advised

to type x*x*x rather than xˆ3 as this sometimes leads to problems.

Of course typing out coordinates and the corresponding ODEs individually would be a tire-

some process so we could use a MATLAB script to generate the text which is then to be

pasted into the GUI. Once the equations have been entered, we press OK and after a short

pre-computation, we find the folder “FHN M5N5” together with the files “FHN M5N5.m” and

“FHN M5N5.mat” in the “Systems” folder of MATCONT. We are now ready to analyze the

system using either CL MATCONT or with the GUI.

Step 2: Plotting Solutions as Time Series

Having defined our system, we will now start to analyze it using CL MATCONT. We open

MATLAB and choose as directory the MATCONT folder. To start we want to integrate the

system of ODEs which is defined in our system file for a fixed configuration of parameters. To do

this we first need to initialize MATCONT, then we can simply use the build-in “ode45” solver,

which is simply MATLAB’s “ode45” solver adapted for MATCONT. Let us again consider our

running example.

Example. The analysis of Steurs network of FHN oscillators with M̄ = 2 and N̄ = 5 will

be carried out by running the sections of the MATLAB script “FHN M2N5 CL.m” which is

available upon request. However, the most important commands as used in this script will be

pointed out and explained so it should be possible to follow along and carry out the described

analysis without the mentioned script.

• Set the variable cds to be global. The variable cds contains information about the most

recent continuation and we will make use of it at a later point.

• Include the command init. This will add to path all necessary directories so that MAT-

CONT can run in command-line mode.

• Include the commands Func=eval(’FHN_M2N5’) and FHN_M2N5_ode=Func2. The

first command selects the earlier defined system with the name “FHN M2N5” and the

second command creates a function handle which evaluates the second function defined in

the system file. This second function is simply the right-hand side of the system of ODEs.

• After having specified an initial condition x0 and parameters P0=[0.25;0.5] we call
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1 [t,y]=ode45(FHN_M2N5_ode,[0,tend],x0,[],P0(1),P0(2));

to compute the solution of the system of ODEs defined in “FHN M2N5.m” for the time

interval 0 to tend with the default set of options ([] as fourth argument). The result is a

vector t containing the time steps and a solution matrix y. Solutions can now be plotted.

We plot only the solution curves yj(t) for the oscillators in this network.
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2

y j(t
)

Figure D.1: Time series for Steur’s network after initial response of the system.

As can be seen from figure D.1, the chosen parameter setting and initial condition are such that

they correspond to a travelling wave solution. If not known beforehand, some trial and error

would be necessary to find such a combination of parameter values and initial condition.

The travelling wave solution is periodic in time which means that we expect the orbit cor-

responding to this solution to converge to a limit cycle (LC) in state space. Inspection of

figure D.1 indicates, that this travelling wave solution has a period of t ≈ 25. This will now

become important as we set out to continue the corresponding LC for one of the parameters.

Step 3: Limit Cycle Initialization

To continue a limit cycle (LC) in MATCONT for a certain parameter, we first need to initialize

the LC continuation. Among other things, a LC continuation can be initialized from a Hopf-

point, from a previous LC continuation or from a previously computed orbit. We will use

initialization from a previously computed orbit. Let us see what this looks like for our system.

Example. Previously, we found a parameter setting (σ, µ) = (0.25, 0.5) and initial condition

that yield a travelling wave solution. This solution corresponds to a LC in state space with a

period of t ≈ 25. We will now continue this LC for decreasing µ. To initialize a LC continuation

from an orbit, we first need to know the period of the LC approximately. This we can find by

inspection of figure D.1. Once we know the period, we need to make sure that the computed

orbit is sufficiently close to the LC. If the LC is attracting, which it is in our case, an arbitrary

orbit starting from a point in its basin of attraction will approach the LC with time. To make

sure that the orbit is sufficiently close to the LC we can simply choose a very large time interval
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for the initial time integration. We increase the time interval until we are certain that the orbit

is no longer in transient but is close to the LC. To initialize the LC continuation, MATCONT

now needs to know the solution points corresponding to roughly one period from the end time

of our time integration.

Remark. In principle, MATCONT would take any points corresponding to approximately one

period of the solution, however, the further back in the time simulation we take these points,

the closer we are to the actual LC.

To find the index in the solution array corresponding to one period from the last time point we

use

1 ind_period=find(t>t(end)-FHN_period,1,'first');

We set the current parameter values to p=P0 and select µ as the active parameter (ap), i.e. we

set the second parameter to be active, ap=2. The LC continuation is then initialized with

1 t_init=t(ind_period-overlap:end);

2 y_init=y(ind_period-overlap:end,:);

3 ntst=40;

4 ncol=4;

5 tol=1e-2;

6 [x0_LC,v0_LC]=initOrbLC(@FHN_M2N5,t_init,y_init,p,ap,ntst,ncol,tol);

The two arguments ntst and ncol of the initOrbLC command are parameters for orthogonal

collocation which is used to discretize LCs in MATCONT. In our case, this means that the

normalized interval [0, 1], on which we consider the LC, is divided into ntst=40 test-intervals

of variable length and each of these intervals is then again divided into ncol=4 intervals of equal

length. In particular, the LC is then approximated by a continuous piece-wise polynomial which

is of degree ncol in each test-interval. Increasing these two parameters is one of the things we

can do, should we later run into numerical issues regarding the accuracy of results. Lastly, the

parameter tol indicates the tolerance with which the LC is detected from the computed orbit.

Having run this section, we now have produced an initial point x0_LC corresponding to the

LC with the current parameter setting and a tangent vector v0_LC which is tangent to the

curve whose continuation corresponds to the continuation of the LC.

Step 4: Limit Cycle Continuation

Having initialized the limit cycle (LC), we can now continue it. To do so we first adjust the opt

structure such that all features, we want MATCONT to employ, are activated. In particular,

we set

1 opt=contset;

2 opt=contset(opt,'InitStepsize',0.01);

3 opt=contset(opt,'MinStepsize',0.01);

4 opt=contset(opt,'MaxStepsize',0.1);

5 opt=contset(opt,'MaxNumPoints',300);
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6 opt=contset(opt,'Singularities',1);

7 opt=contset(opt,'IgnoreSingularity',[1;2;3]);

8 opt=contset(opt,'Backward',0);

9 opt=contset(opt,'Multipliers',1);

The first command deletes any preexisting configurations for the opt structure. The following

three parameters control the initial, minimal and maximal step size during the continuation

process respectively. The parameter MaxNumPoints indicates the maximum number of points

we allow MATCONT to compute. Setting Singularities to 1 means that during the con-

tinuation process we want to check for zeros of test-functions, which indicate bifurcations. We

can use the IgnoreSingularity parameter vector to indicate which bifurcations we do not

want to check for. In our case these are all bifurcations except for the Neimark-Sacker (NS)

bifurcation with index 4. Having selected all the wanted features, we can now continue the limit

cycle with the command

1 [xLC,vLC,sLC,hLC,fLC]=cont(@limitcycle,x0_LC,v0_LC,opt);

The created variables contain the following information: Matrices xLC and vLC contain points

on the continued curve that correspond to the continued LC. The structure sLC contains in-

formation about the found singularities. The matrices hLC and fLC contain more technical

information about the continuation process but here, we will not use them a lot.

Since we are looking for a point in parameter space at which a NS bifurcation occurs, we

could in principle run the continuation process from the initial LC given by x0 and v0 with

ever increasing MaxNumPoints until we find such a NS point. Suppose we have the initial

continuation run with MaxNumPoints=300 but we have not found an NS point yet, even

though we are sure we are moving in the right direction. Then it would be handy to simply

extent this continuation rather than starting a new, longer continuation run from scratch. To

do this we can use something like:

1 cds.options.MaxNumPoints=50;

2 [xLC,vLC,sLC,hLC,fLC]=cont(xLC,vLC,sLC,hLC,fLC,cds);

The first command lets us access and change the options settings in the global cds variable. This

is done since we are no longer passing @limitcycle as the first argument but rather continue

a previous continuation without reference to what kind of continuation that might have been.

The second command then continues the LC with the specific options as found in cds. If we

run the corresponding commands, MATLAB will display the following in the command window:

1 start computing extended curve

2 Neimark-Sacker (period = 2.349473e+01, parameter = 1.679790e-01)

3 Normal form coefficient = 4.196710e-07

4 elapsed time = 66.9 secs

We found a Neimark-Sacker point for the parameter configuration (σ, µ) = (0.25, 0.1679790).
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Step 5: Continuation of a Neimark-Sacker Bifurcation

The continuation of a Neimark-Sacker (NS) point is carried out very much analogously to the

limit cycle (LC) continuation as discussed previously. Before we can continue such a bifurca-

tion point, we first need to initialize such a continuation. To initialize, we use the following

commands:

1 ap=[1 2];

2 ntst=40;

3 ncol=4;

4 [x0_NS,v0_NS]=init_NS_NS(@FHN_M2N5,xLC,sLC(2),ap,ntst,ncol);

The first command sets both σ and µ to be active parameters as we continue this bifurcation in

two parameters. The second command initializes the NS continuation from a NS point. Recall,

that during the LC continuation we discovered a NS bifurcation at (σ, µ) = (0.25, 0.1679790).

Together with the current LC represented by xLC, the information about the location of the NS

point contained in sLC is passed to the init_NS_NS command. The rest of the parameters

that need to be specified were discussed earlier.

Having initialized the NS continuation, we can again specify the options opt with which we

want to carry out the continuation. We use the following command to continue the NS point.

1 [xNS,vNS,sNS,hNS,fNS]=cont(@neimarksacker,x0_NS,v0_NS,opt);

We can then use the following command to plot the resulting curve in the parameter plane with

the following command:

1 plot(xNS(end-2,:),xNS(end-1,:),'*b')

We simply select the third to last and second to last components of xNS"which contain the

parameter values for the NS continuation. Using something along the lines of:

1 cds.options.MaxNumPoints=5;

2 cds.options.MinStepsize=0.1;

3 cds.options.InitStepsize=0.11;

4 [xNS,vNS,sNS,hNS,fNS]=cont(xNS,vNS,sNS,hNS,fNS,cds);

We can continue this NS curve in the parameter plane as far as we like. A number of calls

cont(xNS,vNS,sNS,hNS,fNS,cds), as well as adjusting the step sizes and the maximum

number of points, might be necessary to reach a satisfactory result. After a number of extensions

of the continuation, we arrive at the NS curve for M̄ = 2 and N̄ = 5 as displayed in Figure D.2

(compare to Figures 4.10 and 4.11 in section 4.3).
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Figure D.2: Neimark-Sacker curve for Steur’s network with M̄ = 2 and N̄ = 5.

Step 6: Locating the Chenciner Bifurcation

We saw earlier, that every time MATCONT detects a Neimark-Sacker (NS) bifurcation during

the continuation of a limit cycle (LC), it also computes the normal form coefficient. Initializing

the LC continuation from orbits corresponding to different parameter configurations, one soon

notices that these normal form coefficients are positive in certain regions on the NS curve and

negative in others. This indicates, that there occurs a Chenciner (CH) bifurcation, i.e. there is

a point on the NS curve where the normal form coefficient is zero. In this case CL MATCONT

allows for checking for such a point by means of monitoring the test-functions. To continue

the NS curve while checking for a CH bifurcation we can largely reuse the commands for the

continuation of the NS curve. We merely change the initialization to

1 [x0_NS,v0_NS]=init_CH_NS(@FHN_M2N5,xLC,sLC(2),ap,ntst,ncol);

Remark. It does not matter if one uses init_CH_NS or init_NS_NS as calling init_CH_NS

boils down to calling init_NS_NS with the same arguments.

To check for the CH bifurcation we have to switch on the computation of multipliers, monitor

for singularities and ignore all except for the singularity with index 6 (CH bifurcation). Further,

we set our options such that the test functions are being computed.

1 opt=contset(opt,'Multipliers',1);

2 opt=contset(opt,'Singularities',1);

3 opt=contset(opt,'IgnoreSingularity',[1;2;3;4;5;7;8]);

4 opt=contset(opt,'Testfunctions',1);

5 [xNS,vNS,sNS,hNS,fNS]=cont(@neimarksacker,x0_NS,v0_NS,opt);

Lastly, having computed xNS and vNS, we can also compute the NS normal form coefficient at

point i on the curve using the following command:

1 feval(cds.curve_testf,6,xNS(:,i),vNS(:,i));
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Extending the curve a number of times while checking for a CH bifurcation, we note that at a

certain point, we will get the warning “the real part of the cubic coefficient of the normal form

xxxxxxxxx is not purely imaginary.” At this point calculations stop and we cannot interact with

MATCONT anymore. What exactly happens here is still unclear. However, if we plot the NS

normal form coefficients in a neighborhood of this point, we obtain figure D.3. It seems that

the normal form coefficient vanishes somewhere between σ = 0.225 and σ = 0.23. This is strong

indication that a Chenciner bifurcation indeed occurs.
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Figure D.3: Normal form coefficients of the NS bifurcation in the neighborhood where we suspect the
Chenciner bifurcation.
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Appendix E

Travelling Waves in Ring Networks

The effect of network topology on the dynamics of an associated network system is a widely

studied problem. Gorban et al. [8] study network systems of nonlinear oscillators in which the

network structure is a directed chain or directed ring. Denoting N the number of nodes in a

ring network and σ the overall coupling strength, the authors demonstrate that for certain pairs

(σ,N), oscillators can be expected to fully synchronize while for others, travelling waves might

coexist with the fully synchronous solution. Inspired by this approach, we study the existence

of travelling waves in directed and undirected ring networks and extend the analysis by also

consider orientation of travelling waves.

The Laplacian matrix of the directed ring is given by

Ld =



1 0 0 . . . −1

−1 1 0
. . .

...
...

. . .
. . .

. . . 0

0 . . . −1 1 0

0 0 . . . −1 1


∈ RN×N ,

and the Laplacian of the undirected ring is given by

Lu =
1

2
(Ld + L>d ).

For fixed N , we consider the Laplacian parametrized by an overall coupling strength σ, i.e.

L(σ) = σL0.

Here L0 = Ld or L0 = Lu. We consider a grid for the coupling strengths σ = {0.1, 0.2, . . . , 1}.
For each σ, we sample uniformly randomly from |zi(0)| ≤ 15

8

√
3 and |yi(0)| ≤ 3

2

√
3 a total of 1000

initial conditions. Using MATLAB’s ode45 solver with relative and absolute error tolerance of

10−5 the system is integrated for intervals of ∆t = 100 units of time. The integration runs for a

maximum time of tend = 500. After each time interval ∆t it is checked whether the solution as

computed on the previous interval is fully synchronous or a travelling wave. If at tend = 500 the

solution could not be identified as fully synchronous or a travelling wave, it will be registered

as “unidentified”. Furthermore, every time a travelling wave is registered, we also check for the
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direction of the wave, i.e. does it wander clockwise or anti-clockwise. For N = 8, the results of

this experiment are summarized in Figures E.1 and E.2.
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Figure E.1: Directed ring network with N = 8 nodes. Left panel: Relative numbers of solutions identified
as fully synchronous or travelling wave, as a function of the coupling strength σ. Right panel: Relative
numbers of travelling wave solutions turning clockwise or anti-clockwise, as a function of the coupling
strength σ.
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Figure E.2: Undirected ring network with N = 8 nodes. Left panel: Relative numbers of solutions
identified as fully synchronous or travelling wave, as a function of the coupling strength σ. Right panel:
Relative numbers of travelling wave solutions turning clockwise or anti-clockwise, as a function of the
coupling strength σ.

Comparing Figures E.1 and E.2, it appears that directed coupling promotes the occurrence

of travelling waves in general and that these travelling waves then wander exclusively in the di-

rection as prescribed by the directed coupling. In the case of undirected coupling, the occurrence

of full synchronization is promoted in general. However, travelling waves wandering in either

direction can occur. As can be seen from Figure E.2, travelling waves of either orientation occur

with almost equal frequency across values of σ. This is not very surprising because the undi-

rected ring is essentially half clockwise oriented directed ring and half anti-clockwise directed

ring. Let us explore what the situation is for a ring network that is a convex combination of

clockwise and anti-clockwise oriented directed ring.
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We consider a modified ring network with Laplacian matrix

Lm(p) =



1 −p 0 . . . −(1− p)
−(1− p) 1 −p . . .

...
...

. . .
. . .

. . . 0

0 . . . −(1− p) 1 −p
−p 0 . . . −(1− p) 1


, p ∈ [0, 1].

Note that Lm(0) = Ld is simply the Laplacian of the clockwise directed ring while Lm(1) is the

Laplacian of the anti-clockwise directed ring. Further, Lm(1
2) = Lu and so the modified ring

network can be thought of as a superposition of directed networks of either orientation where p

modulates between the two orientations. We consider the Laplacian with a fixed overall coupling

strength σ which is independent of p, i.e. L(p) = σLm(p). The choice of σ is important: if it is

too high the system will simply synchronize all the time and the effect of p will not be visible, if

it is too low, convergence to full synchronization or travelling waves will take too long and our

setup will fail to identify them. From Figures E.1 and E.2, we can see that for σ = 0.5 in the

directed case roughly 40% of solutions are identified as travelling waves and for the undirected

ring it is roughly 10%. With a total of 1000 independent initial conditions this leaves us with

around 400 and 100 solutions which will serve as a basis to calculate the ratio of clockwise versus

anti-clockwise wandering solutions. We again run the experiment as previously discussed. The

results are summarized in Figure E.3.
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Figure E.3: Modified ring network with N = 8 nodes and overall coupling strength σ = 0.5. Left panel:
Relative numbers of solutions identified as fully synchronous or travelling wave, as a function of the
modulation parameter p. Right panel: Relative numbers of travelling wave solutions turning clockwise
or anti-clockwise, as a function of p.

As expected, the number of travelling waves solutions ranges from roughly 40% in the case

of a directed ring (p = 0 or p = 1) of either orientation to about 10% in the case of the

undirected ring (p = 0.5). For p = 0 we see that all travelling waves turn clockwise while for

p = 1 all solutions turn anti-clockwise. For p = 0.5 roughly 50% of travelling waves wander

clockwise while 50% wander anti-clockwise. Interestingly, the relationship between the ratios

and the parameter p does not seem to be linear. Further, the dependency on N might also be
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interesting.
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Figure E.4: Modified ring network with N = 6, 7, . . . , 10 nodes and overall coupling strength σ = 0.25.
The plots in row 1 correspond to N = 6, the plots in row 2 to N = 7 etc.. Left panels: Relative numbers
of solutions identified as fully synchronous or travelling wave, as a function of the modulation parameter
p. Right panels: Relative numbers of travelling wave solutions turning clockwise or anti-clockwise, as a
function of p.
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To explore the dependency on the number of nodes N in the modified ring network, we

repeat the previously discussed experiment for N = 6, 7, . . . , 10 with p = {0, 0.05, 0.1, . . . , 1}
and overall coupling strength σ = 0.25. This overall coupling strength has been chosen to

ensure that the set of studied travelling waves is large enough. With this parameter setting, the

relative number of solutions identified as travelling wave ranges from roughly 5% in the case

of N = 6 and p = 0.5 to over 50% for N = 10 and p = 0.3. The results are summarized in

Figure E.4. For N = 6, 7, . . . , 10, Figure E.5 shows the ratio of travelling waves which turn

clockwise as a function of p.

The plots support the hypothesis that the relationship between the ratios and the parameter

p is nonlinear, however it is not entirely clear whether the number of nodes has an influence on the

shape of these curves. An extended experimental setup with increased accuracy for the detection

of travelling waves and their direction together with an increased number of independently

sampled initial conditions might yield more precise answers to this question.
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Figure E.5: Relative number of travelling waves that turn clockwise in the modified ring network as a
function of the parameter p.
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