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Abstract

Liquid democracy is a proxy voting system where proxies are delegable. We
examine how partial delegation can be utilised to improve the quality of a
social choice; we motivate three partial delegation mechanisms and examine
how they converge under the DeGroot learning process. By simulating these
delegation mechanisms, we demonstrate that splitting votes to all observed
agents proportional to individual accuracy is the optimal delegation mecha-
nism for smaller networks. In particular, this is true when comparing these
delegation mechanisms to direct democracy and full delegation mechanisms.
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Chapter 1

Introduction

Liquid democracy (Blum and Zuber 2015) brings compromise to two no-
tions which, if considered to be of comparatively equal value, can lead to
contradictions: direct democracy and representative democracy. A situation
may occur where every agent in a social network votes directly on a deci-
sion and it contradicts a decision made by a group of representatives in the
same network, leading to a problem which can be difficult to resolve. Liquid
democracy draws on the strength of both notions by allowing each agent the
option to vote directly or to nominate a proxy who will carry the weight of
their vote. As an example, imagine a vote is being carried out among three
individuals: Ava, Ben, and Charlie. The vote is about where they should go
for dinner. They can each vote directly, so each vote has a weight of one,
or they can nominate one of their friends as a proxy to vote on their behalf.
Imagine that Ben is not a fussy eater and believes Ava is much more of an
expert when it comes to food so he chooses her as his proxy. Ben can no
longer vote directly, Charlie’s vote still has a weight of one, but Ava’s vote
now has a weight of two.

The concept has been used for decision-making in the German Piraten-
partei and the EU Horizons project WeGovNow (Boella et al. 2018) which has
utilised the LiquidFeedback platform, as well as the Democracy Earth Foun-
dation. Gradually, more papers are studying how aspects of liquid democracy
pertain to social choice theory. Many of these investigate nuanced contexts
for liquid democracy to study the resulting delegate structures and the im-
pact on the quality of a social choice. These papers examine liquid democracy
in relation to ’super-voters’ (Gölz et al. 2018), recommender systems (Boldi
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et al. 2009), rationality (Bloembergen, Grossi, and Lackner 2018), and more.
However, there remains to be little literature on the impact of ’partial dele-
gations’.

To illustrate how a partial delegation differs from the norm, consider the
previous example with Ava, Ben, and Charlie choosing where to have din-
ner. Ben is still certain he does not know where would be best to eat and
he believes Ava is a connoisseur when it comes to food, but he also believes
that Charlie knows a little about food and that Charlie’s knowledge differs
from Ava’s. In this scenario, Ben may consider lending 75% of his vote to
Ava and 25% of his vote to Charlie so when the decision is made, Ben does
not vote directly, Ava’s vote has a weight of 1.75, and Charlie’s vote has a
weight of 1.25. In effect, when deciding how to distribute his vote of weight
1, Ben is using the cumulative rule and the alternatives over which he makes
this decision can be considered to be all those within his personal social net-
work, likely a subset of some larger network. Consequently, we would like
to investigate the question: In liquid democracy, what is the effect of
partial delegation on the quality of a social decision?

Important concepts will be defined to lay the groundwork for our model.
We will motivate delegation mechanisms under a partial delegation frame-
work with the hopes of comparing their effectiveness with each other, as well
as to direct democracy and to a mechanism which maximises local utility, as
described in Bloembergen et al (2018); this latter mechanism is to compare
partial delegation against full delegation. Subsequently, we will consider the
DeGroot learning process to investigate whether applying this to our delega-
tion mechanisms will improve results. The motivation behind the DeGroot
learning process is that the network observes the trust it has in its agents,
and each agent adapts their opinion accordingly (DeGroot 1974). Analytic
results will be outlined, including whether convergence of the DeGroot learn-
ing process can be determined and to what it converges.

Following the analytical results, simulations to test the performance of
the delegation mechanisms and their DeGroot convergence matrices have
been run. These simulations are tested over many graphs over four different
typologies, two of which reflect real-world social connections. The results of
the delegation mechanisms over these networks will be compared and dis-
cussed to draw conclusions about whether partial delegations are an effective
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application of liquid democracy. We will be testing which delegation mech-
anisms maximise the probability of a ’correct’ majority and which maximise
the average utility for agents in a network.

7



Chapter 2

Preliminaries

2.1 Graph

Partial delegation within liquid democracy allows agents to delegate all or
part of their vote to any other agents they can observe. These observed
agents are considered to be in the agent’s neighbourhood. An agent can re-
tain (or, from a functional perspective, delegate to themselves) part or all of
their vote. Subsequently, each agent is included in their own neighbourhood.
Let N ⊂ N be the number of agents in a network. Let R ⊂ N2 be a binary
relation over the set of agents where (i, j) ∈ R indicates that j belongs to
i’s neighbourhood, which can be denoted as j ∈ R(i). Note that for every
i ∈ N , we have (i, i) ∈ R which means R is a reflexive relation. Furthermore,
(i, j) ∈ R if and only if (j, i) ∈ R which means R is a symmetric relation.

The network of agents can be represented as an undirected graph G =
〈N,R〉. The information contained in a graph can be conveyed pictorially
as a collection of nodes representing the agents and edges connecting agents
who belong in each other’s neighbourhoods, or it can be contained in an ad-
jacency matrix where Gij = 1 if j ∈ R(i) and Gij = 0 otherwise.

2.2 Type

Liquid democracy involves a network of agents making a choice or sequence
of choices. It will be assumed that there is a ’ground truth’ choice which is
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objectively preferable for each agent for any choice. This ground truth will
be referred to as the agent’s type, τi. Only binary choices will be considered,
so it can be assumed that τi ∈ {0, 1}.

Agents are unaware of their type but will have an associated accuracy,
qi, which estimates the likelihood an agent will correctly vote for their type.
It will be assumed that agents have at least as good as random chance of
correctly guessing their type so qi ∈ [0.5, 1]. This paper will assume homo-
geneity, therefore, all agents will have the same type. This is counter to
models explored in other papers which include deterministic type profiles,
where agents may have different types but the types are certain and can be
recorded in a vector, and probabilistic type profiles, where pij represents the
probability that agent i and agent j are of the same type according to a given
probabilistic distribution.

2.3 Delegation

Given a graph, it is important to determine a delegation profile, D, to demon-
strate how agents distribute the weight of their vote among their neighbours.
This will be represented as a stochastic matrix. That is, for agent i, row i
will represent the agent’s spread of their vote; consequently, every row will
sum to 1.

2.3.1 Mechanisms

Any delegation profile is permissible so long as Dij ∈ [0, 1] and D is a stochas-
tic matrix. As such, it is important to motive mechanisms to decide how each
agent assigns their delegations. It is assumed that agents have knowledge of
each other’s accuracy so the most appropriate delegation mechanisms will
take as input the graph, G, and the accuracy vector, q, to return a dele-
gation profile. An example of a trivial delegation profile is that of direct
democracy, each agent retains their full weighted-1 vote leading to D = IN .
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2.3.2 DeGroot Learning

DeGroot learning is a social learning process where a network of agents ob-
serve the trust they each hold in one another to converge to an opinion. In
its original context, the process uses an initial opinion represented as a prob-
ability vector with values between 0 and 1, which can be denoted as p(0),
and a stochastic trust matrix T where Tij represents the trust that agent i
has in the opinion of agent j. The learning process is motivated by the idea
that agent i will adjust their opinion in accordance with their level of trust
of other agents and those agents’ opinions. Let t represent a time-step,then
this process can be repeated to derive the formula

p(t) = T tp(0).

2.4 Network Types

Networks can have different underlying structures which may impact the net-
work’s behaviour. This paper will consider four typical network structures:

• the random network; each pair of agents has a specified probability of
belonging to each other’s neighbourhoods. (Erdös and Rényi 1959)

• the regular network; each agent will have the same degree, that is, they
will have the same number of agents belonging to their neighbourhood.

• the small-world network; average path length connecting agents will be
small and there will be high clustering. (Watts and Strogatz 1998)

• the scale-free network; there is a power law degree distribution. (Barabasi
and Albert 1999)

For comparison of results, this paper will also consider totally connected
networks in which every agent belongs to every agent’s neighbourhood.
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Chapter 3

Model

3.1 Graph and Adjacency Matrix

Graphs of the different typologies are generated by different Matlab scripts.
The random network and small-world network will be generated by WattsStro-
gatz.m; the former is achieved by setting the rewiring probability to 1 and
the latter is achieved by setting it to any value between 0 and 1. For the sake
of this paper, the rewiring probability will be set to 0.5. The regular network
is generated by createRegGraph.m (Pundak 2020). The scale-free network is
generated by SFNW.m (George 2020). Every graph can be represented by
its adjacency matrix.

Figure 3.1: Example Graph
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Consider the example graph presented in figure 3.1; this graph can be
represented with an adjacency matrix as follows:

G =


1 1 0 1
1 1 1 1
0 1 1 0
1 1 0 1


Special note should be made that all graphs discussed in the context of

liquid democracy will be reflexive as all agents are able to retain the weight of
their vote. As such, edges connecting nodes to themselves in the graphs will
be omitted for visual clarity but will be represented by a 1 in the respective
adjacency matrix.

3.2 Accuracy

Each agent needs a randomised accuracy associated. These accuracies are
randomised according to a normal distribution, N (0.75, 0.1), by the Matlab
function accuracy.m (Appendix A). Conventionally, the normal distribution
will have no maximum or minimum values. However, there are examples
where maximum and minimum values exist by construction which fit a nor-
mal distribution, such as exam scores. The function seeks to emulate this
example; where the random number generated falls outside of the [0.5, 1]
range, the function will either subtract it from 1 (if it is below 0.5) or sub-
tract it from 2 (if it is above 1). This ensures that all accuracies fall within
the desired region while fitting a normal distribution.

3.3 Delegation Mechanisms

Given a graph which tells us each agent’s neighbourhood and an accuracy as-
sociated with every agent, it becomes important to motivate how each agent
will spread their weighted 1 vote among themselves and their neighbourhood.
This model posits three methods utilising partial delegations:

• Delegation Mechanism 1: Each agent observes their own accuracy
and the accuracy of their neighbours. Provided with this information,
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the agent spreads the weight of their vote proportionally according to
accuracy among all agents they can observe. (Appendix F)

• Delegation Mechanism 2: Provided with the knowledge of accura-
cies of all agents in their neighbourhood, an agent spreads the weight
of their vote among those they can observe whose accuracy is equal to
or greater than their own (including themselves). This emulates a del-
egation mechanism discussed by Kahng et al (2018) which randomises
approved voters, but this takes a partial delegation approach to the
concept.(Appendix G)

• Delegation Mechanism 3: A stronger version of delegation mecha-
nism 2, an agent spreads the weight of their vote among those they can
observe whose accuracy is greater than their own if they exist. Under
this mechanism, the only agents who delegate to themselves are ones
who have no agents with a greater accuracy in their neighbourhood.
(Appendix H)

The delegation profiles generated by these mechanisms are weighted di-
rected graphs. In particular, delegation mechanism 3 results in a profile
where delegated votes will flow to agents with the highest accuracy in their
neighbourhood, which will become sink nodes.

To illustrate these delegation mechanisms with an example, consider fig-
ure 3.1 with accuracies

q =


0.6
0.5
0.7
0.9

 .
The mechanisms will lead to the respective delegation profiles:

D1 =


3
10

1
4

0 9
20

2
9

5
27

7
27

1
3

0 5
12

7
12

0

3
10

1
4

0 9
20
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D2 =


2
5

0 0 3
5

2
9

5
27

7
27

1
3

0 0 1 0

0 0 0 1



D3 =


0 0 0 1

3
11

0 7
22

9
22

0 0 1 0

0 0 0 1

 .

Two delegation mechanisms which assign full delegates rather than par-
tial delegates will be used for comparing results. The first represents direct
democracy; each agent retains their full weighted vote of 1 and inherits their
own accuracy (Appendix I). The second is adapted from Bloembergen et al
(2018) and has each agent assign their full weighted vote to the agent in their
neighbourhood who has the highest accuracy with the motivation to locally
maximise their utility (Appendix J).

3.4 Delegation Paths, Gurus, and Utility

Once a delegation profile is obtained, in order to calculate either the expected
utility of the agents or the probability of a correct majority, it is important to
calculate votes weighted by all delegations that each agent communicates to
the voting mechanism. Consequently, a guru profile needs to be determined.
In liquid democracy without partial delegations, each agent will have a guru
who communicates the full weight of their vote to the voting mechanism: this
can be the agent themselves, it can be an agent in their neighbourhood or, if
the agent to whom they chose to delegate delegates further, the agent who
delegates to themselves along this path. In this case, each agent will have ex-
actly one guru and one agent can behave as the guru for many other agents.
The weight of the vote that a guru communicates to the voting mechanism
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is the sum of the weighted-1 votes of the agents whom the guru represents.

When considering partial delegation, each agent can have more than one
guru and each has a partial weight of the agent’s weighted-1 vote. That is,
the sum of the votes that the gurus communicate to the voting mechanism
on the agent’s behalf will sum to 1 (if there are no cycles). Similarly, the
weight of the vote that a guru communicates to the voting mechanism will be
the sum of the partial weights of the votes of each agent the guru represents.

Given the transitive nature of partial delegations, an agent may delegate
some of their vote to one agent who then delegates some of their vote (in-
cluding the weight acquired from the previous agent) to another agent in the
network, and this process may continue. It becomes important to calculate
how much of any agent’s vote is delegated to any other agent via any path
of any length. An important observation is that the maximum path length
between a delegating agent and their guru which does not permit a cycle is
N . Consider Dp−k to be the path profile where Dp−k

ij denotes the sum of
the partial weights of agent i delegated to agent j by all paths of length k,
where i, j, k ∈ {1, . . . N}. The weight of a vote retained by an agent can be
considered a path-0 delegation, we denote Dp−0 to be a zero matrix with di-
agonal elements equal to the diagonal elements of D. The path profile Dp−1

corresponds to all partial delegations of path 1 and is equal to the delegation
profile, D, with its diagonal elements set to 0. These diagonal elements cor-
respond to the amount of their vote which each agent retains and as such,
they are communicated directly to the voting mechanism rather than fed into
any further paths. Consequently, these diagonal elements represents a cycle
and must be removed before feeding into any other paths. The path profile
Dp−k is calculated by multiplying Dp−1 by itself k times and removing the
diagonal elements at each iteration so cycles are removed from the process.
The partial weights which are removed due to cycles never land on a guru and
thus are never communicated to the voting mechanism. Let Dp be a path
profile where Dp

ij denotes the sum of the partial weights of agent i delegated
to agent j by all paths of any length. This can be calculated by taking the
sum

Dp =
N∑
k=0

Dp−k.
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The guru matrix, Dg, is calculated by multiplying the jth column of Dp

by Djj, the weight of their own vote that the guru retains. Each element in
the guru matrix, Dg

ij corresponds to the total weight of agent i’s vote that
agent j communicates to the voting mechanism delegated by any path. If
there are no cycles, Dg will be a stochastic matrix.

Utility is a focus in the Bloembergen et al (2018) paper’s approach to
liquid democracy. Whereas it is not a prime area of focus in this paper, it is
fruitful to compare the utility generated by the different delegation mecha-
nisms and what they seem to suggest from a practical viewpoint.

This paper is assuming homogeneity and in liquid democracy without
partial delegations, the utility of an agent will be equal to the accuracy
of their guru. This is the probability that the weight of the agent’s vote
is communicated to the voting mechanism correctly identifying the agent’s
type. In the context of liquid democracy with partial delegations, a utility
vector can be found by the formula

u = Dgq.

Note that ui is the sum of the weights of their vote delegated to each guru
multiplied by the respective guru’s probability of correctly identifying the
ground truth for the network.

To illustrate, consider figure 3.1 equipped with the following delegation
profile and accuracies

D =


0.1 0.4 0 0.5
0 0 0.3 0.7
0 0 1 0
0 0 0 1



q =


0.9
0.6
0.7
0.9

 .
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These leads to the following step matrices:

Dp =


0.1 0.4 0.12 0.78
0 0 0.3 0.7
0 0 1 0
0 0 0 1



Dg =


0.1 0 0.12 0.78
0 0 0.3 0.7
0 0 1 0
0 0 0 1


Finally, utility is found by multiplying Dg by the accuracy vector q. For

the example, we find

u =


0.876
0.84
0.7
0.9

 .

3.5 DeGroot Learning

The DeGroot learning process has analogues in the liquid democracy con-
text so it bears investigating as to whether this may improve the results of
any delegation mechanism. A delegation profile behaves as an initial trust
matrix among a network of agents and the opinion which they will attempt
to converge on is their trust in each other. That is, using notation set out in
the preliminaries, we have that T = D and that p = Dj where Dj denotes
the jth column of D and denotes the network’s trust in j’s opinion. Note
that an agent i’s trust in agent j is a partial delegation between 0 and 1,
and therefore, returns a similar formula to the standard DeGroot learning
process. However, there are two important differences between these two
contexts. The first is that because both the trust matrix and the opinion
vector are analogues of the delegation profile, the opinion vector is the trust
matrix. Consequently, the trust matrix will evolve at each iteration leading
to Dt+1 = D2t .

The second important difference is that the process needs to be adapted
as it is not required for a network to be totally connected; if agent i does
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not observe agent j in their neighbourhood, then it is impossible for Dij

to become nonzero at any stage. However, applying the DeGroot learning
process as standard could lead to this occurring. To resolve this, at every
iteration any nonzero Dij where j /∈ R(i) needs to be set to zero then the ith
row needs to be normalised so that the agent still delegates the full weight of
their vote. Unless a row becomes 0 at any point, every iteration during the
DeGroot learning process should continue to be stochastic.

In adapting the DeGroot learning process for liquid democracy, there is
one final question to be addressed. That is whether an agent has an aware-
ness of the network structure. To illustrate, consider the network in figure 3.2.

Figure 3.2

Let the agents have the associated accuracy vector

q =

0.5
0.6
0.9

 .
Under delegation mechanism 1, this would lead to a delegation profile

D =


5
20

6
20

9
20

5
11

6
11

0

5
14

0 9
14

 .

If agent 1 does not acknowledge that agent 2 and agent 3 do not belong
to each other’s neighbourhoods when adapting their delegations in accor-
dance to their opinions, then there is no change to how each iteration of the
DeGroot learning process is calculated, and the process will converge to a
state where agent 1 awards themselves a higher partial delegation than they
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award agent 3 despite agent 3 having greater accuracy and being awarded
the higher delegation in the initial delegation profile. However, if we wished
to model the DeGroot learning process so that agent 1 shows an awareness
of the network structure when adjusting their trust in the agents, there is an
additional step to iterating the process.

Assume we wish to determine how agent i uses their knowledge of the net-
work to adjust their trust in agent j. The first step would be to determine
the largest subnetwork where both agent i and agent j are totally connected;
that is, all agents in the subnetwork belong to their neighbourhoods. This
step may lead to rows which sum to less than 1 including the rows for agents i
and j. Consequently, all rows should be normalised so their sum is one; each
row representing an agent k for all k ∈ R(i), R(j) is divided by the sum of the
row resulting in a stochastic matrix. It may be the case that not all agents in
this subnetwork are totally connected. Consequently, each row representing
an agent k needs to be multiplied by the sum of the (potentially normalised)
trust agent i has in the agents observed by both agent i and agent k - in-
tuitively, this step weights agent k by the trust agent i has in their shared
subnetwork. Note that the matrix would no longer be stochastic, though by
definition of how the subnetwork is defined, neither rows representing agent i
or j would be weighted. At this stage, the resulting matrix should be squared
for agent i to adjust their opinion. The rows representing the trust values
for agent i will sum to 1 and demonstrate how the agent’s trust will evolve
in accordance to the DeGroot learning process for this particular subnetwork.

The intuition behind this process is that by taking the subnetwork with
all agents that agent i can observe who also observe agent j, that agent i only
considers the relevant opinions when adjusting their trust. With a common
frame of reference, it is possible to use their involve to decide how their trust
should evolve in the wider context of the network. As agent i will appear in
every subnetwork, this is the best choice for a frame of reference, so repeating
this process for all agents k that i can observe in a network, the ratio between
the trust that agent i has in itself and in agent k should be recorded along
with the restraint that the sum of all of agent i’s trust values will equal 1 to
create a system of equations. This system will include N unknowns with N
equations so will be uniquely solvable.
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Chapter 4

Analytic Results

4.1 Mixed Extension-Partial Delegation Equiv-

alence

Provided with a graph, an accuracy vector, and a delegation profile, there
are different contexts in which results can be discussed. Importantly, the
delegation profile can be considered to be either the partial delegation of
agent i’s vote to agent j for a one-event vote or it can be considered as the
probability that agent i will delegate the full weight of their vote to agent j
in any vote which may occur. The context has important distinctions when
discussing cycles and utility.

When determining the path matrix, the delegation profile is multiplied
by itself and the diagonal elements are removed at each stage. In a one-
vote event, these diagonal elements correspond to the weight of each agent’s
vote which is lost through a partial cycle and does not get communicated
to the voting mechanism. When the delegation profile is considered as a
probabilistic distribution of delegations, these diagonal elements represent
the probability that a given agent becomes trapped in a cycle, and the entire
weight of their vote is not communicated to the voting mechanism.
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Similarly, the utility vector in a one-event vote is equivalent to an ex-
pected utility vector when the delegation profile is taken as a probabilistic
distribution. However, in both cases, the probability of a correct majority,
which we will call the accuracy of a majority, requires the same calculation
and bears the same meaning.

4.2 Trivial Examples

When discussing what may be the optimal strategy for a network of agents
to maximise their probability of choosing the ground truth in a vote, there
are two trivial cases which should be acknowledged. The first is when every
agent except one has an accuracy of 0.5 regardless of the number of agents in
the network. In this example, the optimal strategy for choosing the ground
truth in a vote will always be for each agent with 0.5 accuracy to delegate
the full weight of their vote on a path which leads to the agent with higher
accuracy, provided that a path exists.

The second trivial result is where at least one agent has an accuracy of
1; this has a practical real-world example which is a group of non-experts
with one expert who has field-specific knowledge. In such a case, it is trivial
to see that the probability of choosing the ground truth is maximised by all
agents delegating on a path which leads to the agent of accuracy 1, provided
that such a path exists. In this example, choosing the ground truth would
be guaranteed.

Both of these examples involve delegating to an agent of higher accuracy;
as later results demonstrate, this will not always be the optimal strategy.
These trivial examples are avoided in simulations as we consider accuracy
to take values between 0.5 and 1 through a normal distribution - whereas it
is possible for an agent’s accuracy to assume these values, the chances of it
occurring are negligible.
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4.3 Accuracy of a Majority

This paper is primarily concerned with which delegation mechanism may
yield the greatest probability of a majority of agents voting for the ground
truth. The way this is calculated is by considering only the set of gurus
and their associated weights by summing each agents respective column in
the guru profile, Dg. Subsequently, the threshold for a majority is taken
by summing these weights and dividing by two. If there are no cycles, this
will be equal to N

2
; however, cycles are permitted in this model. Finally, the

probability of a majority selecting the ground truth is found by calculating
the probability of each possible guru vote combination using the accuracy
vector, then taking the sum of the probabilities of the combinations where
the weight of the gurus choosing the ground truth exceeds the threshold.
This is the concept which motivates the MajProb.m function (Appendix N).

4.4 DeGroot applied to Delegation Mecha-

nisms

With the standard DeGroot learning process, it is not guaranteed that the
process will converge. It is required that every subset of nodes which are
strongly connected are closed and aperiodic (DeGroot 1974). In the context
of liquid democracy, each strongly connected subset of agents is closed by
definition - it is not possible for an agent to delegate to an agent who is not
in their neighbourhood. Therefore, in this context, it is only required for the
process to be aperiodic.

With the defined delegation mechanisms, their behaviour and conver-
gence can be ascertained analytically. For all three cases, convergence is
guaranteed and the delegation profile to which the process converges can
be determined by investigating the convergence behaviour. Two approaches
for the DeGroot learning process as applied to liquid democracy have been
discussed. The chosen approach does not affect convergence for any of the
delegation mechanisms outlined and whereas it does not affect behaviour for
the delegation mechanism 3, the choice of approach does affect the behaviour
for delegation mechanisms 1 and 2.
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4.4.1 Convergence of Delegation Mechanism 1

The approach for the DeGroot learning process chosen does not affect whether
delegation mechanism 1 converges as it will always converge under both ap-
proaches. However, the choice of approaches does affect the behaviour of
convergence. To illustrate the behaviour of convergence under both approach
consider the network in figure 4.1.

Figure 4.1

Let the agents be associated with the accuracy vector

q =


0.5
0.7
0.6
0.7

 .
Under delegation mechanism 1, this will lead to the delegation profile

D =


5
19

7
19

0 7
19

1
5

7
25

6
25

7
25

0 7
20

3
10

7
20

1
5

7
25

6
25

7
25

 .
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Let D∗t be the tth iteration with D∗0 = D and let D∗ denote the conver-
gence matrix of the DeGroot learning process as t approaches infinity. Let
Qi =

∑
j∈R(i) qj.

Conjecture 4.4.1. Assume agents have no knowledge of the network struc-
ture. Delegation mechanism 1 under the DeGroot learning process will con-
verge to

D∗i,j =

∑
m∈R(i),R(j) qm

Qi
×
∑

k∈R(i)
qj
Qk∑

m∈R(i),R(j)

(∑
n∈R(i),R(m) qn

Qi
×
∑

k∈R(i)
qm
Qk

) .
To elaborate how to interpret this formula, D∗ij is equal to the sum of

column j for agent i’s subnetwork multiplied by the sum of row j from
agent i and agent j’s shared subnetwork divided by the sum of the sum of
all columns from agent i’s subnetwork multiplied by their respective rows
from their shared network with agent i. This result was ascertained through
numerical investigation; several networks and initial delegation profiles were
iterated through the DeGroot learning process to observe the convergence
behaviour. For the provided example, we calculate

D∗ =


5
19

7
19

0 7
19

2394
17503

12145
35006

2964
17503

12145
35006

0 7
20

3
10

7
20

2394
17503

12145
35006

2964
17503

12145
35006

 .

Theorem 4.4.1. Assume agents have full knowledge of their subnetwork
structure. Delegation mechanism 1 under the DeGroot learning process will
be invariant.

Proof. Observe that delegation mechanism 1 results in a delegation profile
with

Di,j =
qj
Qi

.

Consider the largest subnetwork where agent i and agent j are totally con-
nected, Di,j. Normalising this network would lead to, for all k,m ∈ R(i), R(j),

Di,j
m,k =

qk
Qm

× Qm

Qi,j,k
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where Qi,j,k =
∑

n∈R(i),R(j),R(k) qn. Weighting the rows for all agents k not

totally connected will lead to, for all k,m ∈ R(i), R(J),

Di,j
m,k =

Qi,j,k

Qi,j

× qk
Qm

× Qm

Qi,j,k

=
qk
Qi,j

.

Next, consider the square of this matrix, as we only hope to find the adjusted
trust of agent i in agent j, this leads to∑

k∈R(i),R(j)

qjqk
Qi,jQi,j

=
qjQi,j

Qi,jQi,j

=
qj
Qi,j

where the first step uses that
∑

k∈R(i),R(j) qk = Qi,j. Consequently, the
ratio of trust agent i has in agent j with respect to themselves is

Di,j =
qj
qi
Di,i.

The linear system of equations to evolve agent i’s trust becomes Di,j =
qj
qi
Di,i

for every j ∈ R(i) and
∑

j∈R(i)Di,j = 1. If we set Di,i = qi, then Di,j = qj for

every j ∈ R(i). Finally, the restriction
∑

j∈R(i)Di,j = 1 requires that agent

i’s trust values be divided by
∑

j∈R(i) qj = Qi. Therefore, the solution for

linear the system of equations is Di,j =
qj
Qi
.

Therefore, the trust that agent i has in any agent j is unchanged. As
agent i and agent j are chosen arbitrarily, delegation mechanism 1 is invariant
under the DeGroot learning process resulting in D∗ = D.

,

4.4.2 Convergence of Delegation Mechanism 2

The convergence of delegation mechanism 2 depends on which approach to
the DeGroot learning process is considered.

Conjecture 4.4.2. Assume agents have no knowledge of the network struc-
ture. Delegation mechanism 2 under the DeGroot learning process will con-
verge to

D∗i,j =


1, if j is not a sink and has highest trust in themselves among

agent i’s neighbourhood

0, for all other js which are not sinks
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If agent i has at least one sink in their neighbourhood, their vote will converge
to being split among these sinks proportional to their accuracy.

This result was obtained by observing the behaviour of the process nu-
merically. All agents who are not sinks will see their self-trust converge to
zero as the process is iterated. Intuitively, this can be explained by noting
under this delegation mechanism, the agents only receive reciprocated trust
from themselves, so unless they are a sink, this will tend to zero. This results
in a convergent matrix where every agent delegates their full-weighted vote
along a path which ends with at least one sink.

There are three specific behaviours which are important to note when
discussing this result. First, assume we have a five agent network. Agent
1 can observe agents 2 and 3 who cannot observe each other and neither of
which is a sink. Assume that q3 > q2 > q1 and due to their relationship to
other agents, agent 2 starts with a higher self-trust compared to agent 3. In
this scenario, despite agent 3 having the higher accuracy, agent 1 will con-
verge to awarding their full-weighted vote to agent 2. Iterating through the
process, we observe that agent 1’s trust in agent 3 may increase initially, but
the growth at which it increases will decelerate until eventually it decreases
to zero - this can be attributed to the speed at which an initial small differ-
ence between the self-trust of agents 2 and 3 widens as the process is repeated.

A second important observation uses a similar structure except agent 2
observes two unconnected agents with a higher accuracy and agent 3 ob-
serves three unconnected agents with a higher accuracy. If accuracies are
defined such that agent 2 and agent 3 begin with the same self-trust, their
self-trust will decrease at the same rate despite agent 3 having more agents in
their neighbourhood with a higher accuracy to whom they can delegate part
of their vote. Finally, the behaviour which occurs for agents with multiple
sinks was obtained through numerical experiments.

Conjecture 4.4.3. Assume agents have full knowledge of their subnetwork
structure. Delegation mechanism 2 under the DeGroot learning process will
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converge to

D∗i,j =

{
1, if agent j has the highest accuracy in agent i’s neighbourhood

0, otherwise

Intuitively, by design of the delegation mechanism, if all agents adjust
their opinions with knowledge of the network structure, their opinion will
converge to awarding their neighbour with the highest accuracy. Consider
figure 3.2 with the following accuracy vector:

q =

0.6
0.8
0.9

 .
This leads to the following delegation profile:

D =


6
23

8
23

9
23

0 1 0

0 0 1

 .

One iteration of the DeGroot learning process where agents have knowl-
edge of the network structure yields

D∗1 =


36
457

196
457

225
457

0 1 0

0 0 1

 .

This first iteration demonstrates that agent 1’s trust in itself and agent
2 is trending downwards, while their trust in agent 3, the most accurate
agent, is trending upwards. Repeated iterations further demonstrate this
trend. The convergence of this delegation mechanism under this approach
is identical to the full delegation mechanism which maximises local utility
in Bloembergen et al (2018), which is being used in this paper for a base
comparison.
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4.4.3 Convergence of Delegation Mechanism 3

Contrary to the previous delegation mechanisms, the second approach to the
DeGroot learning process cannot be applied to delegation mechanism 3. This
is because the mechanism uses an agent’s trust in themselves as a frame of
reference to adjust all other trust values; however, this delegation mechanism
presumes an agent has zero trust in themselves. Though the second approach
to the DeGroot learning process cannot be applied, we can still observe the
convergence behaviour under the first approach.

Theorem 4.4.2. Assume agents have no knowledge of the network structure.
Delegation mechanism 3 under the DeGroot learning process will converge
D∗i,j = 0 if an agent i has no sinks in their neighbours. If agent i has at least
one sink in their neighbourhood, their vote will converge to being split among
these sinks proportional to their accuracy.

Proof. Assume an agent i has no sinks in their neighbourhood. By design, no
agent in agent i’s neighbourhood has self-trust. Consequently, one iteration
of the DeGroot learning process leads to this agent awarding zero weight
of their vote, which additionally means it is not possible for their trust to
be normalised. Next, assume that agent j has N sinks and M agents with
higher accuracy in their neighbourhood. Clearly we have M > N ; number
the agents arbitrarily so sinks are numbers from 1 through to N and all
other agents are numbered N + 1 through to M . For a given sink n, where
n ∈ 1, . . . , N , their trust from agent i under delegation mechanism 3 will be

Di,j =
qn
QM

,

where QM is the sum of the accuracies for all agents in agent i’s neighbour-
hood with higher accuracy. In the first iteration, agent i’s trust in all sinks
will be multiplied by one and all other trust values will becomes 0. The next
step to obtain the second iteration is to normalise agent i’s trust values so
they sum to 1. Consequently, for a given sink n, we calculate

qn
QM∑N
k=1

qk
QM

=
qn
QM

× QM

QN

=
qn
QN

where QN is the sum of accuracies for sinks.
,
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Chapter 5

Simulations

5.1 Set Up

Simulations were run to compare how the delegation mechanisms and their
DeGroot counterparts affect the probability that a random network of agents
with random accuracy belonging to a normal distribution, N (0.75, 0.1), has a
majority in favour of the ground truth. Additionally, this is compared to the
performance of direct democracy and a mechanism motivated by maximising
local utility.

The code which calculates the accuracy of a majority for a given dele-
gation profile, MajProb.m (Appendix N), needs to calculate every possible
vote combination among a set of gurus. As such, the time it takes for the
function to run scales proportional to 2N∗ where N∗ is the number of gurus
in a delegation profile. The DeGroot counterpart of delegation mechanisms
1 and 2 and the maximising local utility mechanism on average have fewer
gurus and can be computed for larger networks; however, other mechanisms
involve all agents acting as a guru, so the calculation is too time-expensive
and this limits the size of networks which can be considered for simulations.

The networks considered were N = 4 with two cases: average degree 2
and totally connected. Additionally, networks with N = 16 are analysed with
average degrees 4, 8, 12, and the totally connected case. For average degrees
4 and 8, simulations were run for all network typologies discussed: random,
regular, small-world, and scale-free. For average degree 12, only the first
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three were analysed as a scale-free network is not possible for that average
degree with a network of only 16 agents. For each example, 250 simulations
were run (10 randomised graphs with 25 randomised initialisations on each).

For each case, four charts have been generated:

• A box plot to show the range of values taken by the accuracy of the
majority over all simulations for each delegation mechanism.

• A box plot to show the range of average network utilities over all sim-
ulations for each delegation mechanism.

• A bar chart to show the mean accuracy of a majority for each delegation
mechanism in the simulations.

• A bar chart which shows the percentage of the simulations for which
each delegation mechanism is the (joint-)optimal strategy.

All of these charts are provided in the Appendix and those which are
most relevant are provided to discuss results.

5.2 Results

For every set up for which a simulation was run, delegation mechanism 1
appears to be the optimal strategy for the network.The typology of the net-
work has little impact on the results and did not seem to change the order
of the results for any network size or any average degree. The charts for the
small-world networks will be used here to discuss the results but the pattern
is the same among all typologies.

Consider figures 5.1, 5.2, 5.3 and 5.4. In both cases, delegation mecha-
nism outperforms its DeGroot counterpart, which in turn outperforms direct
democracy, which outperforms all other delegation mechanisms. Delegation
mechanism 1 consistently outperforms all other mechanisms as can be seen
in figures 5.5 and 5.6.
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Figure 5.1

Figure 5.2
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Figure 5.3

Figure 5.4
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Figure 5.5

Figure 5.6
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Comparing the results for N = 16 to N = 4, consider figures 5.7 and
5.8. These results seem to suggest that delegation mechanism 1 and its
DeGroot counterpart, as well as direct democracy, seem to improve the ac-
curacy of a majority as N increases whereas all other delegation mechanisms
seem to worsen as N increases. This behaviour for direct democracy is a
well-established result and can be ascertained from Condorcet’s jury theo-
rem (Condorcet 1785).

Use figures 5.9, 5.10, 5.11 and 5.12 in conjunction with figures 5.1, 5.2, 5.3
and 5.4 above to compare behaviour as average degree increases. That is, as
a network becomes more ’socially connected’. Direct democracy is unaffected
as the connectivity of the network does not affect how agents vote. However,
delegation mechanism 1 and its DeGroot counterpart appear to improve with
greater social connectedness whereas all other delegation mechanisms worsen.

With regards to utility, maximising utility locally does not necessarily
maximise utility overall for an agent, as there may be an agent with greater
accuracy than their guru had they delegated along a path with an agent in
their neighbourhood with lower accuracy. However, it is the best perform-
ing in maximising the average utility for a network. The worst performing
for utility is delegation mechanism 1 which decreases as N increases and
decreases as average degree increases. In other words, as delegation mecha-
nism 1 improves the accuracy of a majority, it worsens the network’s average
utility. This is due to the motivation behind the mechanism, as every agent
splits their vote among all their neighbours and since they receive a partial
weight from every neighbour, every agent has some weight of their vote not
communicated to the voting mechanism because it is lost in a partial cycle.
The more connected an agent, the more of the weight of its vote is lost in
partial cycles, the lower their utility. It is interesting this occurs in the case
that the accuracy of a majority is maximised.

The final important comment on the results of the simulations is that
when considering all charts is that the size of the box for delegation mech-
anism 1 and its percentage in the cases where it is the optimal strategy for
a given graph and accuracy vector show that it is the delegation mechanism
to deliver most consistently.
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Figure 5.7

Figure 5.8
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Figure 5.9

Figure 5.10

36



Figure 5.11

Figure 5.12
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Chapter 6

Conclusions

This paper sought to establish delegation mechanisms under the partial del-
egation framework of liquid democracy and compare their effectiveness at
improving the quality of a social decision. Three delegation mechanisms
were motivated; the first has agents delegate their vote to all agents in their
neighbourhood proportional to their accuracy, the second has agents delegate
their vote proportional to the accuracy only to agents in their neighbourhood
with accuracy greater than or equal to their own, and the final has agents
delegate their vote proportional to the accuracy only to agents in their neigh-
bourhood with accuracy greater than their own.

Following the development of these delegation mechanisms, we sought
to investigate whether these mechanisms could be improved by the DeGroot
learning process. Two different approaches to how the DeGroot learning pro-
cess should be modelled in the liquid democracy context were motivated. The
first approach has agents adjust their trust in other agents by reviewing their
opinions even when two agents do not belong to each other’s neighbourhoods.
The second approach assumes agents have an awareness of the network struc-
ture; agents acknowledge that two agents in their neighbourhood may not
belong to each other’s neighbourhoods and adjust their opinions accordingly.

The result of these approaches on the delegation mechanisms was solved
analytically. The process converged for all delegation mechanisms. For dele-
gation mechanism 1, the first approach converged to a matrix whose elements
could be calculated explicitly. Under the second approach, the delegation
profile established by the delegation mechanism is invariant under the DeG-
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root learning process. For a totally connected network, delegation mechanism
1 will remain invariant regardless of the approach to the DeGroot learning
process. Under the first approach, delegation mechanism 2 saw agents award
their full-weighted vote to those in their neighbourhood who began with the
most trust in themselves regardless of their accuracy with the quirk that a
vote is split among sinks proportional to their accuracy if an agent has mul-
tiple sinks in their neighbourhood. However, under the second approach, the
mechanism reduced to the full delegation mechanism which maximises local
utility. Regardless of approach, delegation mechanism 3 exhibits similar be-
haviour to this reduction, except agents with no sinks in their neighbourhood
fail to delegate any weight of their vote so their vote does not get communi-
cated to the voting mechanism.

With the delegation mechanisms and their DeGroot convergence matrices
established, simulations were tested to analyse the quality of the decisions
under these mechanisms over different network types and sizes. These were
compared with the results for direct democracy and locally maximising util-
ity. For N = 4 and N = 16, delegation mechanism 1 is consistently the
optimal strategy across all network typologies and for all average degrees.
Whether this trend continues for larger networks will need to be tested. It
would seem that it would but because the delegation mechanism improves
with greater network connectedness, it may be the case that it performs less
well for large networks with a lower average degree.

Interestingly, delegation mechanism 1 performs the worst when it comes
to maximising average utility across the agents in the network. This high-
lights the conflict between a motivation for the group and a motivation for
the individual. The definition of utility explored is one determined by an
agent’s direct action; an agent seeks to have the best probability of having
the full weight of their own vote communicated to the voting mechanism in
favour of the ground truth. This is best achieved by delegating their vote to
a guru with the highest accuracy. However, when there are a large number
of voters, potential mistakes can average out through a phenomenon called
the miracle of aggregation. If one guru has a high accuracy, they will be-
come a sink for the agents around them and accumulate a large weight to
communicate to the voting mechanism, reducing the number of gurus voting,
and reducing the possibility of potential mistakes averaging out. Contrary
to this, delegation mechanism 1 leads to agents sacrificing part of their vote
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and delegating part of their vote to agents in their neighbourhood with a
lower accuracy. This is counter-intuitive as a motivation for an individual
agent, yet it seems to maximise the accuracy of a majority.

Direct democracy is known to improve a group decision as the number of
agents increases through Condorcet’s jury theorem. The simulations seems
to suggest a similar pattern for delegation mechanism 1. The structure of the
mechanism suggests an interesting direction for further research. All agents
receive weight from their neighbours proportional to their accuracy. Conse-
quently, since accuracies are assumed to be known, it would be interesting
to compare the mechanism and direct democracy against a weighted direct
vote; where each agent begins with weight proportional to their accuracy
instead of every agent receiving a weight of 1.

Whereas delegation mechanism 1 exhibits the best performance, dele-
gation mechanism 2 yields strong results comparable to direct democracy.
What these delegation mechanisms have in common compared to all other
delegation mechanisms examined is that these guarantee that every agent
communicates to the voting mechanism to some extent. It seems that an
important trait in ensuring a better chance of a majority support for the
ground truth is to have as many agents as possible to vote, demonstrating
the strength of the miracle of aggregation. Delegation mechanism 3, its De-
Groot counterpart, and the DeGroot counterpart of delegation mechanism 2
reduce to the most accurate agents in the profile and this seems to worsen
the accuracy of a majority. A further trend for these delegation mechanisms
is they appear to worsen with greater connectedness of a network; this would
be because it reduces the number of sinks and again means fewer mistakes
can be lost through aggregation.

The DeGroot learning process was utilised under the pretense that a
group would perform better if they used each other’s opinion to inform their
own. It was applied to all three delegation mechanisms and the convergence
matrix from the process was shown analytically in each case. However, the
DeGroot counterpart performed worse in the simulations for every delegation
mechanism. The counterpart for delegation mechanism 1 was the second best
performing mechanism; however, it performed worse than delegation mech-
anism 1 for the quality of the social choice in every case. Similarly, whereas
delegation mechanism 2 performed strongly in simulations, its DeGroot coun-
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terpart returned much worse results.

The success of delegation mechanism 1 is a positive result and it bears
further research to determine if it can be improved and if it continues to be
a effective strategy for larger networks. Much of the method for this paper is
motivated by Bloembergen et al (2018) which focused on rationality; ratio-
nality is not discussed in this paper, so it would be interesting to introduce
rationality constraints and to examine the effectiveness of delegation mecha-
nism 1. Furthermore, this paper assumed homogeneity, so it would be fruitful
to examine these delegation mechanisms in social choices where agents may
have different ground truth given in either a deterministic or probabilistic
profile. Finally, this paper assumed accuracy of an agent followed a normal
distribution between the values 0.5 and 1; it would be interesting to see study
in this framework which permits misinformation campaigns and false belief,
allowing accuracy to take any value between 0 and 1.
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Appendix A

accuracy.m

Listing A.1: accuracy.m

1 f unc t i on [ q]=accuracy (G)
2 % input : G − An NxN adjacency matrix o f a graph
3 % output : q − An Nx1 vec to r o f each agent ’ s accuracy . Randomised

by normal
4 % d i s t r i b u t i o n N( 0 . 7 5 , 0 . 1 )
5

6 N=s i z e (G) ; %Def ine the number o f agents
7 a=0.1 ; %Set the var iance
8 b=0.75; %Set the mean
9 q = a .∗ randn (N(1) ,1 ) + b ; %Randomise the a c cu r a c i e s

10 f o r i =1:N(1) %Fix to ensure a l l a c cu r a c i e s
with in range

11 i f q ( i )>1
12 q ( i )=2−q ( i ) ;
13 end
14 i f q ( i )<0.5
15 q ( i )=1−q ( i ) ;
16 end
17 end
18 end
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Appendix B

partdel.m

Listing B.1: partdel.m

1 f unc t i on [D1]= par tde l (D)
2 % input : D − An NxN de l e ga t i on p r o f i l e
3 % output : D1 − An NxN path p r o f i l e f o r p a r t i a l d e l e g a t i on s along

a l l paths
4

5 sz=s i z e (D) ;
6 D1=ze ro s ( sz (1 ) ) ; %Preset D1 f o r e f f i c i e n c y
7 f o r n=1: sz (1 )−1 %Adds the path p r o f i l e s o f a l l path l enght s
8 D1=D1+D;
9 D=omega (D) ;

10 end
11 end
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Appendix C

omega.m

Listing C.1: omega.m

1 f unc t i on [B]=omega (A)
2 % input : A − An NxN path p r o f i l e
3 % output : B − The path p r o f i l e o f +1 length to path p r o f i l e A
4

5 A2=A−diag ( diag (A) ) ; %Removes d iagona l e lements f o r f i r s t
i t e r a t i o n s

6 B=A2∗A2 ;
7 B=B−diag ( diag (B) ) ; %Removes any new diagona l e lements
8 end

46



Appendix D

vote.m

Listing D.1: vote.m

1 f unc t i on [D2]=vote (D1)
2 % input : D1 − An NxN path p r o f i l e o f a l l path l eng th s
3 % output : D2 − An NxN guru p r o f i l e
4

5 sz=s i z e (D1) ;
6 D2=D1 ; %Sets d iagona l e lements to r e t a in ed

d e l e g a t i on s
7 f o r i =1: sz (1 ) %Weights paths by agents ’ r e t a i n ed

d e l e g a t i on s
8 f o r j =1: sz (2 )
9 i f i ˜=j

10 D2( i , j )=D1( i , j ) ∗D1( j , j ) ;
11 end
12 end
13 end
14 end
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Appendix E

utility.m

Listing E.1: utility.m

1 f unc t i on [ u]= u t i l i t y (D, q )
2 % input : D − An NxN de l e ga t i on p r o f i l e
3 % q − An Nx1 accuracy vec to r
4 % output : u − An Nx1 u t i l i t y vec to r
5

6 D1=par tde l (D) ; %c a l c u l a t e path p r o f i l e o f a l l l eng th s
7 D2=vote (D1) ; %c a l c u l a t e guru p r o f i l e
8 u=D2∗q ; %sum weights at gurus mu l t i p l i e d by a c cu r a c i e s
9 end
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Appendix F

DelMech1.m

Listing F.1: DelMech1.m

1 f unc t i on [D]=DelMech1 (G, q )
2 % input : G − An NxN adjacency matrix o f a graph
3 % q − An Nx1 accuracy vec to r
4 % output : D − An NxN de l e ga t i on p r o f i l e
5

6 N=s i z e (G) ; %Set number o f agents
7 v=ones (N(1) ,1 ) ;
8 G=G+diag (v ) ; %Ensure adjacency matrix i s r e f l e x i v e
9 f o r i =1:N(1) %Delegate to each agent p ropo r t i na l to

accuracy .
10 D( i , : ) =(G( i , : ) .∗ q ’ ) /sum(G( i , : ) .∗ q ’ ) ;
11 end
12 end

49



Appendix G

DelMech2.m

Listing G.1: DelMech2.m

1 f unc t i on [D]=DelMech2 (G, q )
2 % input : G − An NxN adjacency matrix o f a graph
3 % q − An Nx1 accuracy vec to r
4 % output : D − An NxN de l e ga t i on p r o f i l e
5

6 N=s i z e (G) ; %Set number o f agents
7 v=ones (N(1) ,1 ) ;
8 G=G+diag (v ) ; %Ensure adjacency matrix i s r e f l e x i v e
9 f o r i =1:N(1) %Create matrix o f d e l e g a t i on s p ropo r t i ona l

to accuracy
10 M( i , : ) =(G( i , : ) .∗ q ’ ) /sum(G( i , : ) .∗ q ’ ) ;
11 end
12 f o r i =1:N(1) %Re s t r i c t d e l e g a t i on s to those the same or

h igher
13 f o r j =1:N(1)
14 i f M( i , j )<M( i , i )
15 G( i , j )=0;
16 end
17 end
18 end
19 f o r i =1:N(1) %Renormalise d e l e g a t i on s
20 D( i , : ) =(G( i , : ) .∗ q ’ ) /sum(G( i , : ) .∗ q ’ ) ;
21 end
22 end
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Appendix H

DelMech3.m

Listing H.1: DelMech3.m

1 f unc t i on [D]=DelMech3 (G, q )
2 % input : G − An NxN adjacency matrix o f a graph
3 % q − An Nx1 accuracy vec to r
4 % output : D − An NxN de l e ga t i on p r o f i l e
5

6 N=s i z e (G) ; %Set number o f agents
7 v=ones (N(1) ,1 ) ;
8 G=G+diag (v ) ; %Ensure adjacency matrix i s r e f l e x i v e
9 f o r i =1:N(1) %Create matrix o f d e l e g a t i on s p ropo r t i ona l

to accuracy
10 M( i , : ) =(G( i , : ) .∗ q ’ ) /sum(G( i , : ) .∗ q ’ ) ;
11 end
12 ZerosTest=0;
13 f o r i =1:N(1) %Re s t r i c t d e l e g a t i on s to those the same

h igher .
14 f o r j =1:N(1)
15 i f M( i , j )<=M( i , i )
16 G( i , j )=0;
17 ZerosTest=ZerosTest+1;
18 end
19 end
20 i f ZerosTest==N(1) %i f no agent with h igher acc , s e l f −

de l e ga t e
21 G( i , i )=1;
22 end
23 ZerosTest=0;
24 end
25 f o r i =1:N(1) %Renormalise d e l e g a t i on s
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26 D( i , : ) =(G( i , : ) .∗ q ’ ) /sum(G( i , : ) .∗ q ’ ) ;
27 end
28 end
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Appendix I

DelMechTriv.m

Listing I.1: DelMechTriv.m

1 f unc t i on [D]=DelMechTriv (G)
2 % input : G − An NxN adjacency matrix o f a graph
3 % output : D − An NxN de l e ga t i on p r o f i l e
4

5 N=s i z e (G) ; %Set number o f agents
6 v=ones (N(1) ,1 ) ;
7 D=diag (v ) ; %Create p r o f i l e with d iagona l o f 1 s
8 end
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Appendix J

CDelMechUt.m

Listing J.1: DelMechUt.m

1 f unc t i on [D]=DelMechUt (G, q )
2 % input : G − An NxN adjacency matrix o f a graph
3 % q − An Nx1 accuracy vec to r
4 % output : D − An NxN de l e ga t i on p r o f i l e
5

6 N=s i z e (G) ; %Set number o f agents
7 v=ones (N(1) ,1 ) ;
8 G=G+diag (v ) ; %Ensure adjacency matrix i s r e f l e x i v e
9 f o r i =1:N(1) %Create matrix o f d e l e g a t i on s p ropo r t i ona l to

accuracy
10 M( i , : )=G( i , : ) .∗ q ’ ;
11 end
12 f o r i =1:N(1) %Re s t r i c t d e l e g a t i on s to only max accuracy
13 f o r j =1:N(1)
14 i f M( i , j )==max(M( i , : ) )
15 G( i , j )=1;
16 e l s e
17 G( i , j )=0;
18 end
19 end
20 end
21 f o r i =1:N(1) %Renormalise d e l e g a t i on s
22 D( i , : ) =(G( i , : ) .∗ q ’ ) /sum(G( i , : ) .∗ q ’ ) ;
23 end
24 end
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Appendix K

DelMech1Deg.m

Listing K.1: DelMech1Deg.m

1 f unc t i on [D]=DelMech1Deg (G, q )
2 % input : G − An NxN adjacency matrix o f a graph
3 % q − An Nx1 accuracy vec to r
4 % output : D − An NxN de l e ga t i on p r o f i l e
5

6 N=s i z e (G) ; %Set number o f agents
7 v=ones (N(1) ,1 ) ;
8 G=G+diag (v ) ; %Ensure adjacency matrix i s r e f l e x i v e
9 D=ze ro s (N(1) ,N(2) ) ;

10 M=zero s (N(1) ,N(2) ) ;
11 C=ze ro s (N(1) ,N(2) ) ;
12 f o r i =1:N(1) %Delegate to each agent p ropo r t i na l to

accuracy .
13 M( i , : ) =(G( i , : ) .∗ q ’ ) /sum(G( i , : ) .∗ q ’ ) ;
14 end
15 f o r i =1:N(1) %matrix o f we ight ings r e l a t i v e to t h e i r

neighbourhood
16 f o r j =1:N(1)
17 C( i , j )=sum(M( i , : ) .∗G( j , : ) ) ∗G( i , j ) ;
18 end
19 end
20 f o r i =1:N(1) %matrix o f converged e lements
21 f o r j =1:N(1)
22 D( i , j )=sum(M( : , j ) .∗G( i , : ) ’∗C( i , j ) ) /sum(sum(M.∗G( i , : ) ’ ) .∗

C( i , : ) ) ;
23 end
24 end
25 end
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Appendix L

DelMech2Deg.m

Listing L.1: DelMech2Deg.m

1 f unc t i on [D]=DelMech2Deg (G, q )
2 % input : G − An NxN adjacency matrix o f a graph
3 % q − An Nx1 accuracy vec to r
4 % output : D − An NxN de l e ga t i on p r o f i l e
5

6 N=s i z e (G) ; %Set number o f agents
7 v=ones (N(1) ,1 ) ;
8 D1=DelMech2 (G, q ) ;
9 G=G+diag (v ) ; %Ensure adjacency matrix i s r e f l e x i v e

10 M=zero s (N) ;
11 D=ze ro s (N) ;
12 f o r i =1:N(1) %Matrix o f agents ’ t r u s t in themse lves
13 f o r j =1:N(1)
14 i f G( i , j )==1
15 M( i , j )=D1( j , j ) ;
16 end
17 end
18 end
19 f o r i =1:N(1) %Delegate vote to agent with most s e l f −t r u s t
20 f o r j =1:N(1)
21 i f M( i , j )==max(M( i , : ) )
22 D( i , j )=1;
23 e l s e
24 D( i , j )=0;
25 end
26 end
27 end
28 f o r i =1:N(1) %propo r t i ona l convergence f o r multi−s i nk s
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29 i f sum(D( i , : ) )>1
30 D( i , : ) =(D( i , : ) .∗ q ’ ) /sum(D( i , : ) .∗ q ’ ) ;
31 end
32 end
33 end
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Appendix M

DelMech3Deg.m

Listing M.1: DelMech3Deg.m

1 f unc t i on [D]=DelMech3Deg (G, q )
2 % input : G − An NxN adjacency matrix o f a graph
3 % q − An Nx1 accuracy vec to r
4 % output : D − An NxN de l e ga t i on p r o f i l e
5

6 N=s i z e (G) ; %Set number o f agents
7 v=ones (N(1) ,1 ) ;
8 G=G+diag (v ) ; %Ensure adjacency matrix i s r e f l e x i v e
9 D=ze ro s (N) ;

10 M=zero s (N) ;
11 f o r i =1:N(1) %Create matrix o f d e l e g a t i on s p ropo r t i ona l to

accuracy
12 M( i , : ) =(G( i , : ) .∗ q ’ ) /sum(G( i , : ) .∗ q ’ ) ;
13 end
14 ZerosTest=0;
15 f o r i =1:N(1) %Create adjacency graph o f only h igher

accuracy
16 f o r j =1:N(1)
17 i f M( i , j )<=M( i , i )
18 G( i , j )=0;
19 ZerosTest=ZerosTest+1;
20 end
21 end
22 i f ZerosTest==N(1)
23 G( i , i )=1;
24 end
25 ZerosTest=0;
26 end
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27 f o r i =1:N(1) %neighbours o f s i nk s to de l e ga t e to s ink
28 f o r j =1:N(1)
29 i f G( i , j )==1
30 i f G( j , j )==1
31 G( i , j )=1;
32 e l s e
33 G( i , j )=0;
34 end
35 end
36 end
37 end
38 f o r i =1:N(1) %renorma l i s e d e l e g a t i on s
39 i f sum(G( i , : ) )>0
40 D( i , : ) =(G( i , : ) .∗ q ’ ) /sum(G( i , : ) .∗ q ’ ) ;
41 end
42 end
43 end
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Appendix N

MajProb.m

Listing N.1: MajProb.m

1 f unc t i on [P]=MajProb (D, q )
2 % input : D − An NxN de l e ga t i on p r o f i l e
3 % q − An Nx1 accuracy vec to r
4 % output : P − A 1x1 p r obab i l i t y that the ground truth has a

major i ty
5

6 D1=par tde l (D) ; %c r ea t e path p r o f i l e
7 D2=vote (D1) ; %c r ea t e guru p r o f i l e
8 N=s i z e (D2) ;
9 P=0;

10 weight=ze ro s (N(1) ,1 ) ;
11 f o r i =1:N(1) %c a l c u l a t e weight vec to r from guru

p r o f i l e
12 weight ( i )=sum(D2 ( : , i ) ) ;
13 end
14 th r e sho ld=sum( weight ) /2 ; %thre sho ld i s h a l f the o v e r a l l weight
15 Removed=0;
16 f o r i =1:N(1) %remove a c cu r a c i e s f o r agents with

weight 0
17 i f weight ( i )==0
18 q ( i−Removed) = [ ] ;
19 Removed=Removed+1;
20 end
21 end
22 weight=nonzeros ( weight ) ; %remove 0 s from weight vec to r
23 N2=s i z e ( weight ) ;
24 I t e r=2ˆN2(1)−1;
25 qstep=q ;
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26 whi le I t e r >0 %i t e r a t e through every guru vote
combination

27 I t e rB in=spar s e ( f l i p ( de2bi ( I t e r ) ) ) ;
28 i f s i z e ( I terBin , 2)<N2(1) %convert i t e r a t i o n step to

binary vec to r
29 addend=ze ro s (1 ,N2(1 )−s i z e ( I terBin , 2) ) ;
30 I t e rB in=spar s e ( [ addend I t e rB in ] ) ;
31 end
32 i f I t e rB in ∗weight>th r e sho ld %i f major i ty f o r ground truth ,

add prob
33 f o r i =1:N2 %subt rac t accuracy from 1 i f

vote i n c o r r e c t
34 i f I t e rB in ( i )==0
35 qstep ( i )=1−qstep ( i ) ;
36 end
37 end
38 prob=prod ( qstep ) ; %c a l c u l a t e p r obab i l i t y o f

vote combo
39 P=P+prob ;
40 qstep=q ; %r e s e t a c cu r a c i e s
41 end
42 I t e r=I t e r −1; %prepare f o r next vote

combination
43 end
44 end
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Appendix O

Probability of Majority Box
Plots
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Appendix P

Probability of Majority Bar
Charts
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Appendix Q

Optimal Strategy Bar Charts
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Appendix R

Utility Box Plots
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