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« Climate change is a global experiment in adaptive capacity, as species tolerate, adapt or die with 

changing conditions. While increasing temperatures are pushing many species to the very limit of 

their tolerance, it is also revealing a previously unimagined plasticity in the response of others. » 

 

from Ruiz et al., 2018 
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Abstract 

 

Posidonia oceanica is a seagrass species thriving in the Mediterranean Sea since millennia. The 

integrity of P. oceanica meadows, in time and space, is essential to sustain the rich biodiversity of the 

Mediterranean, as well as to protect its shores and regulate the seawater’s chemical composition. As all 

seagrass beds worldwide, P. oceanica meadows are progressively regressing alongside with the increase 

of seawater temperatures caused by climate change. Multiple in situ and in vitro observations revealed 

the strong impact of warming on the persistence and fitness of the seagrass’ different life stages. The 

latter added to the impact of indirect actors such as sulfide stress, the synergies occurring between 

stressors and the high vulnerability of P. oceanica, worsens the status of the species in its rapidly 

changing environment. Nevertheless, some acclimation and/or adaptation possibilities seem to exist, for 

instance through the intensification of sexual reproduction and the activation of epigenetic processes. 

This literature survey gathers past and recent studies, giving a general picture of the diverse effects of 

global warming on P. oceanica. Although different trajectories for the fate of the meadows are proposed, 

all studies agree on the importance of protecting the meadows and acting for their conservation. 
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1. Introduction 

1.1 Posidonia oceanica :  distribution, importance and biology  

 

The Mediterranean basin shelters extensive meadows of the endemic seagrass species Posidonia 

oceanica (L.) Delile (den Hartog, 1970 ; Kuo and den Hartog, 2001). P. oceanica meadows were 

estimated to cover an area of approximately 12.200 km² along the Mediterranean coastline, dwelling in 

depth ranging from 0.3 to 45 m, depending on light availability and water dynamics (see Figure 1) 

(Duarte, 1991 ; Pasqualini et al., 1999 ;  Telesca et al., 2015). The meadows distribution was accurately 

reported in the Western part of the Mediterranean (Telesca et al., 2015). Data on the presence of P. 

oceanica in the Eastern basin is still scarce, although recent studies initiated the mapping of the meadows 

in Greek and Turkish waters (Topouzelis et al., 2018 ; Traganos et al., 2018 ; Akçali et al., 2019 ; Duman 

et al., 2019). The species is however not represented in the most Eastern part of the basin, along the 

coasts of Syria, Lebanon, Israel and around the Nile delta (Telesca et al., 2015). Along the Northwestern 

shores of the Mediterranean, including around the islands, the seafloor is largely overlaid by P. oceanica 

meadows, as they thrive on both sandy and rocky bottoms (Badalamenti et al., 2015 ; Telesca et al., 

2015 ; Ruju et al., 2018). In this sector, the species is absent in only a few locations due to hydrological 

components or intense human activities. To these locations belong the northern Adriatic Sea, most 

shores of Languedoc (France) and the Gibraltar Strait (Boudouresque et al., 2015). Along coasts where 

the meadows are abundant, huge quantities of dead P. oceanica leaves (leaf litter) are transported 

towards the shores in September-October. They get deposited by the water current on sandy beaches, 

where they form dense mats with peculiar shapes, the so-called Posidonia banquettes (Boudouresque & 

Meinesz, 1983 ; Romero et al., 1992 ; Mateo et al., 2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  Figure 1. Current distribution of Posidonia oceanica meadows. Green areas indicate the presence of P. oceanica 

along the Mediterranean coastline, based on collated spatial information available on meadow presence. Coastlines 

represented with a dark line indicate the absence of P. oceanica or lacking data. (Source : Telesca et al., 2015) 
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The importance of P. oceanica meadows is reflected in the numerous ecosystem services they 

provide (Costanza et al., 1997 ; Campagne et al., 2015 ; Boudouresque et al., 2015). Together with the 

seagrasses’ microbial epibionts, the meadows participate extensively to the primary production of the 

Mediterranean Sea (Pergent et al., 1994 ; Personnic et al., 2014 ; Boudouresque et al., 2006, 2015). P. 

oceanica meadows are thus the basis of multiple trophic chains. The detached dead leaves are 

transported over great distances and towards depths, where they serve as source of food as well for 

abyssal species (Boudouresque et al., 2006). The meadows’ dense structure is used as shelter, spawning 

ground and/or nursery by many benthic and pelagic species, all relying on the healthy meadows for their 

life cycle (Harmelin-Vivien et al., 1995 ; Boudouresque et al., 2006). Multiple species interacting with 

the meadows, including  crustaceans, cephalopods and teleosts, are targeted by local fishers, which adds 

to the seagrass’ important economic value (Jiménez et al., 1996 ; Boudouresque et al., 2006 ; Vassallo 

et al., 2013). The meadows also give shelter to threatened species, such as the beautiful nobel pen shell 

Pinna nobilis. Furthermore, they ensure nutrient cycling (Romero et al., 1992 ; Barrόn and Duarte, 

2009), oxygenize the seawater (Bay, 1984), improve water quality (Terrados and Duarte, 2000), enhance 

coastal protection from erosion (Gacia and Duarte, 2001), reduce the swell and wave strength (Stratigaki 

et al., 2011 ; Manca et al., 2012), stabilize dunes and provide indirect nutrient-inputs in-shore on which 

coastal vegetation depends (Boudouresque et al., 2015). Last but not least, P. oceanica meadows are 

among the most efficient species for carbon fixation and sequestration (Pergent et al., 1994 ; Mateo et 

al., 1997, 2006 ; Fourqurean et al., 2012 ; Pergent et al.,  2014). The biological, chemical, physical and 

geomorphological implications of P. oceanica meadows attest to their pivotal role in maintaining the 

stability and balance of the natural cycles occurring in the Mediterranean Sea (Orth et al., 2006).  

 

P. oceanica is an angiosperm species (Magnoliophyta). The seagrass growth relies mainly on 

clonal reproduction (Meinesz et al., 1992 ; Balestri and Cinelli, 2003). The plants’ rhizomes grow both 

horizontally (plagiotropy) and vertically (orthotropy). The former ensures the species asexual expansion, 

whereas the latter prevents the burial of the rhizomes due to the high amounts of sediment trapped by 

the canopy (Marbà and Duarte, 1998 ; Boudouresque et al., 2015).  P. oceanica shoots grow slowly (ca. 

1 cm/yr) and can live up to 50 years old (Marbà and Duarte, 1998 ; Marbà et al., 2005 ; Jordà et al., 

2012). Genotypes of P. oceanica clones were found to persist for millennia (Arnaud-Haond et al., 2012). 

 

The global decline of seagrass beds critically concerns the Mediterranean P. oceanica meadows, 

for which a rapid loss has been reported since the end of the 20th century (Duarte, 2002 ; Orth et al., 

2006 ; Marbà et al., 1996, 2014 ; Pasqualini et al., 1999 ; Boudouresque et al. 2009). 34% of the beds 

are assumed to have disappeared over the past 50 years, with a few exceptions in Corsica (France), parts 

of the Sardinian coast (Italy) and the region of Valencia (Spain) (Telesca et al., 2015). Investigations on 

the P. oceanica recession revealed the cumulative effect of multiple anthropogenic factors disturbing 

the seagrasses and triggering their decline (Marbà et al., 1996, 2014 ; Pasqualini et al., 1999 ; 
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Boudouresque et al. 2009). Among them are coastal urbanization causing eutrophication and excessive 

organic matter inputs, as well as mechanic disturbances due to fishing activities, dredging and 

aquaculture. Albeit important, these disturbances only partially contribute to the ongoing alarming 

regression of the meadows. Climate change, in contrast, is assumed to be the main driver of the P. 

oceanica beds’ decline, as the warming of the Mediterranean seawater was recognized to be highly 

detrimental for the species (Duarte, 2002 ; Díaz-Almela et al., 2007, 2009 ; Marbà and Duarte, 2010).   

 

1.2 Warming of the Mediterranean : past and future 

 

Oceans and seas stand on the front-line facing climate change. The warming of the atmosphere 

due to increasing atmospheric carbon dioxide (CO2) concentrations is closely followed by the warming 

of the globe’s waters. The oceans act as buffer, as they absorb around 80% of the excessive atmospheric 

heat (Duarte et al., 2018). The Intergovernmental Panel on Climate Change (IPCC) predicts a global 

increase of 2.58°C of the mean sea surface temperature (SST) by the end of the century (IPCC, 2019). 

The seawater warming leads to stronger and longer stratification of the water column, which can 

influence underlying biochemical and physiological processes (Coma et al., 2009). While climate 

change involves a gradual increase of atmospheric and oceanic temperatures, it is also characterized by 

recurrent extreme weather events. Among them are heatwaves, during which aberrant high temperatures 

are reached over the course of a few weeks (15 days on average) (Darmaraki et al., 2019). These local 

atmospheric events promptly warm up the air, oceans and seas (Darmaraki et al., 2019). The occurrence 

of heatwaves has been increasing throughout the last century, and is expected to follow the same trend 

for the coming decades if climate change is not drastically mitigated (IPCC, 2012).  

 

The bathymetry, geography and confined nature of the Mediterranean basin results in a faster 

warming relative to deeper open oceans (Meehl and Tebaldi, 2004 ; Girogi, 2006). The rates of warming 

of the Mediterranean Sea surface overshoot threefold those of oceans, with an average increase of 

0.04°C per year (Giorgi, 2006 ; Díaz-Almela et al., 2007). Long-term monitoring of the Mediterranean 

mean SST reported a global increase by 1.3°C between 1982 and 2020 (see Figure 2) (Pastor, 2020). 

Multiple intense heatwaves were recorded during the same period, such as during the summer 2003, 

2006, 2015 and 2017 (Marbà and Duarte, 2010 ; Darmaraki et al., 2019). The frequent heatwaves 

reaching the shallow waters of the Mediterranean generate high peaks of seawater temperature. These 

abrupt changes cause major ecological damages in coastal ecosystems, including in P. oceanica 

meadows (Duarte, 2002 ; Díaz-Almela et al., 2009 ; Marbà and Duarte, 2010 ; Guerrero-Meseguer et 

al., 2017). 
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Figure 2. (Above) Mediterranean Sea Surface Temperature total variation from 1982 to 2020. The whole 

basin gained on average 1.3°C in 18 years. (Below) Mean Sea Surface Temperature in August 2020. 

Temperatures close to 28°C (dark orange) were reached in the Northwestern part of the basin where Posidonia 

oceanica meadows are present. (Source : Pastor, 2020) 
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1.3 A vicious circle : the role of the matte 

 

Underneath the canopy of P. oceanica meadows lies a unique structure : the matte. The matte is 

composed of the seagrass’ leaf sheaths, rhizomes and roots (dead and alive), agglomerated into a dense 

layer with the sediment as matrix (see Figure 3) (Boudouresque and Meinesz, 1983 ; Mateo et al., 1997). 

The orthotropic growth of the rhizomes coupled to the sedimentation occurring within the meadow 

induces the continuous rising of the matte, and accordingly of the whole bed (10 to 100 cm per century, 

Mateo et al., 1997 ; Boudouresque et al., 2015). The parts of the seagrass building-up the matte contain 

a fraction of the plants’ primary production. Throughout its formation, organic and inorganic carbon is 

thus incorporated into the structure, where it can be stored from centuries to millennia (Romero et al., 

1994 ; Mateo et al., 1997 ; Boudouresque et al., 2015 ; Pergent et al., 2014). This process confers to the 

matte the crucial role of carbon sink, which implies its participation in the mitigation of climate change 

(Boudouresque et al., 2015 ; Pergent-Martini et al., 2021). Owing to the significant size of the matte (up 

to several meters in height), the carbon sequestration rates by P. oceanica meadows are comparable with 

those of peatlands and mangroves (Mateo et al., 1997 ; Pergent-Martini et al., 2021). Pergent-Martini et 

al. (2021) estimated that 5 681 206 tons of CO2 emissions are fixed every year by P. oceanica, with 

21% of it being sequestered into the matte (Pergent-Martini et al., 2021). Although the carbon fixation 

by the meadows only covers a small fraction of the CO2 emissions of the Mediterranean countries, the 

seagrasses’ contribution to the reduction of atmospheric CO2 concentration cannot be neglected 

(Pergent-Martini et al., 2021). 

 

The mattes’ role is however double-edged. The shoots’ mortality, due to global warming for 

instance,  can reverse the matte’s status, from a carbon sink to a carbon source. Without the protection 

provided by the seagrasses’ leaves, the matte is exposed directly to the water current, waves and swell, 

which altogether enhance its erosion. As a result, the matte’s carbon content is slowly released into the 

water, where it can get remineralized and later on diffused back into the atmosphere in form of CO2 

(Pergent et al., 2014, Pergent-Martini et al., 2021). The mechanical disruption of the mattes, caused for 

instance by mooring or trawling, worsen the discharge of carbon (Ganteaume et al., 2005 ; Pergent et 

al., 2014). Hence, just as good as P. oceanica meadows are able to mitigate the CO2 increase driving 

climate change, they also can accelerate it by releasing the carbon they have been storing for millennia 

(Pergent et al., 2014, Pergent-Martini et al., 2021 ; Boudouresque et al., 2015). This particularity of the 

P. oceanica beds strongly reinforce the importance of preventing their degradation to avoid a local 

intensification of global warming.   
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Figure 3. The Posidonia oceanica matte underneath the canopy. The matte is composed of the seagrass’ leaf 

sheaths, rhizomes and roots, with sediment filling the interstices. (Source : Ruitton et al., 2017) 

 

1.4 Vulnerability of Posidonia oceanica  

 

As the geography of the Mediterranean renders the migration of P. oceanica to cooler latitudes 

impossible, P. oceanica is left with the only alternative to adapt to its warming environment. As the 

most tangible scenario for the coming century does not predict the ending of climate change, the 

seagrass’ tolerance and/or resilience capacity is most likely to determine the fate of the meadows. 

However, the species extremely slow growth (among the slowest growing seagrass on Earth) (Marbà et 

al., 1996), sparse sexual reproduction (Marbà and Duarte, 1998 ; Díaz-Almela et al., 2006) and low 

mutation rate (Aires et al., 2011 ; Arnaud-Haond et al., 2012) restrict the adaptive potential of P. 

oceanica, thus increasing its vulnerability towards rapid environmental changes and stressful conditions 

(Boudouresque et al., 2009 ; Jordà et al., 2012). Additionally, the low genetic diversity of P. oceanica 

limits as well the species’ adaptative potential, although it was discovered to be higher than previously 

thought (Arnaud-Haond et al., 2007 ; Serra et al., 2010 ; Telesca et al., 2015).  

 

 

Hence, climate change constitutes a major threat for P. oceanica meadows. Therefore, 

understanding all the components influencing the seagrass survival is essential to set conservation goals 

congruent with the species’ capacity to withstand this unstable environment. This work, based on a 

literature survey, aims at reporting how rising sea temperatures affect Posidonia oceanica meadows in 

the Mediterranean.  
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2. Effects of rising sea temperatures on Posidonia oceanica  

2.1 Shoot mortality and reduced fitness  

 

 Duarte (2002) emphasized in his review The Future of Seagrass Meadows the role of global 

warming in the worldwide regression of seagrass beds (Duarte, 2002 ; Short and Neckles, 1999). Long-

term monitoring of P. oceanica shoot demography and annual maximum seawater temperatures around 

the Balearic Islands (Spain) highlighted the correlation between seawater warming and the species’ 

increasing mortality rate (Díaz-Almela et al., 2009 ; Marbà and Duarte, 2010). The P. oceanica loss 

observed on the field over the course of the study revealed the strong impact that climate change alone 

can have on the Mediterranean seagrass, as no other stressors were present in the area (Marbà and 

Duarte, 2010). An increase of the seawater temperature by 1°C was assumed to rise the shoot mortality 

by an additional 2.5% per year (Marbà and Duarte, 2010). The shoot recruitment of P. oceanica seemed 

however not to be affected by the seawater warming, as it only decreased with depth. Nevertheless, the 

average shoot mortality was estimated to be approximately twofold bigger than the average shoot 

recruitment, implying a negative net shoot growth rate (Díaz-Almela et al., 2009 ; Marbà and Duarte, 

2010). A seawater temperature of 28°C was recognized as a threshold above which P. oceanica shoot 

mortality increases drastically (Marbà and Duarte, 2010 ; Telesca et al., 2015). This tolerance limit 

justified the high losses in P. oceanica meadows reported a few weeks after the heatwaves of summer 

2003 and 2006, during which the Mediterranean reached temperatures above 28.5 °C (Marbà and 

Duarte, 2010). These two incidences led to the current assumption that P. oceanica meadows are, as 

most seagrass species,  especially sensitive to short periods of extreme heat rather than to the gradual 

increase of seawater temperature (Díaz-Almela et al., 2007, 2009 ; Marbà and Duarte, 2010 ; Guerrero-

Meseguer et al. 2017).  

 

Further analysis at molecular scale pinpointed the adverse physiological changes occurring in 

P. oceanica when exposed to heat-stress. In all marine plants, high temperatures can disrupt 

photosynthesis through the alteration of the photosystem II (PSII), lowering its capacity to capture 

energy from light (Bulthuis, 1987 ; Campbell et al., 2006 ; Repolho et al., 2017). Excessive thermal 

stress reduces the electron transport rate through the PSII, which restricts the carbon assimilation and 

thus lowers the plants’ carbon fixation rate (Marín-Guirao et al., 2016 ; Repolho et al., 2017 ; Guerrero-

Meseguer et al., 2017). The lower photosynthetic activity coincides with the intensification of 

respiration, which in turn impacts the plants’ carbon balance (Bulthuis, 1987 ; Marín-Guirao et al., 2016, 

2018). The increased respiration supports maintenance and repair cycles, as well as protein production, 

to compensate for the damages to the PSII (Collier and Waycott, 2014). For P. oceanica, short-term 

exposure (three hours) to temperatures above 27°C were experimentally shown to significantly lower 

the performance of the PSII and the oxygen production of seedlings immediately after the treatment 

(Guerrero-Meseguer et al., 2017). The overall productivity of the P. oceanica early life stages is thus 
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assumed to be rapidly affected by temperatures corresponding to those measured in the field during past 

hot summers (Guerrero-Meseguer et al., 2017). In the same experiment, long-term (one month) exposure 

of the seedlings to temperatures above 29°C, resulted in a high mortality rate (33% die-off), increased 

leaf senescence and reduced leaf growth (Guerrero-Meseguer et al., 2017). The latter treatment 

simulated the effect of heatwaves that are expected to occur in a close future in the Mediterranean, and 

thus stressed their strong negative impact on the young plants’ development (Guerrero-Meseguer et al., 

2017). The sensitivity of P. oceanica seedlings to heat-stress was furthermore attested in an earlier study, 

reporting 70% mortality in the species younger life stages in similar heated conditions (Olsen et al., 

2012).  

 

The higher vulnerability of the P. oceanica seedling is directly reflected in the low colonization 

capacity of P. oceanica with increasing seawater temperatures, which worsen the species’ resilience 

(Diaz-Almela et al., 2007 ; Olsen et al., 2012 ; Guerrero-Meseguer et al., 2017). The overall low fitness 

and increased mortality rate of P. oceanica when exposed to high temperatures is likely to be caused by 

the above mentioned carbon imbalance, as it ensures the stability of metabolic processes, including 

growth, development and survival (Marín-Guirao et al., 2018 ; Ontoria et al., 2019 ; Pazzaglia et al., 

2020). 

 

2.2 Gloomy perspectives for the meadows : model-based approach 

 

Multi-model-based approaches are used to estimate future variations in seawater temperature, 

under different plausible scenarios. Among them is the relatively optimistic Scenario A1B, in which the 

greenhouse-gas concentration stabilizes after 2050 (Special Report on Emissions, IPCC, 2000). Based 

on the temperature changes predicted under the scenario A1B and the studied relationship between 

seawater temperature and P. oceanica shoot mortality, Jordà et al. (2012) proposed a portray of the 

evolution of P. oceanica meadows in the Northwestern part of the Mediterranean (Balearic Islands) for 

the coming decades (Marbà and Duarte, 2010 ; Jordà et al., 2012). The model projections predict a rapid 

increase of the Mediterranean seawater temperature, together with extended, more frequent and stronger 

heatwaves throughout the coming century (Jordà et al., 2012). In these conditions P. oceanica shoot 

mortality rates are expected to follow the current increasing trend (Marbà and Duarte, 2010). 

Additionally, under scenario A1B, annual maximum SST in the Northwestern part of the Mediterranean 

are expected to recurrently reach 28°C (the species maximum tolerable temperature) within the middle 

of the century. The year 2050 would thus mark the start of an accelerated decline of the remaining 

meadows, susceptible to induce the species’ extinction (Marbà and Duarte, 2010 ; Jordà et al., 2012 ; 

Telesca et al., 2015).  
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These predictions are in agreement with the meadows recession observed in the field (Marbà 

and Duarte, 2010). Marbà and Duarte (2010) measured a yearly net shoot loss of 5%. They estimated 

that it could reach 20% per year if the seawater temperature gained four additional Celsius degrees. 

According to the model’s projections, the Mediterranean annual maximum SST will increase on average 

by 3.4 ± 1.3°C by the end of the century (Jordà et al., 2012). Under such variation, only 10% of the 

present density of P. oceanica is predicted to remain shortly after the middle of the century, which would 

imply the loss of the meadows’ functionality and their disappearance soon after (Jordà et al., 2012).  

 

The critical consequences of seawater warming on P. oceanica meadows are thus assumed to 

have the potential to drive the decimation of the meadows before 2100 (Jordà et al., 2012). Especially 

since the removal of local disturbances was shown to have very little effect on the seagrass resilience 

(Jordà et al., 2012 ; Marbà and Duarte, 2010). These analyses strengthen the level of concern for the 

survival of P. oceanica, as they support a potential complete loss of the meadows in a close future if 

global warming is not drastically mitigated (Marbà and Duarte, 2010).  

 

2.3 Sulfide stress 

 

Besides from generating direct physiological changes in seagrasses, the increase in seawater 

temperatures in the Mediterranean also involves substantial indirect effects. Biogeochemical processes, 

abiotic components and microbial activity for instance can be modulated under changing thermal 

conditions (García et al., 2012). These indirect actors constitute a major threat for P. oceanica meadows 

as they undeniably influence the survival rate of the species (Marbà and Duarte, 2010 ; García et al., 

2012).  

 

Sulphide is a highly toxic compound for eukaryotic cells (Fenchel and Finlay, 1995). Elevated 

sulphide concentrations in the marine sediment can inhibit photosynthesis and damage the meristem of 

seagrasses, resulting in a lower productivity and growth, and a higher mortality rate (Carlson et al., 1994 

; García et al., 2012 ; Calleja et al., 2007 ; Garcias-Bonet et al. 2008). The sulphide concentration of 

marine sediment depends upon the reduction of sulfate by anoxic bacteria, whose activity is increased 

with higher temperatures (Knoblauch and Jørgensen, 1999 ; García et al., 2012). Furthermore, the 

impact of sulphide is exacerbated when oxygen is depleted from the surrounding environment. The lack 

of oxygen prevents oxidation reactions to occur, which allows the accumulation of toxic reduced 

compounds within the sediment, including sulphides (Holmer and Nielsen, 2007 ; Mascaró et al., 2009). 

Moreover, the seagrass’ partial pressure in oxygen, which is reduced in anoxic conditions, prevents the 

entering of sulphides into its tissues (Pedersen et al., 2004 ; Borum et al., 2005 ; García et al., 2012). 

High seawater temperatures trigger anoxia by lowering the oxygen solubility and enhancing its 
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consumption. Both oxidation reactions and the plants’ protective mechanisms are thus disrupted with 

increasing temperatures (Vaquer‐Sunyer and Duarte, 2011 ; García et al., 2012). 

 

Global warming hence fosters simultaneously oxygen depletion, as well as the production and 

accumulation of sulphide in the sediment. The latter conditions cause the intrusion of sulphide into the 

seagrass’ tissues, which is transported through the plant’s organs by gas diffusion through the meristem 

and up to the leaves (Pedersen et al., 2004 ; Borum et al. 2005). In P. oceanica, sulphide intrusion in 

leaves was experimentally shown to increase with higher temperatures (García et al., 2012). High 

sulphide intrusion rates were assumed to affect the plants’ leaf production and to enhance shoot 

mortality, particularly after extreme heat events (García et al., 2012 ; Marbà and Duarte, 2010).  A 

sulphide concentration as low as 10 µM was revealed to be sufficient for P. oceanica growth to be 

negative (Calleja et al., 2007). Considering the predictions made on seawater temperatures for the 21st 

century, this concentration is likely to be reached and exceeded in the coming decades (García et al., 

2012, 2013). Sulphide-stress is thus assumed to greatly increase the vulnerability of P. oceanica 

meadows, especially since sulphide toxicity is expected to be exacerbated with climate warming (García 

et al., 2012, 2013).  

 

2.4 Synergies between local and global stressors 

 

Intense coastal urbanization and the associated anthropogenic activities have driven the 

eutrophication of coastal waters across the Mediterranean basin (Karydis and Kitsiou, 2012). The 

excessive input of nutrients along the shores is known to negatively impact the functioning of coastal 

ecosystems by causing physiological changes in foundation species such as P. oceanica (Waycott et al., 

2009 ; Orth et al., 2006). While the global climate change clearly affects the persistence of P. oceanica 

meadows, local stressors such as eutrophication, are assumed to have the potential to exacerbate the 

seagrasses’ decline (Lloret et al., 2008 ; Darling and Côté, 2008 ; Ontoria et al., 2019).  

 

Nutrient enrichment can, to some extent, enhance seagrass’ growth, i.e. when the plants are 

growing under nutrient limited conditions (Alcoverro et al., 1997). However, the high nutrient 

concentrations linked to anthropogenic eutrophication mostly overshoot the tolerance limit of the plants. 

Their growth and survival are thus negatively affected, in indirect and direct ways (Burkholder et al., 

2007). High inorganic nitrogen concentrations for instance allow extreme growth rates of 

phytoplankton, macroalgea and epiphytic algae, whose proliferation greatly reduces light availability 

for the benthic communities including P. oceanica meadows (Touchette and Burkholder, 2000). 

Simultaneously, excessive nitrogen concentrations cause negative physiological changes and alter 

cellular functions, both disrupting the seagrasses’ growth (Burkholder et al., 2007).  
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The concomitant activity of local and global stressors may result in a synergistic effect, which 

can drastically lower the plants’ resilience and tolerance capacity under stressful conditions (Darling 

and Côté, 2008). The synergy between seawater warming and eutrophication on P.oceanica meadows 

was only recently attested through in situ experiments (Ontoria et al., 2019). Ontoria et al. (2019) 

measured a decrease of 70% in photosynthetic performance in P. oceanica exposed to heat-stress and 

increased ammonium concentrations, whereas the effect of the isolated stressors was minor (Ontoria et 

al., 2019). The combination of both stressors appeared to significantly amplify their individual effects 

on the seagrass’ metabolism. A part from greatly reducing the plant’s productivity, the latter synergy 

also negatively affected leaf growth and the activation of photoprotective mechanisms, inducing the 

damage of the plants’ tissues (Ontoria et al., 2019). P. oceanica meadows collected closer to the shore, 

i.e. experiencing higher eutrophication levels, were additionally shown to have lower carbohydrates 

reserves when exposed to high temperatures relative to plants growing in oligotrophic waters, resulting 

in leaf senescence, lower growth rate and higher shoot mortality rates (Pazzaglia et al., 2020).  

 

Similarly, seed burial and overgrazing were identified to synergistically decrease the viability 

of P. oceanica seedlings when occurring concomitantly with seawater warming (Guerrero-Mesequer et 

al., 2020). Seed burial is enhanced by increased sedimentation rates, especially along populated coasts 

where erosion is triggered by human activities, such as beach management, coastal deforestation and 

dredging (Cabaço et al., 2008 ; Guerrero-Meseguer et al., 2020). Overgrazing results in the same way 

from a cascade effect related to human pressure. As top-predators were extensively overfished in the 

Mediterranean, small grazers, such as the ‘sea cow’ Sarpa salpa,  are now abundant and thrive in the P. 

oceanica meadows (Orth et al., 2006 ; Short and Wullie-Echeverria, 1996). Adjacently, seawater 

warming together with eutrophication renders P. oceanica leaves more palatable for fish, which 

increases the grazing pressure on the species (Buñuel et al., 2020).  

 

Exposure to local stressors, such as eutrophication, seed burial or overgrazing, is likely to induce 

physiological adaptations in P. oceanica, which come with high energetic costs (Pazzaglia et al., 2020). 

The investment of energy required for acclimation and the maintenance of metabolic processes 

potentially limits the plants’ capacity to respond to further stressors, such as increasing seawater 

temperatures (Ontoria et al., 2019 ; Pazzaglia et al., 2020). The seagrasses’ tolerance towards stress 

factors is hence presumably linked to the environmental conditions in which they develop. The 

experimental evidence of the existence of synergistic interactions between local and global stressors 

further reinforces the high level of concern for P. oceanica meadows, especially for those dwelling along 

the densely populated coasts (Ontoria et al., 2019).  
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3. A glimpse of hope for the Posidonia oceanica meadows : adaptation possibilities 

3.1 Heat-induced flowering  

 

Sessility constrains the capacity of plants to escape adverse or stressful conditions. Evolutionary 

pressure therefore granted these organisms with strategies to ensure the species’ survival. Among them 

is the very efficient strategy of sexual reproduction. In the marine environment, clonal seagrasses, such 

as P. oceanica, rely on the latter to increase the species adaptive success in changing environments 

(Kazan and Lyons, 2016).  

 

As a member of angiosperms, P. oceanica produces inflorescences for its sexual reproduction. 

The reproductive effort is twofold beneficial for the persistence of the meadows. On one hand, it allows 

long-distance seed dispersal, potentially towards more favorable conditions, which simultaneously 

increases the genetic connectivity between distant populations (Serra et al., 2010 ; Kendrick et al., 2016). 

On the other hand, it enhances genetic diversity among the clonal population. Recombination events 

during meiosis can potentially generate genotypes with higher tolerance and/or resilience capacities, or 

able to colonize new habitats (Hughes and Stachowicz, 2004 ; Reush et al., 2005 ; Ruiz et al., 2018 ; 

Marín‐Guirao et al., 2019). Moreover, seeds can act as a dormant stage for the seagrasses, which may 

contribute to the recovery of the species over time (Unsworth et al., 2015 ; Ruiz et al., 2018).     

 

In all seagrass species, the occurrence of sexual reproduction varies in space and time, among 

and within species (Díaz-Almela et al., 2006). In P. oceanica, past flowering events can easily be 

detected by the scars that inflorescences leave on the rhizome while they develop (Diaz-Almela et al., 

2007). Blooming in P. oceanica meadows is in general rare, sparse and unpredictable (Hemminga and 

Duarte, 2000 ; Diaz-Almela et al., 2007). 

 

Flowering is known to be triggered by genetic, physiological and environmental parameters 

including light and temperature (Searle and Coupland, 2004). Further external factors related to adverse 

environmental conditions were as well recognized as drivers of blooming events in terrestrial plants. 

Among these are abiotic components, such as drought, salinity, heat and cold, as well as biotic 

components, such as pathogens and grazers (Kazan and Lyons, 2016 ; Takeno, 2016). The irregularity 

of flowering events in seagrasses supported the role of external stressors in the transition to sexual 

reproduction in the marine environment (Diaz-Almela et al., 2007 ; Kazan and Lyons, 2016 ; Ruiz et 

al., 2018 ; Marín‐Guirao et al., 2019). In the global warming context, heat was soon identified as an 

environmental factor influencing the timing and intensity of blooming in seagrasses, including in P. 

oceanica (Buia and Mazzella, 1991 ; Díaz-Almela et al. 2006). The latter was supported by field 

observations, which provided evidence that extreme heatwaves (summer 2003 and 2006) were followed 

by extended flowering events of P. oceanica meadows in the Northwestern part of the Mediterranean 
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(Díaz-Almela et al., 2007 ; Marbà and Duarte, 2010). The hypothesis of flowering being an adaptive 

response to heat-stress initiated further experimental investigations. Only heated P. oceanica plants 

bloomed in mesocosm experiments with individuals from identical provenance and with no genetic 

divergence (Ruiz et al., 2018). Both observations in situ and in vitro suggested that flowering of P. 

ocenica meadows is rather associated to extreme seawater temperature anomalies (heatwaves) than to a 

gradual warming of the seawater. The higher the anomaly, the more prevalent and intense the flowering 

events appeared to be (Díaz-Almela et al., 2007). Besides of inducing flowering, the plants’ exposure 

to increasing temperatures in the above mentioned mesocosm experiments was also correlated with a 

reduction of leaf growth on P. oceanica (Ruiz et al., 2018). The latter is considered as a typical response 

to stress in higher plants (Lichtenthaler, 1996). The heat-induced blooming of P. oceanica meadows 

was thus assumed to be a stress-driven response, enhancing the species’ adaptive potential and survival, 

by respectively fostering genetic diversity and creating a seed bank persisting until environmental 

conditions stabilize (Jahnke et al., 2015 ; Ruiz et al., 2018 ; Marín‐Guirao et al., 2019).  

 

In seagrasses, the transition from vegetative growth to sexual reproduction occurs through the 

modulation of gene expression and epigenetic reprogramming, as well as through the altered activity of 

phytohormones and further signaling networks (Marín‐Guirao et al., 2019). A transcriptomic analysis 

of seagrasses experiencing high temperatures revealed the activity of molecular cues responsible for 

flowering and flower development in P. oceanica (Marín‐Guirao et al., 2019). Altogether, the induced 

molecular changes detected led to higher heat tolerance and the induction of flowering two weeks after 

the beginning of the warm-up period (Marín‐Guirao et al., 2019). The P. oceanica flowers developed 

until their mature stage, which was reached within 6 weeks after the start of the experiment. However, 

their viability was not monitored in later stages and the sexual reproductive success could thus not be 

ascertain (Marín‐Guirao et al., 2019). Later occurring processes, such as pollination, seed dispersal and 

settlement, could likewise be influenced by the warming and negatively affect the seagrasses’ 

reproductive success (Díaz-Almela et al., 2007 ; Marín‐Guirao et al., 2019). 

 

Additionally, allelic richness and heterozygosity in P. oceanica were shown to increase the 

intensity of flowering events (Jahnke et al., 2015 ; Ruiz et al., 2018). The intensification of sexual 

reproduction of P. oceanica in warming conditions could thus build-up a positive feedback enhancing 

the species flowering, as it allows a greater genetic diversity within and among the populations. 

 

3.2 The power of epigenetic modifications 

 

Epigenetic modifications alter gene expression without changing the underlying DNA sequence, 

through histone modifications, non-coding RNAs and DNA methylations (Bossdorf et al., 2008). The 

activation of specific epigenetic mechanisms under stressful conditions has the potential to enhance the 
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overall resilience, tolerance and adaptive capacity of clonal species such as seagrasses (Bossforf et al., 

2008). These processes for instance may result in early-flowering phenotypes, increasing the survival 

chances of species undergoing critical environmental changes such as P. oceanica (Dodd and 

Douhovnikoff, 2016 ; Ruiz et al., 2018). The methylation of cytosines across the DNA sequence is 

especially known to contribute to evolutionary adaptations in changing environments (Verhoeven et al., 

2016 ; Duarte et al., 2018).  Moreover, epigenetic mechanisms are involved in heat-stress memory, 

which is assumed to allow plants to “remember” exposure to heat and better resist future ones (Lämke 

et al., 2016 ; Marín‐Guirao et al., 2019). The epigenetic reprogramming in response to stress is 

integrated in the plants’ genetic material and generates faster reactions when stress conditions are 

reiterated (Lämke et al., 2016 ; Latzel et al., 2016 ; Marín‐Guirao et al., 2019). 

 

As epigenetic modifications are unaffected by meiosis, they accumulate throughout the plant’s 

clonal expansion and are transmitted to offspring in the event of sexual reproduction. Therefore, 

epigenetic processes are susceptible to enhance the seagrass’ adaptive potential despite low sexual 

reproduction rates (Dodd and Douhovnikoff, 2016 ; Marín‐Guirao et al., 2019). Considering the thermal 

changes predicted for the 21st century, these mechanisms could play an essential role for the persistence 

of seagrass species, including P. oceanica (Dodd and Douhovnikoff, 2016 ; Marín‐Guirao et al., 2019). 

Alternatively, understanding the molecular basis of these protective processes could contribute to 

conservation and management efforts for seagrass meadows (Marín‐Guirao et al., 2019). 

 

4. Discussion 

 

P. oceanica meadows are efficient bioindicators. Their condition directly reflects the health of 

the Mediterranean coastal ecosystems (Montefalcone, 2009). The alarming status of the meadows 

demonstrates yet again the sheer size of human impact on the biosphere. The ongoing recession of P. 

oceanica meadows related to the direct and indirect effects of increasing seawater temperatures shows 

that global warming has the potential to cause the decimation of the species across the Mediterranean 

basin. The latter assumption strengthens the crucial and urgent need to limit anthropogenic greenhouse 

gas emissions, especially when considering the essential ecological and economical roles of P. oceanica 

meadows. 

 

Fortunately, the early studies revealing the vulnerability of P. oceanica mediated their 

protection. In 1988, the species was added to the list of protected plant species in France (Boudouresque 

et al., 2015). The species was later on protected under multiple European, national and regional 

legislations, and Marine Protected Areas were created along the coasts. Conservation plans aiming at 

maintaining or reestablishing the biodiversity of the Mediterranean were progressively put in place and 

allowed to mitigate to some extent the recession of the meadows (Boudouresque et al., 2006). P. 
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oceanica beds are now classified as an “endangered” habitat under the IUCN Red List Criteria for 

Ecosystems (Gubbay et al., 2016). Even though these measures will not allow to meet the conservation 

goals for the meadows, they certainly helped to change the general opinion on P. oceanica, which 

accelerated the efforts for their protection.  

 

Restoration projects of P. oceanica meadows are ongoing and supported by research on seedling 

development (f.e. Alagna et al., 2020). Different strategies were established and tested for the 

ecosystems’ rehabilitation (Boudouresque et al., 2006). However, the recovery of disrupted meadows is 

difficult to reach, due to the high vulnerability of seedlings and the species’ very slow growth (Olsen et 

al., 2012). For instance, a P. oceanica meadow of 1.13 hectares across the harbor of Marseille (France) 

destroyed by a bomb in the year 1942 had not recovered 50 years later (Boudouresque et al., 2006). 

 

Clones of P. oceanica are believed to have persisted for millennia under changing environments 

(Arnaud-Haond et al., 2012 ; Dodd and Douhovnikoff, 2016). However, the pace of the ongoing climate 

change is susceptible to be too fast for the seagrasses to adapt to the current and future conditions 

(Walther et al., 2002). Nevertheless, analyses of the genetic structure among P. oceanica populations 

revealed a higher genetic diversity within the species’ than was previously thought. The distribution of 

the genetic diversity is assumed to result from past vicariance events, which hypothetically occurred 

about 5.5 million years ago. From a genetic perspective, two distinct populations of P. oceanica exist, 

each of them residing on one side of the Messina Strait (Italy) (Arnaud‐Haond et al., 2007 ; Serra et al., 

2010 ; Duarte et al., 2018). As the two populations are not reproductively isolated, their mixing may 

contribute to increase the species’ adaptive capacity towards global warming, especially since the 

Eastern population experiences slightly higher seawater temperatures. Moreover, the more frequent 

sexual reproduction observed among P. oceanica meadows with increasing temperatures could foster 

the inter-population crossing.  

 

The adaptive potential of P. oceanica meadows is generally assumed to be low. However, the 

gloomy picture can change when considering the power of non-genetic mechanisms. Epigenetic 

modifications, as well as transposable elements and the seagrass’ microbiome can lead to rapid micro-

evolution processes, which may allow the local acclimation of the plants (Duarte et al., 2018). By 

modulating gene expression, epigenetic modifications and the activation of transposable elements 

trigger phenotypic plasticity and influence the resistance and adaptivity of the plants (Latzel et al., 2013). 

The microbial community associated to the seagrasses is also susceptible to increase the plants’ fitness 

through the production of bioactive compounds, as observed for kelp forests (Ji et al., 2017 ; Duarte et 

al., 2018). Interestingly, P. oceanica meadows on the coastline of the Spanish region Valencia exhibited 

a hopeful trend. Despite their regression reported between 1990 and 2000, the meadows’ demography 

appeared to stabilize between 2002 and 2011, with some beds increasing in density and span (Guillén et 
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al., 2013). Further analyses on the epigenomic material and microbial composition of these meadows 

may reveal processes responsible for the acclimation of P. oceanica in this area. Similarly, González-

Correa et al. (2007) suggested a positive population dynamics in P. oceanica meadows from multiple 

protected and pristine areas across the Mediterranean basin (France, Spain, Tunisia and Cyprus) 

(González-Correa et al., 2007). Their work emphasized the capacity of P. oceanica to accommodate to 

local environmental variability when anthropogenic disturbances are removed (González-Correa et al., 

2007). Analyzing the seagrasses’ fitness within those protected areas could therefore reveal positive and 

hopeful trends for the species.  

 

To conclude, rapid evolution through non-genetic mechanisms and inter-population mixing may 

theoretically neutralize the multiple effects of global warming on P. oceanica meadows. It is however 

far from certain that these processes will occur in a close future. The warming of the Mediterranean Sea 

could soon reach a critical threshold outpacing any possibility of adaptation for the seagrass. The death 

of the meadows could have dramatic consequences, particularly when considering the role of the 

underlying matte. The conventional protection of the meadows is essential and can still be broaden and 

reinforced. Especially since the tourism industry often does not strictly follow the regulations and is thus 

still having an important impact on the meadows. Mitigating global warming stands however on the 

front line for the conservation of P. oceanica meadows and therefore, for keeping the integrity of the 

Mediterranean coastal ecosystems. The huge importance of the P. oceanica meadows for the 

Mediterranean Sea and coasts, as well as for the regulation of the Earth’s atmospheric CO2 concentration 

clearly shows how crucial it is to care and to act for their protection.  
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