
Isolating Wildfires using a Convolutional

Neural Network based Multi-Agent System

Bachelor’s Project Thesis

Niels Rocholl, S3501108, n.m.m.rocholl@student.rug.nl,

Supervisor: dr. M.A. Wiering

Abstract: This study tests the ability of a convolutional neural network (ConvNet) based multi-
agent system (MAS) to isolate wildfires in a simulation. The ConvNet is designed to map the
environmental input to useful moves. The MAS consists of either two or four agents. All systems
are tested in grid environments of size 21 × 21, 41 × 41, and 61 × 61. All environments are
simulated with a normal and a fast fire propagation speed. Furthermore, a single agent system
is implemented for the purpose of comparison. The results show that the four agent system
outperforms the single-agent system in all environments. Moreover, the four agent system is able
to isolate more than 99% of fires in all environments except one. In the 61 × 61 environment
with a fast fire propagation speed, the four agent system is able to isolate 90.5% of the fires on
average.

1 Introduction

1.1 Wildfires

Wildfires are a vital natural process in our envi-
ronment. However, in recent years the frequency
and scale of wildfires have been increasing at an
alarming rate. Every year wildfires burn millions
of acres and destroy thousands of homes, leaving
many people without a roof over their heads. Due
to the advent of global warming, we are now facing
the reality that these fires will only become worse
in the foreseeable future.

Fighting wildfire can be extremely challenging.
To effectively fight wildfire, factors such as weather,
fuel, and topography need to be analyzed. More-
over, it is of great importance that firefighters keep
track of multiple dimensions at all times, as the fire
can spread through trees, soil, or even through the
air when embers are carried by the wind. Fire man-
agers use this information to determine the behav-
ior of a wildfire. However, when the fire becomes
sufficiently complex, it is almost impossible for a
human to devise an effective plan to fight the fire.
For this reason, this study will focus on the applica-
tion of machine learning to the problem of wildfire
control.

In order to put out a fire, one needs to remove

oxygen, heat, or fuel. At the moment, the two most
widely used fire fighting techniques focus on remov-
ing oxygen by putting water, dirt, or retardant on
the fire or removing fuel by digging firebreaks. This
project will focus on the latter technique. A fire-
break is a gap in vegetation or other combustible
material that acts as a barrier to stop a wildfire’s
progress. However, doing this effectively is easier
said than done. Many factors need to be considered
to dig effective firebreaks, such as fire propagation
speed, distance to the fire, and wind direction. Fur-
thermore, it can be a hazardous job since one could
be engulfed in flames within seconds if the wind
picks up.

There have been several endeavours in which
the application of machine learning on the prob-
lem of wildfire control is researched. One of these is
enforced subpopulations (Wiering, Mignogna, and
Maassen, 2005). In this approach enforced subpop-
ulations are used to evolve neural network con-
trollers. The system works by generating subgoals
and assigning them to different agents. In this
system, the task assignment module and subgoal
generator are modeled as multi-layer perceptrons,
which are evolved to minimize the damage caused
by the spreading wildfire.

Another approach focused on the application

1



of reinforcement learning (Wiering and Doringo,
1998). In this approach reinforcement learning
(RL) is used to learn reactive policies that map an
agent’s input to the appropriate action. RL algo-
rithms learn from trial and error in order to predict
the total expected cost of a unique situation. The
policy can then use the predicted costs to select an
action that minimizes the expected future cost.

Yet another approach focussed on a combina-
tion of RL and learning from demonstration (LfD)
(Hammond, Schaap, Sabatelli, and Wiering, 2020).
In this approach four model-free RL algorithms are
combined with a multi layer perception that serves
as a value function approximator. Furthermore, the
researchers use demonstration data that is inserted
in an experience-replay memory buffer before learn-
ing to enable the algorithms to better cope with the
difficulty to contain the forest fires when they start
learning.

1.2 Background

This study is inspired by previous research that
used LfD and ConvNets to isolate wildfires in a sim-
ulation (Ywema and Wiering, 2020). This approach
showed promising results, however the system in
this study consisted of only a single agent. A multi-
agent system might be better suited to the prob-
lem of wildfire isolation. For that reason, this study
will present a new approach that combines a con-
volutional neural network (ConvNet) with a multi-
agent system. Furthermore, a single agent system
will also be implemented and tested for the purpose
of comparison.

Multi-Agent Systems

A multi-agent system (MAS) is a system that is
designed to deal with the behavior of multiple
computing entities called ”agents.” In a MAS, the
agents work together to solve a problem that would
be beyond the abilities of a single agent. Multi
agent systems have been proven to be useful in mul-
tiple fields such as electronic business, the semantic
web, and grid computing (Oprea, 2004)

Convolutional Neural Networks

The field of deep learning has been witness to sev-
eral great successes over the past years. Many of

the advances in the field have been made possible
through the application of a particular algorithm,
the convolutional neural network (ConvNet). A
ConvNet is a deep learning algorithm similar to
an ordinary neural network (NN). ConvNets have
enabled many outstanding achievements within the
field of artificial intelligence, with LeCun being one
of the earliest adopters. He showed that ConvNets
could classify handwritten digits (LeCun, Boser,
Denker, Henderson, Howard, Hubbard, and Jackel,
1989). In 2016, almost 27 years after LeCun’s work,
the team at Google’s Deepmind showed that it was
possible to master the game of Go by leveraging
the power of ConvNets (Silver et al., 2016).

A ConvNet, just like a normal NN, is made up of
learnable weights and biases. However, unlike a NN,
a ConvNet has its neurons arranged in three dimen-
sions (width, height, depth). A ConvNet can cap-
ture the spatial dependencies within the input ma-
trix through the use of so-called filters. Together,
these characteristics allow for the classification of
complex input matrices that would not be feasible
with ordinary NNs.

1.3 Research Question

This study aims to determine if a multi-agent sys-
tem, which utilizes a ConvNet for action selection,
can effectively isolate wildfires in a simulated en-
vironment. The reason for choosing a ConvNet is
its ability to capture the spatial information from
the simulation, which will be used by the agents
to make predictions on whether to dig a firebreak
or move in a certain direction. The reason for us-
ing a multi-agent system is because of its ability to
handle complex environments. Moreover, another
advantage of using multiple agents is that the sys-
tem can tolerate failures by one or more agents,
since other agents can make up for their mistake.
In other words, a multi-agent system has the benefit
of robustness. Taken together, these qualities make
a multi-agent system better suited to this problem
than a single agent system. The research question
to be answered in this study is:
”Can a multi-agent system which utilizes a convolu-
tional neural network for action selection effectively
be used to isolate wildfires in a simulation?”
Furthermore, this paper will study the effect of in-
cluding the agent’s positional history in the input
for the convolutional neural network. This will be

2



done by storing the previous positions of an agent
in one of the ConvNets input layers. A similar tech-
nique was successfully used in previous research
to increase the accuracy of a ConvNet (Wagenaar,
Okafor, Frencken, and Wiering, 2017). In this re-
search the input for the ConvNet was enhanced by
including so-called object trails, which indicate
previous soccer positions.

2 The Wildfire Simulation

This section will discuss how the environment for
the wildfire simulation was implemented and how
it was represented.

2.1 Glossary

Active agent: The agent which is currently tak-
ing an action.
Inactive agent: The agent which is currently not
taking an action because it is waiting for its turn.
FPS: Fire propagation speed

2.2 Environment

The environment that was used in this study repre-
sents a simulated top-down view of a forest, such as
shown in figure 2.1. It is a grid structure consisting
of cells, with a length N and width N , adding up
to a total amount of N ×N cells.

Figure 2.1: Snapshot of the 41× 41 environment
containing two agents (grey with ”A” inside),
fire (red), trees (green) and burnt (black)

2.2.1 Cells

The cells of the environment can be classified as
one of the following five types:

• Agent

• Tree

• Dirt

• Burnt

• Fire

In addition, every cell has four attributes:

• Fuel

• Temperature

• Ignition threshold

• Heat potential

The type of every cell is visible to the agents at
all times. The attributes however, are not visible to
the agents. The attribute fuel determines how long
a cell can burn. The temperature of a cell deter-
mines whether it should ignite, which will happen
once the temperature passes the ignition threshold.
Lastly, the attribute heat potential determines how
much heat is applied to surrounding cells.

2.2.2 Agents

The simulation can be run with a single agent or
multiple agents. At the start of the simulation the
agent(s) will be positioned at a random location.
To prevent the agent from being positioned outside
the map, the starting location of the agent has to
adhere to a maximum radius of:

max(r) =
N

2
− 1 (2.1)

In which r is the radius and N is the map size. An
agent can choose between six different actions:

• Move Up

• Move Down

• Move Left

• Move Right

• Dig

• Wait

3



An agent is modeled by a ConvNet, which takes
as input the current state of the environment and
outputs a class score for every possible action. The
agent then selects the action with the highest class
score. Every action takes one time-step to execute.
However, certain restrictions apply to the action
an agent may take given a particular state. The
agent cannot traverse fire. If it tries to do so, the
action is canceled, and the agent’s position will not
change. This can be seen as the agent having a heat
sensor that prevents it from moving into the fire.
Furthermore, the fire cannot spread to an agent’s
location.

2.2.3 Fire

The fire always starts in the middle of the map.
It only knows four directions of movement, namely
horizontal and vertical movement, meaning that it
is not allowed to move diagonally. The fire spreads
by igniting all neighboring tree cells. Every time-
step the fire looks for a possible spreading path
through the use of the Astar algorithm (Hart, Nils-
son, and Raphael, 1968). If the fire does not find a
spreading path, then it has been isolated and the
simulation is terminated. If the fire reaches the bor-
der of the map, then the fire is out of control and
the simulation is also terminated. For the distance
heuristic, the simulation uses Manhattan distance
(L1). Lastly, the fire can be simulated with a nor-
mal fire propagation speed and a fast fire propa-
gation speed (FPS). The normal FPS ignites all
burnable neighboring cells after 38 time-steps. The
fast propagation speed is double as fast as the nor-
mal propagation speed, lighting all burnable neigh-
boring cells after 19 time-steps.

2.3 Representation

The ConvNet is designed to receive an abstract rep-
resentation of the environment’s current state and
output a class score for all actions. In this study, the
input data for the ConvNet was relatively simple,
making it a perfect candidate for the use of binary
vision grids, which have been proven to be useful
in the game of Tron (Knegt, Drugan, and Wiering,
2018). Vision grids have been shown to enhance
performance and increase the learning speed of the
system. A vision grid shows part of the environ-
ment from the agent’s perspective. For this study,

multiple vision grids were used to represent a sin-
gle state. Each vision grid only holds binary values.
These values represent essential information in the
environment, like the agent’s location or the loca-
tion of the fire. The size of the vision grids is the
same size as the environment, meaning that the
agent can observe the whole environment.

The input data for the ConvNet contains eleven
vision grids, which can be configured in seven dif-
ferent ways in order to test the effects of including
0, 3, 5, or all previous agent positions in the input.
The eleven different vision grids are:

1. Current position of the active agent

2. Current position of the inactive agent(s)

3. Previous 3 positions of the active agent

4. Previous 5 positions of the active agent

5. All previous positions of the active agent

6. Previous 3 positions of the inactive agent(s)

7. Previous 5 positions of the inactive agent(s)

8. All previous positions of the inactive agent(s)

9. Fire positions

10. Dirt positions

11. Tree positions

These vision grids are matrices filled with zeros
and ones. Figure 2.2 shows the translation of the
environment into seven binary maps.

2.4 Input Data

The data used in this project was created by a hu-
man. This was done by controlling the agents dur-
ing a simulation and saving the state of the en-
vironment and corresponding actions in a folder.
The data was separated by environment size, FPS,
and the number of agents. As stated before, the
environment is saved as a stack of matrices. These
matrices are the same width and height as the en-
vironment, and they are filled with binary values.
A 1 represents that a specific cell type is located
at that position, and a 0 represents that it is not
located at that position. The size of the generated
data can vary drastically depending on the setup
of the environment. An environment of size 61×61
with two agents and a fast FPS will generate a
lot more data than an environment of size 21× 21

4



with two agents and a normal FPS. This can be
explained by the fact that it takes more steps for
the agents to reach and isolate the fire, meaning
more states and actions need to be saved.

As mentioned in the previous section, this study
also tested the effects of including 0, 3, 5, or all pre-
vious agent positions in the input data. All eleven
vision girds mentioned in section 2.3 were saved
during the data generation process. This allowed
for the generation of different input configurations
from the same data set. To give an example: in or-
der to test the effects of including the previous five
positions of all agents, we configured the input data
to include vision grids 1, 2, 4, 7, 9, 10, and 11 from
the list in section 2.3.

Figure 2.2: Vision grids displaying current agent
positions (1 and 2), 5 previous agent positions
(4 and 4) and all fire (5), dirt (6) and forest (7)
positions

3 Convolutional Neural Net-
work

A convolutional neural network is a type of neu-
ral network which was first introduced by LeCun
in the 1980’s (LeCun et al., 1989). LeCun’s work
showed that it was possible to classify handwritten
digits. Nowadays, ConvNets are used for consider-
ably more complex tasks like autonomous driving
and facial recognition. The workings and benefits
of ConvNets will be presented in the following sec-
tions.

3.1 Neural Network

A neural network (NN) is a type of algorithm that
can be trained to recognize certain patterns. A sim-
ple NN like the one depicted in figure 3.1 consists of
neurons and the connections between them. Simply
said, a neuron is a thing that holds a number, typi-
cally between 0 and 1. The number inside the neu-
ron is called its activation. A simple NN has three
different types of layers: the input layer, the hidden
layer(s), and the output layer. All layers hold some
amount of neurons. The activations in one layer
determine the activations in the next. This mech-
anism aims to achieve that each neuron from the
hidden layer(s) will correspond to a specific piece of
information from the training data. In digit recogni-
tion for example, the goal is that each neuron in the
hidden layer corresponds to a sub-component of the
digits. The subcomponent could for example be the
loop in the number 9 or the straight line in the num-
ber 5. A properly trained network would then know
which combination of subcomponents corresponds
to which number. Such a simple NN is trained by
tweaking the connections between the neurons. In
a fully connected NN, every neuron in one layer is
connected to every neuron in the next layer. These
connections are called weights, and these weights
are the things the network tweaks during training.
The value of a neuron from the hidden layer (hj)
which is connected to a neuron from the input layer
(xi) through a weight (wij) is calculated by:

hj = f(

n∑
i=1

wij ∗ xi) (3.1)

This equation basically calculates the weighted
sum of all the activations from the previous layer.

5



f() is a nonlinear activation function. This mech-
anism is used for both the hidden and output
nodes. Next to weights, a neuron is typically also
connected to some bias, which is an indication of
whether a neuron tends to be active or inactive.
The weights and biases are tweaked through an op-
timization algorithm, which will adjust the weights
so as to improve the NNs performance. This is done
by comparing the output of the network to the tar-
get output. The difference between these two is
called error. An example of how a weight would
be updated is:

w = wold + α ∗ (yt − y) ∗ x (3.2)

In which w is the weight between neuron x and
neuron y, wold is the old value of weight w, yt
is the target output for neuron y and α is the
learning rate. The learning rate is often a small
positive number. Updating all weights in the net-
work can be done through the implementation of
the backpropagation algorithm (Rumelhart, Hinton,
and Williams, 1986).

Figure 3.1: A simple neural network architec-
ture

As stated before in section 1.2, this study used a
convolutional neural network, or ConvNet for short.
A ConvNet is a specialized type of neural network
that consists of three or more layers, making it a so-
called deep neural network. ConvNet architectures
also have an input and output layer. In addition to
that they also typically have three main types of

hidden layers: a convolutional layer, pooling layer,
and fully-connected or dense layer. These layers will
be stacked on top of each other in order to form a
full ConvNet architecture. All three layers will be
now explained in more detail.

3.2 Convolutional Layer

The convolutional layer is at the core of the Con-
vNet since it carries the largest portion of the com-
putational load. The convolutional layer performs
a dot product between two matrices where one ma-
trix is a restricted portion of the input matrices,
and the other matrix is a so-called filter. Filters
are learnable parameters that are spatially small in
width and height but the depth of the filter covers
all channels. During the feedforward pass, the filter
slides across the input and computes the dot prod-
uct between the input at any position and the en-
tries of the filter. This process produces a so-called
activation map. This map gives responses of that
filter for every spatial position. The goal is for the
network to learn filters that are activated if they see
a particular visual feature. A single convolutional
layer can have many filters. The hyperparameters
of a convolutional layer include the filter size F, the
number of filters K, the amount of zero padding P
and the stride S. Stride specifies how much we slide
the filter. A stride of 2 means we move two matrix
entries at a time. Zero padding is a border of zeros
around the input volume, enabling control over the
spatial size of the output volume.

Figure 3.2: A filter (green), input volume (yel-
low) and output volume (red)

6



3.3 Pooling Layer

A pooling layer performs a downsampling operation
on the input volume. Pooling layers are commonly
placed after a convolutional layer. The purpose of
these layers is to reduce the representation’s spatial
size to lower the number of parameters and thereby
the number of computations. This layer performs
its operations independently on every layer along
the depth of the input volume. Just like in a convo-
lutional layer, the operation is performed by sliding
a ”view” over the input volume. Different types of
pooling layers perform different computations on
the values in that ”view”. The most common types
of pooling layers are max pooling and average pool-
ing layers. The Max pooling operation selects the
highest value in the view. The average pooling op-
eration averages the values in the current view. In
a pooling layer, the height and width of the volume
is reduced. However, the depth remains the same.
A pooling layer requires two hyperparameters: the
stride S and the spatial extent F.

3.4 Fully Connected Layer

Fully connected layers are often found towards the
end of a ConvNet architecture. A fully connected
layer performs its computations on a flattened in-
put so that all neurons in one layer can be con-
nected to all neurons in the next, i.e., fully con-
nected. Typically, the result of the convolution and
pooling process is fed into a fully connected layer
which drives the final classification process.

3.5 Activation Functions

Activation functions are used to determine the out-
put of a neuron by mapping the values between a
certain range. This study uses the rectified linear
unit and softmax activation function, therefore we
will only discuss these two.

ReLU (Rectified Linear Unit)

ReLU is one of the most popular activation func-
tions. It is defined by:

R(y) = max(0, y) (3.3)

In this equation y is the output from the neuron.
ReLU is half rectified. It outputs 0 if y is less than

zero and otherwise it outputs y, meaning that it
maps the output values between 0 and infinity. A
problem with this function is that all negative val-
ues become zero, meaning that it does not properly
map negative values. The advantage of ReLU is the
reduced likelihood of the gradient vanishing. The
vanishing gradient problem can prevent a weight
from changing its value during training.

Softmax

The softmax activation function turns values into
probabilities that sum to one. The output is a vec-
tor that represents the probability distribution of
a list of classes. This function is therefore useful
for classification problems which consist of multi-
ple classes. The softmax function is defined by:

S(x)i =
exp(xi)∑c
j exp(xj)

(3.4)

In this equation xi is the output of the neural net-
work for action i. C is the number of classes. xj are
the scores inferred by the net for each class in C
and S(x)i is the translated output into a probabil-
ity value.

3.6 Loss Function

During training the model tries to minimize the
loss, which is the difference between the output and
the target output. The loss is calculated via the loss
function. This study uses categorical cross entropy,
which is defined by:

CE = −
C∑
i

tilog(S(x)i) (3.5)

In this equation CE is the cross entropy loss, C is
the class, ti is the target output for action i and
S(x)i is the softmax function discussed in section
3.5.

3.7 Adam Optimizer

In a NN, the optimizer is used to minimize the loss
through a process called gradient descent, which
tries to find a local or global minimum by analyz-
ing the slope of the loss function. This project uses

7



the Adam optimizer (Kingma and Ba, 2014) (adap-
tive moment estimation), which is currently rec-
ommended as the default optimization algorithm
(Ruder, 2016). The advantages of the Adam opti-
mizer according to its inventors are: ”it only re-
quires first-order gradients with little memory re-
quirement” and ”the method computes individ-
ual adaptive learning rates for different parame-
ters from estimates of first and second moments of
the gradients” (Kingma and Ba, 2014). The Adam
optimizer uses stochastic gradient descent (SGD),
meaning that some randomness is introduced dur-
ing the process of optimization. Adam computes
the decaying averages of past and past squared gra-
dients mt and vt respectively as follows:

mt = β1mt−1 + (1− β1)gt (3.6)

vt = β2mt−1 + (1− β2)g2t (3.7)

β is the exponential decay rate, mt is an estimate
of the first momentum of the gradient and vt is an
estimate of the second momentum. The creators of
Adam observed that these two values are biased
toward zero during the first steps. This bias can
be counteracted by computing new corrected esti-
mates for the first and second momentum, which is
done via:

m̂t =
mt

1− βt
1

(3.8)

v̂t =
vt

1− βt
2

(3.9)

These are used to update the parameters θ
(weights, biases) through the following update rule:

θt+1 = θt −
α√
v̂t + ε

m̂t (3.10)

α is the learning rate. The creators of Adam pro-
pose the following values as default: β1 = 0.9, β2 =
0.999 and ε = 1e− 07 .

3.8 Validation

Ideally, the system should stop training once the
system performs best. However, this exact point
can be hard to pin down. During each training
epoch the accuracy of the system is calculated via:

Accuracy =
cp

tp
(3.11)

With cp being the correct predictions and tp being
the total amount of predictions. A correct predic-
tion means that the system accurately classified an
input. In order to prevent overfitting, the model is
not only tested on the training data but also on
validation data. The validation data contains pre-
viously unseen input for the system, which was not
used during training. This data is therefore used to
give an indication of how well the system performs
on new and unseen data.

3.9 Architecture

The architecture of the ConvNet used in this study
will now be discussed. The network consists of six
layers:

1. Input layer

2. Convolutional layer

3. Max Pooling layer

4. Convolutional layer

5. Convolutional layer

6. Output layer (dense/fully connected)

The architecture of the network can also be seen
in figure 3.3. The shape of the input layer can range
from N×N×5 to N×N×7, depending on the con-
figuration mentioned in section 2.3 and the size of
the map. The second layer is a convolutional layer
characterized by a stride of 1, with 100 filters of
size 2 × 2. The activation function used for this
layer was ReLU. The third layer is a max-pooling
layer characterized by a pool size of 3 × 3 and a
stride of 1. The fourth layer is again a convolu-
tional layer with the same hyperparameters as the
second layer, i.e. a filter size of 2×2, 100 filters and
stride of 1. This layer also utilized the ReLU func-
tion. The fifth layer is another convolutional layer
characterized by a filter size of 2×2 with 25 filters,
again a stride of 1, and again the ReLU function.
The final layer is a fully connected layer contain-
ing six output nodes representing the six possible
actions. For this fully connected layer, the softmax
activation function was used. As stated before, this

8



network used the Adam optimizer for optimization.
Moreover, categorical cross-entropy was used as the
loss function. Furthermore, the early stopping and
model checkpoints methods were used to find the
optimal model. Early stopping rules prevent the
model from overfitting by tracking the performance
of the model on the validation dataset and stopping
the learning process once this performance starts
to degrade. Model checkpoints save the best model
so that the system can go on with training and if
the performance decreases the saved model can be
loaded.

100

60

CONV 1

POOL

100

19

CONV 2

25

18

CONV 3

6

SOFTMAX

Figure 3.3: Architecture of the ConvNet used in
this study for a 61×61 map. Three convolutional
layers (yellow), 1 max pooling layer (red) and
the softmax layer (purple)

3.10 Data Augmentation

ConvNets need a large amount of training data.
In order to provide the system with a sufficient
amount of data, data augmentation techniques
were applied to the existing data set. Every entry
in the data set consists of a stack of matrices and
a label. This data was augmented by rotating the
matrix 90, 180, or 270 degrees, followed by a cor-
rection of the attached label. To give an example, if
the agent is at a position above the fire, it needs to
perform a ”down” action to move closer to the fire.
If the input matrices are then rotated 180 degrees,
then the action should be an ”up” action instead
of a ”down” action, which can be seen in figure 3.5.
This method increased the size of the data set by
400 percent.

Figure 3.4: Input rotated 180°

4 Experimental Setup

This section will cover the experimental setup for
all performed experiments. First, we will discuss the
experimental setup used to test the effects of dif-
ferent ConvNet input configurations. Subsequently,
we will discuss the setup for the final experiments.
The final experiment used the best input configu-
ration, found in the input configuration experi-
ment. Lastly, we will discuss early stopping, model
checkpoint, the system’s performance measure and
the hyperparameters used for the Adam optimizer.

4.1 Setup Input Configuration Ex-
periments

To test the effects of including different amounts
of the agent’s previous position on the model’s
performance, we tested seven input configurations.
These input configurations were tested with a two
agent system on a 41× 41 environment with a fast
FPS. This environment was chosen because it is one
of the more challenging environments. The mod-
els were trained on 200 training and 80 validation
episodes worth of data. Seventy-five percent of this
data was generated through the data augmenta-
tion techniques mentioned in section 3.10. With
this data, ten models were trained, which were all
tested during 100 episodes. A single episode is fin-
ished once the fire is isolated or if the fire reaches
the map’s border, i.e. when it is out of control.

4.2 Setup Final Experiments

The final experiments were done with one, two and
four agents, which were tested on a 21×21, 41×41,
and 61 × 61 map with a normal FPS and a fast
FPS. This resulted in a total of 18 experimental

9



setups. These experiments were done with the best
input configuration found during the testing men-
tioned in section 4.1. In every experiment, 20 mod-
els were trained on 200 training episodes and 80
validation episodes, of which 75 percent was gen-
erated through the data augmentation techniques
mentioned in section 3.10. Again, each model was
tested on 100 episodes.

4.3 Adam, Early Stopping and
Model Checkpoint

As mentioned in section 3.9, the ConvNet used in
this study used early stopping and model check-
point to find the best model. Early stopping used
a patience of 10, meaning that if the loss is not
reduced during ten epochs, then the training was
stopped. Model checkpoint saves the model with
the highest accuracy on the validation data. The
hyperparameters for Adam can be found in table
4.1. The value for α was chosen based on prelimi-
nary tests. ε, β1 and β2 are set to the default values
suggested by Adams creators.

ε 1e-7
β1 0.9
β2 0.999
α 0.005

Table 4.1: Hyper parameters for the Adam op-
timizer

4.4 Performance Measure

The performance of the models was measured by
the average number of fires they isolated during 100
episodes. Furthermore, the percentage of burnt cells
at the end of a successful round was also measured.
A successful round is defined as a round in which
the fire is isolated.

5 Results

This section will cover the results for the input con-
figuration experiment, followed by the results for
the final experiments. There are two main perfor-
mance measures. The first is the average amount of
fires isolated (out of 100 episodes). The second is

the percentage of burnt cells within the map at the
end of a successful episode.

5.1 Results Input Configuration Ex-
periment

This section will cover the results of the input con-
figuration experiment. As stated before, the goal of
this experiment was to find the best input configu-
ration for the final experiments. The input config-
urations were tested with a two-agent system on a
41 × 41 environment with a fast FPS. As can be
seen in figure 5.1, the results show that the left-
most bar labeled ”0” performed the best, with a
mean of 87.0 and a standard deviation of 4.6. This
input configuration has a history length of 0, mean-
ing that the input does not include any previous
steps from the agents. In other words, the input
only contains the current position of all agents and
the positions of the forest, fire, and dirt cells. The
exact statistical results can be found in table A.1
of appendix A. All further experiments will exclu-
sively use an input configuration containing only
current agent positions and forest, fire and dirt cell
positions.

Figure 5.1: 41 × 41 map with 2 agents and fast
FPS

5.2 21x21 map

This section will cover the results for the 21 × 21
map. The results for the 21× 21 map can be found
in figure 5.2.

10



(a) Average amount of fires contained on a 21 × 21
map

(b) Percentage of burnt cells on a 21× 21 map

Figure 5.2: Results for the 21× 21 environment

Figure 5.2a shows the average amount of fires
contained during 100 episodes. The three leftmost
bars represent the results for the simulation with a
normal FPS and the three rightmost bars repre-
sent the results for the simulation with a fast FPS.
The exact results concerning the number of con-
tained fires can be found in table A.2 of appendix A
and table B.1 of appendix B. Figure 5.2b shows the
average percentage of burnt cells. Again the three
leftmost bars represent the results for the simula-
tion with a normal FPS and the three rightmost
represent the results for the simulation with a fast
FPS.

From figure 5.2a it can be seen that all models
perform quite well. The one-agent models contain
97.4 fires on average in the normal FPS environ-

ment and 94.1 fires in the fast FPS environment.
The two-agent models perform slightly better, con-
taining 98.4 fires in the normal FPS environment
and 94.7 fires in the fast FPS environment. How-
ever, for both the fast and normal FPS environ-
ment, the difference between the one and two-agent
models is not significant. The four-agent models
perform significantly better than both the one and
two-agent models, containing 99.7 fires in the nor-
mal FPS environment and 99.6 fires in the fast FPS
environment.

Figure 5.2b shows no bars on the left, which is
due to the percentage of burnt cells being zero in
these cases. However, in the fast FPS case it can
be seen that a one-agent model leads to the highest
percentage of burnt cells (2.2%), followed by the
two-agent model (0.4%). The four-agent model has
the lowest amount of burnt cells (0.5%).

5.3 41x41 map

This section will cover the results for the 41 × 41
map. The results for the 41× 41 map can be found
in figure 5.3. Figure 5.3a shows the average amount
of fires contained during 100 episodes. The exact re-
sult concerning the number of contained fires can
be found in table A.3 of appendix A and table B.2
of appendix B. Figure 5.3b shows the average per-
centage of burnt cells.

From figure 5.3a it can be seen that the one-agent
models contain 98.8 fires on average in the normal
FPS environment and 76.5 fires in the fast FPS en-
vironment. The two-agent models perform slightly
worse for the normal FPS environment, contain-
ing 98.0 fires on average. However this difference
is not statistically significant. For the fast FPS en-
vironment, the two-agent models perform signifi-
cantly better than the one-agent models, contain-
ing 87.0 fires on average. The four-agent models
contained 99.4 fires in the normal FPS environ-
ment, which is significantly better than then the
two agent model, but not significantly better than
the one-agent model. In the fast fps environment
the four-agent model contained 99.5 fires on aver-
age, which is significantly better than both the one
and two-agent models.

Figure 5.3b shows that a one-agent model again
leads to the highest percentage of burnt cells (1.1%
for normal FPS and 2.3% for fast), followed by
the two-agent model (0.2% for normal FPS and

11



0.6% for fast). The four-agent model has the lowest
amount of burnt cells (0.04% for normal FPS and
0.2% for fast).

(a) Average amount of fire contained on a 41 × 41
map

(b) Percentage of burnt cells on a 41× 41 map

Figure 5.3: Results for the 41× 41 environment

5.4 61x61 map

This section will discuss the results for the 61× 61
map. The results for the 61× 61 map can be found
in figure 5.4. Figure 5.4a shows the average amount
of fires contained during 100 episodes. The exact re-
sult concerning the number of contained fires can
be found in table A.4 of appendix A and table B.3
of appendix B. Figure 5.4b shows the average per-
centage of burnt cells.

From figure 5.4a it can be seen that the one-agent
models perform the worst, containing on average

93.4 fires in the normal FPS environment and 67.3
fires in the fast FPS environment. The two-agent
models perform significantly better, containing 97.4
fires on average in the normal FPS environment and
85.4 fires in the fast FPS environment. The four-
agent models perform significantly better than the
one and two-agent models, containing 99.2 fires in
the normal FPS environment and 90.5 fires in the
fast FPS environment.

Figure 5.3b shows that a one-agent model again
leads to the highest percentage of burnt cells (0.2%
for normal FPS and 3.4% for fast), followed by
the two-agent model (0.04% for normal FPS and
0.7% for fast). The four-agent model has the low-
est amount of burnt cells (0.01% for normal FPS
and 0.2% for fast).

(a) Average amount of fire contained on a 61 × 61
map

(b) Percentage of burnt cells on a 61× 61 map

Figure 5.4: Results for the 61× 61 environment

12



6 Conclusions

In this paper, we tested the ability of a single and
multi-agent system to isolate wildfires in a simu-
lation. The multi-agent systems consisted of either
two or four agents. The tests were done in three
different environment sizes. Namely in a 21 × 21,
41 × 41, and 61 × 61 environment. Next to the
environment sizes all environments were simulated
with a normal and fast fire propagation speed.
Additionally, we tested which input configuration
would result in the best performance. The results
show that an input configuration without informa-
tion about the agents previous positions yields the
highest performance.

The one-agent system performed the worst. It
consistently resulted in the highest amount of burnt
cells. Furthermore, it also resulted in the lowest
amount of contained fires for all environments ex-
cept one (41×41, FPS=normal). However, this dif-
ference was less than one (see table A.3). The rea-
son for this difference is most likely the quality of
the training data which the two-agent system was
trained on. The data might contain some bad moves
which decrease the accuracy of the trained model.

The two-agent system performed better than the
one-agent system. It contained more fires in all ex-
periments except for the one mentioned above. The
average amount of burnt cells was lower for the two-
agent system compared to the one-agent system for
all environments. However, the two-agent system
never outperformed the four-agent system.

The four-agent system performed the best in all
experiments. For the experiments with a normal
FPS it was able to isolate 99.7 percent on average
in a 21 × 21 environment, 99.4 in the 41 × 41 en-
vironment, and 99.2 in the 61 × 61 environment.
For the experiments with a fast FPS it was able to
isolate 99.6 percent on average in a 21 × 21 envi-
ronment, 99.5 in the 41×41 environment, and 90.5
in the 61× 61 environment. Furthermore, the four-
agent system always resulted in the lowest amount
of burnt cells.

7 Discussion

This study showed that a convolutional neural net-
work based multi-agent system can effectively be
used to isolate wildfire in a simple simulation. The

results indicate that in most cases more agents re-
sult in better performance. However, it has to be
stressed that the results from this study are not in-
dicative of the effectiveness of such a system in the
real world.

It would be interesting to see if the technique
used in this study could also effectively be used in
larger and more complex environments. The envi-
ronments in this study were only defined by their
size and fire propagation speed. In order to move
closer to the real world, one could introduce differ-
ent types of environmental factors such as terrain,
wind, elevation, etc.

Furthermore, the results of this study showed
that an input without the previous agent positions
leads to the best performance. However, it seems
like much valuable information is lost if the model
does not consider the historical information of the
environment. It would be interesting to see if other
machine learning techniques could be used to take
historical information into consideration during ac-
tion selection. In addition to that, the agents used
in this study did not communicate with each other.
A study into the effects of a similar system with
communication between agents could prove worth-
while.

Finally, with the danger of wildfires rising world-
wide, the application of machine learning to the
problem of wildfire control could prove beneficial.
More research into this subject could pave the way
for a future in which machine learning contributes
to the fight against wildfires.

References

T. Hammond, D. J. Schaap, M. Sabatelli, and
M. Wiering. Forest fire control with learning
from demonstration and reinforcement learning.
In 2020 International Joint Conference on Neu-
ral Networks (IJCNN), 09 2020.

P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107, 1968.

D. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. International Conference on
Learning Representations, 2014.

13



S. Knegt, M. Drugan, and M. Wiering. Opponent
modelling in the game of tron using reinforce-
ment learning. In ICAART (2), page 29–40,
2018.

Y. LeCun, B. Boser, J. Denker, D. Hender-
son, R. Howard, W. Hubbard, and L. Jackel.
Handwritten digit recognition with a back-
propagation network. In NIPS, 1989.

Mihaela Oprea. Applications of multi-agent sys-
tems. In Information Technology, pages 239–270.
Springer US, 2004.

S. Ruder. An overview of gradient descent op-
timization algorithms. ArXiv, abs/1609.04747,
2016.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning Representations by Back-propagating
Errors. Nature, 323(6088):533–536, 1986.

Silver et al. Mastering the game of go with deep
neural networks and tree search. Nature, 529:
484–489, 01 2016.

M. Wagenaar, E. Okafor, W. Frencken, and
M. Wiering. Using deep convolutional neural
networks to predict goal-scoring opportunities in
soccer. In ICPRAM, 2017.

M. Wiering and M. Doringo. Learning to control
forest fires. Proceedings of the 12th international
Symposium on ’Computer Science for Environ-
mental Protection, page 378–388, 1998.

M. Wiering, F. Mignogna, and B. Maassen. Evolv-
ing neural networks for forest fire control. Pro-
ceedings of the 14th Belgian-Dutch Conference on
Machine Learning, page 113–120, 2005.

Y. Ywema and M. Wiering. Learning from demon-
stration for isolating forest fires using convolu-
tional neural networks. Bachelor’s Thesis, 2020.

14



A Appendix

Average number of fires contained (out of 100) standard deviation
History length = 0 87.0 4.6
History length = 3 83.7 6.6
History length = 5 86.2 5.2
History length = ALL 81.1 6.5
History length = 3 + EX 79.9 5.7
History length = 5 + EX 82.3 5.2
History length = ALL + EX 80.2 5.0

Table A.1: Results for the input configuration experiment on a 41x41 map with 2 agents and fast
fire propagation speed

FPS Number of agents Average number of fires contained (out of 100) Standard deviation

Normal
1 Agent 97.4 2.4
2 Agents 98.4 1.7
4 Agents 99.7 0.6

Fast
1 Agents 94.1 4.0
2 Agents 94.7 2.4
4 Agents 99.6 0.8

Table A.2: Contained fires 21× 21 map

FPS Number of agents Average number of fires contained (out of 100) Standard deviation

Normal
1 Agent 98.8 1.6
2 Agents 98.0 1.8
4 Agents 99.4 0.7

Fast
1 Agents 76.5 6.5
2 Agents 87.0 4.6
4 Agents 99.5 0.7

Table A.3: Contained fires 41× 41 map

FPS Number of agents Average number of fires contained (out of 100) Standard deviation

Normal
1 Agent 93.4 5.0
2 Agents 97.4 1.8
4 Agents 99.2 0.9

Fast
1 Agents 67.3 6.0
2 Agents 85.4 3.7
4 Agents 90.5 3.0

Table A.4: Contained fires 61× 61 map

15



FPS Number of agents Percentage burnt cells (%) Standard deviation

Normal
1 Agent 0.0 0.0
2 Agents 0.0 0.0
4 Agents 0.0 0.0

Fast
1 Agents 2.2 0.3
2 Agents 0.4 0.1
4 Agents 0.05 0.01

Table A.5: Percentage burnt cells 21× 21 map

FPS Number of agents Percentage burnt cells (%) Standard deviation

Normal
1 Agent 1.1 0.02
2 Agents 0.2 0.08
4 Agents 0.04 0.02

Fast
1 Agents 2.8 0.5
2 Agents 0.6 0.1
4 Agents 0.2 0.03

Table A.6: Percentage burnt cells 41× 41 map

FPS Number of agents Percentage burnt cells (%) Standard deviation

Normal
1 Agent 0.2 0.02
2 Agents 0.04 0.01
4 Agents 0.01 0.002

Fast
1 Agents 3.4 0.7
2 Agents 0.7 0.1
4 Agents 0.2 0.02

Table A.7: Percentage burnt cells 61× 61 map

16



B Appendix

FPS Comparison T-value P-value Significant?

Normal
1 agent vs. 2 agents
1 agent vs. 4 agents
2 agents vs 4 agents

1.5757
4.1255
3.1421

0.1234
0.0002
0.0032

NO
YES
YES

Fast
1 agent vs. 2 agents
1 agent vs. 4 agents
2 agents vs 4 agents

0.5999
5.2926
8.7373

0.5521
>0.0001
>0.0001

NO
YES
YES

Table B.1: Comparison between the one, two and four-agent system on a 21 × 21 map. Unpaired
t-test is used to compare the mean (contained fires) between two systems

FPS Comparison T-value P-value Significant?

Normal
1 agent vs. 2 agents
1 agent vs. 4 agents
2 agents vs 4 agents

1.5895
1.5446
3.4777

0.1202
0.1307
0.0013

NO
NO
YES

Fast
1 agent vs. 2 agents
1 agent vs. 4 agents
2 agents vs 4 agents

5.9300
15.6933
12.0804

>0.0001
>0.0001
>0.0001

YES
YES
YES

Table B.2: Comparison between the one, two and four-agent system on a 41 × 41 map. Unpaired
t-test is used to compare the mean (contained fires) between two systems

FPS Comparison T-value P-value Significant?

Normal
1 agent vs. 2 agents
1 agent vs. 4 agents
2 agents vs 4 agents

3.3623
5.1093
3.9689

0.0018
>0.0001
0.0003

YES
YES
YES

Fast
1 agent vs. 2 agents
1 agent vs. 4 agents
2 agents vs 4 agents

11.5240
15.4530
4.7860

>0.0001
>0.0001
>0.0001

YES
YES
YES

Table B.3: Comparison between the one, two and four-agent system on a 61 × 61 map. Unpaired
t-test is used to compare the mean (contained fires) between two systems

17


	Introduction
	Wildfires
	Background
	Research Question

	The Wildfire Simulation
	Glossary
	Environment
	Cells
	Agents
	Fire

	Representation
	Input Data

	Convolutional Neural Network
	Neural Network
	Convolutional Layer
	Pooling Layer
	Fully Connected Layer
	Activation Functions
	Loss Function
	Adam Optimizer
	Validation
	Architecture
	Data Augmentation

	Experimental Setup
	Setup Input Configuration Experiments
	Setup Final Experiments
	Adam, Early Stopping and Model Checkpoint
	Performance Measure

	Results
	Results Input Configuration Experiment
	21x21 map
	41x41 map
	61x61 map

	Conclusions
	Discussion
	Appendix
	Appendix

