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Abstract – Flow measurements can enable an 

autonomous mobile robot to master its 

environment. In this report a designed control 

law is presented. The control law enables the 

autonomous mobile robot to locate and follow 
the path where the strength of the scalar field is 

the lowest. The gradient descent algorithm is 

used to solve the conditions the control law 

requires, where the gradient information is 

solely provided by flow sensors. Monte Carlo 

simulations are executed to validate the control 

law. The simulations are performed under 

different circumstances (e.g. varying in gains of 

constant values).  

І. INTRODUCTION 

The developments in the world of robotics and 

autonomous vehicles have led to the establishment of the 

fourth industrial revolution [1]. Autonomous control 

systems for vehicles is one of the disruptive technologies. 

Currently, the autonomous vehicles use different types of 

sensors as input to navigate themselves. Olfactory sensors 

can be used to detect and follow odour trails [2]. Optical 

sensors are able to determine where the vehicle is located 

based on recordings [3]. Next, ultrasonic sensors can 

executed precise distances measurement to navigate a 

vehicle [4]. In this project airflow sensors will be used to 

control the autonomous vehicle. Flow sensors can 

measure the volumetric rate, velocity, pressure, and shear 

stress of its surroundings [5].  

Over the past years, the traffic intensity is escalating [6]. 

The demand is for freight transportation is expected to 

increase in the coming years [7]. Simultaneously, these 

transportations of goods cause CO2 emissions. The 

transport sector is roughly accountable for 21% of the 

CO2 emissions in the European Union. The freight 

transportation is responsible for about a quarter of these 

emissions [7]. 

In the system of road transport, following the trajectory 

where the airflow is measured the lowest can be a crucial 
aspect in reducing the CO2 emissions. The overall 

aerodynamic drag is lowered when, for example, a truck 

follows the path where the airflow related to the truck is 

the lowest [6], [8]. Consequently, the fuel consumption 

and CO2 emissions reduce.  

In the scope of this report, the origin is an airflow field, 

where the airflow sensor measurements enable the 

autonomous mobile to understand its environment. The 

airflow sensors assist the control system to steer the 

mobile robot towards the right trajectory.  

 

The airflow sensors gather data of the surroundings of the 

mobile robot. The data consist of scalar-valued field, 

where every position in the field includes its own 

magnitude (i.e. the scalar value or gradient vector). Based 

on the data, a signal is provided to control system, which 

steers the mobile robot to the right trajectory.  

The gradient vector information is needed to compute 

control algorithm for the mobile robot. In this report, the 

gradient-descent algorithm is deployed to provide to right 

signal to the control system. Controlling a vehicle by the 

gradient-ascent/descent algorithm is an acknowledge 

way to control a mobile robot in an unknown 

environment [9], [10], [11].   The convex combination for 

the approximation of the gradient is introduced, when 

there is a lack of information about the gradient vector in 

the signal field. 

The contribution of this report is the proposition of a 

design of a control system based on local gradient 

information, that is obtained from a scalar-valued field 

corresponding with a flow. The control law is arranged 

with the gradient-ascent/descent algorithm. The angular 

velocity of the mobile robot is controlled by this control 

law. The forward velocity is set as constant in this report.      

The report is structured as follows. In Section II the 

problem is described and the conditions and aim of the 

control system is discussed. Section III present the 

system and explanations about kinematics of the mobile 
robot, the scalar field, gradient and convex combination. 

Next, the design of the control law is presented in this 

section. In Section IV the simulations are executed and 

the results are shown. In the last two Section V and VI, 

the results are discussed and a conclusion is provided. 

 

ІІ. PROBLEM DISCRIPTION 
 

 The aim of the autonomous mobile robot is to follow the 

trajectory where magnitude of the scalar value on the field 

is the lowest. To achieve this aim, the robot must seek the 

minimum scalar   value in the signal field. Besides, the 

mobile robot must be capable to follow the path where the 

scalar value, corresponding with the airflow, is the lowest.  

A. Environments 

The mobile robot must be able to understand its 

environment with solely the help of the airflow sensors 

and the designed control law. In the scope of this report, 

the environment is set to two different scalar-valued 

signal fields. These airflow fields are analyzed and 

simulated in Section IV. The scalar and gradient fields are 

depicted in Figure 1 and 2 and described as follows. 



 

The unknown nonlinear map 𝐽(𝑥, 𝑦) has a minimum 

where 𝐽(𝑥, 𝑦) = 0. The signal field 𝐽(𝑥, 𝑦) is defined as 

follows, 

 

𝐽(𝑥, 𝑦) =  dist ([
𝑥
𝑦] , 𝛺) (1) 

 

where Ω is the level set given by, {(𝑥, 𝑦)|𝑦 = 𝑓(𝑥)} or 
{(𝑥, 𝑦)|𝑥 = 𝑓(𝑦)}.  
 

The two unknown nonlinear maps 𝐽1 and 𝐽2 are defined as 

follows, 

 

𝐽1(𝑥, 𝑦) = 𝐽1(𝑓(𝑦), 𝑦) (2) 

 

 

𝐽2(𝑥, 𝑦) = 𝐽2(𝑥, 𝑓(𝑥)) (3) 

 

where 𝑓(𝑦) = 0 and 𝑓(𝑥) = 0.01𝑥3  

  

 

Figure 1: Scalar field and gradient field of 𝐽1(𝑥, 𝑦)  

 

Figure 2: Scalar field and gradient field  𝐽2(𝑥, 𝑦) 

The mobile robot is placed randomly in an environment 

where an unknown signal is applied. This signal field is 

shown in Figure 1 and 2. The colors corresponds with the 

scalar value. The longer the distance from a given point to 

the function, the higher the scalar value (e.g. the distance 

is zero when the point is located on the function and 

corresponds with the dark blue color). The distribution of 

the increase or decrease of the scalar field is characterized 

by the gradient. The gradient is a vector field that 

represents the direction and rate of the fastest increase at 

a given point. The direction of the vector shows the 

direction in which the scalar field rises most (i.e. the white 

arrows). The magnitude of this vector is equal to the rate 

of increase in that direction. The direction of the vectors 

in Figure 1 and 2 correspond to the increase of scalar 

value. The mobile robot only measures the value of the 

gradient at its real-time location. Based on this 

information it tries to steer to the local minimum. 

Consequently, the location of the robot depends on its 

previous location only.  

 

ІІІ. CONTROL SYSTEM 

A. System 

As mentioned in the problem description, the 

autonomous mobile robot aims to search for and navigate 

towards the minimum of a scalar signal field. The robot is 

placed in an environment where an unknown nonlinear 

signal field is applied. The scalar-valued function defines 

the signal, which represents the airflow coming from all 

possible directions. This unknown signal field contains a 

path where the airflow is minimized to zero. 

The control system of the mobile robot is explained in 

Figure 3. The controller in the system provides the values 

of the forward and angular velocity to the robot. The 

specific control law will be discussed in Section III.F.   

In this system the value of the forward velocity 𝑣 is set as 

a constant. The angular velocity 𝑢 of the mobile robot 

determines the next real-time location and should steer 

the robot to the local minimum. To determine the value 

of the angular velocity 𝑢 the gradient (∇𝐽) is needed. The 

sensors on the mobile robot measure the local gradient in 

the scalar field and provide the gradient information to 

the controller. The forward velocity is set as a constant 

gain. The output of the controller determines the next 

position of the mobile robot in the map 𝐽(𝑥, 𝑦) . 

 
Figure 3: Control system of the mobile robot 

B. Kinematics  

This problem considers a non-holonomic system as the 

state of the mobile robot depends on its preceding path. 

The next state of the mobile robot depends on the 

intermediate value of the previous state. The scalar signal 

data is measured by the sensors that the robot carries.  

 The kinematic equation of the robot is given by,  

[
�̇�
𝑦

�̇�

̇ ] = [
𝑣 ∙ cos(𝜃)

𝑣 ∙ sin(𝜃)
𝑢

] (4) 



where 𝑥 and 𝑦 are the real-time position of the robot in 

the field, 𝜃 stands for the real-time heading angle and 𝑣 is 

a velocity constant gain [12]. 

C. Gradient 

As discussed in Section II.A, the gradient represents the 

increase or decrease and direction at a specific point in 

the scalar-valued field.  The gradient ∇𝐽 at point 𝑝 =

(𝑥, 𝑦,… ) can be defined as  

∇𝐽(𝑝) =

[
 
 
 
 
𝜕𝑓

𝜕𝑥
(𝑝)

𝜕𝑓

𝜕𝑦
(𝑝)

⋮ ]
 
 
 
 

. (5) 

The airflow field in this report is a 2 -dimensional signal 

field (𝑥, 𝑦), therefore the gradient is a 2-dimensional 

vector and is specified as follows.  

∇𝐽(𝑥, 𝑦) =

[
 
 
 
𝜕𝑓

𝜕𝑥
(𝑥, 𝑦)

𝜕𝑓

𝜕𝑦
(𝑥, 𝑦)

]
 
 
 

. (6) 

The signal strength of the scalar-valued field is based on 

the shortest distance between point 𝑝(𝑥, 𝑦) and certain 

function. In the vector field, the gradient is represented 

by the white arrows in Figure 1 and 2. In order to increase 

the magnitude of the gradient as the distance increases 

between point 𝑝 and the function, the squared scalar-

valued field is taken.  

The gradient descent algorithm is a method to find the 

local minimum of a differentiable function. If there is no 

slope, the local minimum is found. The gradient shows a 

zero vector. In the scalar-valued field of Figure 1 and 2, 

the local is reached when the distance between point 𝑝 

and function 𝑓(𝑥) or 𝑓(𝑦) is zero. The vector of the 

gradient from eq. (5) illustrates the direction in which 

scalar-value rises most. Accordingly, the minimum can be 

found by the performance of the opposite vector, given by 

−∇𝐽.  

The constant 𝑐1 determines whether the aim is to find the 

local minimum or maximum. When 𝑐 < 0 and 𝑐 > 0 , the 

constant holds for the gradient descent and gradient 

ascent, respectively [13]. 

∇𝐽(𝑥, 𝑦) = 𝑐1

[
 
 
 
𝜕𝑓

𝜕𝑥
(𝑥, 𝑦)

𝜕𝑓

𝜕𝑦
(𝑥, 𝑦)

]
 
 
 

. (7) 

D. Orientation of the Robot 

The orientation of the mobile robot is needed to obtain a 

proper control law design. The orientation of the robot 

can be compared to the local gradient information to gain 

the next real-time heading angle of the mobile robot. The 

orientation of the mobile robot is denoted by the 

normalized vector, 

�⃗� =  [
𝑥
�̂�
̂
] = [

cos(𝜃)

sin(𝜃)
] (8) 

E. Convex combination 

A convex combination is a combination of points that are 

related to the specific point 𝑝. The output of the convex 

combination are non-negative weight factors and sum to 

1.  

The convex combination is needed when the mobile robot 

is not located at an integer point 𝑝(𝑥, 𝑦) in the signal field 

𝐽(𝑥, 𝑦). At this non-integer specific point in the signal 

field, there is no information about the gradient. The 

controller combines the gradient information of the four 

points ((𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), (𝑥4, 𝑦4)) that are the 

closest. Each of these points get a weight factor depending 

on the distance to point 𝑝 related to the other three 

distances. The convex combination approximates the 

gradient at the mobile robot’s real-time location. 

Consequently, the controller of the mobile robot is able to 

obtain gradient information at each real-time location.  

Figure 4 shows a convex combination between four points 

and point 𝑝, the smaller 𝑑𝑛 the greater the weight factor. 

All weight factor sum 1.  

 

Figure 4: Convex combination between point 𝑝 and its four 
closest point. 
  

F. Control Law 

Based on the theories elaborated in the previous parts, a 

control law for the angular velocity 𝑢 is designed. Figure 

5 denotes the orientation �⃗�, the gradient −∇𝐽 and the 

orthogonal gradient ∇𝐽⟂ at some point in a signal field. 

 

Figure 5: Orientation of the mobile robot and gradient 

The vectors ∇𝐽⟂ and ∇𝐽 are orthogonal if they are 

perpendicular (i.e. they form a right angle), the inner 

space product of the two vectors are equal to zero, the 

cross product is greater than zero and the magnitude of 

both vectors are equal to each other.   

∇𝐽(𝑥, 𝑦)(∇𝐽⟂(𝑥, 𝑦))⊤ = 0, (9)  

∇𝐽⟂(𝑥, 𝑦) × ∇𝐽(𝑥, 𝑦) > 0, (10) 



‖∇𝐽⟂(𝑥, 𝑦)‖ = ‖∇𝐽(𝑥, 𝑦)‖. (11) 

Figure 5 shows that ∇𝐽⟂ is 90° of ∇𝐽.  

In order to find the minimum change in gradient 

information, the orientation of the mobile robot is 

multiplied by the gradient at the real-time location. 

Consequently, the control law is specified as 

𝑢 =  𝐾1 [
𝑥
�̂�
̂
]
⊤

∇𝐽 (12) 

where 𝐾1 is negative as the gradient descent algorithm is 

applied.  

When the gradient is zero  (∇𝐽 = 0) , the orthogonal 

gradient is equal to zero as well (∇𝐽⟂ = 0), the minimum 

is reached and the mobile robot keeps following the 

minimum with constant forward velocity 𝑣  

If the mobile robot crosses the path of the local minimum, 

the direction of the gradient ∇𝐽 flips 180° and 

consequently the orthogonal gradient ∇𝐽⟂ flips 180°. The 

angular velocity output is reversed now. To tackle this 

problem and keep the mobile robot on track, the 

sign ([
1
0
]
⊤

∇𝐽⟂)  is added to the control law. This part 

provide an output of 1 or -1. When the gradient 

information flips 180°, the output changes from 1 to -1 or 

vice versa. In this case, the mobile robot keeps steering to 

the right trajectory.  Next, the magnitude of the gradient 

is added or subtracted to eq. (12) to ensure the mobile 

robot finds the global minimum of 𝐽(𝑥, 𝑦). 

𝑢 =  −𝐾1 ∙ sign ([
1
0
]
⊤

∇𝐽⟂) ∙ [
𝑥
�̂�
̂
]
⊤

∇𝐽 −

𝐾2  ∙ sign ([
1
0
]
⊤

∇𝐽⟂) ∙ ‖𝐽𝑥‖ (13)

 

The control law from eq. (9) is tested during the 

simulation and further evaluated in Section IV.  

ІV. SIMULATION 

In this section, the results of the simulation are presented. 

Monte Carlo simulations are used to execute the 

simulations. The simulations are needed to validate the 

designed control law and investigate whether the mobile 

robot will autonomously navigate itself along the path 

where the airflow is the lowest in the signal field. The 

Monte Carlo method rely on repeated random samplings 

to obtain numerical results [14]. The results of a Monte 

Carlo Simulation are more representative as the 

simulations are based on varying initial conditions [14]. 

The domain is determined first. Next, all simulation are 

executed by performing a deterministic computation on 

randomized generated inputs and the results are 

presented. 

First, the initial conditions are described. Next, the 

trajectories of four arbitrary simulations in the signal 

fields are shown. The performance of the control law is 

evaluated by investigating the influence of 𝐾1 and 𝐾2  on 

error distance and the settling time. In this report, the 

effect on the rise time with different constant values is not 

considered, as the convergence rate to the global 

minimum in the signal field is linear. Therefore, the rise 

time highly depends on the randomized initial position  of 

the mobile robot in the signal field. Accordingly, this data 

is not relevant. The constant values of 𝐾1 and 𝐾2 are set to 

5, 10, 20. During all simulations the ratio of constants 

𝐾1, 𝐾2 is equal to 1, as this ratio shows the best results 

regarding the trajectory of the robot (Appendix A).  Next, 

the robustness of the control is tested by adding noise to 

the system. The accuracy of the gathered gradient 

information is set to 50%, 80% and 100%.   

All simulations are performed N=50 times, where N is a 

randomly generated input within the domain of the signal 

field 𝐽(𝑥, 𝑦). 

The results of the error distance and settling time are 

illustrated in boxplots. The explanation of the 

construction of a boxplot can be found in Appendix B. 

A. Initial conditions 

The simulations are performed in two different signal 

fields, where the scalar-valued signal field were defined as 

𝐽1(𝑥, 𝑦) and 𝐽2(𝑥, 𝑦). The signal shows a minimum when 

point 𝑝 lays on 𝑓(𝑦) = 0 or 𝑓(𝑥) = 0.01𝑥3.  

The distribution of the scalar-valued signal field 

corresponding with the airflow velocities is presented in 

Figures 6 and 7.  

 

 

Figure 6: Surface plot of 𝐽1(𝑥, 𝑦) 

 



Figure 7: Surface plot of 𝐽2(𝑥, 𝑦) 

 

As can be seen in the surface plot the domain for 𝑥 and 𝑦 

is set as follows, 

−20 ≤ 𝑥 ≤ 20 (14) 

−20 ≤ 𝑦 ≤ 20 (15) 

The initial condition for 𝜃 is specified as, 

0 ≤ 𝜃 ≤ 360 (16) 

B. Trajectory of the mobile robot 

Figure 8 and 9 show the trajectory of the mobile robot 

from four arbitrary simulations in the two different 

scalar-valued signal fields. In all simulations time 𝑇 set to 

400 seconds with sampling time 𝑇𝑠 = 0.01 s. The velocity 

constant is 𝑣 = 0.2 m/s. The constants 𝐾1 and 𝐾2 are set 

to 10. It seems that the mobile robot steers itself to the 

local minimum. When the global minimum is reached, 

the mobile robot keeps following the trajectory of the line 

or curve shown in Figure 7 and 8, respectively.  

In Figure 8, an overshoot appears when the global 
minimum is reached, this overshoot decrease as the time 

endures. The size of the overshoot depends on the value 

of 𝐾1 and 𝐾2, which is shown Section IV.C.  

 

Figure 8: Four arbitrary simulations and the corresponding 

trajectory of the mobile robot, where 𝐾1 and 𝐾2 are 10.  

The trajectory of the mobile robot in the scalar-valued 

signal field in which the curve 𝑓(𝑥) = 0.01𝑥3 is set as 

minimum is presented in Figure 9. It seems that the 

mobile robot navigates to and keeps following the 

minimum path. However, it does not appear that the 

overshoot related to the curve decreases as the time 

increases. The overshoot does not decrease due to the fact 

that the gathered gradient information in this signal field 

does not match perfectly to the curve 𝑓(𝑥) = 0.01𝑥3 , 

which is the case in Figure 8 to line 𝑓(𝑦) = 0. 

Consequently, the four arbitrary simulations show the 

same curly behaviour as the time endures.  

 

Figure 9: Four arbitrary simulations and the corresponding 

trajectory of the mobile robot, , where 𝐾1 and 𝐾2 are 10. 

C. Error distance 

The error distance is measured after 𝑇 = 100 for three 

different constant values, where 𝐾1 and 𝐾2 are 5, 10 and 

20, respectively. The results are shown in Figure 9 and 10.  

In Figure 10, it appears that the error distance decreases 

if the constant values 𝐾1 and 𝐾2 increase. The boxplot of 

the error distance (Figure 10) is supported by the 

trajectory of the mobile robot with these different 

constant values which are revealed in Appendix C. The 

mobile robot shows better behaviour as 𝐾1 and 𝐾2 

increase.  

 

Figure 10: Error distance after 𝑇 = 100 at signal field  𝐽1(𝑥, 𝑦), 

where 𝐾1 and 𝐾2 are set to 5, 10 ,20. 

The behaviour of the mobile robot in signal field 𝐽2(𝑥, 𝑦) 

reveals no improvement as the constants 𝐾1 and 𝐾2 

increase. The error distance stays roughly the same under 

the different conditions. Compared to signal field 𝐽1(𝑥, 𝑦) 

the error distance in slightly larger when 𝐾1 and 𝐾2 are 

equal to 5. The error distance is significantly larger when 

𝐾1 and 𝐾2 are set to 5 and 10. As discussed in Section IV.B, 

the gradient information in 𝐽2(𝑥, 𝑦) is not as accurate as 

in 𝐽1(𝑥, 𝑦). Therefore, the mobile robot does not converges 

to the minimum of 𝐽2(𝑥, 𝑦) after certain time. 



 

Figure 11: Error distance after 𝑇 = 100 at signal field 𝐽2(𝑥, 𝑦), 

where 𝐾1 and 𝐾2 are set to 5, 10 ,20. 

D. Settling time 

The settling time is equal to the time it takes the mobile 

robot to steer itself within 2% of the error distance of the 

desired state. The 2% error distance is related to the 

initial position of the mobile robot. Besides, the settling 

time is reached when the mobile robot stays within this 

2% range. The settling time is evaluated in signal field 

𝐽1(𝑥, 𝑦) only as the gradient information and therefore the 

settling time results in 𝐽2(𝑥, 𝑦) were inaccurate.  

The settling time decreases as the 𝐾1 and 𝐾2 increase. The 

decrease of settling time along with the increase of  𝐾1 and 

𝐾2 is justified by the trajectory of the mobile robot under 

these conditions (Appendix C). In the case that the mobile 

robot starts at the desire state, it steers itself along the 

minimum path and no settling time is noticed. The two 

outliers where the settling time 𝑇𝑠=0 can be explained by 

the fact that the mobile robot starts and stays at desired 

state. 

 

Figure 12: Settling time after 𝑇 = 100 at signal field 𝐽1(𝑥, 𝑦), 

where 𝐾1 and 𝐾2 are set to 5, 10 ,20. 

 

E. Robustness  

In this part, the robustness of the control law in the two 

different signal fields is tested. The robustness is tested 

when the sensor measurement of the gradient 

information is inaccurate. The goal is to test whether the 

control law is robust when there are uncertainties about 

the performance of the sensor measurement, which has 

directly impact on the gradient information. The sensor 

accuracy is set within three ranges: a weight factor of 0.5-

1.5, a weight factor of 0.8-1.2 and  a weight factor of 1.0 of 

the real gradient, which is the ideal circumstance, are 

added to the gradient ∇𝐽. The constant value 𝐾1 and 𝐾2 are 

set at 10 during these simulations. Figure 12 reveals the 

error distance after 𝑇 = 100 seconds, where the noise 

with their corresponding factors 0.5-1.5, 0.8-1.2, 1.0 is 

illustrated on the x-axis.  

It appears that despite of the noise added to the sensor,  

the error distance stays stable. The steady error distance 

implies that the noise has minimal influence on the 

behaviour of the mobile robot regarding the error 

distance. The trajectories of four arbitrary simulations 

with a noise factor between 0.5-1.5 support the boxplot 

(Appendix D).  

 

Figure 13: Error distance after 𝑇 = 100 at signal field 𝐽1(𝑥, 𝑦), 

where a noise weight factor is added; 0.5-1.5, 0.8-1.2, 1.0 

The behaviour of the mobile robot with added noise in 

signal field 𝐽2(𝑥, 𝑦) is illustrated in Figure 14. The error 

distance stays stable with different factors of noise added. 

Compared to the behaviour of the mobile robot in signal 

field 𝐽1(𝑥, 𝑦), the error distance is greater in signal field 

𝐽2(𝑥, 𝑦). This difference in behaviour is in line with the 

obtained results in Section IV.C.  

 

Figure 14: Error distance after 𝑇 = 100 at signal field 𝐽2(𝑥, 𝑦), 

where a noise weight factor is added; 0.5-1.5, 0.8-1.2, 1.0 

 

 



V. DISCUSSION 

Regarding the results of the simulations in Section IV, it 

can be stated that the mobile robot is able to find and 

follow the trajectory where the magnitude of the scalar 
value in the signal field is the lowest. The mobile robot 

shows decent behaviour in both signal fields. As discussed 

in Section IV, the behaviour of the mobile robot in the 

signal field 𝐽2(𝑥, 𝑦) is slightly inaccurate. However, the 

inaccuracy is caused by the imprecise gradient 

measurements. Consequently, the designed control law 

show proper performances in both signal fields.  

Next, the error distance is discussed. When the constant 

𝐾1 and 𝐾2 increase the error distance decreases quicker 

over time. Therefore, the performance of the control law 

enhances as the constants 𝐾1 and 𝐾2 are raised from 5 to 

20. During these simulations the results of the rise time 

appeared to be useless as the rise depended almost only 

on the initial position of the robot in the signal field. The 

boxplots regarding the settling time output provide a 

similar performance as the boxplots regarding the error 

distance simulated with varying values of 𝐾1 and 𝐾2. 

The control law appears to be robust as the mobile robot 

is able to steer to the local minimum and keep following 
the minimum path when noise with different weight 

factor is added to the sensor measurements. In other 

words, the mobile robot is capable to navigate itself 

through an unknown environment along the desired 

trajectory when the sensor measurements are 

nonoptimal.  

The designed control law shows potential and the mobile 

robot navigates itself as desired during the simulation. 

Although, the behaviour of the mobile robot is not tested 

in the real world. At that stage, real flow sensors are 

attached to the robot and these sensors might react 

undesirable. Despite of the robustness test during the 

simulations, the real flow sensor can  behave different.  

The goal is reached as the mobile robot behaves as the aim 

is set. Although, considering the higher goal of saving fuel 

consumption and reduces CO2 emissions, work has to be 

done. Analyzing this goal, the trajectory in Appendix A.2 

shows possibilities in saving fuel for example. In this case, 

the path to the global minimum is longer, although the 

path to the top of the signal field at  𝐽1(0,20), which is a 

possible end point, is shorter. The shorter the path, the 

less fuel consumption. On the other hand, the 

aerodynamical drag needs to be taken in account along 

this path. The trajectories of the mobile robot in Figure 7 

are not applicable yet to a real world situation. In this 

case, the aerodynamical drag is taken in account and the 
shortest path is not. In summary, the control law 

performance based on gradient information is accurate. 

On the other hand, aspects as shortest path are not taken 

in account considering the proposed control law.  

VI. CONCLUSION 

The proposed control law fulfills the condition that the 
mobile robot is capable to move around and find and 

follow the path with the minimum airflow in an unknown 

environment. The trajectories of the mobile robot 

appeared to be stable under different circumstances 

where different ratios and values of the constants 𝐾1 and 

𝐾2 were tested and noise was added. Monte Carlo 

simulations were used to obtain a good overview of  

numerical results. Within the aim of this report, the ratio 

of 1:1 for constant values 𝐾1 and 𝐾2 is presented as 

optimal. Furthermore, the error distance and settling 

time decreases as the constant values 𝐾1 and 𝐾2 increases 

form 5 to 20. The results of the mobile robot in signal field 

𝐽2(𝑥, 𝑦) showed less stable results compared to the mobile 

robot performance in signal field 𝐽1(𝑥, 𝑦)  as the gradient 

information was inaccurate in 𝐽2(𝑥, 𝑦) during the 

simulations. The gradient information is essential to 

ensure a proper performance of the mobile robot. During 

the simulations the gradient information was provided by 

a signal field. The control law showed potential when 

noise was added to the gradient information. In the real 

world, the gradient information is provided by flow 

sensor measurement, which can be tested and further 

investigated in future work.   
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IX. APPENDICES 

A. 

Appendix A shows the behaviour of the mobile robot 

after 𝑇 = 400 when 𝐾1 and 𝐾2 are set to different ratios. 

The ratio 1:1 is considered as smoothest.  

 

Appendix A.1: Trajectory of four arbitrary simulations 

where 𝐾1=10 and 𝐾2= 20 

 

Appendix A.2: Trajectory of four arbitrary simulations 

where 𝐾1=20and 𝐾2= 10 

 

Appendix A.3: Trajectory of four arbitrary simulations 

where 𝐾1=10 and 𝐾2= 10 

B. 

The boxplots showed in this report are based on dataset 

with N=50 randomly generated initial inputs. The 

explanation of the construction of a boxplot is 

presented in Appendix B 

 

Appendix B: Construction of a boxplot 

 



 

C. 

Considering Appendix C, the magnitude of the 

constants 𝐾1and 𝐾2 has influence on the overshoot at 

the minimum in the signal field. The larger 𝐾1and 𝐾2, 

the smaller the overshoot. Consequently, along with the 

overshoot the error distance decreases.   

 

Appendix C.1: Trajectory of four arbitrary simulations 

where 𝐾1=20 and 𝐾2= 20 

 

Appendix C.2: Trajectory of four arbitrary simulations 

where 𝐾1=5 and 𝐾2= 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. 

Appendix D shows the behaviour of the mobile robot 

when noise is added to the sensor measurements. K1 

and 𝐾2 are set to 10.  

 

Appendix D.1: Trajectory of four arbitrary simulations 

where a weight factor of 0.8-1.2 noise is added to the sensor 

measurements.  

 

Appendix D.2: Trajectory of four arbitrary simulations 

where a weight factor of 0.5-1.5 noise is added to the sensor 

measurements.  

 

 

 

 

 

 

 

 

 

 


