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Abstract: The experience of your mind wandering away from the task at hand is familiar to
many. Sometimes disengaging from mind-wandering and returning to the task at hand can be
very difficult. This can be disruptive and potentially dangerous if caution is required. Detection
of this ”sticky” mind-wandering can be beneficial for safety and productivity reasons. The
occurrence of sticky mind-wandering was predicted on the basis of electroencephalography
(EEG) data recorded during a sustained attention to response task and a visual search task. The
types of mind-wandering were assessed by means of questions inserted in the tasks that asked
participants about their mental state, on or off task, as well as the content of their thoughts.
A Logistic Regression (LR), Random Forest Classifier (RFC) and Support Vector Machine
(SVM) were then trained on feature vectors obtained from temporal and spatial sampling points
where a significant difference was observed between sticky and non-sticky mind-wandering. It
was found that SVM (accuracy 62.2%) outperformed the LR (57%) and the RFC (58.1%),
potentially because it is better able to deal with the high complexity of EEG data. The research
furthermore suggests that activation of the visual brain areas just after the stimuli is lower in
sticky mind wandering than in non-sticky mind wandering.
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1 Introduction

Most people will know the feeling of their minds
wandering away from the task at hand, often while
doing long and monotonous activities such as driv-
ing. This feeling is called task unrelated thought
or mind-wandering, a term popularized by Small-
wood and Schooler (2006). When mind-wandering,
returning to the task at hand can sometimes be dif-
ficult as people get stuck in their thoughts. The dif-
ficulty of disengagement from mind-wandering has
been called the stickiness of mind-wandering (Joor-
mann et al., 2011; van Vugt and Broers, 2016). Be-
cause mind-wandering is very common, it can be
beneficial to detect and interrupt it in order to re-
turn to the task at hand. This could be especially
useful if sticky mind-wandering occurs in people
working in positions requiring attention, such as
truck drivers or operators of heavy machinery.

In order to detect sticky mind-wandering it is
required to know where and how it occurs. How-
ever, little research has been done on the subject of

stickiness in mind-wandering. In contrast, a closely
related phenomenon, rumination, did receive a lot
of attention and can provide valuable insights into
stickiness. Sticky mind-wandering and rumination
are both related to thinking that is difficult to dis-
engage from (van Vugt and Broers, 2016). Rumi-
nation occurs when people actively think about
the negative aspects or problems in their lives but
refrain from finding a solution to their problems,
and is a symptom of depression (Davis and Nolen-
hoeksema, 2000). Because rumination and mind-
wandering occur in the brain, one method of learn-
ing more about these processes and their simi-
larities is to measure brain activity when mind-
wandering or rumination occurs in the brain.

Rumination and mind-wandering have received
a lot of attention in literature (Nolen-Hoeksema
et al., 2008; Smallwood and Schooler, 2006). Re-
search using brain imaging techniques have pro-
vided insights into brain activity in rumination and
mind-wandering. For example, decreased activation
of the prefrontal brain areas has been linked to de-
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pression (Davidson, 1994), and decreased activation
in the dorsolateral prefrontal cortex was found in
both rumination (Ferdek et al., 2016) and during
sadness (Liotti et al., 2000). Furthermore, it has
been suggested by McLaughlin et al. (2007) that
rumination elicits enhanced processing of negative
material, even in nondepressed individuals (Lewis
et al., 2015). One research studying sticky mind-
wandering (Huijser et al., 2020) suggested that par-
ticipants allocate less attention to the task dur-
ing sticky thoughts when compared with neutral
or non-sticky thought.

Since sticky mind-wandering and rumination are
closely related, it is probable that there are sim-
ilar brain areas involved in both processes. Thus,
it is expected that there is decreased activation in
the dorsolateral prefrontal cortex in sticky mind-
wandering when compared to non-sticky mind-
wandering. Furthermore it is expected to find de-
creased attention towards the task at hand dur-
ing sticky mind-wandering when compared to non-
sticky mind-wandering, as this was found in the
study (Huijser et al., 2020) concerning sticky
thought.

To find the differences between sticky and non-
sticky mind-wandering in the brain and verify
whether these predictions hold, this study will
use electroencephalogram (EEG) recordings. In-
formation about participants’ mental state will
be obtained using self-reports, also known as
thought probes. Thought probes or self-reports are
a method where questions are interspersed through-
out the experiment to obtain information about
a participants state of mind at the time of the
thought probe. For example, the thought probe
might ask the participant whether they were mind-
wandering or not.

The thought probe method is often used in mind-
wandering research (Weinstein, 2018). However,
these thought probes disturb the experiment and
might influence the performance of the participants
and thus the results of the experiment. A solu-
tion for this problem could be automated detec-
tion of mind wandering. In recent years, different
approaches have been taken to detect mind wan-
dering without thought probes (Hutt et al., 2019;
Beninger et al., 2020).

Jin et al. (2019) also tried to solve this problem
using machine learning in combination with EEG
recordings. Using thought probes, EEG trials were

either labeled on or off-task depending on whether
the participant reported mind-wandering or not.
A Support Vector Machine (SVM) was trained to
classify feature vectors consisting of EEG mark-
ers, and it predicted whether participants were on
or off-task. On average, an across-task prediction
accuracy of 60% was obtained. Furthermore the
EEG marker most predictive of mind-wandering
was found to be the alpha power. Not only does this
provide insight into the various important brain ar-
eas that are involved in mind-wandering, further-
more such a classifier could also be useful in mind-
wandering research because it removes the need for
thought probes.

Another contribution from the research of Jin
et al. (2019) is opportunity for further research. The
thought probes in their study contained four addi-
tional questions about the content of the partici-
pants’ thoughts. One question about the stickiness
of their thoughts asked participants to give a stick-
iness ’rating’ to their thoughts prior to the thought
probe.

The dimension of stickiness was not explored in
their research but will be the focus of this study. A
similar approach to the research of Jin et al. (2019)
will be taken. The goal of this research is to inves-
tigate where stickiness can be found in the brain
and when it occurs. This will be done by train-
ing efficient classifiers to classify stickiness in mind-
wandering.

The EEG and behavioural data from Jin et al.
(2019) will be used to create feature vectors that
highlight the differences between sticky and non-
sticky mind-wandering. The feature vectors will be
used to train and evaluate the classifiers.

2 Methods

2.1 Tasks

Stickiness in mind wandering will be investigated
with data from Jin et al. (2019). Participants were
required to complete two tasks, a Sustained Atten-
tion to Response Task (SART) and a Visual Search
(VS). The SART is a simple and boring task that is
commonly used in mind-wandering research. When
participants perform such simple and boring tasks
they are prone to mind-wandering, which allows for
consistent collection of mind-wandering data. The
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VS task provides a different context that can be
used to check whether inferences made from the
SART can be generalized to other tasks that have
a different focus. Training the classifiers with data
from both tasks ensures that the classifiers will not
be dependent on a specific experimental paradigm.

The experiment consisted of two sessions, each
session lasting approximately 2.5 h. Participants
performed three blocks of each task per session.
Task sequence was counterbalanced between blocks
and sessions. In the SART, participants focused
on a screen that displayed words. Words were dis-
played in lower case, which were frequent, nontar-
get stimuli, or in upper case which were infrequent,
target stimuli. Frequent stimuli appeared 89% of
the time and infrequent stimuli appeared 11% of
the time. In response to an lower case word, partic-
ipants were required to press the button ’m’, and
in response to a upper case word, participants were
required to withhold the response. A SART trial
started with a fixation cross that lasted for a uni-
formly sampled period between 1.5 ∼ 2.1 s. The
stimulus appeared for 300 ms and was followed by
a 900 ms mask. The intertrial interval was 3 s.

In the VS, blue stimuli were shown on the screen.
Before each trial, participants were told what stim-
uli they were required to search. If the target was
present, participants were required to press the left
arrow button. If the target was not present, partici-
pants were required to press the right arrow button.
The target differed from the non-targets in shape.
The probability of the target appearing was equal
to the probability of the target not appearing. A
VS trial started with a fixation cross that lasted
for 1.5 ∼ 2.1 s. Each search panel appeared for 3 s.

2.1.1 Thought probes

54 thought probes were included throughout both
the SART and VS tasks. Each thought probe con-
sisted of 4 questions asking about the thoughts the
participant had just before the thought probe. The
four question were about the content, the temporal
orientation, the emotional valence and the sticki-
ness of the thought. The question regarding stick-
iness was ’How hard was it to let the idea go?’
with the responses (1) Very difficult (2) Difficult
(3) Not easy or Difficult (4) Easy (5) Very easy.
Each response corresponds to a stickiness rating,
1 for very sticky and 5 for not sticky at all. The

degree of stickiness was judged by the participants
themselves.

The 3 trials prior to a thought probe were la-
beled with the stickiness rating that was giving by
the participant in that thought probe. Bastian and
Sackur (2013) suggested that the average length
of a mind wandering episode is 11.1 seconds. The
average length of a trial in this research was 6 s.
Because the focus of this research is mind wander-
ing and its stickiness, it would be expected that the
2 trials preceding a thought probe are mind wan-
dering trials if the participant indicated mind wan-
dering. However, the research was only based on a
SART task, whereas the current research also has
a VS task. Furthermore, using 3 trials instead of 2
allows for a bigger sample size which is desirable be-
cause data from only 30 participants was obtained,
resulting in a small sample. Thus, this research will
use the 3 trials preceding a thought probe where
the participant indicated mind-wandering.

Subject information and a detailed description of
the task procedure for both tasks are described in
the original research paper (Jin et al., 2019).

2.1.2 EEG data

The continuous EEG data was obtained using a
Biosemi 128-channel system with a sampling rate
of 512 Hz. Six more electrodes were used to mea-
sure mastoid signals and eye movements. Mastoid
signals serve as a non-brain reference and tracking
eye movements allows for easier artifact identifica-
tion and rejection.

The continuous EEG data was processed offline.
The data was referenced to the averaged mastoid
signals, band-pass filtered (0.5 - 40 Hz) and down-
sampled to 256 Hz. Lastly, the trials were seg-
mented in epochs of 1600 ms, of which 400 ms were
before and 1200 ms after the stimulus onset.

Channels that had excessive spikes or were noisy
compared to surrounding channels were identified
by visual inspection and replaced through spheri-
cal interpolation. Infomax independent component
analysis (ICA) and visual inspection were then used
for ocular artifact detection and removal. Details
of the online recording parameters and the offline
processing procedures can be found in the original
study (Jin et al., 2019).

The amount of channels used for this research
was reduced to 32 channels using the 10-20 system.
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Since EEG channels record highly correlated sig-
nals, reducing the amount of channels reduces the
complexity of the data without a large loss of in-
formation.

2.1.3 Trials

The data used for training and evaluating the
classifiers consists of both session one and session
two. Depending on whether participants’ mind-
wandering was sticky or not during trials, the trials
were divided into two groups. The ’sticky’ group,
containing stickiness ratings 1 and 2, and the ’non-
sticky’ group, containing stickiness ratings 4 and 5.
Trials with a stickiness rating of 3 were excluded
because they are neither sticky nor non-sticky, and
thus they contain little information that is useful
for the classification of stickiness.

The data was divided in two categories because
it simplifies the training process for both Logistic
regression and SVM as they are binary classifiers.
It furthermore ensures there is enough data in each
class and helps with the classification of stickiness
because this research focuses on the differences in
sticky and non-sticky thought and less so on the
degree of stickiness of that thought.

From all the trials across all participants, 8 tri-
als were identified to have a stickiness rating other
than 1 through 5, and were not included in the
data. The deviant stickiness ratings were due to a
wrong input from participants. Participants 16 and
25 did not contribute any trials from the VS task
as they were all excluded. Participant 19 did not
contribute any trials from the SART task as they
were all excluded. Across all participants, 1861 tri-
als were obtained in total, of which 1042 trials from
the SART and 819 trials from the VS task. 1097 tri-
als were non-sticky trials and 764 trials were sticky
trials.

2.2 Data Analysis

An initial analysis was performed on the data to
find what features might be important in the clas-
sification of stickiness in mind wandering. This was
done for two reasons. First, EEG data is of high di-
mensionality, and even when only 32 channels were
used, every trial is a large data object in the form
of a matrix. This complicates the training process
and extends the run time of the classifiers notably.

Figure 2.1: Average SART trial over all partic-
ipants, in the sticky and non-sticky condition
over one channel. The shaded error shows the
SEM of each time point. Time points where the
shaded areas do not overlap are significantly dif-
ferent.

Furthermore, both RFC and Logistic regression do
not deal well with data that has a low signal-to-
noise ratio. In order to reduce the complexity of
the data, a filter was created using the differences
between the sticky and non-sticky data.

2.2.1 Feature computation

All trials per participant were averaged to obtain
an averaged EEG recording of the sticky condition
and an averaged EEG recording of the non-sticky
condition for each participant. For each channel,
the standard error of the mean (SEM) was calcu-
lated across participants.

Thus for each channel a vector with the average
values and the SEM was obtained for the sticky and
the non-sticky condition. The time points that did
not have an overlapping error were treated as sig-
nificantly different between conditions. Figure 2.1
shows an example of the average sticky and non-
sticky trial with their SEMs for the channel FC2.

To obtain the filter, the vectors for every chan-
nel were concatenated in one matrix. Significantly
different time points were marked with a ’1’ and in-
significantly different time points were marked with
a ’0’. Two feature matrices were obtained, one for
the SART and one for the VS. These two matrices
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were combined using their dot product to obtain
a ’task-general’ feature matrix that contains time
points where both tasks have a significant difference
between the two conditions. Applying this filter to
samples results in a feature vector that was used
for training and testing the classifiers.

Each sample was filtered as follows: if there were
some amount of consecutive number of 1’s in the
feature matrix, the values at those time points were
taken from the sample and averaged. The average
value was treated as a feature and was stored in the
feature vector. A parameter was used to discard ir-
relevant information from the feature vector. If the
amount of consecutive 1’s was lower than the pa-
rameter, the average value would not be included in
the feature vector. This parameter will be referred
to as the minimum time window in the remainder
of this paper.

For example, in figure 2.1 there is no overlap from
-267 ms to -227 ms. The average of the values from
these time points will form one feature. All the fea-
tures are put in a vector to obtain the feature vec-
tor.

10 fold cross validation was performed in order
to prevent over fitting of the data. The trials were
normalized and the data set was balanced during
cross validation to ensure that the classifiers did
not have a bias towards the majority class.

2.2.2 Parameter selection

Two parameters were identified that could influence
the performance of the classifiers. The first param-
eter was the amount of trials that every participant
contributed. Some participants contributed a small
amount of trials (e.g. participant 1 contributed only
one SART trial and 2 VS trials) whereas other par-
ticipants contributed a large amount of trials (e.g.
participant 12 contributed 79 SART trials and 63
VS trials). The feature matrix was constructed us-
ing the average trial data across participants and
not across trials. Thus, the average trial of partici-
pant 1 would have the same weight as the average
trial of participant 12, even though participant 12’s
data contains a lot more information.

The second parameter was the minimum time
window that was used in creating the feature vec-
tor. If it was set too high, too much information
would be lost because only a small amount of time
points could be used. However, if it was set at 1

then the filter might take in irrelevant information
because only one significant time point is needed
to contribute a value to the feature vector, even
though that single time point could reflect just a
false positive.

To examine the influence of the amount of trials
in the dataset of each participant and the mini-
mum time window, an ANOVA (Analysis of Vari-
ance) was performed on three variables, the mini-
mum amount of trials a participant had to have in
order to contribute any data to the classification,
the minimum time window that was needed to con-
tribute a value to the feature vector, and the type
of classifier.

For the minimum amount of trials that a partic-
ipant had to contribute, the difference between 1
trial and 30 trials will be investigated. For the min-
imum time window parameter the values 1 through
4 will be used.

2.3 Classifiers

This study compared 3 different algorithms for clas-
sification of EEG signals. The first algorithm is lo-
gistic regression (LR). LR was used as a baseline
to compare the performance of the other two clas-
sifiers to. Even though LR is not able to model
complex data such as EEG data since it is of high
dimensionality, as a baseline it is useful because it is
easy to train and it shows what a simple model can
achieve. Furthermore, a LR is easily interpretable
because feature importance can be inferred from
the coefficients obtained in the LR, and the fea-
tures can be linked back to the original data with
ease.

The second algorithm that was used is the Sup-
port Vector Machine (SVM). SVM has been applied
to EEG classification problems widely and are good
at generalizing, are robust to over fitting and per-
form well with a low amount of data (Lotte et al.,
2007), which is often the situation with EEG data.
Furthermore, SVM is able to use a kernel function
that allows a non-linear hyperplane, thus being able
to find non-linear interactions in high dimensional
data sets.

The third algorithm that was used is Random
Forest Classification (RFC). RFC is known to
rarely over fit, and makes use of an ensemble tech-
nique, voting, which reduces the variance of the
model and thus reduces classification errors (Hastie
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et al., 2009, p. 588; Lotte et al., 2007). Further-
more, RFC was used in an aEEG (Amplitude in-
tegrated EEG) classification study, and outper-
formed widely-used classifiers including SVM and
LR (Wang et al, 2014).

2.3.1 Logistic Regression

LR is a supervised classification method. It is a bi-
nomial classifier because the target variable can be
either ’0’ or ’1’, which represent the categories ’non-
sticky’ (0) and ’sticky’ (1) that are to be classified.
LR creates a model that is based on the sigmoid
function (1).

g(z) =
1

1 + e−z
(2.1)

This model ensures that the target variable is al-
ways between zero and one instead of a continuous
value. By comparing the predicted probability and
the decision boundary, xi can be assigned a target
variable.

2.3.2 Support Vector Machine

SVM is a supervised classification algorithm that
uses a hyperplane to distinguish between classes.
The hyperplane chosen by the algorithm optimizes
the distance to the nearest data point to obtain
the optimal hyperplane that separates the data.
The SVM can use a kernel to improve classifica-
tion. The kernel function used in the SVM of the
current study is the Guassian kernel (3).

K(x, y) = exp(
−||x− y||2

2σ2
) (2.2)

The Gaussian kernel allows the SVM to consider
non-linear hyperplanes, which is most likely better
able to model than a linear kernel because EEG
data is of high dimensionality.

2.3.3 Random Forest classification

RFC is an ensemble classification technique. RFC
builds a population of randomly grown decision
trees. A decision tree is a tree-like structure that
has nodes which split into two branches. This node
represents a test on a certain property. A sample
will be passed on from node to node depending on
the outcome of the test. All leaf nodes contain a
label, and if the sample is passed to a leaf node it

is classified as the label that that leaf node con-
tains. When a new observation is presented, every
tree in the population casts a vote on the predicted
class and the majority vote decides what the obser-
vation will be classified as. Decision trees are able
to capture complex structures in data. However,
this also allows them to capture noise more easily,
which leads to an unstable tree. Using the average
of a collection of trees reduces the large variance
that a single tree has to a small variance of the
overall ensemble and so RFC takes the strength of
decision trees and reduces its weaknesses.

2.4 Classification

The three algorithms were trained and evaluated
using the classification app learner in MATLAB
(version R2020b), using the feature vectors as de-
scribed in the ’Analysis of Data’ section. The clas-
sifiers used in MATLAB for LR is ’Logistic Regres-
sion’, for SVM is ’Medium Gaussian SVM’ and for
the RFC is ’Bagged trees’. The code for each clas-
sifier was extracted and altered to include k-fold
cross-validation and allow for extraction of data
from each fold.

All three classifiers were validated using 10-fold
cross validation. The performance of the model was
measured using prediction accuracy, the precision
and the recall.

The performance of the classifiers will be com-
pared using a one way ANOVA and the classifiers
will be evaluated using the prediction accuracy, the
precision and the recall.

3 Results

Classification was performed on the feature vectors
obtained from the participants’ trials. Classification
accuracy in parameter selection ranged from 51%
to 59%. Classification accuracy with optimal pa-
rameters was above chance level for all classifiers.

Furthermore the average sticky and non-sticky
trials were visualized. Figure 3.2 illustrates the tem-
poral and spatial locations of differences between
the sticky and non-sticky condition.
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Figure 3.1: Achieved accuracies of the SVM, LR and RFC with minimum trial amount per dataset
(one vs. thirty) and the smallest time window (one, two, three or four) as two interacting factors.

3.1 Parameters

A three-way ANOVA was conducted to examine
the effect of three factors (type of classifier, min-
imum amount of trials, smallest time window) on
the accuracy of classification.

Figure 3.1 shows an overview of these effects.
Classifier type includes three levels (Logistic re-
gression, RFC, SVM), minimum amount of trials
includes two levels (one and thirty) and smallest
time window includes four levels (one, two, three
and four). All main effects were statistically signif-
icant (figure 3.1).

The main effect for classifier type (F(2,216) =
3.86, p < 0.05) indicates a significant difference
between the logistic regression (M = 0.548, SD =
0.0435), the RFC (M = 0.539, SD = 0.035) and the
SVM (M = 0.556, SD = 0.052). The main effect
for minimum amount of trials (F(1,216) = 63.62,

p < 0.001) indicates significant difference between
having at least one trial (M = 0.529, SD = 0.038)
and having at least thirty trials (M = 0.567, SD =
0.042). The main effect for smallest time window
(F(3,216) = 4.42, p < 0.005) indicates significant
difference between using a minimum time window
of one (M = 0.559, SD = 0.043), two (M = 0.553,
SD = 0.043), three (M = 0.541, SD = 0.042) and
four (M = 0.537, SD = 0.047).

The interaction effect between minimum amount
of trials and classifier was significant F(2,216) =
5.64, p < 0.005. The interaction effect between min-
imum amount of trials and smallest time window
was also significant, F(3,216) = 2.92, p < 0.05.
No significant effect was found for the interac-
tion between classifier and smallest time window,
(F(6,216) = 1.43, p > 0.05), and no significant in-
teraction was found for the interaction of all three
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Figure 3.2: Visualization of differences between sticky and non-sticky condition in intervals of
200 ms. The stimulus appears at 0 ms. Data plotted is the average sticky trial subtracted by the
average non-sticky trial. Blue color indicates lower activation in sticky condition and red color
indicates lower activation in non-sticky condition.

independent variables, F(6,216) = 1.03, p > 0.05.

The ANOVA showed that there was a significant
interaction for the minimum amount of trials. Fig-
ure 3.1 shows that using at least thirty trials results
in a higher accuracy in all cases. Thus, when evalu-
ating the classifiers, participants will need to have
at least thirty trials in order for their data to be
used in training the classifiers.

Regarding the smallest time window, a signifi-
cant interaction was found between the minimum
amount of trials and the smallest time window. Post
hoc comparisons using the Tukey HSD test indi-
cated that the mean score for a time window of one
(M = 0.559, SD = 0.043) was significantly differ-
ent than the time window of 4 (M = 0.537, SD =
0.047). The time window of 2 (M = 0.553, SD =
0.043) and the time window of 3 (M = 0.541, SD
= 0.042) did not significantly differ with any con-
ditions. Because there was no difference between a
time window of 1, 2 or 3, a time window of 1 will
be used as it will retain the most information.

The optimal parameters for each classifier are the
same and thus the same parameters will be used for
all three classifiers.

3.2 Classifiers

Three one-way ANOVAs were performed on the
influence of the classifier type (SVM, RFC, LR)
on the accuracy, the precision and the recall. The
ANOVAs were performed with the parameters ob-
tained in section 3.1.

First, a one-way ANOVA was performed on the
influence of the classifier type (SVM, RFC, LR) on
the accuracy. The interaction effect was significant,
F(2,27) = 4.52, p < 0.05. This indicates a signif-
icant difference between the influence of SVM (M
= 0.6227, SD = 0.0358), RFC (M = 0.5813, SD =
0.0350) and LR (M = 0.5708, SD = 0.05) on the
accuracy.

Secondly, a one-way ANOVA was performed on
the influence of the classifier type on the precision.
The interaction effect was not significant, F(2,27)
= 0.74, p > 0.05. This indicates no significant dif-
ference between the influence of SVM (M = 0.6491,
SD = 0.0454), RFC (M = 0.6249, SD = 0.0372) and
LR (M = 0.6361, SD = 0.0501) on the precision.

Lastly, a one-way ANOVA was performed on the
influence of the classifier type on the recall. The
interaction effect was significant, F(2,27) = 31.01,
p < 0.001. This indicates a significant difference
between the influence of SVM (M = 0.7225, SD =
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Figure 3.3: Three box plots showing the accuracy, precision and recall of the three classifiers from
left to right. The values were obtained from training the classifiers using 10-fold cross validation.

0.0352), RFC (M = 0.6483, SD = 0.0458) and LR
(M = 0.5702, SD = 0.0477) on the recall.

Figure 3.3 shows box plots of the three classifiers
for their accuracy, recall and precision.

4 Discussion

The goal of this research was to understand where
stickiness occurs in the brain and to train efficient
classifiers to detect stickiness. This was done by
training a Logistic Regression, a Random Forest
Classifier and a Support Vector Machine to clas-
sify EEG trials of participants performing a Visual
Search task or a Sustained Attention to Response
task.

Prediction accuracy across classifiers ranged
from 57% to 62%. The overall accuracy was higher
than chance, which suggests that stickiness is not
something that is a subjective experience but can
also be found in EEG data. However, overall accu-
racy was not high enough to reliably predict stick-
iness in mind-wandering.

There are several reasons for the low overall ac-

curacy. First of all, the data consists of self-reports,
which rely on the subjective experience of partici-
pants and thus always introduce some noise. The
same mental states might be experienced differ-
ently per participant and this blurs the line between
sticky and non-sticky thought.

Secondly the data was very limited. Data from
only 30 subjects was collected in the original study
of Jin et al. (2019). After filtering the data and
discarding data from participants with low amounts
of data points as explained in the methods section,
data from only 21 participants remained.

Lastly, data of high dimension often introduces
the curse-of-dimensionality, which states that prop-
erly describing different classes requires exponen-
tially more data as the dimensionality of feature
vectors grow (Lotte et al., 2007). Because limited
data was used the curse-of-dimensionality could be
a major reason why the overall accuracy was low.

No optimization of the parameters of the algo-
rithms was performed because it was outside the
scope of this study. However, it is likely that opti-
mization would have increased the prediction accu-
racy and larger differences could have been found
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between the algorithms which would aid in a more
informative conclusion regarding choice of classifi-
cation algorithm.

Furthermore it was found that the accuracy and
the recall of SVM were significantly higher than
that of the RFC and LR, but that there was no
significant difference between the RFC and the
LR in both the accuracy and recall. There was
no difference between the three classifiers in terms
op precision. Lotte et al. (2007) states that the
SVM is known to be insensitive to the curse-of-
dimensionality and to have good generalization
properties. Better performance of the SVM can be
due to the aforementioned reasons.

First of all, limited data introduced the curse-of-
dimensionality. However, the reason that SVM out-
performed the LR and RFC could be because the
SVM is insensitive to the curse-of-dimensionality
but the LR and RFC are not.

Secondly, data was obtained from both a SART
and a VS task. Because the SVM has good gener-
alization properties it might have performed better
overall.

Visualization of the average sticky and non-
sticky trial show differences in temporal and spatial
locations throughout the brain.

Figure 3.2 shows that the overall activation in
the brain in the 400ms before the stimulus ap-
pears is lower in sticky thought when compared
to non-sticky thought. This could indicate that at-
tenuation of brain activity occurs in sticky mind-
wandering when compared to non-sticky mind-
wandering.

Furthermore figure 3.2 shows a lower activa-
tion in the visual brain areas in the 200 ms af-
ter the stimulus in sticky mind-wandering as com-
pared to non-sticky mind-wandering. Amano et al.
(2006) suggests that it takes participants 150 ∼
200 ms to react to visual stimuli, which means
that visual processing of the stimulus occurs within
200 ms after the stimulus appears. Attenuation in
this time frame of the visual brain areas could
suggest decreased attention towards the stimulus
in sticky mind-wandering when compared to non-
sticky mind-wandering. This finding falls in line
with the expectation based on the results of Huijser
et al. (2020) that participants pay less attention to
the stimulus during sticky mind-wandering.

There is no clear decrease in activation in the
dorsolateral prefrontal cortex during sticky mind-

wandering which was expected. The -400 to -200
ms time frame in 3.2 shows decreased activation in
the frontal and part of the parietal lobe, however
because the spatial resolution of EEG data is poor
these results cannot be linked to the dorsolateral
prefrontal cortex.

Another reason that there was no clear decrease
in activation in the dorsolateral prefrontal cortex
during sticky thought could be that this is an as-
pect of rumination that is not present in stickiness.
Decreased activation in the dorsolateral prefrontal
cortex was found in both rumination (Ferdek et al.,
2016) and sadness (Liotti et al., 2000), which could
suggest that it is related to processing of negative
thoughts and not necessarily thoughts that are dif-
ficult to disengage from.

Future research using brain imaging techniques
that have a higher spatial resolution than EEG
could investigate whether stickiness is related to
the dorsolateral prefrontal cortex. This would pro-
vide insights in both stickiness and the difference
between stickiness and rumination.

A more obvious direction is the collection of
more EEG data and classifying stickiness in mind-
wandering using a SVM with optimized parame-
ters. If a higher classification rate can be obtained,
the classifier could be used in real-life situations re-
quiring close attention, although some difficulties
regarding convenience and the feasibility of using
EEG data in real time need to be overcome.

This study showed that above chance classifica-
tion of stickiness is possible using several classifica-
tion algorithms, and that SVM outperforms both
LR and RFC in the classification of stickiness in
mind-wandering. Furthermore decreased brain ac-
tivation was found in the 400 ms before a stimulus
en decreased activation of the visual brain areas was
found in the 200 ms after a stimulus, indicating at-
tenuation during sticky mind-wandering when com-
pared to non-sticky mind-wandering.
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