
Inequality in Proof-of-Stake Schemes: A

Simulation Study.

Bachelor’s Project Thesis

Luca Bandelli, s3221253, l.bandelli@student.rug.nl,

Supervisors: Prof Dr Davide Grossi

Abstract: A fundamental concern of blockchain systems is dispensing reward to nodes in
the network as incentive to align individual interests with the system’s purpose. This study
investigates the problem of wealth compounding in ‘Proof of stake’ schemes implementing a
model described by previous research on the topic.

A computer simulation was designed to investigate system dynamics varying number of agents,
duration and total dispensed reward. Scheme variations were considered along reward function,
proposer selection mechanism, and initial state distribution. Two metrics assessing the equi-
tability of the process as defined in the literature were collected for each simulation as response
variables.

For initially uniform population, duration predicted an equitability increase, while the log
ratio reward/duration (‘load’) predicted a decrease. Several interactions were also found signif-
icant, notably that of ’load’ with duration, as well as general differences in mean performance
across ‘scheme variation’. Non-uniform initial distributions were also tested providing interesting
insights.

Results aligned with previous research, and exposed critical relations between parameters of
the simulation algorithm and equitability of the process.

1 Introduction

Since 2008 (Nakamoto, 2008) a new technology
emerged known as ‘Blockchain’. This technology
allows the implementation of transactional soft-
ware systems whose execution is fault tolerant
and decentralized. The most common design for
blockchains involves ‘Proof of Work’ (POW) as con-
sensus protocol, which is by design vastly ineffi-
cient in terms of energy consumption and process-
ing speed. The present study focuses on a promis-
ing alternative to POW, known as ‘Proof of Stake’
(POS), which solves the energy waste issue, but re-
quires careful design to preserve the desirable prop-
erties of POW; in particular the fairness of the
reward mechanism in POS and the phenomenon
of wealth compounding is analyzed implementing
the model described by Fanti, Kogan, Oh, Ruan,
Viswanath, and Wang (2019) attempting to repli-
cate their mathematical findings in a computer sim-
ulation.

Transactional systems revolve around the con-
cept of ‘a source of truth’ about the state of some
domain of discourse, in the form of a ledger de-

scribing all the steps (transactions) leading from
the initial state to the current one (Xu et al., 2017;
Nakamoto, 2008; Buterin, 2014). Fault tolerance on
the other hand denotes systems designed without
potential single points of failure, providing prov-
ably safe mechanisms for counteracting anticipated
failure scenarios whose underpinnings cannot be di-
rectly eradicated (Koren and Krishna, 2020). Lastly
decentralized refers to systems comprising a multi-
tude of components which are not collectively con-
trolled (synchronized nor monitored) by a central
entity (Narayanan, Bonneau, Felten, Miller, and
Goldfeder, 2019). These can be contrasted with
centralized, transactional and fault tolerant sys-
tems, e.g. PayPal (Narayanan et al., 2019) or other
escrow service providers. These actors mediate the
exchange of some form of currency for goods or ser-
vices between mutually untrusting parties, which
entrust, instead of each other, the central third-
party to oversee the transaction. In this scenario
both the main parties delegate the fulfillment of
their respective interest to the central third-party,
so the latter must enjoy of an established endorse-

1

ment guaranteeing it does not collude with either
of the main parties. Keeping a ‘clean track’ in these
terms is in the interest of the escrow party itself in
order for the main parties to endure their trust in
the service.

Centralization in these systems is key in several
respects: from an infrastructural standpoint, while
exposing a potential single point of failure, a clear
locus of responsibility makes it easier to ensure
the unaltered unfolding of the transaction: Pay-
Pal servers are only directly accessible by employ-
ees trusted with sufficient clearance (system ad-
ministrators), which are dis-incetivized by clauses
in their employment contract to tamper with the
system threatened by the legal consequences of
their infringement including the loss of their income
source and associated social position.

In economic terms the central position is the one
affording a novel profit opportunity. The service
provider can obtain profits from every successful
transaction (e.g. from fixed or proportional fees),
which stimulates the emergence of these actors in
the first place, offering an incentive to take on the
responsibility of performing the transaction with
its associated risk and potential burden of refund-
ing damaged parties.

Finally one has to consider the psychological
aspects involved when establishing the trustwor-
thiness of a system: the general public is ac-
quainted to ‘institution-based trust’ (Pavlou and
Gefen, 2004) typically and historically associated
with centralized system such as banks investigated
by Fungáčová, Hasan, and Weill (2019), and mar-
ketplaces by Wingreen and Baglione (2005). While
the decentralized alternatives promise ‘trust-less
trust’ (Werbach, 2019; Harz and Boman, 2018),
that refers to the objective cryptographical proper-
ties of a complex digital system and not to the sub-
jective feeling of perceived trust and perceived secu-
rity (Khazaei, 2020) the customer ascribes to the
entity or technology, factors which influence their
adoption.

1.1 Bitcoin, relating to definition

A natural domain of application for this technology
is currency. Nakamoto’s Bitcoin allows untrusting
peers to safely exchange the homonymous digital
currency without the need for a central third party
administering the transaction. All the peers keep

an up-to-date copy of the transaction ledger, which
is a monotonically increasing, immutable ‘chain’ of
blocks, from which the name ‘Blockchain’. Blocks
are data-structures emitted at regular intervals,
each storing at least the set of new transactions,
a timestamp and the id of the previous block, thus
forming the ‘chain’.

While Bitcoin was the first implementation of
this concept on digital computers, relying on the
original notion of computer, a person carrying out
instructions, allows us to frame (Friedman, 1991;
Lanchester, 2016) the monetary system of the Mi-
cronesian island of Yap documented in 1903 (Fur-
ness, 1910), as a precursor of modern Blockchain
technology. Due to the lack of minerals on the is-
land, the Yapese decided to mint their currency
form a nearby island in the form of large stones
(up to 4 meters diameter). Due to the inherent
transportation problems, physical possession of the
‘coin’ was not required to use it, the mere acknowl-
edgment of the islanders that the transaction hap-
pened was sufficient, and the heavy rock would re-
main in its original location untouched.

1.2 Beyond currency

Since 2015 a revolutionary Blockchain based plat-
form called Ethereum emerged (Buterin, 2014).
The novelty it introduces is the possibility to per-
form general purpose, Turing complete computa-
tion within its ‘smart contracts’. This allows to im-
plement any software in a decentralized fashion,
not only currency related applications. Although
in 2020 this is not yet the most practical or conve-
nient solution, it paves the road towards a new era
of software services.

While the domain of digital (cash-less) currency
was the first to emerge and the most widespread,
the applications of Blockchain technology are
countless: KYC (identity verification as a service),
Immutable Data sharing (IPFS, Filecoin), elimi-
nation of paper trail in supply chain monitoring,
trust establishment in IoT systems, smart grids, ac-
countability and transparency in Governance/law-
making systems, digital voting, Copyright and roy-
alties protection/enforcement, and even decentral-
ized social media (Kim and Chung, 2019).

The landscape of Blockchain technology since
2008 developed into an heterogeneous ecosys-
tem with more than 5000 cryptocurrencies

2

and an overall market capitalization larger
than 257,000,000,000 USD as of may 2020
(https://coinmarketcap.com/). In this context
scholars exposed the need for establishing stan-
dards in the development, classification and assess-
ment of these systems (Xu et al., 2017; Kampakis,
2018; van Moorsel, 2018).

Xu et al. proposed a taxonomy of such sys-
tems capturing the impact of many of the pos-
sible design choices on performance and main
qualitative aspects of a desirable Blockchain.
van Moorsel on the other hand prompted for
the need of effective benchmarks, besides model
based predictions, with particular attention to en-
ergy consumption, an issue which cannot be ig-
nored for a modern technology that in its main-
stream variant (POW) competes with developed
nations consuming 93.10 TWh/year (Bitcoin net-
work) just below the Netherlands 108.80 TWh/year
(data from https://www.cbeci.org/comparisons/
January 2020)

2 Consensus Protocol

A crucial part of a blockchain implementation is its
consensus protocol, used for block proposer selec-
tion, a form of leader election: at each tick one of
the peers needs to be chosen to append the next
block to the chain. The selected proposer will typi-
cally be compensated with a combination of trans-
action fees and freshly minted tokens.

The choice of consensus protocol determines how
the agreement on the elected proposer is reached.
Bitcoin and the vast majority of active blockchains
as of 2020 rely on a variations of a consensus pro-
tocol based on the concept of a ‘proof of work’.

A ‘proof of work’ is some piece of data that an
agent within the network has to present attached to
the proposed block. A proof of work should always
be easy to verify, but it must be hard to produce:
it demonstrates that the proposer invested effort
before making the proposition, typically in terms
of computational power (and associated energetic
consumption).

The proof has a difficulty level which controls
how hard it is to produce a valid instance. The
difficulty of the proof is varied to keep issuance rate
approximately constant.

The text book example application of proof of

work is preventing e-mail spam (Back et al., 2002):
if the mail protocol required a proof of work to
be submitted along with each sent email, regular
emails with few recipients would proceed nearly un-
affected, but mass diffusion to thousand of recipi-
ents would require large amounts of computational
power (or a very long time), placing dis-incentives
for spam producers.

An elegant way of producing a proof of work is
to ask the worker to find a value (nonce) whose
cryptographic hash (a bit array, produced by some
predefined hashing algorithm) is smaller than some
target integer. As by design there is no clever way to
solve this puzzle, the worker is forced to approach
it by trial and error, progressively varying the value
until it hashes below the target. Bitcoin uses ‘Hash-
cash’ to perform this step.

In a POW Blockchain each block contains its
proof of work nonce, that functions as ID of the
block, as well as the hash of the preceding block,
thus forming the ‘chain’. This forces anyone who
wants to ‘fork’ the chain, tampering with a block,
to regenerate all blocks after that which involves
recalculating all of their proofs of work.

The first peer to produce a valid nonce is elected
as block proposer, thus favoring nodes with more
computational power. This approach has certain
desirable properties making it ‘robust to security
threats’ (Fanti et al., 2019), but is very energy-
inefficient and due to the dedicated hardware re-
quired to be a competitive POW miner has encour-
aged the formation of large mining pools, threaten-
ing the principles of a decentralized peer to peer
network (Eyal, 2015).

In POS proposer selection is driven by the share
of tokens each node holds rather than the share of
computational power.

Each validator node will typically ’stake’ a vari-
able amount of tokens, which are deposited and
locked. These may be seized in case of misbehavior
of the node. For each node their portion of the total
amount of staked tokens, determines their selection
probability, in a pseudo-random sampling from the
validator set. Once a validator is elected it is as-
signed the right to propose the next block and reap
associated rewards.

Note that, contrarily to POW where any node
can at any moment start competing to validate
the next block, in POS an explicit staking trans-
action has to be performed by the node, deposit-

3

ing their tokens, and adding their stable address to
the validator set. Knowing the size of the set and
the identity of its members affords these scheme
additional fault tolerance properties (Patnaik and
Balaji, 1987).

The amount of actual computation a POS val-
idator has to perform is appreciably smaller than
that required for a POW validator as it involves no
brute-force hash generation, and opens the possi-
bility to participate even with consumer tier hard-
ware.

The economic investment for a POW miner, be-
ing the mining hardware, is replaced in POS by
the staked tokens: in both schemata to gain valida-
tion rights a peer must demonstrate its economic
investment, indirectly for POW (via hardware and
high consumption rates) and directly for POS (via
deposited tokens).

POS solves the energetic inefficiency of POW,
contributing to an overall faster transaction pro-
cessing rate, and thanks to the reduced energy
consumption the required amount of tokens to be
minted in order to incentivize validators to keep
working is smaller.

In terms of ‘game-theoretic mechanism design’
(Buterin, 2014) POS offers more opportunities to
discourage the formation of mining ‘cartels’, more-
over the possibility to effectively punish misbehav-
ing nodes: while after carrying out a 51% attack
on POW the protocol cannot physically seize the
malicious hardware, a POS protocol can revoke the
validator rights to a node, by ‘burning’ its staked
tokens as a punishment.

Being relatively young compared to POW, the
community is still working towards POS mod-
els which provide both a desirable security level
and appropriate incentive for validator nodes. The
scheme should, as for POW, make sure the expected
reward for a node compensates their resource us-
age. Another aspect though is the fairness of the
rewards: peers should not only be compensated cor-
rectly on average, the variance of the reward distri-
bution also matters (Fanti et al., 2019). As nodes
can directly reinvest their rewards as new stake,
wealth compounds in these systems leading to a
‘rich get richer’ effect.

Inspired Fanti et al.’s (2019) notion of equitabil-
ity to measure the fairness of a particular scheme,
the goal of the present research is to investigate the
problem of wealth compounding in POS schemes;

through an experimental setup manipulating sim-
ulation parameters associated with several imple-
mentation choices of a POS scheme, we aim at de-
termining which are the most critical for the in-
surgence of wealth compounding and how the phe-
nomenon can be mitigated.

3 Method

In order to study the wealth compounding dynam-
ics a computer simulation was designed. It follows
the model from Fanti et al. (2019) with some adap-
tations.

The model does not need to account for nodes in
the network which do not participate in the vali-
dation process. These are the nodes which did not
deposit stake into the system, thus they are not
involved in the reward mechanism.

For convenience we denote [x] := {0, 1, 2, ...x−1}
for a positive integer x; to indicate the sum of the
entries in a vector ~x ∈ Rn,

∑n
i=1 xi, we write the

inner product of ~x and ~1 ∈ Rn: 〈~1, ~x〉. To indicate
the mean value of the entries in a vector ~x we write
E[~x].

3.1 Model definition

The model considers m parties A = [m] participat-
ing in the validation process, so the ith node is Ai.
Simulation time is discrete, and an epoch is indi-
cated by n ∈ [T] within a total period of length
T . Then ∀i ∈ [m],∀n ∈ [T] let SAi

(n) indicate
the total stake held by party Ai at time n, and
~SA(n) the vector collecting these total stakes. We
also denote the sum of absolute stakes at time n,
S(n) = 〈~1, ~SA(n)〉.

At time n the state vector of the system is
~vA(n) ∈ Rm where:

~vA(n) =
~SA(n)

S(n)
with 〈~1, ~vA(n)〉 = 1 and

and
0 < Si(n) ≤ 1 ∀ i ∈ [m]

representing the vector of fractional stakes,
where each absolute stake is scaled by the total
stake S(n). Hence the for node Ai at time n its
fractional stake is denoted vAi

(n) for i ∈ [m]. The

4

simulation can be framed as a random process that
moves the state vector in Rm

(0,1].
Note that by construction the mean fractional

stake for every epoch n is constant: E[~vA(n)] = 1
m ,

this is because the sum and number of parties stay
fixed. This implies we get no information from look-
ing at the mean fractional stake when assessing eq-
uitability we identify alternatives metrics capturing
the construct in section 3.2.

The following assumption was made: S(0) = 1,

therefore for ~SA(0) = ~vA(0), that is initially the
absolute stake for a party is equal to their frac-
tional stake. This assumption does not imply a loss
of generality as the random process is invariant to
scaling (Fanti et al., 2019).

In order to generate initial state ~vA(0) for m
nodes we use a function of two arguments: the node
index and the total number of nodes mapping to a
positive real number in (0, 1). Any function stakef
for which

m−1∑
i=0

stakef (i,m) = 1

such that ∀i 0 < stakef (i,m) ≤ 1

is a valid generator for the initial population.
We can initialize all the m nodes to have each

a fraction of the total stake equal to 1
m (setting

labeled eq) thus producing an initial state with null
variance V ar(~vA(0)) = 0.

Another choice is to sample m values from some
distribution, and then normalize the vector of frac-
tional stakes. The beta and Pareto distributions
were considered for this purpose; beta is defined
for x ∈ [0,1] and it was chosen since it introduces
some degree of variance in the initial population,
it has 2 parameters α and β controlling its shape.
Setting α = β = 2 yields a symmetry with respect
to the vertical line x = 0.5, in this case the initial
population variance amounts to

V ar(~vA(0)) =
αβ

(α+ β)2(α+ β + 1)
=

4

16 ∗ 5
= 0.05

The Pareto distribution was chosen for its rela-
tion to wealth distribution in general; it has a single
shape parameter α, and introduces high asymmet-
ric variability with a long right tail. If the α param-
eter is set to 1.16 the notorious 80-20 rule holds,
thus 80% of the wealth is held by 20% of the pop-
ulation. Because of the heavy right tail, the mean,

variance, and other moments are finite only if the
shape parameter a is sufficiently large (i.e. α > 2
for the variance to converge, α > 1 for the mean).

Given that we fix the shape parameters for the
distributions, we treat the choice as a categorical
stakef ∈ {eq, beta, pareto}.

3.1.1 The reward mechanism

1. Selection

At each n ∈ [T] the system elects a proposer
node denoted W (n) ∈ A so that:

W (n) =

A0 w.p. selectionf (~vA(n))0

...

Am−1 w.p. selectionf (~vA(n))m−1

where selectionf is a function Rm
(0,1] → Rm

(0,1]

transforming the discrete probabil-
ity distribution over A, maintaining
〈~1, selectionf (~vA(n)〉 = 1.

The simulation accounts for linear and log as
choices for selectionf (figure B.1 in appendix):

• random: ~y =
~1

dim(~x)

• linear : ~y = ~x

• log : yi = log(1+xi)∑m
j=1 log(1+xj)

As for stakef parameters are fixed for
selectionf so its choice is treated as categorical
variable with 3 possible labels.

2. Reward

The system can dispense a total of R tokens
during the T epochs. W (n) is compensated
with a reward r(n) which is added to their
stake:

SW (n)(n+ 1) = SW (n)(n) + r(n)

The reward function y = r(n) : N → R
yields for each epoch n a scalar value repre-
senting reward to emit for block n, satisfying:∑T

n=1 r(n) = R.

We define the load factor c as the mean epoch
reward c = R

T

The choice of reward function constitutes the
last categorical variable; the simulation ac-
counts for constant and geometric reward func-
tions (plot in appendix figure: B.2):

5

• const : rc(n) = c

• geom: rg(n) = (1 +R)
n
T − (1 +R)

n−1
T

Table 3.1: Summary of independent parameters

name type desc
m Int number of staking nodes
T Int total epochs
R or c Float Total reward (R) or load (c)
stakef categ initial stake distribution
selectionf categ proposer selection function
rewardf categ reward function

The combination of selectionf and rewardf leads
to 5 conditions we refer as: random which uses ran-
dom selection and constant reward, used as control
condition; const which uses linear selection and con-
stant reward; geom with linear selection and geo-
metric reward; log const with logarithmic selection
and constant reward; log geom that uses logarith-
mic selection and geometric reward. We refer to this
composite label (with 5 possible values) as sim.

3.2 Response variables

Several metrics can be chosen to measure the equi-
tability of a given system. A valid metric for equal-
ity is a function f : Rm → R of the state vector that
has a lower bound at 0, capturing perfect equality
where each of the m nodes has exactly vAi(n) = 1

m ,
and some defined upper bound capturing perfect in-
equality where a single node has all the stake and
the rest share nothing.

Both the variance (and therefore the standard
deviation) and the Gini coefficient (Gini, 1912;
Dorfman, 1979) satisfy these requirements.

3.2.1 Metrics

The Standard Deviation of the state is given by

σ : Rm → R

σ(~s) =
√
V ar(~s) =

√
E[(~s− s̄)2]

=

√∑m
i=1(si − s̄)2

m

So the portion under the square root is alwyas
non-negative being a paraboloid in Rm+1 with a

single minima where si = s̄ ∀i ∈ [m] and no max-
ima. If we consider the square root then we get an
m + 1 dimensional cone with still a single minima
and no maxima. Therefore there is no upper bound
in the general case, but our system constraints im-
pose that ~s must satisfy

0 < si ≤ 1 ∀ i ∈ [m]

and
〈~1, ~s〉 = 1

to be a valid state vector of the system (~vA(n)).
When ~s respects the constraints then the upper

bound for σ(~s) is 1
m (1− 1

m) (proved in appendix A,
lemma A.1).

The Gini coefficient is more traditionally used to
assess inequality of wealth

G(~s) =

∑m
i=1

∑m
j=1 |si − sj |

2m2s̄

for m nodes the value is always in [0, 1− 1
m]. When

wealth is equally shared the value for the coeffi-
cient is 0. When all the wealth is concentrated in
the hands of single party the upper bound 1 − 1

m
is reached and it has the natural interpretation of
being the complement of the share under perfect
equality.

An important difference is that the Gini co-
efficient measures the mean distance between
data-points while variance (and standard devia-
tion) measure the average distance from the
mean; this has consequences on the response of
the metrics to particular conditions.

3.2.2 Metrics response

While both metrics assign a value of 0 for perfect
equality situations, their behavior is different under
maximal inequality when the number of nodes m is
varied. In fact when looking at the variance under
maximal inequality for ~s ∈ Rm the limit for the
upper bound is

lim
m→∞

1

m
(1− 1

m
) = 0

.
On the other hand the upper bound in the same

scenario for the Gini coefficient:

lim
m→∞

1− 1

m
= 1

6

a plot of this effect is presented in appendix B
figure B.4.

Another difference in metric response regards the
influence of outliers. To show this we consider a
scenario where the number of parties m is fixed
and the stake of a single party i, si is varied while
the rest shares equally the remaining 1− si.

So when si is varied, decreasing starting from
1, both metrics start dropping. Both reach 0 when
si = 1

m . The interesting divergence is when si <
1
m ,

where while the Gini coefficient reflects the ‘injus-
tice’ towards the only outlier si with high scores,
the variance does not punish as much those scenar-
ios, lowering even more as m grows.

This is intuitive since variance measures the aver-
age squared distance from the mean, which in those
scenarios is very low as most have a value immedi-
ately close to the mean and only one outlier has a
large distance which does not influence the average
much.

This behavior of the variance (and standard de-
viation) is desirable in some situations, as it makes
it outlier ‘tolerant’ but not when evaluating equi-
tability.

Figure 3.1: Metrics varying single party stake
with fixed m

3.2.3 Scores

For a metric f(~s) we denote the normalized metric

fr(~s) = f(~s)/fmax

where fmax denotes f ’s value in the maximal in-
equality situation. The value fr(~s) indicates the
current fraction of the maximal inequality in the
system state. By measuring and normalizing the
value of a metric at n = 0 and n = T we define the
score for that simulation as the difference

∆f = fr(~sT)− fr(~s0)

which denotes the gain in relative inequality that
the system introduced. It is expressed as a signed
fraction of the maximal value of the metrics. Hence
a positive value indicates that the system amplified
the inequality (e.g. 0.5 means 50% of the maximal
inequality was introduced), while a negative value
implies a reduction of the initial inequality. An opti-
mal system has score 0, meaning it terminates with
no inequality amplification, positive scores are not
desirable as they favor some parties more than oth-
ers. Negative scores are undesirable too since they
would discourage larger stakeholders, as the minor
stakeholders would get wealthier at their expense.

For a system initialized with perfect equality
fr(~s0) = 0, the score will always be ∆f ≥ 0. On
the other hand for initial states with some inequal-
ity already present, negative scores can be achieved
if the final metric value is smaller than the initial
one.

The heat-map in figure B.3 (appendix B) shows
the value of ∆f (as the color) for any valid metric f
as a function of two variables: initial (x0) and final
(x1) normalized metric value. Optimal systems are
located on the diagonal x0 = x1.

The following table shows what values were cho-
sen for each simulation parameter. This generates
720 combinations each repeated 100 times, for a
total of 72000 simulations.

In order to perform all the simulation runs in
a sensible amount of time a distributed executor
was built, based on the Pyhton framework ‘Celery’
(celeryproject.org). The executor allows to define
the experiment as a dictionary data structure, from
which the combinations are computed and then ex-
ecuted in parallel on several processes potentially
on different machines. The execution environment

7

Table 3.2: Chosen values for independent pa-
rameters

param values
m 10, 100, 1000
T 100, 1000
c 0.001, 0.01, 0.1, 0.5, 1, 2, 10, 100
sim random, const, geom, logconst, loggeom
stakef eq, beta, pareto

to run on each machines is bundled as a Docker im-
age, and the details regarding its setup are reported
in appendix B.

4 Results

The output of a full experiment provides estimates
of how our score statistic ∆f is distributed condi-
tionally on the values of independent parameters.

First we look at the scenario with initial per-
fect equality; here achieving negative scores is by
construction impossible. All schemes achieve there-
fore positive scores, meaning there was an inequal-
ity gain. The errors reported in the following para-
graph represent standard deviation of the measure,
with a sample size of 100, therefore one can read
them divided by (

√
100 =)10 to get standard errors.

When looking at the eq scenario, leaving all but
the scheme type uncontrolled (see figure 4.1 and
4.4), the random scheme achieves the lowest aver-
age score (0.334 ± 0.277), while the constant re-
ward scheme with linear selection (const) scores
the highest (0.762 ± 0.335); the geometric scheme
with linear selection (geom) mitigates the com-
pounding effects scoring below const (0.658 ±
0.331). Using log selection further mitigates the am-
plification for both constant and geometric reward
(logconst 0.75 ± 0.335; loggeom 0.648 ± 0.332)

Clearly though the variance of these averages
can be decomposed by controlling for our numeric
parameters m, T and c too. The multiple modes
visible in the distributions in figure 4.1, lead us
to suppose some parameters have drastic influence
on their shape. For example let us look at the eq
scenario fixing the number of nodes m = 10 and
T = 1000, varying c in figure 4.2:

The histograms in figure 4.2 show that when c is
low, score values are all gathered around 0, while

Figure 4.1: score distributions for eq

Figure 4.2: an example of variance decomposi-
tion varying c in eq scenario and const scheme

8

as c grows gradually the center of the distribution
moves toward 1 (i.e. maximal inequality gain).

Similarly for the number of nodes (see figure
4.3) an increase of m results in score distributions
shifted further right towards undesirable perfor-
mance where the inequality gain is maximal.

Figure 4.3: an example of variance decomposi-
tion varying m in eq scenario and const scheme

When inspecting the other initial scenarios (beta
and pareto see figure 4.4) which have non null ini-
tial variance and Gini coefficient, the average am-
plification scores are overall lower but still positive
except for the random scheme with pareto scenario
(-0.18 ± 0.244); This negative score for random in
pareto scenario can be attributed to the scheme re-
warding equiprobably the many poor nodes of the
Pareto distribution and the few rich ones, thus ef-
fectively reducing inequality.

The ranking of the schemes remains the same
with constant being the worst (i.e. highest score)
followed by geometric and the inadmissible ran-
dom, with the log selection alternatives lowering
slightly the scores (full table C.1 in appendix C for
brevity).

4.1 Main effect

Since the number of nodes is not something fully
under control when implementing a peer to peer
network, we concentrate on c and T when looking

Figure 4.4: score distributions for each scheme
(column) and scenario (x-axis)

for critical parameter dynamics, averaging across
levels of m.

The plots in figure 4.5 show how the increase of
log(c) (x-axis) influences the inequality amplifica-
tion gini.r.diff (y-axis), across levels of T (color)
and scenario (row) for each scheme (column). The
dashed lines represent the (log-)linear estimation of
the effect.

The effect of c is clear and positive in all of the
settings except for random in initially Pareto dis-
tributed populations. Interestingly the positive ef-
fect also seems to concern random schemes (see dis-
cussion). The effect is almost perfectly (log-)linear
in the area preceding log(c) = 0 (i.e. c = 1: an
important level discussed below), after which it in-
flects toward an asymptote at an height dependent
on how much inequality can be gained for each
initial scenario, determined by the expected ini-
tial metric value for each initial distribution (e.g.
y = 1 − 0 = 1 for eq, roughly y = 1 − 0.25 = 0.75
for beta and y = 1−0.6 = 0.4 for pareto). Geomet-
ric schemes seem to enjoy smaller amplifications in
general, which decrease even more if T is large.

An effect of T is also observed which varies
across conditions: for random schemes the effect
appears negative, sensibly lowering the score when
increased 10 fold (from 100 to 1000); for non ran-
dom schemes the effect interacts with that of c: in
schemes with constant reward function the effect is

9

positive up to log(c) = 0 after which it becomes al-
most null; for schemes with geometric reward func-
tion the interaction is stronger, with a positive ef-
fect of T when c is low, which becomes negative as
soon as log(c) grows above -1 (i.e. c ≥ 0.1)

To test the observed differences a linear model
was fitted that predicts the score based on our inde-
pendent variables as predictors. A complete model
was constructed accounting for interactions, which
was then restricted via the Akaike information cri-
terion. The full table of regression coefficients is
included in the appendix, along with assumptions
diagnostic plots.

The linear model considers the score (Deltaf :
gini.r.diff) modelled by scheme configuration (ran-
dom, const, geom, log const, log geom) as first cate-
gorical factor with random being the reference level;
the stakef factor with 3 levels (eq, beta, pareto)
where eq is the reference level; and 2 numeric pre-
dictors being log(c) and T .

The model explains 75.5% of the observed
variance (multiple R-squared 0.7552, adjusted R-
squared 0.755; F-statistic 3761 on 59 and 71940 de-
grees of freedom, p < 2 ∗ 10−16). The most relevant
coefficient are presented here in the text, see ap-
pendix C for the full regression table.

The grand intercept (global reference, i.e. ran-
dom scheme, eq scenario, log(c) = 0, T = 0) is
established at 0.495 (t = 115.836, p < 2 ∗ 10−16),
its interpretation is not intuitive as T = 0 does not
represent a realistic scenario, but whose unit is to
be read as a proportion of the maximal inequality
like all the following coefficients; the baseline effect
of log(c) is 0.0455 (t = 37.962, p < 2 ∗ 10−16), that
is from the grand intercept for each order of magni-
tude of c (an increase of 1 in the log(c) an additional
4.5% of the maximal inequality is gained.

The baselines for each of the other schemes, be-
ing the quantity to add to the grand intercept
for each condition, are as follows: for const 0.316
(t = 52.271, p < 2∗10−16), geom 0.278 (t = 46.029,
p < 2 ∗ 10−16), log const 0.308 (t = 51.019, p < 2 ∗
10−16), log geom 0.268 (t = 44.337, p < 2 ∗ 10−16).
Thus the baseline for the const scheme is 1.13 times
larger than that for geom and 1.17 times that of
log geom.

The baselines for beta and pareto initial distri-
butions are respectively -0.235 (t = −38.87, p <
2 ∗ 10−16) and -0.518 (t = −85.73, p < 2 ∗ 10−16),
meaning that inequality amplifications are smaller

for these scenarios using random scheme.

The baseline effect for T is −2.542 ∗ 10−4 (t =
−42.21, p < 2 ∗ 10−16). Table 4.1 shows how the
effect of log(c) varies when switching from random
scheme to each of the others and when switching
from eq scenario to beta and pareto. The estimates
in table 4.1 should be added to the baseline effect of
log(c), thus we see that while the growth of the am-
plification associated with an increase of c is larger
for non random schemes, its slope is slightly lower
when the initial population already presents some
degree of inequality (beta, pareto).

No significant interaction is associated with
switching from eq to beta from each of the non
random schemes (p > 0.1 see table for the indi-
vidual p-values). Moreover a negative interaction
of −3.66 ∗ 10−5 was found between log(c) and T
(t = −21.7, p < 2∗10−16). Finally several other mi-
nor but significant interactions were found, which
are not presented in the text for brevity (see full
regression table). The 4 way interaction was dis-
carded by the Akaike information criterion as re-
dundant for the model.

Figure 4.5: Effect of c and T for each scheme
(column) and scenario (row)

10

Table 4.1: Interactions of log(c) with sim

interaction estimate t p
log(c) - const 0.0458 27 < 2*10-16

log(c) - geom 0.0416 24.5 < 2*10-16

log(c) - logconst 0.0454 26.8 < 2*10-16

log(c) - loggeom 0.0401 23.6 < 2*10-16

log(c) - beta -0.0168 -9.907 < 2*10-16

log(c) - pareto -0.0428 -25.252 < 2*10-16

The diagnostic plots for the linear model are pre-
sented in appendix B. The quantile plot (figure B.7)
shows the assumptions are well respected except for
the last part where our curves inflect phenomenon
the linear model cannot account for; A similar ob-
servation can be made for the distribution of the
residuals in figure B.8, where the last segment of
fitted values is the only one breaking the assump-
tion of normality. Finally as for the leverage plot
no point falls outside of the Cook’s distance limit
(figure B.9).

Note that these results are relative to using the
Gini coefficient as inequality metric; this choice was
motivated in the method section, but a plot equiv-
alent to figure 4.5 using standard deviation, more
akin to Fanti et al.’s variance metric is attached in
appendix B (figure B.5).

5 Discussion

5.1 Shift limitation

An inherent limitation of our metric is that it does
not capture wealth shifts, for example if a system
starts in a scenario where node 0 has 50% of the
stake while nodes 1 and 2 have 25% each, and ter-
minates with node 1 holding 50% and 0 and 2 hav-
ing 25%, the metric value is the same, yielding a
score of 0, as the inequality level has not changed,
even if the system was unfair to 0 and favored 1 for
no reason.

5.2 Effects in random

We observed that for eq and beta scenarios, random
schemes still experience the positive effect of c, and
the negative effect of T on the final score. One may

have the opposite intuition, i.e. random schemes
should always achieve the same score, whereas both
c and T seem to have an influence. The negative
effect of T can be explained as follows: we expect
the random scheme (in eq scenario) to produce fi-
nal wealth distributions that approach a binomial;
smaller T implies the system has less time to con-
verge to that binomial resulting in higher scores.
The effect c for random schemes can be similarly
justified looking at the implication of a larger c:
larger reward payloads; if T was infinite, regardless
of the size of the rewards, the binomial wealth dis-
tribution we expect from random would gradually
get tighter, with progressively smaller spread, more
and more indistinguishable from a round robin se-
lection. If the time is finite though the probability
that each node is rewarded the same number of
times is extremely low. Thus on average some node
will be rewarded a few times more than the oth-
ers, and the larger the payload the more those few
times weigh on the overall inequality introduced. If
nodes a and b both have for example 1.8 tokens
(Gini coeff. 0) and a gets compensated once more
than b, if the single compensation is 0.1 the system
ends up with a Gini coefficient of 0.0135, while if
the compensation is ten times larger (1.0) the final
coefficient is roughly 8 times larger (0.1086).

5.3 Role of c ≥ 1

An interesting value for c is 1 (log(c) = 0), as 1
is the original stake pool total c = 1 means that
the expected reward per epoch is equal to the to-
tal original pool. As we saw in figure 4.5 after this
point the curves inflect and the behavior is not pre-
dicted well by the log-linear estimation after that
point. In realistic scenarios no blockchain will have
rewards close to or larger than the initial pool value
as the first node to reap such reward immediately
has more than 50% of the total stake, exposing the
network to the appetites of potential attackers.

5.4 Beta and Pareto initial stake dis-
tributions

Lastly we observed that the initial stake scenario
has an impact on the system’s dynamics; Never-
theless exception made for the inadmissible random
scheme, while the magnitude of the effect varies,
the trend as function of c and T is very similar

11

across scenarios (figure 4.5). This suggests that,
while the careful system designer should take into
account the wealth distribution of the stakehold-
ers, the main findings presented here generalize to
several investor populations.

6 Conclusion

Several steps can be taken to account for more com-
plex aspects of a full fledged blockchain (Xu et al.,
2017), including adding the mechanism of coin age
(Li, Andreina, Bohli, and Karame, 2017) that takes
in to account holding time the tokens for their
weight in the selection process; accounting for inter-
mittent parties, that is considering that there is no
guarantee that every node is always active; simulat-
ing attacks like the stake-bleeding (Gaži, Kiayias,
and Russell, 2018); strategic behaviors (Fanti et al.,
2019) and finally once the first large scale POS net-
works are deployed tweaking parameter ranges and
wealth distributions to reflect the ones observed in
real life scenarios. A recent paper by Wang, Yang,
Bracciali, Leung, Tian, Ke, and Yu (2020) also ex-
tended the work of Fanti et al. focusing on the
incentive compatibly of a POS scheme using ge-
ometric rewards. Like the present work, they also
use the Gini coefficient to measure the fairness of
a scheme. Wang et al. propose a variation of the
geometric reward where the trade-off between in-
centive compatibility and equitability can be con-
trolled by adding random ‘salts’ (positive or neg-
ative bonuses) to each reward. These salts are ex-
ponentially distributed with parameters chosen to
have 0 expectation. The fact that geometric reward
functions provide exponentially smaller rewards at
the beginning of the process constitutes a disincen-
tive for the prospect miner. The random bonuses
provided by Wang et al. variation allow to fine
tune by controlling the bonuses distribution the in-
centive compatibility of the scheme. This variation
could also be easily implemented in this project’s
simulation.

This study builds on Fanti et al. (2019) model
of a POS system, implementing an extensible com-
puter simulation based on their analytic work. For
initial stake distribution where the stake is equally
divided among parties Fanti et al. derive formulas
for the maximal quantity of reward that can be dis-
pensed by some reward function in order to guar-

antee that the final normalized variance remains
smaller or equal than a desired level 0 < ε < 1. Our
work also considers initial stake distributions which
already bear some degree of inequality, and we ar-
gue that a desirable system will preserve rather
than increase or decrease the inequality of the ini-
tial population. This requires that we look at dif-
ference in inequality amplification rather than just
its final value, as we cannot assume it is initially 0.

While Fanti et al. measure the inequality of stake
with standard deviation we also introduce the Gini
coefficient and argue its superiority in capturing the
construct. Their work proves that the geometric re-
ward function allows to reduce the effects of wealth
compounding, our simulations empirically confirm
the analytic finding with respect to our metric.

They also conclude that besides the choice of re-
ward function the effects of compounding can be
reduced by ensuring that the reward dispensed for
each block (i.e. epoch) is small with respect to the
initial stake pool size. We formalized the expected
reward for each block as c = R

T and denoted it as
‘load factor’, then since Fanti et al. show how the
initial pool size S(0) can be considered 1 without
loss of generality, the ratio they refer to becomes
simply c

S(0) = c
1 = c. We experimentally assessed

the influence of the load factor on the processes un-
der different scheme variations and confirmed their
claim by exposing its effect on our inequality am-
plification metric. For realistic values (0 < c < 1)
c predicts a log-linear increase of the inequality
amplification due to compounding. The effect is
weaker when using geometric rewards. A plot re-
stricted to the realistic interval averaged across T
and m is presented in figure B.6 in appendix B.

While Fanti et al. also extend their work con-
sidering stake pools and strategic behavior of the
participants, we left those aspects as future exten-
sions of the simulation program, in favor of the in-
troduction of different initial stake distribution and
variations of the selection function.

In the context of the current wide array of
blockchain designs, besides mathematical modeling
(Fanti et al., 2019), game-theoretic design of the
scheme (Liu, Luong, Wang, Niyato, Wang, Liang,
and Kim, 2019), and benchmarking of the imple-
mentation (van Moorsel, 2018), this study shows
the power of large scale simulations, grounded in
mathematical models, when it comes to tweaking,

12

testing and studying the dynamics of these stochas-
tic systems which will gradually appear in ever
more aspects of society.

References

Adam Back et al. Hashcash-a denial of
service counter-measure. 2002. URL
https://bit.ly/3ay9w9j.

Vitalik Buterin. A next-generation smart contract
and decentralized application platform-ethereum
whitepaper.(2014). 2014.

Robert Dorfman. A formula for the gini coeffi-
cient. The review of economics and statistics,
pages 146–149, 1979.

I. Eyal. The miner’s dilemma. In 2015 IEEE Sym-
posium on Security and Privacy, pages 89–103,
2015. doi: https://doi.org/10.1109/SP.2015.13.

Giulia Fanti, Leonid Kogan, Sewoong Oh, Kath-
leen Ruan, Pramod Viswanath, and Gerui
Wang. Compounding of wealth in proof-of-
stake cryptocurrencies. In International Con-
ference on Financial Cryptography and Data
Security, pages 42–61. Springer, 2019. doi:
https://doi.org/10.1007/978-3-030-32101-7 3.

Milton Friedman. The island of stone money.
Hoover Institution, Stanford University Stan-
ford, CA, 1991.

Zuzana Fungáčová, Iftekhar Hasan, and Laurent
Weill. Trust in banks. Journal of Economic Be-
havior & Organization, 157:452–476, 2019. doi:
https://doi.org/10.1016/j.jebo.2017.08.014.

William Henry Furness. The island of stone money,
Uap of the Carolines. JB Lippincott Company,
1910.

Peter Gaži, Aggelos Kiayias, and Alexander
Russell. Stake-bleeding attacks on proof-
of-stake blockchains. In 2018 Crypto Val-
ley Conference on Blockchain Technology
(CVCBT), pages 85–92. IEEE, 2018. doi:
https://doi.org/10.1109/CVCBT.2018.00015.

Corrado Gini. Variabilità e mutabilità. vamu, 1912.

Dominik Harz and Magnus Boman. The scala-
bility of trustless trust. In International Con-
ference on Financial Cryptography and Data
Security, pages 279–293. Springer, 2018. doi:
https://doi.org/10.1007/978-3-662-58820-8 19.

Stylianos Kampakis. Three case studies in toke-
nomics, 2018. ISSN 2516-3949.

Hamed Khazaei. Integrating cognitive an-
tecedents to utaut model to explain adop-
tion of blockchain technology among malaysian
smes. JOIV: International Journal on Infor-
matics Visualization, 4(2):85–90, 2020. doi:
http://dx.doi.org/10.30630/joiv.4.2.362.

M. S. Kim and J. Y. Chung. Sustainable growth
and token economy design: The case of steemit.
Sustainability, 11(1):167, January 2019. doi:
10.3390/su11010167.

Israel Koren and C Mani Krishna. Fault-tolerant
systems. Morgan Kaufmann, 2020.

John Lanchester. When bitcoin grows up. London
Review of Books, 38(8):3–12, 2016.

Wenting Li, Sébastien Andreina, Jens-Matthias
Bohli, and Ghassan Karame. Securing proof-
of-stake blockchain protocols. In Data Privacy
Management, Cryptocurrencies and Blockchain
Technology, pages 297–315. Springer, 2017. doi:
https://doi.org/10.1007/978-3-319-67816-0 17.

Z. Liu, N. C. Luong, W. Wang, D. Niyato,
P. Wang, Y. Liang, and D. I. Kim. A survey
on blockchain: A game theoretical perspec-
tive. IEEE Access, 7:47615–47643, 2019. doi:
https://doi.org/10.1109/ACCESS.2019.2909924.

Satoshi Nakamoto. Bitcoin: A peer-to-peer elec-
tronic cash system. Technical report, Manubot,
2008.

Arvind Narayanan, Joseph Bonneau, Edward Fel-
ten, Andrew Miller, and Steven Goldfeder. Bit-
coin and cryptocurrency technologies. Curso
elaborado pela, 2019.

L. M. Patnaik and S. Balaji. Byzantine-
resilient distributed computing systems. Sad-
hana : Academy Proceedings in Engineering
Sciences, 111-2(11):pp. 81–91, 1987. doi:
http://doi.org/10.1007/BF02811312.

13

Paul A Pavlou and David Gefen. Building effective
online marketplaces with institution-based trust.
Information systems research, 15(1):37–59, 2004.
doi: https://doi.org/10.1287/isre.1040.0015.

Aad van Moorsel. Benchmarks and mod-
els for blockchain. In Proceedings of the
2018 ACM/SPEC International Confer-
ence on Performance Engineering, pages
3–3, Berlin, Germany, 2018. ACM. doi:
https://doi.org/10.1145/3184407.3184441.

Yilei Wang, Guoyu Yang, Andrea Bracciali, Ho-
fung Leung, Haibo Tian, Lishan Ke, and Xiaomei
Yu. Incentive compatible and anti-compounding
of wealth in proof-of-stake. Information Sciences,
2020.

Kevin Werbach. Summary: Blockchain, the rise of
trustless trust? 2019.

Stephen C Wingreen and Stephen L Baglione.
Untangling the antecedents and covariates
of e-commerce trust: Institutional trust vs.
knowledge-based trust. Electronic Markets, 15
(3):246–260, 2005.

X. Xu et al. A taxonomy of blockchain-based sys-
tems for architecture design. Number 7930224,
pages 243–252, 2017. URL

14

A Appendix

A.1 Max var proof

Lemma A.1. Given ~s ∈ Rm such that 〈~1, ~s〉 = 1
and 0 ≤ si ≤ 1 ∀i ∈ [m] the maximal variance
V ar(~s) amounts to 1

m (1 − 1
m) and is achieved

when ~s has a single non-zero component with a
value of 1.

Proof. We prove the claim with two sub-proofs:
the first shows that 1

m (1− 1
m) is the variance of ~s

if it has a single non-zero component with a value
of 1. The second part shows that the obtained
value is maximal under the constraints stated in
the lemma.
Consider ~s ∈ Rm, we want to show that if all
entries of the vector are 0 except for one, then
the

V ar(~s) =
1

m
(1− 1

m
)

.
Let s̄ mean value of ~s then s̄ = 1

m
By its definition

V ar(~s) =

∑m
i=1(si − s̄)2

m

Let m be the index of the one entry being 1 then:

V ar(~s) =

∑m−1
i=1 [(0− s̄)2] + (1− s̄)2

m

if we substitute s̄ = 1
m

V ar(~s) =

∑m−1
i=1 [(0− 1

m)2] + (1− 1
m)2

m

=
(m− 1) 1

m2 + (1− 1
m)2

m

=
(m− 1) 1

m2 + 1− 2
m + 1

m2

m

=
m
m2 + 1− 2

m

m

=
1
m + 1− 2

m

m

=
1− 1

m

m

=
1

m
(1− 1

m
)

Now we want to show that the above situation is
the maximal variance point.
By looking at the variance

V ar(~s) =

∑m
i=1(si − s̄)2

m

as a function from Rm → R we can see its graph
is a shifted and scaled (by 1

m) m dimensional
hyper-paraboloid that has a single zero where all
the entries have equal value 1

m , and whose gra-
dient is

∇V ar(~s) = ∇[
(~s− s̄)2
m

]

= ∇[
1

m
~s2 − 2s̄

m
~s+

s̄

m
]

= 2(
1

m
s− s̄

m
)

Thus for each dimension the ascent is linear and
positive.
Our assumptions

〈~1, ~s〉 = 1

0 ≤ si ≤ 1 ∀i ∈ [m]

pose 2 constraints on the domain:

• the first one means s1... + sm = 1 which
defines the hyper-plane where the sum of
fractional stakes add up to 1,

• The second one ensures only the region
where all entries are non negative and
smaller than 1 is considered.

Under these constraints the region is an m − 1
dimensional hyper-paraboloid whose maxima are
in the ‘corner’ as the linear gradient indicates for
each dimension (An example in R2 in figure A.1).
Therefore we showed that under our assump-
tions the situation of maximal inequality coin-
cides with maximal variance = 1

m (1− 1
m)

15

Figure A.1: Example in R2

B Additional Images

Figure B.1: Proposer selection functions

Figure B.2: Reward functions

Figure B.3: Score contour

16

Figure B.4: Metrics under maximal inequality
varying m

Figure B.5: Plot of the main effect equivalent to
4.5 using standard deviation as metric.

Figure B.6: Plot of the main effect, restricted to
realistic values of log(c), averaged across T and
m

Figure B.7: Regression diagnostic plot, residu-
als quantile plot

17

Figure B.8: Regression diagnostic plot, residu-
als distribution plot

Figure B.9: Regression diagnostic plot, residu-
als leverage plot

C Full regression table

Appears on the next page due to absence of space
here.

18

Table C.1: Full regression table, parenthesized
numbers are the exponent of the scientific nota-
tion. Refrence levels: sim=random, stake=eq

Coefficient Estimate Std-Error t-value p-value
(Intercept) 4.958 (-01) 4.280 (-03) 115.836 < 2(-16)
log(c) 4.557 (-02) 1.200 (-03) 37.962 < 2(-16)
simconst 3.164 (-01) 6.053 (-03) 52.271 < 2(-16)
simgeom 2.786 (-01) 6.053 (-03) 46.029 < 2(-16)
simlogconst 3.088 (-01) 6.053 (-03) 51.019 < 2(-16)
simloggeom 2.684 (-01) 6.053 (-03) 44.337 < 2(-16)
stakefbeta -2.353 (-01) 6.053 (-03) -38.870 < 2(-16)
stakefpareto -5.189 (-01) 6.053 (-03) -85.729 < 2(-16)
T -2.542 (-04) 6.023 (-06) -42.210 < 2(-16)
log(c):simconst 4.585 (-02) 1.698 (-03) 27.006 < 2(-16)
log(c):simgeom 4.163 (-02) 1.698 (-03) 24.521 < 2(-16)
log(c):simlogconst 4.549 (-02) 1.698 (-03) 26.793 < 2(-16)
log(c):simloggeom 4.017 (-02) 1.698 (-03) 23.663 < 2(-16)
log(c):stakefbeta -1.682 (-02) 1.698 (-03) -9.907 < 2(-16)
log(c):stakefpareto -4.287 (-02) 1.698 (-03) -25.252 < 2(-16)
simconst:stakefbeta 9.953 (-03) 8.560 (-03) 1.163 0.244949
simgeom:stakefbeta 1.298 (-02) 8.560 (-03) 1.517 0.129372
simlogconst:stakefbeta 1.109 (-02) 8.560 (-03) 1.295 0.195278
simloggeom:stakefbeta 1.395 (-02) 8.560 (-03) 1.629 0.103237
simconst:stakefpareto 3.110 (-02) 8.560 (-03) 3.633 0.000280
simgeom:stakefpareto 3.594 (-02) 8.560 (-03) 4.198 2.70 (-05)
simlogconst:stakefpareto 2.617 (-02) 8.560 (-03) 3.057 0.002235
simloggeom:stakefpareto 3.121 (-02) 8.560 (-03) 3.646 0.000267
log(c):T -3.668 (-05) 1.689 (-06) -21.712 < 2(-16)
simconst:T 2.926 (-04) 8.518 (-06) 34.350 < 2(-16)
simgeom:T 1.538 (-04) 8.518 (-06) 18.056 < 2(-16)
simlogconst:T 2.846 (-04) 8.518 (-06) 33.408 < 2(-16)
simloggeom:T 1.508 (-04) 8.518 (-06) 17.699 < 2(-16)
stakefbeta:T -1.963 (-05) 8.518 (-06) -2.305 0.021175
stakefpareto:T -4.622 (-05) 8.518 (-06) -5.426 5.79(-08)
log(c):simconst:stakefbeta -3.339 (-03) 2.401 (-03) -1.391 0.164308
log(c):simgeom:stakefbeta -3.273 (-03) 2.401 (-03) -1.363 0.172813
log(c):simlogconst:stakefbeta -3.265 (-03) 2.401 (-03) -1.360 0.173943
log(c):simloggeom:stakefbeta -2.818 (-03) 2.401 (-03) -1.173 0.240602
log(c):simconst:stakefpareto -7.055 (-03) 2.401 (-03) -2.939 0.003298
log(c):simgeom:stakefpareto -7.286 (-03) 2.401 (-03) -3.035 0.002408
log(c):simlogconst:stakefpareto -6.928 (-03) 2.401 (-03) -2.885 0.003910
log(c):simloggeom:stakefpareto -6.958 (-03) 2.401 (-03) -2.898 0.003758
log(c):simconst:T 1.992 (-05) 2.389 (-06) 8.338 < 2(-16)
log(c):simgeom:T 5.883 (-06) 2.389 (-06) 2.462 0.013804
log(c):simlogconst:T 2.007 (-05) 2.389 (-06) 8.401 < 2(-16)
log(c):simloggeom:T 4.934 (-06) 2.389 (-06) 2.065 0.038922
log(c):stakefbeta:T 1.191 (-05) 2.389 (-06) 4.985 6.20(-07)
log(c):stakefpareto:T 2.554 (-05) 2.389 (-06) 10.690 < 2(-16)
simconst:stakefbeta:T 7.112 (-06) 1.205 (-05) 0.590 0.554953
simgeom:stakefbeta:T 2.303 (-05) 1.205 (-05) 1.912 0.055923 .
simlogconst:stakefbeta:T 6.096 (-06) 1.205 (-05) 0.506 0.612837
simloggeom:stakefbeta:T 1.556 (-05) 1.205 (-05) 1.291 0.196595
simconst:stakefpareto:T 1.522 (-05) 1.205 (-05) 1.264 0.206334
simgeom:stakefpareto:T 8.136 (-05) 1.205 (-05) 6.754 1.45(-11)
simlogconst:stakefpareto:T 1.663 (-05) 1.205 (-05) 1.381 0.167394
simloggeom:stakefpareto:T 5.941 (-05) 1.205 (-05) 4.932 8.16(-07)

19

Project README
This document acts as technical appendix for the bachelor project pos-sim-0.1

It gives hands on instruction to use the library and reproduce the experiments.
For documentation of the actual code see http://139.162.161.39/thesis/build/html/index.html.

Standard mode
1. Installation

This section applies for GNU/linux systems. It should also work on OSX (mac) if a python (>3) and pip
are installed.

Clone the repo (https://github.com/bandoos/bachelor-project) of the project to a location we will
refer to as $PROJECT_ROOT

The alternative is using the provided Docker images, which will work on GNU/linux, OSX and windows.
See the Docker mode section for instructions.

NOTE about using virtualenv

Using virtualenv to avoid python libraries versions conflicts is encouraged.

if virtualenv is not installed on your system yet it can be installed with pip

$ pip install --user virtualenv

check installation

$ virtualenv --version

create an env directory

$ mkdir sim-core-env
$ cd sim-core-env
$ virtualenv venv

then from sim-core-env activate the environment

$ source ./venv/bin/activate

The terminal prompt should now display the name of the environment to signal it is active.

The code is bundled as a python package so, from the root folder of the project run:

$ pip install --user -e ./

This will use pip to install (for the current user) the dependencies of the project from PyPI, and add this
project to the $PYTHONPATH so it can be executed on your system.

Thought this is not necessary for the basic functionality some features rely on $HOME/.local/bin to be in
the $PATH. This is typically the case with standard linux distribution, but the install command will warn
if this is not the case for you.

If using virtualenv once the environment is activated the $PATH is manipulated appropriately automatically.

If .local/bin is in your $PATH then the main entry point for the simulation executable is available as:

$ sim-stake [OPTIONS]

If .local/bin is not in your $PATH then from the $PROJECT_ROOT run:

$ python -m sim.core.main [OPTIONS].

In that case remember that you should always be in $PROJECT_ROOT and substitute sim-stake with python
-m sim.core.main in the following sections.

2. Usage You can see its usage information with:

$ sim-stake --help

usage: sim-stake [-h] [--id ID]
--m M --T T
--c C --times TIMES
--stake_f {eq,beta,pareto}
--sim {random,const,geom,log_const,log_geom}

Run a sim-stake-batch

optional arguments:
-h, --help show this help message and exit
--id ID unique id for the experiment

required arguments:
--m M INTEGER: Indicate the number of nodes [m] (valid if >= 2)
--T T INTEGER: Indicate max epoch time [T] (valid if >= 2)
--c C FLOAT: Indicate total load factor "c" [R=cT] (valid if > 0)
--times TIMES INTEGER: Redudancy factor (valid if > 0)
--stake_f {eq,beta,pareto} STRING: Generator function for inital stake distrib.
--sim {random,const,geom,log_const,log_geom} STRING: Indicate simulator class

So the program requires a flag for each simulation parameter, plus an optional id argument. The id
argument is not necessary for basic usage, and i suggest using the docker setup for batch execution anyways
(which manages experiment ids independently) so it may be removed in subsequent releases.

3. Test the installation

An example of well formed command would be:

$ sim-stake --m 3 --T 200 --c 0.5 --stake_f eq --sim random --times 10

Which would run the simulation with:

• m = 3 nodes

• for T = 200 epochs,

• with a load factor c = 0.5

• initial stake stakef = eq

• sim = random scheme,

• repeating the experiment 10 times (times = 10)

A csv is produced on standard output which looks like (may overflow page on pdf):

m,T,c,R,sim,stake_f,var_0,var_T,gini_0,gini_T,under_target,avg_loss,over_target,avg_gain
3,200,0.4,80.0,random,eq,0.0,0.0001354807,0.0,0.0164609053,0.6666666667,-0.0082304527,0.3333333333,0.0164609053
3,200,0.4,80.0,random,eq,0.0,0.0013222917,0.0,0.0592592593,0.6666666667,-0.0230452675,0.3333333333,0.046090535
3,200,0.4,80.0,random,eq,0.0,0.0007207573,0.0,0.0427983539,0.6666666667,-0.0181069959,0.3333333333,0.0362139918
3,200,0.4,80.0,random,eq,0.0,0.0008833342,0.0,0.046090535,0.6666666667,-0.0205761317,0.3333333333,0.0411522634
3,200,0.4,80.0,random,eq,0.0,0.0006557266,0.0,0.0362139918,0.6666666667,-0.0181069959,0.3333333333,0.0362139918
3,200,0.4,80.0,random,eq,0.0,0.0008508188,0.0,0.0427983539,0.6666666667,-0.0205761317,0.3333333333,0.0411522634
3,200,0.4,80.0,random,eq,0.0,5.4192e-06,0.0,0.0032921811,0.3333333333,-0.0032921811,0.6666666667,0.0016460905
3,200,0.4,80.0,random,eq,0.0,0.0003305729,0.0,0.0296296296,0.3333333333,-0.0230452675,0.6666666667,0.0115226337
3,200,0.4,80.0,random,eq,0.0,0.0002655422,0.0,0.0263374486,0.6666666667,-0.0106995885,0.3333333333,0.021399177
3,200,0.4,80.0,random,eq,0.0,0.0005581805,0.0,0.0362139918,0.3333333333,-0.0329218107,0.6666666667,0.0164609053

All simulation parameters are reported for each row along with the observed result metrics, so that each
result is fully characterized by its csv output (i.e. 2 outputs can merged in a single dataframe without loss
of information)

Use output redirection to save the results to a file for later inspection:

$ sim-stake --m 3 --T 200 --c 0.5 --stake_f eq --sim random --times 10 > some_name.csv

(a) NOTE Running the simulation as saw above works for simple tests with a single parameters com-
bination. For a full fledged experiment with parameter manipulation see either section 4 (using as
library) or section (docker mode).

4. Using as library

Once installed the code can also be used as library. In the module sim.core.main exposes a run function
that accepts the parameters you would provide on the command line as a dictionary (without the -- prefix
on parameters name).

In a python script of your choice:

import sim.core.main as simulation

params = {'m':3,
'T':300,
'c':0.5,
'stake_f':'eq',
'sim':'random',
'times':10}

simulation.run(params)

The run function accepts 2 other optional named parameters:

• out_fn (default = sys.stdout.write)
• header (default = True)

The out_fn will be called for each simulation repetition passing a string being the comma separated values
(parameter + response metrics) i.e. times times once per line of the output csv.

The header boolean controls whether the header of the csv should be produced before the first run results.

(a) Simple experiment
A simple experiment can be conducted by writing a procedure that runs several simulations:
Let’s say we want to manipulate the number of nodes m:

import sim.core.main as simulation

ms = range(2,10)

params = {'m':None,
'T':300,
'c':0.5,
'stake_f':'eq',
'sim':'random',
'times':10}

header = True
for m in ms:

params['m'] = m
simulation.run(params,header=header)
if header:

header=False

Note that we ensure that the header is only produced on the first parameter combination so we get a
valid csv as output.

5. Experiment definition grammar

Although the above is sufficient for simple experiments, relying on procedural code may hide the essence
of the experiment in complex scenarios, rendering difficult to infer what is tested. A more declarative
approach ensures readability and clarity.

In order to define experiment in a pleasant way a module was defined to provide a definition grammar for
complex experiments.

The fundamental idea is providing a callable data structure that represents the Cartesian product of named
sets. Once called the ds will expand to a list of dictionaries where each key assumes one of the values of
its set.

The sim.executor.batch.ibatch module provides the constructor P for these Cartesian expansions.

from pprint import pprint
from sim.executor.batch.ibatch import P

p1 = P({'a':{True,False},
'b':{True,False}})

pprint(p1())

Which produces the following output:

[{'a': True, 'b': True},
{'a': True, 'b': False},
{'a': False, 'b': True},
{'a': False, 'b': False}]

Typically the values of the dictionary provided to the P constructor will be sets (thus ensuring no duplicates)
but any iterable or callable that returns an iterable is fine, so the following is acceptable:

from pprint import pprint
from sim.executor.batch.ibatch import P

def i_could_be_a_very_complex_function():
"...complex compute..."
return {True,False}

p2 = P({'n': range(1,4),
'b': i_could_be_a_very_complex_function})

pprint(p2())

Which produces:

[{'b': False, 'n': 1},
{'b': True, 'n': 1},
{'b': False, 'n': 2},
{'b': True, 'n': 2},
{'b': False, 'n': 3},
{'b': True, 'n': 3}]

If we only desire a segments of the product (i.e. some value should only be matched with specific ones)
then chaining 2 separate P constructor suffices. To chain constructors just use the + operator:

from pprint import pprint
from sim.executor.batch.ibatch import P

p3 = P({'mode': {"a"},
'sub_mode': {"a1","a2"}})

p4 = P({'mode': {"b"},
'sub_mode':{"b1","b2"}})

p5 = p3 + p4

pprint(p5())

[{'mode': 'a', 'sub_mode': 'a1'},
{'mode': 'a', 'sub_mode': 'a2'},
{'mode': 'b', 'sub_mode': 'b1'},
{'mode': 'b', 'sub_mode': 'b2'}]

A real experiment definition for the simulation could be:

from sim.executor.batch.ibatch import P
REPETITIONS=10
REDUNDANCY=2
batch = P({'m': [10 ** i for i in range(1,4)], # 3 elems

'T': [10 ** i for i in range(2,4)], # 2 elems
'c': [0.001, 0.01, 0.1, 0.5, 1, 2, 10, 100], # 8
'sim': ['const','geom','log_const','log_geom','random'], # 5 elmes
'stake_f': ['eq','beta','pareto'], # 3 elems
'times': [REPETITIONS],
'redundancy': range(REDUNDANCY) })

Which will generate 3∗2∗8∗5∗3 = 720 unique parameters configurations, which are replicated REDUNDANCY
times (thus 1440 runs) each of which tests the configuration REPETITIONS times (thus 14’400 total simu-
lations).

’redundancy’ in this case is a dummy key, the actual simulation will not read its value, but it still multiplies
the number of generated parameter dictionaries. The reason for having both ’times’ and ’redundancy’
should become clear when the distributed multiprocess facility is introduced; in a single process environment
one should just use ’times’.

the above experiment could be run as follows:

import sim.core.main as simulation
header = True
for params in batch():

simulation.run(params,header=header)
if header:

header=False

A large experiment like the one above may take very long to terminate which is why the software is meant
to be run in a distributed multiprocess fashion thanks to celery https://github.com/celery/celery.

6. Experiment definition convention We adopt the following convention to define experiments:

create a python file in $PROJECT_ROOT/executor/experiments/

define the experiment via arbitrary code or using the above presented grammar and assign the callable or
iterable that generates the configurations to a toplevel variable called batch.

Note that you can define experiments wherever you want as long as the file is in the $PYTHONPATH and a
batch callable or iterable is present.

The main experiment presented in the paper is located in module sim.executor.experiments.exp_0.

This convention will be important later on in section 3.

Docker mode
If not already present on your system install docker: https://docs.docker.com/get-docker/

On linux you may want to use your usual package manager. On linux, after installation, you need to add your
user to the docker group to be able to run docker images without root privileges. (This is strongly encouraged
rather than using sudo!!)

usermod --append -G docker <your-user>

On macos and windows (using the desktop version of docker) the docker-compose utility ships by default.
On linux you will have to install it separately: https://docs.docker.com/compose/install/

It quiet intuitively allows to compose docker images/containers.

1. Ensuring docker installation

Test the docker installation

$ docker run --rm hello-world

This can take a while the first time, but it should then produce some useful information about docker and
exit.

2. Installing the project’s image

The docker image for this project ships with a fully functional archlinux system with all the necessary
requirements installed plus some packages and tweaks to make the experience pleasant like tab-completion
on the project’s commands (see $PROJECT_ROOT/Dockerfile).

Using a pre-built image is suggested; download it from https://zenodo.org/record/4543831/files/
pos-sim-core-latest.tar.gz?download=1 (to check the sha sums see section .)

The compressed image is about 1 GB.

once downloaded load it to the docker engine with

$ docker load < pos-sim-core-latest.tar.gz

** Launch the system Once the image is successfully loaded enter the $PROJECT_ROOT/compose folder and
run:

$ docker-compose up

This will start the container and mount the $PROJECT_ROOT/compose/data directory to the container’s
~/data dir. This location can be used as a (persitent) bridge between your system and the container.

The above command will hang until you decide to stop it, when so hit CTRL-C to send the shutdown
signal, the system will process it and shutdown gracefully.

Note this is named a container so only one instance at a time can run, that is more than sufficient to run
many simulations in parallel within the container though!

3. Start a session You can start a terminal session within the running system (from another terminal) with

$ docker exec -it pos-sim-core /bin/zsh

This will open a terminal within the container.

Inside you find a copy of $PROJECT_ROOT.

All of the project commands are in the $PATH there so they can be called directly. If in doubt you can list
them with $ ls ~/.scripts

Multiprocess distributed execution

To allow for large scale simulations facilities are provided to run multiple simulations in parallel on multiple
machines thanks to Celery (v4.4.3) https://docs.celeryproject.org/en/4.4.3/getting-started/resources.
html coordinated by Redis https://redis.io/ and storing results on Mongodb https://www.mongodb.com/.

While a setup without docker for this use case is possible it involves installing the project, mongodb and
redis to your system, and since the purpose of this facility is to deploy easily on several possibly heterogeneous
systems the easiest and more reliable solution is to just have a docker engine on each machine and rely on the
provided images.

Note that no knowledge about redis or mongodb is required to carry out the experiments as utilities are
provided for the necessary interactions.

1. Coordination

On one machine the sim-coordinator system should be run. Assuming docker and docker-compose are
available on the machine simply enter $PROJECT_ROOT/sim-coordinator and run

$ docker-compose up

Note that this uses the official redis and mongodb images so no docker load is needed in this case.

This will start the database and redis instances on predefined ports (see section 5 if you want to change
the port numbers for any reason.)

the above command will hang until CTRL-C is pressed which will start the graceful shutdown.

The workers running the project’s code will receive jobs to execute from redis and produce results to the
database.

Inside of $PROJECT_ROOT/sim-coordinator 2 folders are present:

• $PROJECT_ROOT/sim-coordinator/mongo-volume

• $PROJECT_ROOT/sim-coordinator/reids-data

Similarly to $PROJECT_ROOT/sim-coordinator/compose/data these act as bridges with your host system.
The database will persist the data the mongo-volume dir and redis (which by default is not persistent)
will do so in the redis-data dir if configure to be persistent.

No further actions need to be taken with regard to the coordination system.

2. Workers

On each machine that should be targeted by the job distribution mechanism follow sections 2 and 3 to
boot the worker environment.

Once you have a session terminal ensure that the system configuration is correct for your needs (see section
5), and then simply run:

$ run-worker

to have the machine join the distributed system. This will hang until you hit CTRL-C, and will print
information about the system and then log events.

3. Launcher

A launcher is provided in the module sim.executor.launcher which is linked in .scripts/sim-launcher
for convenience.

You can use the launcher from any of the machines that have a running (and correctly configured) instance
of the project’s docker image. Another option is launching from a machine (e.g. a laptop) that will not
have a worker running so long as it is properly configured to contact the distributed system coordinator
(see section 5).

it synopsis is as follows:

usage: sim-launcher [-h] [--exp-module EXP_MODULE] [--async]

optional arguments:
-h, --help show this help message and exit
--exp-module EXP_MODULE
--async, -a

The --exp-module option controls which experiment will be loaded and distributed on worker machines. If
not provided a small default experiment is chosen to test the system. The value provided for the experiment
module should be a fully qualified python module name such as sim.executor.experiments.exp_0 just
like in an import statement, pointing to a module in the $PYTHONPATH. The batch variable within that
module will be looked up according to the convention presented in section 6.

If --async is not provided then the launcher will block until the experiment completes. If --async is
provided then the launcher will exit as soon as the dispatching completes, you can then monitor the
progress as explained in section 6

Once an experiment is successfully launched the coordinator will distribute the necessary jobs to complete
the experiment to the available workers.

The launcher program outputs some information about the dispatched experiment. In particular it outputs
a python dictionary whose batch_uuid key is what we are interested in for fetching results later on as
explained in section 4. (If the --async flag is on the look for _batch_uuid)

4. Retrieving results

In distributed mode the database is used to store results as they are produced.

Once an experiment is finished you can use the utility provided in $PROJECT_ROOT/.scripts/dctl that
helps to fetch all the aggregated results of a full experiment from the database as a csv.

Within the docker environment this is linked to ~/.local/bin so you can use it directly

$ dtcl [cmd] [options]

in custom environment from $PROJECT_ROOT use it by invoking the full with path

.scripts/dtcl [cmd] [options]

It provides 2 cmd(s):

• dctl fs ls List the experiment results csv that are available in the system.

• dctl fs get <batch_uuid>.csv Get a result by name.

Note that from the docker environment tab-completion is available for the file name, so you just need to
remember the first few characters of the batch_uuid and then press tab to complete.
Redirect the output of dctl fs get to a file in to save the results. If you are running dctl in the docker
environment redirect to ~/compose/data/<filename>.csv to have the results visible on the host system.
(Remeber compose/data acts as bridge - so called docker volume - between the virtual system in the docker
and your host system).
$ dctl fs get batch_uuid.csv > destination/name.csv

substitute batch_uuid, destination and name appropriately.

5. Configuring the distributed system
The distributed system is configured via the following environment variables:

(a) MONGDB_URI Defines the address of the database in the following format:
mongdb://<ip-adress>:<ip-port>
so for example assuming the coordinator was launched on a machine on 192.168.178.31 on the default
port:
mongodb://192.168.178.31:27020
default mongodb://0.0.0.0:27020

(a) EXECUTOR_GRIDFS The name of the internal database to use as distributed filesystem, the default is
executor-gridfs

(b) EXECUTOR_DB The name of the internal database to use for task metadata and partial results, default
is from-celery

(c) REDIS_URI Similar to MONGODB_URI but for the redis server, default is
redis://0.0.0.0:6399

(d) REDIS_DB The number (redis uses integers to identify the dbs) of the redis internal database to use.
Default 2

(e) INIT_WORKERS The number of workers (processes) to run concurrently if the machine is used as worker
node.

(f) TZ The timezone to use (must be consistent on all machines for proper coordination). Defaults to
Europe/Amsterdam, must be a valid timezone value.

Ideally you want to modify only the URI(s), TZ and INIT_WORKERS.
the suggested manner of configuration is putting all the values in a .env file like the following:

MONGODB_URI=mongodb://0.0.0.0:27020
EXECUTOR_GRIDFS=executor-gridfs
EXECUTOR_DB=from_celery

REDIS_URI=redis://0.0.0.0:6399
REDIS_DB=2

INIT_WORKERS_N=4

TZ=Europe/Amsterdam

Environment variables must be established for each running terminal session. An utility is provided in
$PROJECT_ROOT/.scripts/source-env.sh, use it as follows from $PROJECT_ROOT

$ source .scripts/source-env.sh <path-to-env-file>

The default .env file is located at $PROJECT_ROOT/compose/defaults.env.
Please note that you have to source your (or the default) .env file for each session! In each session use the
config doctor from section 5a to ensure the system is configured correctly.
NOTE: To streamline configuration you can edit $PROJECT_ROOT/compose/defaults.env before distribut-
ing the project to your machines, the variables in this file will be loaded automatically when you start a
pos-sim-core docker by following instruction in section 2. If you then still need to change them at runtime
you will have to soruce the file from inside the container again as explained above.

(a) Config doctor
Another utility is provided at which will validate the configuration and verify that the coordination
services are reachable.
It requires no arguments as it reads the environment vars.
You can invoke the config-doctor by running:
$ python -m sim.executor.config-doctor

6. Monitoring the distributed system

The status of the distributed system can be monitored with a web-ui provided by flower (https://
flower.readthedocs.io/en/latest/).

Start a new session on one of the machines running the project’s docker images (not the coordinator!)

$ docker exec -it pos-sim-core /bin/zsh

once the session starts run:

$ launch-flower

If no active worker is found this may log some warnings like: ’stats’ inspect method failed, don’t
worry, as soon as a worker connects the system will heal automatically.

The docker exposes port 5555 so you can open a browser on that machine (outside of docker that is) and
point it to http://0.0.0.0:5555

Note that the graphs are not retroactive so keep a tab open on the graph page and do not reload.

Results analysis
Experiment results are analyzed with R code. Compiling R dependencies may take a lot of time (nearly 30
minutes for the dependencies of analyze.Rmd on an medium tier laptop), and errors in the process may harm the
reproducibility of the analysis. Therefore a third docker image is provided which ships with all the dependencies
compiled in it, and when run exposes an R-studio web interface to run (and possibly customize) the analysis.

Whether you produced results via single process code, or via the distributed system you will have one or
more csv files with results to analyze.

If running via the distributed system use dctl utility (section 4) to retrieve form the database with the
desired csv.

The analysis can be performed by the R script provided in $PROJECT_ROOT/pos-sim-r/analyze.Rmd.
You should run the analysis docker on the machine where you downloaded the results via dctl or transfer

the csv files to another machine and then use that one.
Copy the results csv file to $PROJECT_ROOT/pos-sim-r/data/exp_data/.
NOTE: $PROJECT_ROOT/pos-sim-r/data is a docker volume that will be mounted when the image is run, so

you can copy from your host system with cp or drag/drop and the changes will be reflected inside the container.
NOTE: The analysis script will merge all files that it finds in the exp_data directory so be careful to only

have the files you desire in there later when you run the script. If you create other data folders you can control
which is used by ediding the first cell of analyze.Rmd where data.folder is defined.

Download the image from https://zenodo.org/record/4543831/files/pos-sim-r-latest.tar.gz?download=
1 (to check the sha sums see section .)

Load the image to the docker engine:
$ docker load < pos-sim-r-latest.tar.gz
Enter $PROJECT_ROOT/pos-sim-r. Edit the defaults.env file to change the default password (’foobarbaz’)

for the R-studio server. (The username is always ’rstudio’). Now run
$ docker-compose up
As usual this will hang until you stop it with CTRL-C
Point a browser to R-studio web-ui on http://localhost:8787. It will ask to login with password you

provided in defaults.env.
enter the projects folder and Open the analyze.Rmd file, press ’knit’.
Alternatively run from the rstudio terminal: $ make render.
Assuming valid data is found in projects/exp_data within the docker, the analyze.Rmd will produce a

pdf/markdown/html (depending on kint options, defaults to html) file that presents all the results. The file will be
saved in the docker projects/ folder and is therefore also present on your host machine in $PROJECT_ROOT/pos-sim-r/data.

The main experiment discussed in the project’s paper is at: http://139.162.161.39/thesis/analyze.html
Yours will be available locally: at http://localhost:8787/files/projects/analyze.html

Project structure
PROJECT_ROOT
.
|-- compose
| |-- data
| | `-- .gitgignore
| |-- defaults.env
| |-- docker-compose.yml
| |-- vars.env
| `-- vars.wan.env
|-- Dockerfile
|-- .dockerignore
|-- doc_source
| |-- conf.py
| |-- index.rst
| `-- _static
|-- .gitignore
|-- Makefile
|-- pipinstalls.txt
|-- pos-sim-r
| |-- data
| | |-- analyze.html
| | |-- analyze.Rmd
| | |-- exp_data
| | | `-- .gitkeep
| | |-- figure
| | | |-- .gitkeep
| | | `-- score_contour.jpg
| | |-- makefile
| | `-- make.r
| |-- defaults.env
| |-- docker.build.sh
| |-- docker-compose.yml
| |-- Dockerfile
| `-- install_deps.r
|-- README.html
|-- README.md
|-- README.org
|-- README.pdf
|-- .scripts
| |-- add-aur.sh
| |-- dctl
| |-- get-batch-file
| |-- install.sh
| |-- launch-flower
| |-- list-batch-files
| |-- revoke-sudo.sh
| |-- run-worker
| |-- sim-launcher
| |-- sim-stake1
| |-- source-env.sh
| |-- tabulate.sh
| `-- welcome.sh

|-- setup.cfg
|-- setup.py
|-- sim
| |-- cmd
| | `-- ucmd.py
| |-- core
| | |-- abstract_sim.py
| | |-- base_object.py
| | |-- boot_exp.py
| | |-- decorators.py
| | |-- ecdf.py
| | |-- implem.py
| | |-- __init__.py
| | |-- main.py
| | |-- node.py
| | |-- parser.py
| | |-- plot.py
| | |-- rew_f.py
| | |-- sel_f.py
| | |-- sim_0.py
| | |-- stake_f.py
| | `-- utils.py
| |-- executor
| | |-- batch
| | | `-- ibatch.py
| | |-- celeryconf.py
| | |-- config-doctor.py
| | |-- db
| | | |-- cmd.py
| | | |-- fs.py
| | | |-- logger.py
| | | `-- parser.py
| | |-- dbdriver.py
| | |-- experiments
| | | |-- exp_01.py
| | | |-- exp_0.py
| | | |-- exp_365.py
| | | |-- exp_const_geom_pt2.py
| | | |-- exp_const_geom.py
| | | |-- exp_log.py
| | | `-- foo.py
| | |-- launcher.py
| | |-- logger.py
| | `-- tasks.py
| `-- parser
| `-- aparse.py
|-- sim-coordinator
| |-- docker-compose.yml
| |-- mongo-volume
| | |-- .gitignore
| | `-- README.txt
| `-- redis-data
| |-- .gitignore
| `-- README.txt
`-- todo.org

20 directories, 86 files

1. Locs

Language Files Lines Blank Comment Code
Python 41 3121 776 316 2029
./executor/dbdriver.py 381 96 23 262
./executor/tasks.py 168 44 12 112
./core/boot_exp.py 144 32 3 109
/core/test/stake-sim-0.py 159 35 15 109
executor/config-doctor.py 137 33 0 104
./executor/launcher.py 195 55 39 101
./core/sim_0.py 144 35 11 98
/executor/batch/ibatch.py 145 41 10 94
./core/abstract_sim.py 123 29 14 80
./parser/aparse.py 113 23 13 77
./core/plot.py 88 16 4 68
./core/decorators.py 78 12 1 65
./core/implem.py 94 23 10 61
./executor/db/fs.py 94 30 9 55
./core/utils.py 64 12 1 51
./core/node.py 62 13 3 46
./core/main.py 67 18 5 44
./core/base_object.py 66 16 9 41
./cmd/ucmd.py 54 11 3 40
./core/parser.py 54 14 1 39
./core/test/random1.py 46 15 0 31
./core/sel_f.py 42 8 6 28
./core/stake_f.py 50 11 12 27
./executor/celeryconf.py 37 11 0 26
./executor/db/parser.py 32 7 0 25
./executor/db/cmd.py 43 15 6 22
./core/test/batch.py 63 16 25 22
./executor/test/ctx.py 39 16 2 21
nts/exp_const_geom_pt2.py 36 10 7 19
riments/exp_const_geom.py 39 11 9 19
./core/ecdf.py 32 3 10 19
or/experiments/exp_365.py 33 9 7 17
utor/experiments/exp_0.py 34 10 7 17
tor/experiments/exp_01.py 34 10 7 17
or/experiments/exp_log.py 39 11 11 17
./core/rew_f.py 27 9 2 16
./core/test/tx.py 21 6 1 14
./core/__init__.py 10 3 0 7
./executor/db/logger.py 15 3 8 4
./executor/logger.py 17 3 10 4
ecutor/experiments/foo.py 2 1 0 1

Images sha256sum
from the folder where you downloaded the archives run $ sha256sum *.tar.gz

dbe608295d63480a21421f24b7582dea8f70613b383d783e46b0d7683e675ca pos-sim-core-latest.tar.gz
d9d564c2b26b3df8d105235d0ae4f2fe98d45d52620021b5a7d08617b730cd78 pos-sim-r-latest.tar.gz

