
Rate Your Search
Capturing Architectural Information from Search

Engine results

Bachelor Thesis

Tiffany Meijer

Faculty of Science and Engineering
University of Groningen

7 February 2021

Supervisors:
Dr. Mohamed Soliman

Dr. Paris Avgeriou

Abstract

Because of the rapid growing of the amount of information and alterna-
tives, searching and finding software architecture information is difficult for
software engineers. To ease this burden on the software engineers, others
have tried to re-rank the search results in Stack Overflow by classifying,
filtering or applying machine learning algorithms. In addition, others have
created architecture knowledge repositories. Furthermore, others tried to
eliminate the use of search engines by creating a plugin for IDEs. However,
in this research we would like to support in finding the best solution by
conducting an experiment to determine the best ways to capture this infor-
mation. This experiment may be the foundation of the future of research in
software architecture knowledge. However, to conduct this experiment we
are required to acquire some information.

As a result, this thesis presents an extension for browsers named Rate
Your Search that can capture this information from Google when a pro-
grammer searches for software architectural information. This extension
extracts the search results and user input as data and is developed using
ordinary web-page development languages (HTML, CSS, and JavaScript).
This plugin will help answer the research question: ”How to capture search
results for software architecture information?”. Thus, while others have
worked with the search engine in Stack Overflow, IDEs or static repositories,
we introduce a way to use one of the most used search engines, Google, and
to utilize user input.

Rate Your Search is merely satisfactory when it can indeed support
the experiment by gathering all the correct information and making it user
friendly. In our evaluation, we demonstrate the different tests and their results
to illustrate it captures all the necessary information and is straightforward
for users.

i

Contents

1 Introduction 1

2 Background 4
2.1 Software Architecture . 4
2.2 Search Engines . 4
2.3 Plugins . 5

3 Related Work 6
3.1 Search Tasks . 6
3.2 Architecture Knowledge Repositories 7
3.3 Search Engines . 7
3.4 User Ranking . 9
3.5 Plugins . 9
3.6 Search Process . 10

4 Architecture 11
4.1 Database . 12
4.2 Chrome Extensions . 12
4.3 RESTful API . 16

5 The Implementation 17
5.1 Database . 17
5.2 Chrome Extension . 18
5.3 RESTful API . 19
5.4 Deployment . 22

6 The Evaluation 24
6.1 Methods . 24
6.2 Usability . 25

6.2.1 Results . 27
6.2.2 Evaluation . 29

6.3 Functionality . 30

ii

CONTENTS iii

6.3.1 Experiment . 31
6.3.2 Results . 32
6.3.3 Evaluation . 33

7 Conclusion 36

8 Future Work 37

A User’s guide 39

B Programmer’s guide 47
B.1 Database . 47
B.2 Rest API . 47
B.3 Web extension . 49

1
Introduction

Before and during the process of software engineering, programmers need to perform
architectural tasks such as deciding which technologies are suitable, comparing two
technologies, search for possible architectural principles, patterns, components, and
much more. As a result, programmers need to research software architecture information
[1, 2], which can be interpreted as the architectural elements and the organization of them
to constitute the design and development of any complex software system [3]. However,
finding this software architecture information is difficult [1] and is accepted as one of the
critical issues in software engineering [3] due to the exponential growth of information.
Thus, we will need to research what this information consists of, and the directions that
have already been explored to improve on this. Based on this research, our desire is
to explore software architectural knowledge further and support the software engineers
searching on the web.

Accordingly, an experiment is to be conducted to determine which resources are most
effective, which websites provide better information than others, and how satisfactory the
search engines themselves are. This experiment is conducted as such: multiple practition-
ers will be asked to perform architectural tasks comparable to the ones mentioned above.
Before they start searching, they need to classify their search as one of the architectural
tasks given. Once that is done, we want to keep track of their search queries executed in
Google and the search results (URLs) given. In addition, during the experiment they can
select a relevance score ranging from no relevance to high relevance and the knowledge
types in the web page for each of their search results. We also want to monitor which
search results they click on.

In order to conduct this experiment, it calls for a tool which captures the users’ search

1

CHAPTER 1. INTRODUCTION 2

process (the task, their queries with results, the relevance, knowledge types and clicks) in
finding architectural information. The research of this paper intents to produce this tool
named Rate Your Search. As a result, Rate Your Search will accumulate all the captured
data in a database suited to reach our goal.

In fact, this research will try to answer the question: ”How to capture search results
for software architecture information?”. To answer this, the research will expand on the
architecture of Rate Your Search and the information in the database to determine the
effectiveness of existing search engines, and information on plugins. This results in the
following sub-questions:

• What is the architecture for a system that captures search results for architecture
information?

• What languages and frameworks should we use?

• Can the plugin be utilized universally across all browsers and search engines?

• How can we assess the effectiveness of existing search engines to search for
architecture information?

• Which architectural information is useful for each architectural task?

Consequently, we propose to develop a plugin, also called an extension, for web
browsers which captures the keywords of the search query, the top 10 search results
(URLs), the relevance of the search result and the architectural task the user is trying to
perform. The keywords and search results can be extracted from the web page, whereas
the user will need to interact to select an architectural task and score the relevance of a
web page. Extensions are built using conventional web development technologies such
as HTML, CSS, JavaScript and APIs.

Moreover, by using a MySQL database and a REST API to communicate with this
database from the plugin, we can store the captured data. This data will provide the
possibility to measure search relevance using Normalized Discounted Cumulative Gain
(NDCG). Additionally, using user accounts, the system is able to count the number of
search queries a user applied to obtain their desired information. This helps determining
the quality of the search results and search engine.

The main contributions of this paper include:

• A plugin which captures the search queries and results from existing Search
Engines (SE) such as Google.

• The plugin allows users to determine the relevance of the search results on the
Search Engine Result Page (SERP).

• The plugin can easily be accessed on the (Chrome) browser.

CHAPTER 1. INTRODUCTION 3

Therefore, this plugin has an impact on the field of information retrieval. It can direct
and enhance the future of (the research in) software architecture knowledge and support
the software engineers and software architects.

Structure of this Thesis The structure of the remainder of this document is the follow-
ing:

In Chapter 2 (Background) , the general research field is described with the recurring
terms.

In Chapter 3 (Related Work), descriptions of how others tried to solve the problem are
described and evaluated.

In Chapter 4 (Architecture), the architecture of the tool Rate Your Search is outlined.

In Chapter 5 (Implementation), the details of how the architecture is applied to imple-
ment the tool are presented.

In Chapter 6 (Evaluation), test cases are presented with the results. These results and
the rest of the tool is evaluated.

In Chapter 7 (Conclusion), we summarize our work and present what we learned.

In Chapter 8 (Future Work), we suggest possible future work to extend or build upon
this research.

In Appendix A, we introduce a user guide and a programmer’s guide to the tool.

In Appendix B, we introduce programmer’s guide to the tool to augment Chapter 5.

2
Background

To completely understand the contents of this thesis, it is important to comprehend some
key aspects.

2.1 Software Architecture
Software architecture consists of the organization of architectural elements that constitute
it. Having a solid architecture implies the production of a system’s properties such as
reliability, flexibility, etc., is facilitated. It can be the foundation and guide during the
development of such a system. It determines the levels abstraction, levels of expressions,
structure and behavior of the system. Therefore, without a solid architecture, there can
be great consequences [3].

2.2 Search Engines
Almost everyone has used a search engine as they are the modern way of finding
information easily. Technically, a search engine uses algorithms to find and collect
information about web pages [4]. Visually, it is a user interface with a search bar and a
search button, which triggers the algorithm and then displays the search results on the
search engine result page (which we will call the SERP). When we talk about search
engines, we call them SEs. The results on the SE mostly consist of the URL of the page,
and some information which indicates the content of the page. A well known SE is

4

CHAPTER 2. BACKGROUND 5

Google. However, there are also search engines within websites such as Stack Overflow
and Wikipedia which apply the algorithm within the contents of its own web pages.

2.3 Plugins
Plugins, in general, are software components that enhance the user experience. There
are many different types of plugins, ranging from ones for media players to ones for
web browsers. The main advantages of plugins lie in their ability to easily add new
functionality, allow third party developers to extend the possibilities. We will profit from
these advantages by creating a plugin for web browsers. Namely, one for the Chrome
web browser. These are called web extensions and their characteristics allow users to
customize and personalize their experience [5].

3
Related Work

Software engineers use search engines to search for software architecture information
[1, 2]. However, the selection of software architecture information remains complex
[1], by reason of the rapidly growing number of alternatives [2]. For this reason, earlier
research has been conducted, which is reviewed in this section.

3.1 Search Tasks
In our research, the architectural tasks will augment the research by analyzing the results
per task, so that we can deduce a more comprehensive conclusion. Therefore, we look at
other literature to receive more insight on how they categorize their research and how
they obtain their conclusions.

In fact, Xia et. al [6] also deduced that search engines have become one of the most
important tools to complete different type of software engineering tasks. Their research
aimed to get a better understanding of some of the problems developers face throughout
the software development process by researching what developers search for on these
search engines. This is in line of what we are trying to achieve, because this research
aims to comprehend the problems the search engines potentially cause.

This literature [6] identified 34 tasks which they classify in seven categories: general
search, debugging and bug fixing, programming, third party code reuse, tools, database,
and testing. In their study, they found that Google does not support software engineers
well, since the special characters are not allowed in the search queries even though during
coding a multitude of special characters are used.

6

CHAPTER 3. RELATED WORK 7

Unfortunately, we cannot assess this literature based on similarities or dissimilarities,
but this literature does already provide insight on the different search tasks which we
could use to describe the results. Also, we can take their discussions into account such
that we might not be able to fetch the special characters in the search queries.

Thus, Xia et. al [6] demonstrate a different method on how to assess the effectiveness
of existing search engines which could greatly augments the experiment and other future
research with the tool of this research. Nonetheless, our research will focus on software
architecture information specifically.

3.2 Architecture Knowledge Repositories
As an attempt to work around the complexity of inquiring architecture information,
multiple tools have been created.

For instance, Gorton et al. [1] have built QuABaseBD, ”a repository of semantically
structured knowledge for big data software systems” [1]. It introduces a new feature of
classifying and comparing distributed database systems and their features. However, the
creators of QuABaseBD have already made assessments of the relevance of the top 10
URL recommendations of each feature [1].

The former resembles an architecture knowledge repository where software engineers
can browse through the different possibilities [2]. However, these repositories are to
be manually updated. While in fact, most information is shared by software engineers
through different knowledge sharing tools [2]. As a result, the repositories should
accumulate their knowledge differently than manually, as this would also cause the
information to be out of date.

Compared to QuABaseBD, the tool of this research will enable users to make the
assessment of the relevance themselves which allows for more opinions of different
software engineers. Likewise, however, the tool of this research will also capture the
results in a repository. And although the tool will use a repository to capture results, it
will be automatically updated with each use to keep our data up to date.

3.3 Search Engines
Besides architecture knowledge repositories, others have attempted to re-rank the search
results on search engines. Hence, Soliman et al. [2] have ”developed a new search
approach to search for architecturally relevant information in Stack Overflow”[2]. The
tool utilizes a new method to filter and rank the search results based on their suitability
for architecture design activities. Also, it classifies the Stack Overflow posts to separate
architecture-relevant and programming-related posts. Furthermore, it also classifies the
posts in related sub-categories [2].

CHAPTER 3. RELATED WORK 8

Clearly, this is a better solution than the architecture knowledge repositories. However,
the limitations of this tool are that it is exclusively for Stack Overflow, and even though
it is the most popular developer community [2], it does not work on search engines such
as Google, whereas the proposed tool will. On the other hand, we propose to classify
search queries (as different tasks) and, likewise, also recognize architecture-relevant
information.

Besides examining the different approaches of searching for software architecture
information, it might also be useful to look at how searching for other information
in the software engineering field is conducted. This includes an approach to improve
search engines on software forums by Gottipati et al. [7]. Their approach is proposed
in a framework which classifies the posts as answers, relevant answers, junk and other
classifications, and which includes a semantic search engine which uses the semantic
tags to retrieve relevant answers in the threads [7]. Similarly, the tool of this research will
also need to classify and find relevant information, as a web link in this case, though on
search engines such as Google instead of on software forums. In contrast, this research
will focus on software architecture information.

Similarly, Beyer et. al [8] created a classification module which applies machine
learning algorithms for Stack Overflow Questions. Their aim was to automate the
classification of questions of Stack Overflow questions into seven question categories.
To apply the machine learning algorithms, an initial data set of 500 Stack Overflow
questions was curated. These were manually classified into the seven categories, The
seven categories are specified as: API change, API usage, Conceptual, Discrepancy,
Learning, Errors and Review. This study, as well as the study by Xia et. al [6] described
in the Search Tasks section, gives us insight into the information that might used for each
architectural task. In addition, this literature demonstrates a different approach to classify
each search.

Due to the exponential growth of information, it is becoming more complex for
search engines to meet the user’s information requirements and, therefore, provide the
sought after results[9]. As a result, Indumathi et. al [9] present an approach to expand
the user query and to re-rank the search results. The query expansion utilizes query
processing, which denotes the evaluation of a user’s query to expand the query and make
it more precise. The process fetches when a user clicks on a snippet and applies that
information to reflect the interest of the user on the concept and will provide a user
preferred concept to expand the query. The similarity of this approach lies in the fetching
of the clicks of the user, which the tool of this research will also capture. This literature,
however, applies it to compute an expanded search query, whereas our research will
apply it to compute the relevance score of the search results.

CHAPTER 3. RELATED WORK 9

3.4 User Ranking
So far, we have not seen many studies where user input is used to either categorize the
search queries or compute the relevance of a search result. In our research, however, user
input signifies our results. Therefore, we will look at the study that Opoku-Mensah et.
al [10] conducted. In contrast to other studies, this study, as well as ours, presents the
need to include the user’s relevance in the Search Engine Results Page (SERP) ranking.
Their motivation, similarly, lies in improving the relevancy of rankings for a better user
satisfaction of the search results. The research also mentions that the NDCG is ultimately
based on the structural and content features of retrieved documents. From this, we can
conclude that our research will be one of the firsts to base the NDCG score on user
relevance and input. Their literature review mentioned that the overall users assessment
of a search engine is a result of user’s interaction with the SERP, while not explicitly
asking the user for their assessment. The former is what this research implements.

Another study, which resulted in Rankbox proposed ”an adaptive ranking system
for mining complex relationships on the Semantic Web” [11]. In Rankbox, each user
has their own ranking function to represent their specific preferences. The users can
continuously adapt their preferences and strive for a user friendly experience by allowing
the user to interact the system through just a few clicks. In contrast to Rankbox, the
research of this paper will allow the user to interact on the already existing Search
Engine Google, whereas Rankbox implements their own search engine. We can also
draw inspiration from their user-friendly user interface (UI) such that we also make sure
our users can access our plugin with just a few clicks. Rankbox allows users to ”like” or
”dislike” a result, whereas our research will use the Likert scale to rank the relevance of a
search result to retrieve a more detailed result.

3.5 Plugins
Also, since we propose to develop a plugin, reviewing other plugins should be relevant
to our research. As an example, Ponzanelli et al. [12] created a plugin for Eclipse
called Seahawk. Seahawk automatically formulates queries from the changes in the
code, which will generate a list of relevant results from Stack Overflow, and developers
can also drag and drop code samples from Stack Overflow into their source code [12].
However, this plugin is not closely related to our research since it does not handle the
search results such as the other tools which classify and re-ranks the results, but instead
presents them and makes them available for use. This tool also suffers from the limitation
that it solely operates with Stack Overflow and it merely construct search queries from
the code context (e.g. code under editing) whereas we propose to utilize keywords from
the search queries.

On the other hand, we have another plugin created by Rahman et al. [13] called

CHAPTER 3. RELATED WORK 10

SurfClipse, ”an IDE-based web search solution” [13]. The plugin executes searches on
three main search engines (Google, Bing and Yahoo) and another Q&A site (e.g. Stack
Overflow). The result is a representation of the search result with relevance scores based
on the result of the search results from the different search engines. In addition, the
plugin extracts solutions from a number of developer communities [13]. In comparison,
the tool for this research will base the relevance score on user inputs, but, similar to this
one, it should also work on popular search engines. However, this plugin is deployed
in the IDE and will base the search on the errors presented by the IDE, whereas the
proposed plugin will use keywords from the user on a web search engine as mentioned
before.

3.6 Search Process
The references for this literature review have been obtained by reading through Soliman’s
dissertation and researching other relevant papers from Soliman as he is part of the team
that will conduct the experiment. Some of the references were also found using relevant
references in Soliman’s dissertation. Later, we used the keywords: Software Architecture,
and Search Engine on IEEE Xplore.

4
Architecture

In this chapter, we answer the question: ”What is the architecture for a system that
captures search results for architecture information?”, by presenting our research into the
architecture of web plugins.

Our web plugin should capture keywords, search results, the relevance of the search
results and which architectural task the search query is categorized as. Consequently, the
plugin needs these functional requirements to be able to answer the remaining research
questions:

1. It captures keywords from Google.

2. It captures the URLs from the top 10 search results or all search results on the first
SERP, if those are less than 10.

3. The user is able to decide on the relevance for each URL on the search engine but
also on the website itself denoted by using a Likert scale.

4. The user is able to decide which knowledge type is included for each URL on the
search engine.

5. The user is being presented the tasks which they can select and hide. The user can
also change their selected task.

6. It captures whether the user has clicked on a search result.

7. The database is structured.

11

CHAPTER 4. ARCHITECTURE 12

Figure 4.1: The representation of the three tier architecture we use, created by us.

8. It has secure accounts for users, so that we can compute how many queries it took
for them to find their desired information.

9. It measures the search relevance with NDCG in the database.

10. It works in all countries.

11. It is secure.

In addition, as a non-functional requirement, the plugin should be user-friendly. Finally,
some optional requirements, such as categorizing the URLs and allowing the user to
distinguish a part of a web page as most relevant, would enhance our research even more.

4.1 Database
From the requirements, we recognize that the plugin will capture keywords and search
results (URLs), as well as store the relevance and an architectural task. It will also
contain a few user accounts. This information will be stored in a MySQL database. For
this research, we will use a 3-tier database architecture. The three tiers consist of the
database (Data Layer), the application (Application Layer) and the user tier (Presentation
Layer). Firstly, the database defines the tables with its columns, and the relationships
between each table. Secondly, the application is, in this case, the REST API which
communicates with the database and displays an abstract view of the database. The
REST API is intermediary between the database and the user tier. Lastly, the user tier in
this case is the web extension. Our use of the 3-tier database architecture can be seen
Figure 4.1.

4.2 Chrome Extensions
The plugin will be implemented as a browser extension on Google Chrome. Therefore,
we will need to consider the architecture of extensions to decide on the architecture of

CHAPTER 4. ARCHITECTURE 13

the tool and on the languages and frameworks. Essentially, a browser extension adds
features to a browser. Extensions are built using familiar web development technologies
such as HTML, CSS, JavaScript and other open APIs. In the end, an extensions is a
package of files [14]. According to [14], the architecture of an extension consists of the
manifest, background scripts, UI elements, content scripts and an options page.

Manifest
All extensions are required to have a JSON-formatted manifest file, named manifest.json
[15]. It contains metadata which the browser employs to load up the extension. The
metadata includes the files and the capabilities the extension might use. The files include
the scripts mentioned, but also the styling sheets, markup files, and the icons shown in
the browser. The manifest supports multiple manifest fields, but the three required fields
are ”manifest version”, ”name” and ”version”.

Additionally, there are two recommended fields called ”description” and ”icons”.
The icons represent the extension, and the developer should provide different sizes of the
icon for the various uses, namely, the icon in the Chrome Web Store, in the extensions
management page (chrome://extensions) and the favicon [16].

The browser action or the page action in the manifest places the favicon in the main
Google Chrome toolbar, to the right of the address bar [17, 18]. The page action is
specifically for a few pages, whereas it would make more sense to use a browser action
for actions that could be applied to all pages. The decision is up to the developer.

The additional fields will not be discussed in this chapter, but they mostly describe
the settings, APIs, and files used by the extension.

Background Scripts
Background scripts, written in JavaScript, are utilized as an event handler as it contains
listeners for browser events [19]. The events are browser triggers, such as navigating
to a new page, removing a bookmark, or closing a tab. These events are monitored in
the background script which handles accordingly. The extension is also able to trigger
the events by, for example, message passing from the content script, or by calling a
background function from another view of the extension.

Background pages are also utilized to maintain long-term state or perform long-term
operations regardless of the lifetime of a web page or browser window. This is because
a background page will stay running as long as it is performing an action and will not
unload until all visible views of the extension and message ports are closed. As a side
note, message passing will be discussed more alongside the content script.

UI elements
The extensions’ user interface (UI) elements allow for an expanded user experience with-
out distracting from the browser experience[14]. The page or browser action, which are

CHAPTER 4. ARCHITECTURE 14

mostly in charge of displaying the icon, mentioned in the manifest section are examples
of the UI elements.

Including badges, which are purely allowed with browser actions, display a colored
banner with up to four characters on top of the browser icon [20], are an example of the
possible UI elements for chrome extensions.

An additional UI Feature is the popup, which is a small-scale HTML web page,
displayed in a special window when the user clicks on the icon in the toolbar [20].
The popup allows for an enhanced user experience as it could be used for users to set
their preferences or display other options the extension allows for. The popup can be
developed using conventional web development technologies with HTML, CSS and
JavaScript.

Furthermore, chrome web extensions allow for the possibility of the use of a tooltip
to give a short description when hovering over the browser icon. In addition, users can
invoke the extension’s functionality in the omnibox, known as the chrome address bar
[21], by typing in keywords designated by the developer. The extension can trigger
events by the user’s input in the omnibox.

Also, Chrome possesses the chrome.contextMenus API to add items to the
Google’s context menu [22], which you get by selecting a part of the web page and
pressing the right mouse button. This context menu is created in the background script.
Even shortcuts, also known as commands, can trigger the extension’s functionality. These
commands are declared in the manifest, but implemented in the background script [20].

Lastly, an extension can override and replace the History, New Tab or Bookmarks
web pages with a HTML page the extension desires. This web page and the custom
HTML page are specified in the manifest, but developed using, again, conventional web
development technologies.

Content Scripts
Content scripts contain JavaScript that access and manipulate the DOM of the web pages
in the browser window. It communicates through messages with their parent extension.
The advantage of content scripts is they live in an isolated world so that it enables the
content script to implement functionality that should not be accessible to the web page
but also allows for the content script to make changes to the web pages’ DOM and
JavaScript environment without conflicting with the already existing functionalities and
other content scripts [23].

The content scripts can be injected declaratively using the manifest, or programmat-
ically in the background script with the combination of some settings in the manifest.
Within the programmatical injection option, there lies two other options, where you could
inject the content script as a few lines of code or an entire JavaScript file. The extension
specifies on which pages the content script should be injected.

However, since the content scripts live in an isolated world, they are not as easily

CHAPTER 4. ARCHITECTURE 15

accessible to the rest of the extension. Therefore, the script can communicate with the
background script or the popup by means of message passing. Both sides of communica-
tion listen for messages, written in JSON. There are two APIs. On the one hand, there
exists an API for simple one-time requests, where you send a message and have a listener
on the other side. On the other hand, there exists a more complex API for long-lived
connections. They make use of a port, which the extension has to connect to. Messages
can also be passed from one extension to another, and, similarly, the extension can receive
messages from web pages. This message passing is where security is fragile[24].

Options Page
Lastly, the options page allows for modification of the extension. On the options page, the
user is able to customize the extensions for the user’s need. This page is also developed
using conventional web development. It is accessible to users by either right-clicking on
the icon in the toolbar and selecting options or by navigating to details and to the options
page in the extensions page of chrome [25]. Eventually, the architecture will look like in
Figure 4.2.

Figure 4.2: The architecture of a chrome extension from [14].

CHAPTER 4. ARCHITECTURE 16

4.3 RESTful API
As mentioned before, we need an intermediary web app for the extension to be able to
communicate with the database. For this research, we will use a RESTful API. REST
is acronym for REpresentational State Transfer. RESTful APIs are also referred to as
REST APIs, which we will use in the rest of the paper, or as a RESTful web service. The
API uses HTTP request that the extension calls to GET, PUT, POST and DELETE data
[26]. The advantage of REST is that it uses less bandwidth than Simple Object Access
Protocol (SOAP), and, therefore, is more efficient.

REST APIs can be written in many different ways and languages. In this research,
we utilize Spring Boot. Spring Boot is a project of Spring, a Java framework designed to
make Java programming easier for everyone [27]. This is because we could embed the
Tomcat server directly [28], which facilitate the deployment the REST API. It requires
Java 8 or higher and support the build tools Maven and Gradle.

Every Spring Boot application written in Maven requires a POM file, named pom.xml,
as a recipe to build the application. This pom file to the application is comparable to the
manifest of the extension. It specifies some fields, but also the dependencies are declared
in this file [28].

Furthermore, Spring Boot uses the Spring MVC (Model, View, Controller) framework
and the annotations from that framework. Those annotations provide information to
the reader about the code. On the other hand, the annotations also provide information
necessary for the functionality of the application and handling of the HTTP requests.

Also, Spring has the Spring Data project, which provides data access technologies.
It has multiple subprojects that are specific to a given database [29]. By adding the
frameworks as dependencies in the POM, the application is able to access them. Using
JPA, Java Persistence API, the Spring Data JPA project, and the Spring DATA JDBC
project, we can use annotations in the code and declare properties to allow the application
to access the data [30].

Namely, the spring-boot-starter-data-jpa dependency provides three
key dependencies named Hibernate, Spring Data JPA, and Spring ORMs. They are one
of the most popular JPA implementations, simplify the implementation of JPA-based
repositories, and are a Core ORM support from the Spring Framework, respectively [30].

Additionally, the spring-boot-starter-data-jdbc dependency adds the
Spring Data’s JDBC repositories. JDBC automatically generates SQL for the methods in
the CRUD (Create, Retrieve, Update, Delete) Repositories, and allows the developer to
provide a @Query annotation for customized, and/or more advanced queries.

The requirements can be met when we combine these technologies and their architec-
ture.

5
The Implementation

Using the requirements and the architectural information of the technologies provided to
us in the Architecture chapter, we will now elaborate on the implementation to specifically
fulfill the requirements and develop our web extension Rate Your Search.

5.1 Database
We have designed our database in such a way to make it easy for the researchers to get
the correct information to reach their goal to determine the effectiveness of resources,
websites and the search engines themselves.

With the help of classifying the result in architectural tasks, the researchers can
deduct which architectural task has a higher complexity to perform.

Then, with the search queries the users use in Google and the URL results, we can
research elements such as which type of search queries perform best and which results
are most common. Then, in combination with sessions which denote which user, from
the user accounts in the database, has selected what architectural task, and the search
queries within that session, we can evaluate how many queries and how long it took to
reach a satisfactory result.

Additionally, we want to store the relevance scores of the results entered by the users
and whether or not they clicked on the results to be able to perform a better evaluation of
the quality of the results. Particularly, we can use those inputs to calculate the Normalized
Discounted Cumulative Gain (NDCG) score of the search results, which, in turn, can be
utilized to evaluate the effectiveness of the search engines themselves.

17

CHAPTER 5. THE IMPLEMENTATION 18

A more detailed description can be found in Appendix B, and a database structure
design can be seen in Figure B.1, Appendix B.

5.2 Chrome Extension
Our Chrome extension is the aspect of the product the user will interact with. Firstly, the
background script of Rate Your Search will initialize the data members for our widget to
be functional. Secondly, since Rate Your Search is for a specific use, an options page is
not needed.

UI elements
Thirdly, our UI elements are provided by the popup and content script. The important
factor for UI elements is their deliberate lack of distraction from the workflow. Therefore,
our main priority was that the user would acquire the targets of the UI elements as
fluently as possible. Therefore, we have decided to have the popup as the place where the
users can login and logout, whereas the rest of the user input is done on the web pages
themselves to make it more user friendly.

The popup has two states (Figure 5.1). On the one hand, we have the login screen
in which the users can enter their assigned credentials. On the other hand, we just have
a button for them to logout. The login button executes a REST call to our database to
validate the user’s input. Consequently, if their credentials are incorrect or incomplete,
we notify the user with the message ”Incorrect username or password”. Moreover, correct
credentials allow the user to utilize the rest the extension has to offer. This is because the
content script checks if the user is logged in before it displays the other UI elements and
before it fetches the user’s actions.

In fact, the content script consist mostly of two elements: 1) the relevance and knowl-
edge form in the Google SERP (Figure 5.2d and Figure 5.2e), where users select the
relevance score of the results, and 2), the widget (Figure 5.2a-5.2c). The widget displays
the task segment on Google’s web pages. Whereas it also displays the relevance form
the web pages from search results. The widget can be collapsed (Figure 5.2c, so that the
user will not be distracted from their browser experience. Moreover, Figure 5.2a shows
two segments: the task segment on top, and the relevance segment at the bottom. Firstly,
the task segment allows the user to select the task and also view the task’s description.
Secondly, the relevance segment is solely visible on web pages from search results, and
this is where the user selects or updates the relevance of a web page. In addition, to
notify the user of their choices, the content scripts also displays a notification bar with
their choice. One example of when this happens is when the user selects a task, which
can be seen in Figure 5.2f.

Content scripts

CHAPTER 5. THE IMPLEMENTATION 19

(a) Rate Your Search: The login screen.
(b) Rate Your Search: The logout
screen.

Figure 5.1: The two states of the popup screen.

Fourthly, the content script carries out a majority of the work of the chrome extension.
It can access and manipulate the DOM, and, therefore, is responsible for listening to
user interactions with the DOM, as well as with the widget. Admittedly, creating the UI
elements mentioned above is also one of its responsibilities besides inserting them in the
DOM.

Once the content script has created these elements, it adds event handlers to the
widget as well as to the anchor elements so that the URLs of those anchor elements can
be stored as search results. These event handlers oftentimes result in the need for REST
calls to store the fetched information. For example, once the content script has been
injected and it discovers that the user executed a query, it should create REST calls that
ensures the query with its search results are stored in the database. In addition to when
the user selects a relevance, the content script should retrieve the correct entry from the
database and update the relevance score of the record.

Furthermore, the content script is responsible for revealing the correct UI elements.
As mentioned before, the widget is exclusively visible when the user is logged in.
Therefore, the content script checks this condition. In addition, once the user is logged
in, the content script examines if we are on Google, on a search result, or neither to see
which segments of the widget should be visible.

5.3 RESTful API
As mentioned before, the REST API is implemented using Spring Boot, which means
we create it in Java with the MVC framework. The MVC framework consists of three
components: Model, View and Controller.

MVC

CHAPTER 5. THE IMPLEMENTATION 20

(a) Rate Your Search: Expanded wid-
get.

(b) Rate Your Search: select relevance
in web page.

(c) Rate Your Search: Collapsed wid-
get.

(d) Rate Your Search: ask relevance of
search results in the SERP.

(e) Rate Your Search: ask the knowledge types pf a search result in the SERP.

(f) Rate Your Search: notification bar.

Figure 5.2: The different UI elements the content script provides.

CHAPTER 5. THE IMPLEMENTATION 21

However, since we did not create an interface for our API, we did not implement any View
components. Although, our Models correspond to the tables we have in our database
and are the Resource Representation classes. Thus, the classes represent the table, while
the attributes represent the columns in the table. Therefore, our models are: Account,
Searchquery, Session, Task and Url.

Consequently, these models also all have a Resource Controller, which handles the
HTTP requests and other service interactions. For example, the Controller contains a
function which handles GET request for /account/{id}, which returns an Account
with the id from the id parameter. Using the correct annotations, we can assure our
Controller comprehends which mapping should be mapped to which functions and which
parameter should be bound to which parameter in the mapping.

In addition, since most of the functions should return an entity of the class, we have
created an Exception class for each of the Models, which is thrown when we cannot find
an entity with the parameter the user passes.

Mappings
Each of the controller handles the mapping for table_name/{id}, table_name/all,
table_name/add. The mapping for table_name/{id} can be a GET, PUT or
DELETE method. The table_name/all retrieves all records in the equivalent table,
and is, therefore, a GET mapping. Last but not least, we have the POST method for all
models which is handled when table_name/add is used.

Specifically, the Account Controller also implements a GET mapping for
accounts/username={username}, so that it can try to retrieve an Account with
the corresponding username. We consume this mapping when users try to log in.

Moreover, the Searchquery Controller requires a method for getting search queries
with specific keywords that correspond to a certain session. We implemented a method for
searchqueries/searchquery={searchquery}/sessionId={sessionId},
so that we can retrieve those search queries. This is utilized when we want to check if we
already have that search query in our system and do not store the same data twice. Also,
when the search query also exists, we can also retrieve the already selected relevance
score of the search results and present them to the users for if they change their minds.

Furthermore, the Url Controller also has custom GET mappings supporting function-
ality such as checking if the web page the user is currently on is a search result. This is
achieved by checking if we have an entity with the current URL in the current session
with a mapping for
urls/url={url}/sessionId={sessionId}. In addition, we often require an
update of an entity of a URL, such as when the user selects a relevance, or clicks on the
URL. Therefore, we need to ascertain retrieving the correct URL entity, since multiple
search queries can supply some of the same search results. Thus, when retrieving those
URLs, we search by URL and by the Searchquery entity which requires us to implement

CHAPTER 5. THE IMPLEMENTATION 22

a GET mapping for
urls/url={url}/searchqueryId={searchqueryId}. Finally, to compute
the NDCG score for a search query, we need to retrieve all the URL records for that
search query. Hence, there also exists a mapping for
urls/searchqueryId={searchqueryId}.

Security
To secure the Rest API, we acquired an SSL certificate to be able to use the HTTPS
protocol. As a result, the data transferred over the network is encrypted [31].

To implement this, our REST API enforces the request to be with the HTTPS protocol
by redirecting all incoming HTTP requests to the HTTPS port in the Application class
and adding a configuration class.

Admittedly, during testing, we noticed that the HTTP request were being blocked by
the website themselves to ensure security. Accordingly, we updated our security.

5.4 Deployment
In fact, one essential component of the implementation of our extension is the deployment.
Namely, the users should be able to access the plugin. Whereas the researchers need to
be able to access the database and REST API as well. Furthermore, the plugin needs to
access the REST API.

Hence, we need to deploy our extension, REST API and database.

Web extension
The web extension is designed for Google Chrome. Therefore, we could upload the
web extension to the Chrome Web Store. However, since this extension will be used by
just a few practitioners participating in the experiment, another possibility is to transfer
them the folder with the scripts, style sheets and HTML files, and, most importantly, the
manifest. Then, in chrome://extensions/, they can upload the folder including
the manifest in developer mode. This automatically deploys the extension.

REST API & Database
To deploy the REST API and the database, we want to containerize them both. Therefore,
we use Docker. A docker container standardizes the development environment (frame-
works, dependencies, etc.) and packages it into one container so that you can run it easily
on any environment [32].

Then we need a server to store all the information and run the docker container in.
For this reason, we use Amazon Elastic Compute Cloud (Amazon EC2). It is a web
service that provides a secure, compute capacity in the cloud [33]. Our instance has an
instance ID, and an domain name where we can send our REST calls to.

CHAPTER 5. THE IMPLEMENTATION 23

To conclude, we upload our web extension in Chrome and package our database
and REST API in a Docker container, which we then deploy on our AWS EC2 instance,
which we can utilize for our REST calls as well, so that they can be executed from
different locations.

6
The Evaluation

Now that Rate Your Search has been explained in detail, this chapter is designed to
demonstrate that our approach was successful by evaluating the tool.

6.1 Methods
There are two components of Rate Your Search we will evaluate.

1. The usability of the tool.

2. The functionality of the tool.

The usability evaluation is done in two parts: testing out the tool at different mile-
stones during the development to uphold usability fundamentals, but also by conducting
a usability evaluation survey. This survey will be distributed after performing an experi-
ment with practitioners who might be using the tool. We determine the questions of this
survey by researching existing usability evaluation methods and surveys and selecting
the questions that are most applicable to our tool.

To evaluate the functionality of the tool, we refer back to the requirements established
in Chapter 4. We can analyze if the requirements are met with the provided functionality.

24

CHAPTER 6. THE EVALUATION 25

6.2 Usability
Usability principles
Firstly, during development, we assured to maintain the best usability possible. We

knew our effort should be integrated in the UI design to accomplish this. Therefore, we
followed the 10 UI design principles from from [34] to prove Rate Your Search is user
friendly.

The 10 design principles according to [34] are:

1. Aim at an Almost Invisible User Interface by particularly showing essential ele-
ments and using clear language.

2. Keep it consistent.

3. Be Purposeful with Page Layout by strategically placing the elements.

4. Use Color and Texture Strategically.

5. Use Familiar UI Elements: One of the Key Rules of Good UI Design.

6. Put the User in Control of the UI by informing the users about their actions and
have the actions be reversible.

7. Minimize Cognitive Load: Recognition over Recall by having “Task-relevant
information only”.

8. Stick to One Primary Action per Screen.

9. Use Typography to Create Visual Hierarchy by using different font styles.

10. Stick to a Small Number of Gestures

Therefore, we have made these decisions in our design to adhere to the principle:

1. Placing the login and logout screen in the popup, since that will merely be used
twice, once at the start and once at the end. Exclusively displaying the widgets that
are applicable to the state of the user’s browser actions and choices. This is also
explained in Chapter 5. Rate Your Search also aims to use clear language by using
”submit” or ”update” in the buttons, using descriptive questions/choices. Such
as asking them ”How would you rate the relevance of this website to task: task
name?”, as well as using the description of the relevance scores (”No relevance”,
”Low Relevance”, etc) instead of numbers. Additionally, the tool also presents the
description of the relevance scores when you hover over the label.

CHAPTER 6. THE EVALUATION 26

2. Each of the widgets use the same layout. Similarly, the textual elements on the
Google SERP and the widget in which the user selects the relevance are exactly
the same.

3. The decision to keep the widget at the bottom right was deliberate as this will
presumably not cover up any other content of a web page and is easily accessible.

4. Rate Your Search uses light grey on the Google SERP, and black and white for
the widgets and the popup. This is so that it stands out but does not distract you
from the rest of the web page. We also make sure the buttons have a different
background color than the rest to emphasize that their role.

5. The familiar UI elements are the radio buttons that suggest the user they need to
make a choice, the check boxes to suggest the user can select multiple choices, the
arrow besides the titles in the widget to imply they can toggle the visibility of the
widget. Additionally, we made sure the buttons had a different background from
the rest to imply its function. Furthermore, we made sure that the button’s opacity
slightly changes when the user hovers over it like most modern buttons.

6. We notify the user with the notification bar or a text change (from ”submit” to
”update”) whenever they made a decision or something went wrong in the process
of confirming their decision in the back-end. They are also in control because of
the collapsible widgets.

7. As already mentioned before, Rate Your Search particularly displays the widgets
necessary. Also, once the user has selected their task, the task widget is automati-
cally collapsed, and stays collapsed until the user specifies their need to open it. In
addition, the task name is inserted in the header so that the user is reminded which
task they are solving.

8. Each widget or box on the Google SERP has one specific intent. It could be for
selecting the relevance of the search result, or for the knowledge types in the search
result, or for selecting the task, or even logging in and out.

9. The questions in the header of the widgets are larger to draw attention. The
relevance score strings have a dotted line underneath them to hint at that there is
more to it than meets the eye, which are the tooltip containing the descriptions of
the relevance scores. The buttons have another typography to distinguish them
from the rest of the tool.

10. To improve on usability, Rate Your Search makes some of the choices for the users,
so that the users do not have to click any buttons. This is evident in that the user
automatically selects their choice of task by changing the selection of the drop-
down without the need of a button. This is because the users are assigned a task,

CHAPTER 6. THE EVALUATION 27

and they can go back to the description if they need it, but, in this way, we removed
the necessity of another click. Also, once they have achieved this, the widget
collapses and the notification appears to notify them and which automatically
closes. We also disable the buttons if they have not made any changes, so that they
realize what choice they have previously made.

Usability evaluation survey
Secondly, we created a usability evaluation survey. To do this, we researched existing

surveys and assessed which one were most applicable to Rate Your Search. We looked at
UEQ [35], SUS [36] and the surveys of which the validity and the reliability have been
established according to Gary Perlman [37]. Our goal was to create a survey that would
give more insight into the general usability of the system. Therefore, we eliminated the
more detailed questions such as the questions about system speed. Additionally, since
Rate Your Search is not to improve on any service any software or process yet, but to
enhance future research, we dismissed questions that would examine whether it would.

After reading all the potential questions, we selected these three questions, where the
respondents had to answer based on a five-point scale from 1 to 5, where 1 was ”strongly
disagree” and 5 was ”strongly agree”:

• I needed to learn a lot of things before I could use the plugin.

• I felt comfortable using the plugin.

• I found the various functions in the plugin were well integrated.

This survey was conducted after 50 practitioners conducted a experiment with Rate
Your Search and the instructions from Appendix A.

6.2.1 Results
These are the results of the survey:

I needed to learn a lot of things before I could use the plugin.

CHAPTER 6. THE EVALUATION 28

1 2 3 4 5
0

10

20

30

40

score

am
ou

nt
of

an
sw

er
s

I felt comfortable using the plugin.

1 2 3 4 5
0

5

10

15

score

am
ou

nt
of

an
sw

er
s

I found the various function in the plugin were well integrated.

CHAPTER 6. THE EVALUATION 29

1 2 3 4 5
0

5

10

15

20

score

am
ou

nt
of

an
sw

er
s

6.2.2 Evaluation
From our efforts and improvements during the development phase mentioned in sec-
tion 6.2, we can say we adhere to most design principles.

However, we could improve in our consistency by also including widget for the
knowledge types since the form is included on the Google SERP, but not displayed in a
widget so that the users could easily access the form. This would improve our consistency
as well as improve our efforts to adhere to the principle to stick to a small number of
gestures.

Additionally, we adopted this list as the principles to keep in mind since we think that
these summarize most UI usability principles, but there are a lot of other principles on
the internet that we might have overlooked during the development process on which we
could have improved and even enhanced our tool with. Nevertheless, we can conclude
the tool adheres to most UI usability principles.

From the usability survey, we first see that most people did not need to learn a lot of
things before they could use the plugin, which means Rate Your Search is suitable for
the experiment and is easy for first time users to pick up.

Secondly, the responses for the statement ”I felt comfortable using the plugin” was
divided, as 16 respondents (strongly) agreed, 14 respondents (strongly) disagreed and 10
respondents were conflicted. This means that there is definitely something to improve
in the tool to make the users more comfortable. Consequently, we should ask these
respondents their reason for their answer before we can know what to improve on.

Thirdly, the respondents were more positive than negative about the integration of the
various functions in the plugin. Thus, Rate Your Search has integrated most functions
well, but can improve on other functions. Similarly, we should ask the respondents
for their justification for their answer to recognize which functions should be better

CHAPTER 6. THE EVALUATION 30

integrated. However, we do expect it also refers to the knowledge type form as it is not
fully integrated.

6.3 Functionality
To evaluate the functionality of the tool, we will conduct our own a little experiment
which will acknowledge all of our requirements in and see if the results are as we
expected and in Chapter 4. For readability, we reiterate the requirements here:

1. It captures keywords from Google.

2. It captures the URLs from the top 10 search results or all search results on the first
SERP, if those are less than 10.

3. The user is able to decide on the relevance for each URL on the search engine but
also on the website itself denoted by using a Likert scale.

4. The user is able to decide which knowledge type is included for each URL on the
search engine.

5. The user is being presented the tasks which they can select and hide. The user can
also change their selected task.

6. It captures whether the user has clicked on a search result.

7. The database is structured.

8. It has secure accounts for users, so that we can compute how many queries it took
for them to find their desired information.

9. It measures the search relevance with NDCG in the database.

10. It works in all countries.

11. It is secure.

In addition, as a non-functional requirement, the plugin should be user-friendly. Finally,
some optional requirements, such as categorizing the URLs and allowing the user to
distinguish a part of a web page as most relevant, would enhance our research even more.

CHAPTER 6. THE EVALUATION 31

6.3.1 Experiment
These are the steps we should follow during the experiment:

1. Login using the username: ’test’, and the password: ’test’. This should give us an
error message: ’Incorrect username or password’.

2. Then, we are going to login using the username: ’user1’, and the password:
’123456’. These are valid login credentials.

3. We are going to open Google.com.

4. We are going to select one of the tasks.

5. Then, we are going to execute a search query on google.

6. Open all the results from the first SERP of Google.

7. Select a relevance for all results on their web page. We will select the relevance
score for the results in this order: 1, 5, 2, 4, 5, 1, 2, 3, 5, 2, where 1 is ”No Rele-
vance”, 2 is ”Low Relevance”, 3 is ”Medium Relevance”, 4 is ”High Relevance”,
and 5 is ”Very High Relevance”. If there are less than ten results on the first SERP,
we will select the first scores.

8. Then, we will update the relevance score for the first, third and fifth result on their
web page to 2, 1, 3, respectively.

9. Then, we will update the relevance score of the second and fourth result on the
Google SERP to 4 and 5, respectively.

10. Additionally, on the Google SERP, we should submit that the first result has the
knowledge of ”Solution’s Description”, ”Solution drawbacks” and ”Technical
background” in ”Others”. We should also submit that the second result has the
knowledge of ”UseCase”.

11. Then, we should update that the second result also has the knowledge of ”Develop-
ment and Implementation Guide”.

12. Then, we should execute another search query.

13. Then, we should select another task.

14. Then, we should execute a search query for that task.

15. Then, we should select select the relevance of the search results in this order: 1, 2,
3, 4, 5, 1, 2, 3, 4, 5 in the same way as step 7.

CHAPTER 6. THE EVALUATION 32

16. We should also open the second SERP of Google to make sure Rate Your Search
does not capture those results.

17. Then, we should logout.

This should result in our user having two sessions, where one session should start
as soon as we select the other one, where each session should have the correct user.
All search queries and all results from the first SERP, besides the ads, should be stored
with the correct foreign key to the sessions. The URLs should have the final rele-
vance scores, and the search query should have a computed NDCG. All URLs of the
first search query should demonstrate that they have been clicked on. The first URL
of the first search query should have ”true,false,false,false,true,false,Technical back-
ground” as the cause. Whereas the second URL of the first search query should have
”false,true,false,false,false,true,” as the cause.

6.3.2 Results
The incorrect login credentials indeed displayed the error message ”Incorrect username
or password”. Once we were logged in with valid credentials, we could indeed see
the task widget in Google. We chose the JSON-Search task. We executed the search
query ”JSON syntax”. On the first SERP of Google, there were 10 seach results. These
were from w3schools, tutorialspoint, json.org, en.wikipedia.org, digitalocean, medium,
phphulp, developer.mozilla, javaee.github.io and www-db.deis.unibo.it. Thus, we expect
all of them to be in the database.

The json.org result returned a 500 status code and could not be retrieved from the
database, so we selected the relevance score on Google instead.

After following steps 7 through 11, we executed the search query ”JSON content
type”. This search query also had 10 search results on the first SERP. These consisted of
results from stackoverflow, geeksforgeeks, freecodecamp, developer.mozilla.org twice,
developer.atlassioan, github.com, geoforum, Wikipedia, and symfonycasts.com.

Afterwards, we selected the Physical-Design task and executed the search query
”web app design”. This search query had 9 search results consisting of results from
nl.pinterest.com, printerest.com, dribbble twice, budibase, desigforfounders, designmodo,
codica, and webapphuddle. The second SERP included results from fuselab twice,
fluidui, thedroidsonroids, printerest.dk, awwwards, clearbridgemobile, behance, proto.io.
However, these should not be inserted in the database.

The account used in the experiment has the id ”1” in the database. The tasks from the
database, without description since it is not applicable to this experiment, can be seen in
Figure 6.1. Figures 6.2, 6.3, and 6.4 represent the session, searchqueries and URLs that
were created during the experiment. The URLs are sometimes cut off since they were
too long. These URLs are depicted by the URLs that end with ”...”. Moreover, some

CHAPTER 6. THE EVALUATION 33

id taskname
1 Physical-Design
2 Big-Data-Stream-Evaluation
3 Conceptual-Design
4 Middleware-Search
5 JSON-Search
6 Messaging-Evaluation

Table 6.1: The tasks in the database.

id userid taskid datetimestart datetimefinish
372 1 5 2020-12-01 12:41:54 2020-12-01 12:51:10
373 1 1 2021-12-01 12:51:12 2020-12-01 13:00:22

Table 6.2: The sessions recorded from the experiment in the database.

column names use aliases for the same reason, e.g. rank for rankingoogle, cl for clicked,
and sqid for searchqueryid.

In those figures, we see that a new session is started two seconds after the first one
ended. This is as expected. We also see that all the URLs and their rank, relevance and
cause that we anticipated are recorded.

6.3.3 Evaluation
The results of our experiment demonstrate that the plugin meets the requirements 1, 2, 3,
4, 5, 6, and 9. However, requirement 6 did not work for the https://www.json.org website.

Admittedly, it should be noted that this experiment was extremely small. We, un-
doubtedly, tested the plugin during development extensively, where we discovered that
we could improve the performance by including threads on the server, so that more
users can use the plugin at the same time. Additionally, the usability experiment also
demonstrated that the tool is functional.

Unfortunately, evaluating requirement 7 is complex. Although, we did adhere to the
principles we have been taught in our career such as making sure the columns and tables
are logical and concise.

id searchquery sessionid ndcg
1055 JSON syntax 372 0
1056 json content type 372 NULL
1057 web app design 373 0

Table 6.3: The search queries recorded from the experimented in the database.

CHAPTER 6. THE EVALUATION 34
id

ur
l

ra
nk

re
le

va
nc

e
cl

sq
id

ca
us

e
15

17
9

ht
tp

s:
//w

w
w

.w
3s

ch
oo

ls
.c

om
/js

/js
js

on
sy

nt
ax

.a
sp

1
2

1
10

55
tr

ue
,fa

ls
e,

fa
ls

e,
fa

ls
e,

tr
ue

,fa
ls

e,
Te

ch
ni

ca
lb

ac
kg

ro
un

d
15

18
0

ht
tp

s:
//w

w
w

.js
on

.o
rg

/
3

1
0

10
55

N
U

L
L

15
18

1
ht

tp
s:

//w
w

w
.tu

to
ri

al
sp

oi
nt

.c
om

/js
on

/js
on

sy
nt

ax
.h

tm
2

4
1

10
55

fa
ls

e,
tr

ue
,fa

ls
e,

fa
ls

e,
fa

ls
e,

tr
ue

,
15

18
2

ht
tp

s:
//e

n.
w

ik
ip

ed
ia

.o
rg

/w
ik

i/J
SO

N
4

5
1

10
55

N
U

L
L

15
18

3
ht

tp
s:

//w
w

w
.d

ig
ita

lo
ce

an
.c

om
/c

om
m

un
ity

/tu
to

ri
al

s/
an

-i
nt

ro
du

ct
io

n-
to

-j
so

n
5

3
1

10
55

N
U

L
L

15
18

4
ht

tp
s:

//w
w

w
.p

hp
hu

lp
.n

l/p
hp

/tu
to

ri
al

/p
hp

-a
lg

em
ee

n/
js

on
/8

10
/js

on
-s

yn
ta

x/
22

49
/

7
2

1
10

55
N

U
L

L
15

18
5

ht
tp

://
w

w
w

-d
b.

de
is

.u
ni

bo
.it

/c
ou

rs
es

/T
W

/D
O

C
S/

w
3s

ch
oo

ls
/js

on
...

10
2

1
10

55
N

U
L

L
15

18
6

ht
tp

s:
//m

ed
iu

m
.c

om
/o

m
ar

el
ga

br
ys

-b
lo

g/
js

on
-i

n-
a-

nu
ts

he
ll-

7d
63

8d
fe

a7
cc

6
1

1
10

55
N

U
L

L
15

18
7

ht
tp

s:
//j

av
ae

e.
gi

th
ub

.io
/tu

to
ri

al
/js

on
p0

01
.h

tm
l

9
5

1
10

55
N

U
L

L
15

18
8

ht
tp

s:
//d

ev
el

op
er

.m
oz

ill
a.

or
g/

en
-U

S/
do

cs
/W

eb
/J

av
aS

cr
ip

t/R
ef

er
en

ce
/G

lo
ba

l..
.

8
3

1
10

55
N

U
L

L
15

18
9

ht
tp

s:
//d

ev
el

op
er

.m
oz

ill
a.

or
g/

en
-U

S/
do

cs
/W

eb
/H

T
T

P/
H

ea
de

rs
/C

on
te

nt
-T

yp
e

4
N

U
L

L
0

10
56

N
U

L
L

15
19

0
ht

tp
s:

//s
ta

ck
ov

er
flo

w
.c

om
/q

ue
st

io
ns

/4
77

81
6/

w
ha

t-
is

-t
he

-c
or

re
ct

-j
so

n-
co

nt
en

t..
.

1
N

U
L

L
0

10
56

N
U

L
L

15
19

1
ht

tp
s:

//g
eo

fo
ru

m
.n

l/t
/c

on
te

nt
-t

yp
e-

va
n-

js
on

-r
es

po
ns

e-
is

-t
ex

t-
pl

ai
n/

30
0

8
N

U
L

L
0

10
56

N
U

L
L

15
19

2
ht

tp
s:

//w
w

w
.g

ee
ks

fo
rg

ee
ks

.o
rg

/w
ha

t-
is

-t
he

-c
or

re
ct

-j
so

n-
co

nt
en

t-
ty

pe
/

2
N

U
L

L
0

10
56

N
U

L
L

15
19

3
ht

tp
s:

//g
ith

ub
.c

om
/f

np
ro

je
ct

/f
dk

-p
yt

ho
n/

is
su

es
/3

7
7

N
U

L
L

0
10

56
N

U
L

L
15

19
4

ht
tp

s:
//s

ym
fo

ny
ca

st
s.

co
m

/s
cr

ee
nc

as
t/r

es
t/a

pp
lic

at
io

n-
pr

ob
le

m
10

N
U

L
L

0
10

56
N

U
L

L
15

19
5

ht
tp

s:
//w

w
w

.fr
ee

co
de

ca
m

p.
or

g/
ne

w
s/

w
ha

t-
is

-t
he

-c
or

re
ct

-c
on

te
nt

-t
yp

e-
...

/
3

N
U

L
L

0
10

56
N

U
L

L
15

19
6

ht
tp

s:
//d

ev
el

op
er

.m
oz

ill
a.

or
g/

en
-U

S/
do

cs
/W

eb
/H

T
T

P/
B

as
ic

s
of

H
T

T
P/

...
5

N
U

L
L

0
10

56
N

U
L

L
15

19
7

ht
tp

s:
//d

ev
el

op
er

.a
tla

ss
ia

n.
co

m
/s

er
ve

r/
cr

ow
d/

js
on

-r
eq

ue
st

s-
an

d-
re

sp
on

se
s/

6
N

U
L

L
0

10
56

N
U

L
L

15
19

8
ht

tp
s:

//e
n.

w
ik

ip
ed

ia
.o

rg
/w

ik
i/J

SO
N

9
N

U
L

L
0

10
56

N
U

L
L

15
19

9
ht

tp
s:

//n
l.p

in
te

re
st

.c
om

/v
ah

nd
ab

ru
ka

/w
eb

-a
pp

-a
nd

-u
i-

de
si

gn
/

1
1

0
10

57
N

U
L

L
15

20
0

ht
tp

s:
//w

w
w

.p
in

te
re

st
.c

om
/w

ei
ts

en
g/

w
eb

-a
pp

lic
at

io
n/

2
2

0
10

57
N

U
L

L
15

20
1

ht
tp

s:
//d

ri
bb

bl
e.

co
m

/ta
gs

/w
eb

ap
pl

ic
at

io
n

4
4

0
10

57
N

U
L

L
15

20
2

ht
tp

s:
//w

w
w

.b
ud

ib
as

e.
co

m
/b

lo
g/

5-
ex

am
pl

es
-o

f-
w

eb
-a

pp
lic

at
io

n-
de

si
gn

/
5

5
0

10
57

N
U

L
L

15
20

3
ht

tp
s:

//w
w

w
.c

od
ic

a.
co

m
/b

lo
g/

pr
og

re
ss

iv
e-

w
eb

-a
pp

-d
es

ig
n-

7-
tip

s-
...

8
3

0
10

57
N

U
L

L
15

20
4

ht
tp

s:
//d

es
ig

nm
od

o.
co

m
/w

eb
-a

pp
lic

at
io

n-
in

te
rf

ac
e/

7
2

0
10

57
N

U
L

L
15

20
5

ht
tp

s:
//d

es
ig

nf
or

fo
un

de
rs

.c
om

/w
eb

-a
pp

-u
x/

6
1

0
10

57
N

U
L

L
15

20
6

ht
tp

s:
//d

ri
bb

bl
e.

co
m

/ta
gs

/w
eb

ap
p

3
3

0
10

57
N

U
L

L
15

20
7

ht
tp

s:
//w

eb
ap

ph
ud

dl
e.

co
m

/s
te

p-
by

-s
te

p-
w

eb
-a

pp
-d

es
ig

n/
9

4
0

10
57

N
U

L
L

Ta
bl

e
6.

4:
T

he
re

su
lts

fr
om

th
e

ex
pe

ri
m

en
ti

n
th

e
ur

ls
ta

bl
e.

CHAPTER 6. THE EVALUATION 35

Rate Your Search meets requirement 8 partially. The database contains accounts
for all users. Though, they could be more secure as the accounts information should
be encrypted. Everyone with access to the database can see the account names and
passwords.

We made sure the plugin could work in all countries, by specifying in the manifest
that every URL is allowed to work with the plugin. Additionally, we do not apply a limit
on IP addresses on the server for our REST API and database, as well as not mentioning
any domain in the content script to meet requirement 9.

Lastly, we should certainly improve on our security. Despite our efforts, such as
that we have made it so that our REST API uses a SSL certificate and HTTPS, the data
should be more secured. Particularly, the accounts should be encrypted. Another effort
we implemented is using as little message passing in the web extension as possible and
validating each message.

Another security flaw is that once a user knows the URL of the REST API requests
and server, they can enter the URL in their browser and see the results. Since the
experiment gives the participants the source code to upload to Google Chrome, they
could easily find this in the source code. This could be improved upon by uploading
the plugin to the Chrome Store so that the participants do not have access. Additionally,
by restricting the HTTP requests from an unknown user by potentially using login
credentials, we could solve the problem of being able to use the browser to look into the
data. Also, Spring offers the Spring Security framework to enhance the security.

The non-functional requirement for the tool to be user-friendly is evaluated in Sec-
tion 6.2.

In conclusion, the tool is functional and is suitable to be used in further research in a
larger experiment, but it can be improved on by enhancing the security and testing more
in other countries.

7
Conclusion

The goal of this thesis was to develop a plugin which captures architectural information
from search engine results on a browser by capturing the search queries, results and
allowing the user to determine the relevance of a search result. This plugin will enhance
future research to solve the problem of finding software architecture information. In this
paper, we have looked at previous solutions to this problem, and implemented our own
plugin to try and solve this problem.

In fact, we have developed a web extension for Chrome which can capture the relevant
and required information and request the user for their input which uses a Spring Boot
REST API to store this information in a database. The REST API and database are
deployed in a docker container on the Amazon AWS, a cloud computing service. The
web extension itself is implemented using HTML, CSS, and JavaScript.

In this paper, we also evaluated the tool’s usability and functionality. We found that
the tool’s usability is satisfactory but could be improved upon. Consequently, more
research should be conducted to accurately determine where specifically. Furthermore,
we determined the tool is functional but its biggest concern is the security. However,
since the tool is aimed for an experiment with trusted practitioners and not for widespread
usage, the security we have implemented is enough for us to utilize the plugin.

In conclusion, we have successfully developed a functional plugin which captures the
search queries and results Google in Google Chrome. It also allows users to determine
the relevance of the search results on the SERP and on their web page. The plugin
can certainly be used in the experiment we mentioned in the introduction as such an
experiment is already conducted before conducting the user evaluation survey. We hope
that this plugin will augment the research in the field of information retrieval.

36

8
Future Work

Our evaluation concluded that there were elements to improve or enhance on, which
were:

• Generally, we could augment the usability survey with more questions, where the
user would have to justify their answer with feedback. In this way, we could im-
prove the usability, particularly, assure the users are comfortable, and the functions
of the plugins are well integrated.

• The knowledge types form should have its own widget, so that users can submit
the knowledge types form on the web page instead of needing to submit it on the
Google SERP.

• From the functionality evaluation, we concluded that we should integrate more
security measures into the tool. This could be done by uploading the tool to the
Chrome Web Store, using the Spring Security framework.

• There was one functional requirement that we did not meet. This was to allow
the user to distinguish a part of a web page as most relevant. Adding this would
enhance the plugin as well.

Also, from the development and our own testing, we also notice a couple of points of
improvement:

• The plugin could be made more efficient, since it creates a form for each result,
and we could already store the URL id in a class name in the DOM, so that we

37

CHAPTER 8. FUTURE WORK 38

can retrieve the URL object more efficiently with the id instead of URL and search
query id.

• To make the plugin more universal, it should support more browsers and search
engines.

• There could be more error code handling in the REST API.

A
User’s guide

Searching User Guide

Goal of the Experiment
Explore the effectiveness of the web search engine (Google), and its abilities to search
for architectural information in the web during the architectural design process.

Overview on the Experiment
Software architecture design tasks have a big scope, which involve functional and
non-functional requirements, as well as constraints. You will be asked to search for
architectural information on Google to solve six different design tasks. For each task,
you will write queries (keywords) in Google, and evaluate the relevance of each web
page to a task. During your searching, you will be using a Google chrome extension
to support specifying the relevance of each web page to the tasks. The Google chrome
extension captures in background your queries, the searching results, the specified
relevance of each web-page and the specified types of information in each web-page.
During the experiment, you will be asked to specify the relevance and the types of
relevant information in each web-page. We explain both in the following sub-sections.

39

APPENDIX A. USER’S GUIDE 40

Web-pages relevance

The relevance of each web-page (in the list of pages listed by Google) to help complete
the task is defined on five levels:

• Very High Relevance (VH): The web page discusses a similar problem to the
task and contains useful information. The web page provides an answer to the
searching goal, and helps with fulfilling more than one requirement of the task.

• High Relevance (H): The web page addresses a similar problem to the task and
contains useful information. The post provides an answer to the searching goal,
and helps with fulfilling at least one requirement of the task.

• Medium Relevance (M): The web page addresses another problem not similar to
the task at hand, but it provides some relevant information to the task, which could
be an answer to the searching goal. Nevertheless, the provided information does
not consider specifically the task’s requirements.

• Low Relevance (L): The web page contains relevant information, which is only
remotely relevant to solving the given task, but might help for refining the search.

• No Relevance (N): The web page has nothing to do with the task. It has no relevant
information.

Types of relevant information in web-pages

To facilitate specifying the types of relevant information in web-pages, we designed
seven types from which you will select one or more type for each relevant web-page.
The types of relevant information are described below:

• Solution´s description: The web page contains general Information on an archi-
tectural solution. For example, general information on the supported features of a
technology or descriptions of architectural patterns.

• Development and implementation guide: The web page contains information
on how to implement an architectural solution (examples, development guides,
installation guides, code examples).

• Solution alternatives: The web page contains multiple (alternative) solution
options for a certain design issue. For example, lists of broker technologies, lists of
SOA patterns. The architectural options could be listed in text or as a comparison
of different solution options.

APPENDIX A. USER’S GUIDE 41

Figure A.1: Upload your own Chrome Extension.

• Solutions benefits: The web page contains information about the advantages of
certain architectural solutions. For example, the advantages of using a certain
technology regarding its performance, which can be supported with benchmarks
or tests. Those advantages might be part of a comparison with other options.

• Solutions drawbacks: The web page contains information about the disadvan-
tages of certain architectural solutions, or even discourages its application. For
example, the disadvantages of using a certain technology regarding its security or
Information on when not to decide on an architectural solution.

• UseCase: The web page contains explanations about the architecture of a specific
system. This includes description for an existing architectural design of a specific
system, or explanations about certain design decisions of a specific system. For
example, a web page explains the software architecture of Facebook.

• Others: The web page contains other relevant architectural information. Please
write down which other information you found.

How to install Google chrome extension?
Before solving the tasks, you should install the attached Google chrome extension: ”Rate
Your Search”. You can install the Google chrome extension using the following steps:

1. You will be given a zip file with the needed source code. You need to extract the
zip file in a folder.

2. Open a new Google Chrome window.

3. Go to chrome://extensions/.

4. Turn on Developer mode at the top right (see the red line in Figure A.1).

5. Press ”Load unpacked” at the top left (see the yellow line in Figure A.1).

6. Choose the folder, where the zip file is extracted.

7. Now the plugin should be in the list of extension.

APPENDIX A. USER’S GUIDE 42

Experimental Procedure
When completing the tasks, you can follow several steps:

1. Log in: Log in within the Google chrome extension with your assigned user name
and password. To reach the login page, press the extensions icon on the top right
of your chrome toolbar. It should look like a red ”magnifying glass” as presented
in Figure A.2. If it does not show up, press the puzzle piece as presented in Figure
A.2 instead and pin the ”Rate Your Search” extension chrome extension.

Figure A.2: The icon of Rate Your Search is the red ”magnifying glass”.

Figure A.3: The login screen of Rate Your Search.

2. Read task: Read the task carefully to understand the requirements and the goals of
the search.

3. Select task in plugin: Go to Google.com and select the task you are conducting.
Once you reach Google, there should appear a widget at the bottom right corner
looking like Figure A.4. Here, you can select your task from the drop-down box.
Moreover, you can view the description of the task in the widget at the bottom
right (Figure A.5).

4. Conduct Search: Start searching for the relevant web-pages and information
that could help achieving the goal and fulfilling the requirements of a given task.
During the search, follow these steps:

APPENDIX A. USER’S GUIDE 43

Figure A.4: The task widget of Rate Your Search

Figure A.5: Rate Your Search: ability to read task description in widget.

• Execute at least three queries in Google for each task. Try to find as many
web-pages as possible relevant to the goal and requirements of a task, and try
to execute different queries to cover all the aspects of the task (e.g. different
requirements, solutions, constraints). The executed queries must be written
in English.

• For each query, assess the top 10 results, which are returned from Google.
During assessment, open each web-page, and read it carefully to make
sure that it is relevant to the problem, and do not assess the relevance or the
types of information just based on the title of a web-page. Please do not
assess any other web pages (e.g. advertisements), which are not from the
top 10 results. For each web-page, you need to specify the relevance of a
web-page. The relevance assesses the relevance between the content of a
web-page and the task (not the query). For relevant web-pages (i.e. web-
pages with low or medium or high or very high relevance), please specify the
types of knowledge in each web-page.
On the Google results, you can specify the relevance score of each result
web-page directly. This should be done using the box just below each result,
as can be seen in Figure A.6. Web-pages to be assessed should have the
evaluation box in Figure A.6. Any other web-pages (e.g. advertisements)
will not have the evaluation box.
Moreover, you can specify the types of architecture knowledge for each
web-page as part of the Google results. You can select multiple types of

APPENDIX A. USER’S GUIDE 44

Figure A.6: Rate Your Search: select the relevance score for a search result on the search
engine result page.

Figure A.7: Rate Your Search: select the cause of the relevance score for a search result
on the search engine result page.

knowledge for each web-page directly. This should be done using the box
just below each result, as can be seen in Figure A.7.

5. Go to the next task: After finishing one task and executing enough queries (at least
3 queries), you can go to the next task by selecting the task from the tasks widget
as shown in Fig A.4. You can then conduct the search similarly to step 4. For each
task, you need to execute new queries. You cannot re-use queries from previous
tasks.

6. Logout: After you have completed all the tasks in their sequence, you can log out
using the same popup you used to log in. Click on the icon shown in Figure A.2,
and press the logout button (Figure A.9).

7. Remove extension: After logging out, you can remove the extension by clicking
”Remove” for the extension at chrome://extensions/ (Figure A.10).

Important notes to consider during the experiment
During solving the tasks, please consider the following:

• Solve the tasks in their provided sequence.

• You cannot use any other search engines or web browsers other than Google and
Google Chrome.

APPENDIX A. USER’S GUIDE 45

Figure A.8: Rate Your Search: select the relevance score for a search result on its web
page.

Figure A.9: Rate Your Search: log out button.

• You should not open any web-pages, which are not part of Google´s results.

• You should execute the experiment in one Google chrome window.

• Only rate the web page found by google - Do not rate the associated web pages.

APPENDIX A. USER’S GUIDE 46

Figure A.10: This is what you will see in chrome://extensions/ once you have installed
the extension.

B
Programmer’s guide

B.1 Database
Before we designed our database, we decides on MySQL as our database type. The
reason for this was that it was easily compatible with the rest of our tool.

From here we started to design our database. We made sure that each element from
our tool had their own table with their corresponding attributes. The elements we treat are
accounts, tasks, sessions, searchqueries, urls. We kept each element
as straightforward as possible by naming each attribute appropriately. Additionally, each
constraint such as not null or foreign keys maintain data integrity. The full database
structure can be seen in B.1.

The database structure is implemented automatically by Spring Boot in the REST
API and the annotations at each data member. The specifics of this are mentioned below.

B.2 Rest API
As mentioned, our Spring Boot REST API automatically implements the database
structure. We achieve this by implementing each database table as a class in the model
directory since we follow a MVC design pattern. The model is named as the singular
version of the table name. Thus, for example, the model for the accounts table is
named Account.

Each model has the @Entity annotation and a @Table annotation, in order for
Spring Boot to recognize it as a database table. Each attribute from the database structure

47

APPENDIX B. PROGRAMMER’S GUIDE 48

Figure B.1: The complete database structure, created in draw.io

is its own private data member with a corresponding getter and setter method. The
data members have a Column annotation which specifies the name of the column and
the nullability in the database. Foreign keys are also automatically recognized by their
naming.

As a note, we would like to mention that having underscores as well as capital
letters in the data members brought multiple complications with the implementation of
the REST API. Therefore, each attribute is written in lower case and does not contain
underscores.

We did not include a view for each model since we do not need one.
On the contrary, we do require a controller for each model. As these controllers

handle all the endpoints. The controllers have the annotations @RestController
to recognize them as the handler for the endpoints, @CrossOrigin to enable Cross
Origin requests by including a headers for Cross-Origin Resource Sharing (CORS) in
the response, which we needed to make the tool functional. As well as the annotation
@RequestMapping to specify the path of each controller. We made the path of each
controller, the name of the table. Thus, for example, the accounts controller has the path
”/accounts”. However, each endpoint can specify their own path that is appended to the
path.

Each controller implements the most basic CRUD (Create, Retrieve, Update, Delete)
methods. These are the basic CRUD each controller has:

• GET request ”/all”: to retrieve all entities of a model.

• POST request ”/add”: to create a new entity where a request body in JSON

APPENDIX B. PROGRAMMER’S GUIDE 49

format is passed with the information of the new entity.

• GET request ”/{id}”: to retrieve a specific entity with that id.

• PUT request ”/{id}”: to update a specific entity with that id. This request also
requires a request body.

• DELETE request ”/{id}”: to delete a specific entity with that id.

Some controllers implement more essential GET requests for the tool.
All controllers use a repository to implement these methods. This is also im-

plemented by Spring Boot with the use of the @Repository annotation and the
CrudRepository parent class. We define supplementary query methods in the repos-
itories for those controllers with custom GET requests.

The retrieve methods from these repositories can throw an exception when such an
entity is not found. We implemented these exception for each entity accurately.

Moreover, we needed an endpoint to retrieve a file located in our target folder. The
FileController and the FileException classes implement this endpoint.

Besides these models, controllers, repositories and exceptions, we have two more files:
the WebConfig and the RestApiApplication. The latter runs the application in
main and has two functions implementing the HTTPS redirect. The HTTPS redirect
enforces secure requests due to exclusively allowing requests using the HTTPS protocol
and redirecting the HTTP requests to use HTTPS. Whereas the former achieves the
enabling of Cross Origin requests.

Importantly, the REST API is deployed using Docker on our AWS EC2 web service.
We have two container, the mysql container containing our database and the app container
for our REST API. Therefore, the URL of our EC2 web server is also the URL of our
HTTP requests. This ensures the ability of creating requests from our Chrome web
extension and operates the handling of many requests from multiple users.

Consequently, the app container depends on the mysql container as the REST API is
not functional without the database.

B.3 Web extension
Our web extension is implemented using HTML, CSS and mostly JavaScript. The
extension is designed for Chrome, therefore, the manifest specifies the pages and the
developer tools utilized to make our plugin functional on Chrome. The rest of the plugin
implementation consists of the popup, the background script and the content script.

Firstly, the manifest properties speak for themselves. However, we would like to
mention that manifest_version is required to be 2, since version 1 is deprecated.
Additionally, we added the JQuery script to our manifest so that our other JavaScript
scripts can utilize JQuery.

APPENDIX B. PROGRAMMER’S GUIDE 50

Secondly, the background script does not much more than initializing the storage
values once the extension is installed.

Thirdly, the popup is relatively straightforward. It has two div containers that toggle
between visibility depending on the state. The first container is the loginContainer with
a generic login form. The second container is a container with a logout button. The
popup JavaScript handles the back-end which entails partly by starting/ending sessions by
executing an AJAX request to the REST API. Additionally, it determines which container
to display. We store the user id and whether the user is logged in in the localStorage
Chrome API. This enables our other scripts to easily access these data values from here
as well. Consequently, logging out resets the localStorage values. Additionally, the
popup script also uses message passing from Chrome to relay a message to the content
script to reset and close all the widgets.

Lastly, the content script does most of the work. It creates the HTML elements for all
the widgets, and creates all necessary event handlers of those widgets which deal with
the REST calls or front-end updates. One substantial function in the content script is the
showCorrectWidgets function. The function determines which widgets to display
according to the current state of the input given or the page the user is on if and only if
the user is logged in. The workflow is as follows:

1. It first makes sure everything is hidden. This is because most of the widgets get
created before this function is called, and their default visibility is set to visible.

2. Then, it checks if the user is on a Google SERP.

(a) If so, it displays the task widget. It also retrieves from the local storage
whether the user already has chosen a task.

(b) If the user has chosen task, it selects that task in the drop-down, but also
collapses the task widget since it is not needed.

(c) Additionally, it has to check whether the user is on the first SERP of Google,
so that it also retrieves the search results if necessary and displays the rel-
evance widget and the cause widget at the first 10 search results, with the
chosen relevance and cause, if applicable. Otherwise, the relevance widgets
stay hidden, whereas the task widget stays displayed.

3. If the current page is on a Google SERP, we need to check whether we are on a
search result.

(a) If so, it displays the task widget, but collapses it.

(b) Also, it displays the relevance widget. If a relevance score has already been
selected, it collapses the relevance widget as well.

APPENDIX B. PROGRAMMER’S GUIDE 51

The function extracts necessary information to determine some of the conditions
from the URL, or from the local storage as other information is not available yet.

On the other hand, we store some of the information in the attributes of an HTML
element to extract the information quickly and effortlessly. This information will later be
used to either be able to execute a REST call or determine the style of an element. For
example, the class list for the following elements are formatted as such (where elements
within {} are different on most pages:

• For the relevance container at a search result on the Google SERP, the class list is:
relevanceSERPForm plugin {searchqueryid}. This container also
stores the title of the search result in the title attribute, which will be used in
the notification text to clearly notify the user of their update.

• For the actual relevance form container within the former container, the class list is:
inpRelevance {rankingoogle in words} {URL} {chosen relevance}.
The rank in google is to differentiate each form on the SERP from each other to
ensure that each input element is connected to their search result. The chosen rele-
vance is to determine which text to display and the disability of the submit/update
relevance button.

• The name for the radio buttons are relevance with {rankingoogle} ap-
pended. The id for the radiobuttons are relwith {relevance score as a number}
and {rankingoogle in words} appended. For example, the radio button
for the first search result with the ”No Relevance” will have ”relevanceone” as
their name and ”rel1one” as their id. Consequently, the label for the radio will use
”rel1one” for the for attribute.

• The submit relevance button, for these form containers, has
btnSubmitRelevance {rankingoogle in words} as its class attribute,
and btnSubmitRelevance with {rankingoogle in words} appended
as its id.

• Although the knowledge types form uses the same style guide, instead of ”Rele-
vance” and ”rel”, it uses ”Cause” and ”cause”, respectively.

• In contrast to the search result elements, the widget element uses a different
guide. Particularly, the widget at the top right has this as the class attribute:
plugin {searchqueryId} {rankingoogle}, where the rank is merely
included if we are on a search result’s page.

• The radio buttons in the relevance widget are distinguished using the same method,
but without the {rankingoogle in words} appended, as there are no other
relevance forms on a search results’ page to distinguish from.

APPENDIX B. PROGRAMMER’S GUIDE 52

• Moreover, the relevance form in the relevance widget does not need the rank or
URL either, but it does need the chosen relevance. Therefore the class list for that
element is equal to: inpRelevance {selected relevance}, if the user
has selected a relevance.

The rest of the content script is split into four types of functions: helper functions,
REST call functions, event handler functions, create widget functions.

The helper functions are simple functions for us to clean up code, for example during
condition checks. Furthermore, the REST call functions are just functions which execute
the REST calls with the object and id that it is passed to since the content script executes
these REST calls often with different objects. These function are often called upon by
the event handlers, which are added to the radio buttons, drop-down as well as buttons
and anything else. The event handlers are also sometimes simple functions to either
toggle the collapsed state of a few widget elements. Lastly, the create widget functions
create the HTML elements and append them to the correct DOM element.

This web extension is deployed by uploading the zip with the manifest to your local
chrome extensions in developer mode. More details can be found in Appendix A.

Bibliography

[1] I. Gorton, R. Xu, Y. Yang, H. Liu, and G. Zheng, “Experiments in curation: Towards
machine-assisted construction of software architecture knowledge bases,” in 2017
IEEE International Conference on Software Architecture (ICSA), April 2017.

[2] M. Soliman, A. Rekaby Salama, M. Galster, O. Zimmermann, and M. Riebisch,
“Improving the search for architecture knowledge in online developer communities,”
in 2018 IEEE International Conference on Software Architecture (ICSA), April
2018, pp. 186–18 609.

[3] M. C. Oussalah, Software Architecture 1. John Wiley & Sons, Incorporated, 2014.

[4] J. L. Ledford, Search Engine Optimization Bible. Wiley, Vol. 2nd ed. 2009.

[5] “Chrome extensions overview,” https://developer.chrome.com/extensions/overview,
accessed: 2020-07-17.

[6] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing, “What do
developers search for on the web,” Empirical Software Engineering, vol. 22, pp.
3149–3185, 2017.

[7] S. Gottipati, D. Lo, and Jing Jiang, “Finding relevant answers in software fo-
rums,” in 2011 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011), Nov 2011, pp. 323–332.

[8] S. Beyer, C. Macho, M. Di Penta, and M. Pinzger, “Automatically classifying posts
into question categories on stack overflow,” in 2018 IEEE/ACM 26th International
Conference on Program Comprehension (ICPC), 2018, pp. 211–21 110.

[9] D. Indumathi and A. Chitra, “A collaborative search with query expansion and
result re-ranking,” in 2011 World Congress on Information and Communication
Technologies, 2011, pp. 985–989.

[10] E. Opoku-Mensah, F. Zhang, F. Zhou, and P. K. Kittur, “Understanding user situa-
tional relevance in ranking web search results,” in 2017 8th IEEE Annual Informa-
tion Technology, Electronics and Mobile Communication Conference (IEMCON),
2017, pp. 405–410.

53

https://developer.chrome.com/extensions/overview

BIBLIOGRAPHY 54

[11] N. Chen and V. K. Prasanna, “Rankbox: An adaptive ranking system for mining
complex semantic relationships using user feedback,” in 2012 IEEE 13th Interna-
tional Conference on Information Reuse Integration (IRI), 2012, pp. 77–84.

[12] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack overflow in the ide,”
in 2013 35th International Conference on Software Engineering (ICSE), May 2013,
pp. 1295–1298.

[13] M. M. Rahman, S. Yeasmin, and C. K. Roy, “Towards a context-aware ide-based
meta search engine for recommendation about programming errors and exceptions,”
in 2014 Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE), Feb 2014, pp. 194–203.

[14] “Chrome develop extensions,” https://developer.chrome.com/extensions/devguide,
accessed: 2020-03-11.

[15] “Chrome manifest file format,” https://developer.chrome.com/extensions/manifest,
accessed: 2020-07-17.

[16] “Chrome manifest file format,” https://developer.chrome.com/extensions/manifest/
icons, accessed: 2020-07-17.

[17] “chrome.pageaction,” https://developer.chrome.com/extensions/pageAction, ac-
cessed: 2020-07-17.

[18] “chrome.browseraction,” https://developer.chrome.com/extensions/browserAction,
accessed: 2020-07-17.

[19] “Manage events with background scripts,” https://developer.chrome.com/
extensions/background pages, accessed: 2020-07-17.

[20] “Design user interface,” https://developer.chrome.com/extensions/user interface,
accessed: 2020-07-17.

[21] “chrome.omnibox,” https://developer.chrome.com/extensions/omnibox, accessed:
2020-07-17.

[22] “chrome.contextmenus,” https://developer.chrome.com/extensions/contextMenus,
accessed: 2020-07-17.

[23] “Content scripts,” https://developer.chrome.com/extensions/content scripts, ac-
cessed: 2020-07-17.

[24] “Message passing,” https://developer.chrome.com/extensions/messaging, accessed:
2020-07-17.

https://developer.chrome.com/extensions/devguide
https://developer.chrome.com/extensions/manifest
https://developer.chrome.com/extensions/manifest/icons
https://developer.chrome.com/extensions/manifest/icons
https://developer.chrome.com/extensions/pageAction
https://developer.chrome.com/extensions/browserAction
https://developer.chrome.com/extensions/background_pages
https://developer.chrome.com/extensions/background_pages
https://developer.chrome.com/extensions/user_interface
https://developer.chrome.com/extensions/omnibox
https://developer.chrome.com/extensions/contextMenus
https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/messaging

BIBLIOGRAPHY 55

[25] “Give users options,” https://developer.chrome.com/extensions/options, accessed:
2020-07-17.

[26] “What is a restful api (rest api) and how does it work?” https://searchapparchitecture.
techtarget.com/definition/RESTful-API#:∼:text=A%20RESTful%20API%20is%
20an,to%20communicate%20with%20each%20other.

[27] “Spring — why spring,” https://spring.io/why-spring, accessed: 2020-07-17.

[28] “Getting started — spring boot,” https://docs.spring.io/spring-boot/docs/current/
reference/html/getting-started.html, accessed: 2020-07-17.

[29] “Spring data,” https://spring.io/projects/spring-data, accessed: 2020-07-17.

[30] “Spring boot features — working with sql databases,” https://docs.spring.
io/spring-boot/docs/current/reference/html/spring-boot-features.html#
boot-features-sql, accessed: 2020-07-17.

[31] A. Dasari, “The https protocol explained! - the basics,” https://medium.com/
@anushadasari/the-https-protocol-explained-the-basics-5ae33b9d651f, July 2019,
accessed: 2020-07-17.

[32] “Docker what is a container?” https://www.docker.com/resources/what-container,
accessed: 2020-07-30.

[33] “Amazon ec@,” https://aws.amazon.com/ec2, accessed: 2020-08-10.

[34] “What are the 10 rules of good ui design? what is
good ui/ux design?” https://medium.com/@OPTASY.com/
what-are-the-10-rules-of-good-ui-design-what-is-good-ui-ux-design-3ecc0d575c8f,
accessed: 2020-08-10.

[35] “User experience questionnaire,” https://www.ueq-online.org/, accessed: 2020-08-
10.

[36] “System usability scale (sus),” https://www.usability.gov/how-to-and-tools/
methods/system-usability-scale.html, accessed: 2020-08-10.

[37] “User interface usability evaluation with web-based questionnaires,” https://
garyperlman.com/quest/, accessed: 2020-08-10.

https://developer.chrome.com/extensions/options
https://searchapparchitecture.techtarget.com/definition/RESTful-API#:~:text=A%20RESTful%20API%20is%20an,to%20communicate%20with%20each%20other.
https://searchapparchitecture.techtarget.com/definition/RESTful-API#:~:text=A%20RESTful%20API%20is%20an,to%20communicate%20with%20each%20other.
https://searchapparchitecture.techtarget.com/definition/RESTful-API#:~:text=A%20RESTful%20API%20is%20an,to%20communicate%20with%20each%20other.
https://spring.io/why-spring
https://docs.spring.io/spring-boot/docs/current/reference/html/getting-started.html
https://docs.spring.io/spring-boot/docs/current/reference/html/getting-started.html
https://spring.io/projects/spring-data
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-sql
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-sql
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-sql
https://medium.com/@anushadasari/the-https-protocol-explained-the-basics-5ae33b9d651f
https://medium.com/@anushadasari/the-https-protocol-explained-the-basics-5ae33b9d651f
https://www.docker.com/resources/what-container
https://aws.amazon.com/ec2
https://medium.com/@OPTASY.com/what-are-the-10-rules-of-good-ui-design-what-is-good-ui-ux-design-3ecc0d575c8f
https://medium.com/@OPTASY.com/what-are-the-10-rules-of-good-ui-design-what-is-good-ui-ux-design-3ecc0d575c8f
https://www.ueq-online.org/
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://garyperlman.com/quest/
https://garyperlman.com/quest/

	1 Introduction
	2 Background
	2.1 Software Architecture
	2.2 Search Engines
	2.3 Plugins

	3 Related Work
	3.1 Search Tasks
	3.2 Architecture Knowledge Repositories
	3.3 Search Engines
	3.4 User Ranking
	3.5 Plugins
	3.6 Search Process

	4 Architecture
	4.1 Database
	4.2 Chrome Extensions
	4.3 RESTful API

	5 The Implementation
	5.1 Database
	5.2 Chrome Extension
	5.3 RESTful API
	5.4 Deployment

	6 The Evaluation
	6.1 Methods
	6.2 Usability
	6.2.1 Results
	6.2.2 Evaluation

	6.3 Functionality
	6.3.1 Experiment
	6.3.2 Results
	6.3.3 Evaluation

	7 Conclusion
	8 Future Work
	A User's guide
	B Programmer's guide
	B.1 Database
	B.2 Rest API
	B.3 Web extension

