
A new Bayesian network
model for learning static
and dynamic interactions
from temporal data

Master’s Project Mathematics

January 2021

Student: Moschanthi Korre

First supervisor: Prof.dr. Marco Grzegorczyk

Second assessor: dr. Wim Krijnen

1

Abstract

Bayesian networks are a popular modelling tool for learning the conditional (in-)dependencies
among variables. If the data set consists of independent (steady state) observations, (static)
Bayesian networks can be applied and the relationships are learned in form of a directed
acyclic graph. The edges of the graph represent contemporaneous dependencies. From tem-
poral data (time series) directed graphs can be learned with dynamic Bayesian networks. The
edges then represent dynamic dependencies; i.e. dependencies that are subject to a time lag.
Within this Master project, static and dynamic Bayesian networks are combined into a new
mixed Bayesian network model, which can model contemporaneous and dynamic interactions
simultaneously from temporal data. Then, the model is applied for the inference of symptom
networks, on data collected from patients in successive clinical stages of psychosis.

1

Contents

1 Introduction 3

2 Methodology 5
2.1 Bayesian network models . 5

2.1.1 Static Bayesian networks . 5
2.1.2 Dynamic Bayesian networks . 10

2.2 Mixed Bayesian networks . 12
2.3 The Gaussian BGe scoring metric . 18

2.3.1 Static Bayesian Networks . 18
2.3.2 Dynamic Bayesian Networks . 21
2.3.3 Mixed Bayesian networks . 24

2.4 Markov Chain Monte Carlo . 27
2.4.1 Motivation . 27
2.4.2 Mathematical Background . 28
2.4.3 The MCMC scheme and the Metropolis-Hastings algorithm 29
2.4.4 MCMC sampling of Bayesian networks 31

2.5 Posterior probability of edge relation features . 38
2.6 Advanced methods . 40

2.6.1 The Werhli and Husmeier model . 40
2.6.2 Introducing node ordering in the Werhli-Husmeier model 41

3 Data 48
3.1 The RAF signalling pathway . 48
3.2 Psychometric data . 49

4 Implementation details 51
4.1 Synthetic data . 51

4.1.1 Evaluation of the mixed Bayesian network model 51
4.1.2 Comparison between order and structure MCMC 52
4.1.3 The coupling scheme . 52

4.2 Psychometric Data . 53

5 Results 55
5.1 Evaluation of structure mix BN . 55
5.2 Order MCMC . 60
5.3 Integration of data sets derived under different conditions 62
5.4 Psychometric data . 65

6 Discussion-conclusion 70

2

1 Introduction

Bayesian networks([26]) are a powerful tool of increasing popularity in modern statistical infer-

ence, in a wide range of applications -from computational biology to speech and picture processing.

The popularity of Bayesian networks stems from the fact that they serve as a compact and natural

graphical representation of the joint distribution of the variables in the domain, in the form of a

network structure, whose topology encodes important information about the domain.

In the last decades, there has been a great deal of research on the problem of learning Bayesian net-

works from data. To this end, a scoring function needs to be defined, so that different networks can

be evaluated on the given data. A consistent scoring metric in the Bayesian context is the marginal

likelihood of a network given the data, which requires the model parameters to be integrated out.

The probabilistic models that allow the derivation of a closed form solution for the marginal like-

lihood is the BGe scoring metric for continuous data [2], and the BDe score for discrete data [33].

The second component for learning a network structure from data is to define a search strategy,

that is, a scheme that allows us to explore the space of structures in order to find ”high scoring

networks”. A challenge posed in the framework of Bayesian networks is that the space of struc-

tures grows super exponentially to the size of the domain. Heuristic optimization approaches can

be used in order to determine an optimum network that maximizes the scoring function. However,

these approaches are only useful in case where the data can be adequately explained by one single

model, which is not always the case. In many settings, there are more than one structures that serve

equally well as evidence for the data. Markov Chain Monte Carlo (MCMC) sampling techniques,

such as Structure MCMC ([28]) and order MCMC ([13]) can been employed in such scenarios.

These approaches allow us to obtain a sample of networks with high posterior probabilities, which

can then be used for edge relation feature estimation, through Bayesian averaging.

The concept of Gaussian belief networks was also expanded to the dynamic setting. Dynamic

Bayesian networks are graphical probabilistic models which can be employed in case the domain

consists of time series data. The edges of a dynamic Bayesian network express interactions that

are subject to a time delay, and imply causal influences between variables.

In this thesis, we will combine features of both static and dynamic Bayesian networks, in a new,

mix- Bayesian network model, which can learn both contemporaneous and dynamic relations from

temporal data. We investigate the performance of the model in comparison to the static and dy-

namic Bayesian network models. In case there are both static and dynamic underlying dependen-

cies in the domain, we examine whether the new model is able to detect the dominant interactions

3

and thus provide additional insight compared to the ”pure” models. In case there are only static or

only dynamic dependencies present in the domain, we want to confirm that the new mixed model

performs equally well as the corresponding ”pure” models, in detecting the dominant interactions

in the domain. The motivating data consists of time series data, and it stems from a recent study on

patients in successive stages of psychosis. Our goal is to use the mix Bayesian network model to

build symptom networks for each one of these stages. We suspect that dynamic and contempora-

neous interactions between symptoms coexist in the spectrum of psychosis, hence employing the

new mix model will reveal interesting insights about the data.

We will analyze the methods we used for the analysis in section 2. In subsection 2.2 of this

section, we will introduce the new mixed Bayesian network model. Within this section, we will

start building up to our inference strategy for the psychometric data, by addressing the problem of

learning network structures from data. We will employ the BGe scoring metric as a scoring func-

tion. This scoring metric was introduced by Geiger and Heckerman for static Bayesian networks,

and thereafter adjusted for the dynamic setting. Under subsection 2.3.3, we show how the BGe

score of a mixed Bayesian network can be computed using the same computational steps as in the

original case.

We will then move on to describing the search process we will employ, which is based on MCMC

inference methods. Two approaches are presented- structure and order MCMC. As we will discuss

under subsection 2.4.4, structure MCMC, which was our first approach, comes with significant

convergence issues, especially in larger domains. For reasons that will be explained in the same

subsection, the mixed BN model can aggravate convergence issues. Order MCMC is proposed as

an alternative that we employ to overcome these problems, given that the data that we intend to

analyze is rather large.

In the end of the section, we will discuss a coupling scheme that we will employ for the analysis

of the psychometric data set, which was proposed by Werhli and Husmeier [24]. This coupling

scheme will allow us to infer a different network for every clinical stage, but it contains an in-

trinsic mechanism that encourages the exchange of information between these networks . In the

next subsection (3), we will get into more detail about the data . After giving a brief outline of the

experiments we performed in section 4, we present the results of our analysis in section 5 . These

results will be discussed under section 6.

4

2 Methodology

In this section, we firstly recapitulate some theoretical background on static and dynamic Bayesian

networks in subsections 2.1.1 and 2.1.2, so we can, later on, introduce our new, mixed Bayesian

network model in subsection 2.2. In subsection 1.4, we describe the linear Gaussian BGe scoring

metric of Geiger and Heckerman [2], [27] Given a domain D, this model will allow us to derive a

closed form solution for the marginal likelihood of a network G. Geiger and Heckerman developed

the model for pure static observational data, but we will discuss how it has been expanded into the

dynamic setting in subsection 2.3.2. In subsection 2.3.3, we will show how we can also expand

it to the mixed setting after some straightforward modifications are imposed. Two alternative

MCMC approaches for sampling networks from the posterior will be discussed in subsection 2.4.4,

structure MCMC, as proposed by Madigan and York ([28]) , and order MCMC, as proposed by

Friedman and Koller ([13]). Then , this sample of networks can be used for estimating posterior

edge relation features , as we will explain under subsection 2.5. We will conclude the methods

section by describing the model proposed by Werhli and Husmeier [24] for the analysis of disjunct

data sets obtained under different experimental conditions. The original model, which is based on

structure MCMC moves, is described under subsection 2.6.1, and the slightly modified method,

which is based on order MCMC moves, is detailed under subsection 2.6.2.

2.1 Bayesian network models

In this subsection, we will discuss some basic concepts on the ”pure models”, that is, the static

and dynamic Bayesian network models. Some basic understanding on these models is required,

as our new mixed Bayesian network model combines features of both. We will first present Static

Bayesian networks, in subsection 2.1.1, and, subsequently Dynamic Bayesian networks, in 2.1.2.

After some necessary background ideas are covered, we can proceed with presenting our new

mixed model in the next subsection (2.2).

2.1.1 Static Bayesian networks

Static Bayesian networks ([26]) are probabilistic graphical models that represent the joint distri-

bution of a set of variables X1, X2, ..., XN in the form of a Directed Acyclic Graph (DAG) G.

The DAG consists of a set of nodes, which correspond to the variables in the domain , and a set

of directed edges , which encode direct dependencies between them. A Bayesian network is also

described by a set of local probability distributions with parameters qi associated with the nodes

in the graph structure.

5

The structural features of a Bayesian network reveal important information about the domain.

For instance, an edge between two nodes implies a direct correlation between them . The absence

of an edge between two nodes means that they are conditionally independent from one another. In

other words, if we observe any correlation between them, then this correlation is an indirect one,

mediated by other variables.

If there is an edge between two nodes, then we will call these nodes adjacent, and non- adja-

cent otherwise. The adjacency relations between the nodes can be represented in matrix form by

the adjacency matrix, a square binary matrix A, where Aij = 1 if there is an edge from Xi to Xj

(symbolically Xi → Xj), and zero otherwise.

For every node Xi in G, we define its parent set PaG(Xi) = {Xj, j ∈ [N] \ i|Xj → Xi}. We call

Xj an ancestor of Xi if there is a directed path from Xj to Xi in G. In the same context, Xi is

called a descendant of Xj .

The local Markov assumption tells us that every node is independent of its non descendants

given its parents. Given the local Markov assumption, information on the relations of conditional

(in)dependencies between the nodes can be extracted easily using a straightforward criterion called

d-separation, which allows us to determine whether two nodes Xi and Xj are conditionally inde-

pendent, given a third subset of nodes Z. For more details on the concept of d-separation, we refer

the reader to [26]. The local Markov assumption leads to the following factorization of the joint

distribution:

P (X1, X2, ..., XN |G, q) =
N∏
i=1

P (Xi|PaG(Xi), qi) (1)

where q = (q1, q1, .., qN) is the vector of unknown parameters of the local probability distributions.

Therefore, given the topology of a DAG, a unique factorization of the joint distribution is induced.

It is, however, possible for more that one DAGs to imply the same (in)dependencies among the

variables, and thus yield equivalent factorizations of the joint probability distribution . We then

say that these DAGs are equivalent. The relation of equivalence partitions the space of DAGs into

equivalence classes.

A v-structure in G is a subgraph of G, which consists two non-adjacent nodes that co-parent a

third node. It has been proven ([29]) that two DAGs are equivalent if and only if they have the

same skeleton and the same v-structures. The skeleton of a DAG is an undirected structure that

6

results from the DAG, if we ignore the directions of its edges. Chickering ([31]) has proven that

an equivalence class of DAGs can be uniquely represented by its Completed Partially Directed

Acyclic Graph (CPDAG). A Completed Partially Directed Acyclic Graph of a DAG is a graphical

object that consists of both directed and undirected edges: An edge which is present in every DAG

that belongs in the equivalence class of G , keeps the direction of the corresponding edge in G in

the CPDAG (compelled edge). All edges that participate in v-structures are compelled, and keep

their directionality in the CPDAG. However, not all compelled edges participate in a v-structure.

More specifically, in a static Bayesian network, an edge is compelled in three cases: If it partici-

pates in a v-structure, if its reversal will result in the forming of a v-structure or if its reversal will

result in the forming of an invalid cycle.

Figure 1: A Directed Acyclic network (left panel) and the corresponding CPAG (right panel).

If an edge is not compelled, then it is reversible, and is represented by an undirected edge in the

CPDAG. When an edge is reversible, then there is disagreement between members of the equiva-

lence class on the orientation of this edge.

An example of a DAG and its equivalent CPDAG is illustrated in figure (1). The edge A → C

is compelled, as it participates in a v-structure- and the same hold for edges B → C, E → C.

The edge C → D is also compelled, as its reversal will create a v-structure, D → C ← A.

Consequently, any other structure on five nodes, where this edge is reversed, will yield a different

factorization of the joint distribution, and thus belong in a different equivalence class. The edge

B → E on the other hand, is reversible. This means that there is at least one DAG other than

G in G’s equivalence class, in which these edges have the opposite direction. In [10], Chickering

introduced an algorithm that allows us to convert a DAG into its CPDAG, by classifying the edges

of its input DAG argument as either compelled or reversible.

7

We can now address the problem of learning a network structure from data. Assume our do-

main consists of N variables, and we have m independent realizations for each one of them. The

Bayesian paradigm tells that we need to define a prior P (G) over the space of DAGs on N nodes.

The role of the prior is to integrate, non-data based information into the model. Given a lack of

prior knowledge, we can shrink its impact, by choosing a uniform (flat) uninformative prior. How-

ever, there are many alternatives in which the prior over networks contributes more drastically in

the shape of the posterior distribution.

Once the prior is assessed ,it will then be updated according to Bayes rule to yield the posterior

distribution of a graph G:

P (G|D) =
P (D|G)P (G)

P (D)
=

P (D|G)P (G)∑
G∗∈G P (D|G∗)P (G∗)

The normalization constant P (D) is the sum over the space of valid DAGs G. Nevertheless, the

space of DAGs expands super exponentially asN increases, which makes this sum intractable, even

for relatively small domains. Consequently, and since the normalization constant is independent

of G, we only focus on the numerator P (D|G)P (G). The posterior of a structure G tells us how

well the data D supports structure G.

The term P (D|G) is the marginal likelihood of the data, given a network G, and is defined as the

integral over the parameter space:

P (D|G) =

∫
P (D, q|G) dq =

∫
P (D|G, q)P (q|G) dq (2)

Where P (q|G) is the prior distribution of the parameter vector. The marginal likelihood of the data

given a network G tells us how well this network explains the data. The prior over the parameters

can be specified according to the model we are employing. In this thesis, we focus on the Gaussian

BGe scoring metric of Geiger and Heckerman. For this model, we make sure that this prior satisfies

the fairly weak assumptions of parameter independence and parameter modularity (assumptions 4

and 5 in [2]). Parameter independence says that the parameters associated with each node in a

Bayesian network are independent. Thus, the prior on the parameter vector q can be factorized as:

P (q|G) =
N∏
i=1

P (qi|G)

Parameter modularity claims that the probability of the local parameter vector qi, associated with

8

node Xi depends only PaG(Xi). Combining these two assumptions together, we can write:

P (q|G) =
N∏
i=1

P (qi|PaG(Xi)) (3)

Under these two assumptions, a closed form solution of this integral in (2) can be derived ([2]),

given that the data is complete. From the local Markov assumption, and for a fixed parameter

vector q, the likelihood term can be factorized as:

P (D|G, q) =
N∏
i=1

m∏
j=1

P (Xi = Di,j|PaG(Xi) = DpaG(Xi),j, qi)

where Di,j is the j-th realization of Xi, and DPaG(Xi),j represents the j-th realisations of the vari-

ables in PaG(Xi) With this in mind, we can derive (ref theorem in Geiger Heckerman):

P (D|G) =
N∏
i=1

∫
P (qi|PaG(Xi))

m∏
j=1

P (Xi = Di,j|PaG(Xi) = DpaG(Xi),j, qi) dqi (4)

From now on, we denote πi = PaG(Xi) for convenience. Following the notation of [14], we

define:

Ψ[Dπi
i] =

∫
P (qi|πi)

m∏
j=1

P (Xi = Di,j|πi = Dπi,j, qi) dqi (5)

with Dπi
i = {Di,j, Dπi,j, 1 ≤ j ≤ m} representing the instances of the data that correspond to the

realizations of Xi and its parents πi.

We can now rewrite the marginal likelihood as a decomposition of local scores:

P (D|G) =
N∏
i=1

Ψ[Dπi
i] (6)

The Gaussian BGe scoring metric of Geiger and Heckerman allows us to compute the local scores

analytically in a closed form, by assigning a linear Gaussian distribution to the local conditional

distribution P (Xi|πi, qi) and choosing the conjugate normal Wishart distribution for the prior dis-

tribution of the parameters P (qi|πi). The BGe scoring metric will be thoroughly discussed in the

following section.

9

2.1.2 Dynamic Bayesian networks

Dynamic Bayesian networks are graphical models, which we employ in the case where, instead

of independent steady-state observations, the data consists of time series data, in the domain

(X1(t), X2(t), ..., Xn(t))t∈T . Here, every directed edge implies a causal effect with a delay τ

between variables, meaning that every realization of a child node is influenced by previous real-

izations of its parent nodes.

According to the causal Markov assumption, Xi(t) is only influenced by the set {Xj(t− τ)|Xj ∈
PaG(Xi)}. In other words, the sequence of past events that caused PaG(Xi) have no influence

on Xi(t). Dynamic Bayesian networks are homogeneous Markov models. This means that the

transition probabilities between the time slices t and t − τ do not depend on the time point, and

thus are equal for all t ∈ T .

The interpretation of the directed edges is a core difference between static and dynamic Bayesian

networks. In static Bayesian networks, an edge encodes a direct correlation between two nodes. In

contrast , an edge in a Dynamic network implies a causal influence, and therefore, it cannot imply

a bidirectional relation. As a consequence of this, a dynamic Bayesian network induces a unique

factorization of the joint distribution. Thus, there are no equivalence classes in dynamic Bayesian

networks.

Figure 2: Example of dynamic Bayesian network(left hand side) and the equivalent DAG unfolded
in time (right hand side)

Another major difference is that in dynamic Bayesian networks, the acyclicity constraint is lifted.

Therefore, a dynamic Bayesian network is defined by a directed (not necessarily acyclic) network,

and a family of local probability distributions, with their parameters qi corresponding to the nodes

10

Xi. In figure 2 a dynamic Bayesian network is illustrated. In its succinct representation (left panel)

the network consists of three edges, one of which is a directed edge of the form X ← X . We call

such edges self loops. If we unfold the state space in time, we obtain a directed acyclic network,

as shown in the left panel.

Similar to static Bayesian networks, the marginal likelihood can be decomposed into a product of

single-node terms (local scores). Following the notation of [14], we can define:

Ψ[D
πi(t−1)
i] =

∫
P (qi|πi)

m∏
t=2

P (Xi = Di,t|πi = Dπi,t−1, qi)dqi (7)

with Dπi(t−1)
i = {Di,t, Dπi,t−1, 2 ≤ t ≤ m} representing the instances of the data corresponding to

all realizations from node Xi , from time point t = 2 to time point t = m, and all realizations of its

parents πi , from time point t = 1 to time point t = m− 1. The dynamic counterpart for equation

6 is:

P (D|G) =
N∏
i=1

Ψ[D
πi(t−1)
i] (8)

Because of the time lag, the effect of the nodes in πi is not observable at t = 1, and therefore there

are no observations available for node Xi at this time point. In addition, since we only have obser-

vations for Xi up to point m, the last observations of its parents cannot be used when computing

the local score of Xi. We can therefore say that the effective sample size for computing a local

score is m− 1.

11

2.2 Mixed Bayesian networks

Having established some fundamental ideas on already existing Bayesian network models, we can

now introduce the concept of mixed Bayesian networks. Mixed Bayesian networks are proba-

bilistic graphical models, which, similar to the previously discussed models, are described by two

components: A network G, and a family of conditional probability distributions, with parameters

qi, associated with the nodes. The graph G(V ,E ∪ Ẽ) of a mixed Bayesian network (MBN) consists

of

• N static nodes in V corresponding to the domain variables X1, X2,, XN

• A set of directed edges E . Every edge eij ∈ E corresponds to a contemporaneous relation

between nodes Xi and Xj . In other words, a correlation between Xi(t) and Xj(t) for every

t ∈ T is implied.

• A set of directed edges Ẽ . Every edge eij ∈ Ẽ encodes a causal influence between node Xi

and node Xj . Considering a time lag τ , this implies that node Xi(t− τ) affects the variable

Xj(t) for every t ∈ T .

We will ,from now on, refer to the edges in E as the static edges , and to the edges in Ẽ as the

dynamic edges of the mixed Bayesian network. Similar to the dynamic Bayesian networks, the dy-

namic edges are allowed to form cycles- and self loops can apply as well. However, the spanning

subgraph of G with edge set E is required to be acyclic- that is, if we remove the dynamic edges in

G, then the resulting network is a DAG. Therefore, if there is a cycle in G, then it must be formed

by at least one edge in Ẽ .

A more convenient representation of a mixed Bayesian network can be obtained if we add, for

every node X ∈ V , a dynamic counterpart X̃ , which represents node X , but with a time lag. This

induces a set Ṽ , which contains the dynamic ”clones” of the nodes, which represent previous con-

figurations of the nodes. Therefore, in this representation of a mixed Bayesian network, a variable

Xi corresponds to two nodes, one in V and one in Ṽ . Then, static edges can be identified as the

edges with both endpoints in the same set, either V or Ṽ , whereas the dynamic nodes will have

their starting point in Ṽ and, point torwards a node in V .

If unfolded in time, a mixed BN can be visualized as a DAG with m layers, each layer correspond-

ing to time point m. Then , the edges interconnecting layers (different time points) are the dynamic

edges, while the edges within each layer are the static edges. There are no edges within the first

layer, corresponding to t = 1. Given that every layer of the unfolded DAG is an exact copy of the

last one, we will can represent an MBN compactly as a DAG with two layers, where the ordered

12

layers correspond to adjacent time points t-1 and t.

Figure 3: A mixed Bayesian network in three possible representations. The edge from X to Y
is static and implies a contemporaneous relation. The edge from Y to X is a dynamic edge and
implies an effect with a time lag τ = 1. There is a self loop on node X .

We will now introduce an equivalent matrix representation of the adjacency relations of a mixed

Bayesian network on N nodes. The Connectivity structure can be encoded into a 2N × N ma-

trix A, consisting of two N × N blocks. The upper block is the adjacency matrix of the induced

sub graph G(V , E), while the lower block encodes the dynamic relations in the mixed network.

Therefore, we have that if A(i, j) = 1 and i <= N , then there is a static edge from node i to

node j. If A(i, j) = 1 and i > N , then there is a dynamic edge from node i to j. We will refer

to this matrix as the adjacency matrix, even though this term is not very accurate, since adjacency

matrices are square matrices. Nevertheless in the mixed model a square matrix is not appropriate

for representing the interactions between variables, since edges from V to Ṽ are invalid by con-

struction, and edges between nodes in Ṽ would correspond to contemporaneous relations, which

are already encoded in the upper N ×N block. We can therefore interpret this matrix as follows:

We extend the adjacency matrix G(V , E) by adding N , time lagged clones of the nodes, which

constitute candidate dynamic parents of the nodes X1, X2,, XN .

Mixed BNs with different topology can yield equivalent factorizations of the joint distribution.

Thus, it is meaningful to define equivalence classes over the space of mixed BNs, in the sense that

two MBNs are considered equivalent if and only if they imply the same conditional (in)dependencies

(both contemporaneous and dynamic) between the domain variables.

For this cause, we define the mixed counterpart of a CPDAG, as it was described for the case of

pure static observational data. The mixed-CPDAG of a mixed Bayesian network G(V ,E ,Ẽ) is a

graph structure with the following properties:

13

• It has the same skeleton as G,

• All dynamic edges are compelled, and are thus represented by directed edges in the CPDAG.

• All static edges that participate in a v-structure are compelled, and thus keep their direction

in the CPDAG.

Although v-structures previously appeared only in static Bayesian network, in a mixed Bayesian

network, a v-structure can be formed by both static and dynamic edges. More formally, v-structure

in a mixed Bayesian network is either a subgraph of the form Xi(t) → Xk(t) ← Xj(t) (two non

adjacent nodes in V converge to a third node in V), or of the form Xi(t − 1) → Xk(t) ← Xj(t)

(two non adjacent nodes, one in V , and one in ,Ṽ converge to a third node in V).

It can be shown that two MBNs are in the same equivalence class, if and only if their mixed-

CPDAGs coincide. An equivalence class in the space of mixed Bayesian networks can be uniquely

represented by its mixed CPDAG.

It is not trivial to extract the CPDAG of a mixed Bayesian network. The challenge stems from

the fact that we cannot directly apply Chickering’s algorithm [10], like in a pure static network,

because of the presence of dynamic edges. The dynamic edges are compelled by default, some-

thing that Chickering’s algorithm cannot directly recognize, by construction. Consequently, edges

that are compelled will possibly be misclassified as reversible, because they will be treated as if

they were static. In the end of the section, we give a more thorough overview of the problem , and

we explain how we can work through it, by introducing a trick we can apply before using Chick-

ering’s algorithm. With this trick we ensure that the algorithm will yield a correct classification of

the static edges in a mixed Bayesian network.

In a mixed Bayesian network, every node is independent of its non-descendants, given its static

parents πi ∈ V and its dynamic parents π̃i ∈ Ṽ with a time delay τ = 1. Similar to the previously

discussed models, the marginal likelihood can be decomposed into a product of local scores. The

mixed counterpart of equations 6 and 8 is

P (D|G) =
N∏
i=1

Ψ[D
π̃i(t−1),πi(t)
i] (9)

with Dπ̃i(t−1),πi(t)
i = {Di,t, Dπi,t, Dπ̃,t−1, : 2 ≤ t ≤ m} contains those instances of data corre-

sponding to the realizations of Xi from time point t = 2 to time point t = m, the realizations of its

static parents πi over the same time points, and the realizations of its dynamic parents π̃i(t − 1),

14

from time point t = 1 to time point t = m− 1. Similar to dynamic Bayesian networks, bcause of

the time lag, the effective sample size for the computation of the local scores is m − 1. The local

scores in the case of mixed Bayesian networks are given by:

Ψ[D
π̃i(t−1),πi(t)
i] =

∫
P (qi|πi, π̃i)

m∏
t=2

P (Xi = Di,t|π̃i = Dπ̃i,t−1, πi = Dπi,t, qi)dqi (10)

Algorithm for Extracting the mixed CPDAG

To extract the CPDAG of a mixed BN we use a modified version of Chickering’s DAG to CPDAG

algorithm ([10]). This algorithm takes as input the incidence matrix of a mixed Bayesian network,

and returns the incidence matrix of its CPDAG, where an undirected edge is interpreted as bidirec-

tional. All dynamic edges are compelled, therefore, the lower block of the output matrix will be

identical to the lower block of the input matrix. However, the algorithm will need to be aware of

the dynamic relations , in order to detect those static edges that are rendered as compelled, because

of the dynamic edges.

Consider the simple example illustrated in figure 4. In this example, the static edge from Z to

Y is compelled: If reversed, a v-structure will be formed. Also, the dynamic edge is compelled by

default. If we consider the depicted network as a static network, then we will not get the correct

classification.

Figure 4: Addition of pseudoparents on the node with an incoming dynamic edge (right panel), in
order to extract the CPDAG of the mixed BN on the left panel . The dynamic edge is compelled by
default. The edge Z → Y is compelled, because its reversal will yield a novel v-structure. Adding
an artificial v-structure on Z ensures that both edges will be classified correctly

15

Although edge Z → Y will be correctly classified as compelled, the dynamic edge will be seen as

reversible from a ”static point of view”. If we, on the other hand, completely ignore the dynamic

edges, for being compelled by default, then the remaining network will only consist of a single,

static edge, which will again be wrongly classified as reversible.

To generalize, there are two cases that Chickering’s algorithm does not cover for: Static edges, that

participate in a v-structure with a dynamic edge, or static edges, whose reversal will result in the

forming of a v-structure of one static and one dynamic edge. Both these cases can be averted, if

we add a ’copy’ of an incoming dynamic edge (a compelled edge) to every node with at least one

dynamic parent.

To this end, we add two temporary pseudoparents P1,P2 to the static part of the network. We

then make every node Xi that has an incoming dynamic edge part of an artificial v-structure, by

placing edges (pseudoedges) from the pseudoparents towards that node. One of the pseudoparents,

P1, is simply a copy of the dynamic parent. The second pseudoparent, P2 ensures that the edge

P1 → Xi is compelled-it is, in other words, a proper copy of the incoming dynamic edge. In terms

of matrices, we consider the static part of the adjacency matrix, and expand it by two rows and two

columns corresponding to the pseudoparents. The result is an (N + 2)× (N + 2) matrix, which we

can plug in as an input to Chickering’s algorithm. In our example, the expanded incidence matrix

would be:

X

Z

Y

P1

P2



0 0 0

0 0 1

0 0 0

0 0

0 0

0 0

0 1 0

0 1 0

0 0

0 0


The upper left block is the adjacency matrix of the static subgraph. The last two rows and the

last two columns correspond to the artificial pseudoparents. Chickerings algorithm will return the

(N + 2) × (N + 2) matrix. We can the discard the part of this matrix that corresponds to the

artificial parents, and only keep the upper left block. If we then staple it to the adjacency matrix

of the dynamic subgraph, we will obtain the adjacency matrix of the mixed CPDAG. which,in our

16

example, will be equal to:

X

Z

Y

X̃

Z̃

Ỹ



0 0 0

0 0 1

0 0 0

0 1 0

0 0 0

0 0 0



17

2.3 The Gaussian BGe scoring metric

Now that we have discussed the concept of Bayesian networks, we can directly adress the problem

of learning a Bayesian network from data. To this end, a scoring metric is required. The scoring

metric can tell us how well a network matches the data, and it also allows us to compare between

different networks, given the data. The scoring metric that we employ in this thesis is the BGe

scoring metric of Geiger and Heckerman, which is thoroughly detailed in this subsection. Un-

der some fairly weak assumptions, this metric allows us to derive a closed form solution for the

marginal likelihood.

We will firstly discuss the standard linear Gaussian BGe scoring metric, as developped by Geiger

and Heckerman ([19],[27]). Afterwards, we will describe how the BGe scoring metric has been ad-

justed into the dynamic setting under subsection 2.3.2. Finally, we will show how we can compute

the BGe score of a mixed Bayesian network (subsection 2.3.3), after we perform some straightfor-

ward modifications.

2.3.1 Static Bayesian Networks

We consider the data to consist ofm independent realizations ofN variables, so we assume the data

matrix D to be an N ×m matrix. The Gaussian BGe scoring metric assumes that the data comes

from a multivariate normal distribution, with an unknown mean vector µ and an unknown precision

matrixW . The prior joint distribution on the parameters µ,W , is assumed to be the normal Wishart

distribution: The distribution of W is a Wishart distribution with α > N − 1 degrees of freedom

and a positive definite precision matrix T0. Also the conditional distribution of µ given W is a

normal distribution with mean µ0 and a precision matrix vW , where v > 0. In theorem 3 of ([2])

it is proven that for this choice of prior distribution, the posterior joint distribution of µ and W

given the data is a multivariate normal distribution with a mean vector µ̃ and a precision matrix

(v +m)W , with:

µ̃ =
v µ0 +mD̄

v +m
D̄ =

1

m

m∑
j=1

D·j (11)

where D·j is the j-th column of D. The marginal of W is then a Wishart distribution with a + m

degrees of freedom and a precision matrix TD,m, which is given by:

TD,m = T0 +
m∑
i=1

(D.,j − D̄)(D.,j − D̄)T +
vm

v +m
(µ0 − D̄)(µ0 − D̄)T (12)

18

The hyperparameters T0, µ0, α, v have to be specified in advance. More specifically, any prior

knowledge possessed by the user can be embodied into a prior network, which reflect an initial

guess of the user on what the true underlying network might look like. This network can then be

used to generate the hyperparameters T0 and µ. The hyperparameters α and v can be interpreted

as the equivalent sample sizes for µ and T0, that is, the number of observations on which the initial

guess of the user was based. For more details on the assessment of the hyperpameters , we refer

the reader to [2], where a heuristic method is proposed by the authors. If the user’s prior belief is

that the unknown covariance matrix Σ = W−1 may be given by ΣP , then T0 can be assessed as:

T0 =
v(a−N − 1)

v + 1
ΣP

If the user is ignorant about the unknown parameters W and µ, then the effect of the prior distribu-

tion has to be minimized, which can be achieved by assigning suitable, uninformative values to the

hyperparameters. The proposed setting is to take the covariance matrix Σ to be the identity matrix

IN , µ0 to be an all-zero, N -dimensional vector, v and α equal to 1 and N + 2 respectively.

Under these assumptions, Geiger and Heckerman ([2]) derive the marginal likelihood of a com-

plete DAG, that is a DAG is which every pair of nodes is joined with an edge. Thus, a complete

DAG, denoted as GC has the maximal number of edges, and every node is in direct interaction

with any other. The equation of Geiger and Heckerman is given below:

P (D|GC) = (2π)
−Nm

2

(
v

v +m

)N
2 c(N, a)

c(N, a+m)
det(T0)

α
2 det(TD,m)−

α+m
2 (13)

where det(A) denotes is the determinant of matrix A. Moreover, and TD,m is given in 12, and:

c(N, a) =

(
2
αN
2 π

N(N−1)
4

N∏
i=1

Γ(
α + 1− i

2
)

)−1

where Γ(·) is the Gamma function .

This methodology is now extended, so that the BGe score of an arbitrary graph can be computed.

In theorem (2), Geiger and Heckerman [27], using the (fairly weak) assumptions of parameter

independence and parameter modularity, it is proven that the marginal likelihood can be factorised

19

as follows:

P (D|G) =
N∏
i=1

Ψ(Dπi
i)

=
N∏
i=1

P (D{Xi∪πi}|GC({Xi ∪ πi}))
P (D{πi}|GC({πi}))

(14)

Where we as GC({S}) we denote the complete graph on the nodes specified in the set S and πi is

the parent set of node i. . Moreover, D{S} stands for the submatrix of D, that is obtained from D

by discarding all rows and all columns that correspond to nodes not in S. So, in order to compute

the local score of node Xi, we need to restrict our attention on the sub domain, consisting only of

Xi and the variables that correspond to the parents of Xi. Geiger and Heckerman ([19]) derive the

term P (DS|GC({S})), where S is a subset of the variables in the domain:

P (D{S}|GC({S})) = (2π)
−|S|m

2

(
v

v +m

) |S|
2 c(|S|, a)

c(|S|, a+m)
det(T S0)

α
2 det(T SD,m)−

α+m
2 (15)

where T SD,m and T S0 correspond to the sub matrices of TD,m (given in 12) and T0, which we obtain

if we discard all the rows and all the columns corresponfing in variables not in S.

This equation is, however, erroneous. As explained in [3] , the correct equation is given by:

P (D{S}|GC({S})) = (2π)
−|S|m

2

(
v

v +m

) |S|
2 c(|S|, a−N + |S|)
c(|S|, a+m−N + |S|)

(16)

× det(T0)
α−N+|S|

2 det(Tm)−
α+m−N+|S|

2

We note here that is case |S| = N , that is, if S contains all the variable in the domain, then

equations 16 and 15 are identical. In other words, both equations give the same score for the

complete graph onN nodes. The disagreement is detected when it comes to the scores of complete

DAGs on a subset of nodes. The error stems from the distribution of the precision matrix W s,

which is the sub matrix of the precision matrix W , only focused on the variables contained in S.

As detailed in the Supplementary material of [3], if W follows a Wishart distribution W(α, T0),

then W s follows a Wishart distribution , with covariance matrix T S0 and a − N + |S| degrees of

freedom. That is, the degrees of freedom of Ws are reduced according to the cardinality of S. For

the derivation of 15 , it is mistakenly assumed that W s has the same degrees of freedom as W ,

namely, α degrees of freedom.

20

2.3.2 Dynamic Bayesian Networks

We can straightforwardly modify the BGe scoring metric , to that is is applicable in time series

data[14]. Recall that in a Dynamic Bayesian network, an edge from Xi to Xj implies an interac-

tion between Xi and Xj , but with a time delay τ = 1.

The equivalent BGe score of a Dynamic Bayesian network can be derived if we follow the same

computational steps as in the case of static Bayesian networks. In order to compute the local

scores associated with the nodes, we will need to construct node-specific matrices, D(i). To con-

struct these matrices, we need to take into account the time lag, so that the realizations of the

candidate parents of Xi, with a time delay Xj(t − 1) , j 6= i are aligned with the realization of

Xi(t) at the current time point t. The form of the matrix is different depending on whether a node

is considered a candidate parent of itself (self loop). It is therefore meaningful to distinguish two

cases: One where self loops are allowed, and one where self loops are denied.

Dynamic BGe score with self loops
In case self loops are considered valid edges, we will construct N + 1 by m − 1 node specific

matrices, as illustrated below

D =


D1,1 D1,2 . . . D1,m

D2,1 D2,2 . . . D2,m
...

...
DN,1 DN,2 . . . DN,m


Original matrix D

D(i) =


D1,1 D1,2 . . . D1,m−1
D2,1 D2,2 . . . D2,m−1

...
...

DN,1 DN,2 . . . DN,m−1
Di,2 Di,3 . . . Di,m


Node specific matrix in case

of self loops

Note that the first N rows correspond to the potential parents of Xi,which are subject to a time de-

lay. Because of the time delay, we only focus on the first m− 1 measurements for these variables.

They can be interpreted as predictors for Xi(t + 1) . Since self-loops are considered valid, Xi(t)

is also a candidate parent. Note that an extra, time shifted row is added to the matrix, which corre-

sponds to Xi(t+ 1). We can identify this additional row as the dependent variable. Again, because

of the time lag, no information is available for Xi at time point t = 1, thus , its first realization is

discarded.

Using the same reasoning as in the static case , we find that the marginal likelihood in this model,

21

is given by:

P (D|G) =
N∏
i=1

Ψ[D
πi(t−1)
i] (17)

=
N∏
i=1

P (D(i){XN+1,πi}|GC({XN+1, πi})
P (D(i){πi}|GC({πi}))

where GC({S}) denotes the complete graph on the nodes specified in S, and πi corresponds to

the parents of Xi. The variable of XN+1 corresponds to the extra variable that we add to the node

specific data matrix, while Ψ[D
πi(t−1)
i] is given by 7.

Dynamic BGe score without self loops
In case self loops are not considered valid edges, we need to construct N by (m-1) node specific

matrices D(i), following the same logic as above.

D =


D1,1 D1,2 . . . D1,m

D2,1 D2,2 . . . D2,m
...

...
DN,1 DN,2 . . . DN,m


Original matrix D

D(i) =



D1,1 D1,2 . . . D1,m−1
D2,1 D2,2 . . . D2,m−1

...
...

Di−1,1 Di−1,2 . . . Di−1,m−1
Di,2 Di,3 . . . Di,m

Di+1,1 Di+1,2 . . . Di+1,m−1
...

...
DN,1 DN,2 . . . DN,m−1


Node specific matrix D(i) in case

of no self-loops

In this case , the i-th row is time shifted, and it corresponds to the dependent variable Xi(t + 1).

The first i− 1 and the last N − i rows of D(i) correspond to the predictor variables Xj(t) , which

are subject to a time lag.

Following the same computational steps, we find that the marginal likelihood in this model, is

22

given by:

P (D|G) =
N∏
i=1

Ψ[D
πi(t−1)
i] (18)

=
N∏
i=1

P (D(i){Xi,πi}|GC({Xi, πi)

P (D(i){πi}|GC({πi})

where GC({S}) denotes the complete graph on the nodes specified in S, and πi corresponds to the

parents of Xi. Moreover, Ψ[D
πi(t−1)
i] is given by 7.

The score of the complete graph for dynamic Bayesian networks is given by:

P (D(i){S}|GC({S})) = (2π)
−|S|(m−1)

2

(
v

v + (m− 1)

) |S|
2 c(|S|, a− Ñ + |S|)
c(|S|, a+ (m− 1)− Ñ + |S|)

(19)

× det(T {S}0)
α−Ñ+|S|

2 det(T {S}D(i),m−1)
−α+(m−1)−Ñ+|S|

2

Where Ñ is equal to the first dimension of the node specific matrices- that is Ñ = N + 1 if self

loops are allowed and Ñ = N otherwise. |S| corresponds to the number of variables in the subset

S, and T {S}0 , T {S}D(i),m−1 are the submatrices of T0 and TD(i),m−1 respectively, that only consist of

those rows and those columns that correspond to the variables in S. The node specific covariance

matrix TD(i),m−1 is given as:

TD(i),m−1 = T0 +
m−1∑
i=1

(D(i).,j − ¯D(i))(D(i).,j − ¯D(i))T +
v(m− 1)

v + (m− 1)
(µ0 − ¯D(i))(µ0 − ¯D(i))T

(20)

where if we denote the j-th column of D by D·j , we symbolize:

¯D(i) =
1

m− 1

m−1∑
j=1

D·j

23

2.3.3 Mixed Bayesian networks

We are interested in calculating the BGe score of a specific mixed Gaussian network G, given a

collection of mixture data D = (X1(t), X2(t), ..., XN(t))mt=1. Similar to the dynamic case, we will

define a modified node-specific matrix D(i), which will allow us to follow the same computational

steps of the BGe score, as in the static case.

Again, taking the time lag into account, we will only focus on time points t = τ + 1, ..,m. As-

suming a time lag of τ = 1, we have that the realization of Xi(t) is influenced not only by the

realizations of its dynamic parents at time point t-1, but also by the realizations of its static parents

at the current time point t. Therefore, we will extend the node specific matrix, so that we include

all potential parents of node Xi(t). This will result in a two-block matrix: The upper N ×m − 1

block will represent the ”static part” of the data. The lower block, whose first dimension will vary

depending on whether we allow or deny self loops, will represent the ”dynamic part” of the data.

There, the time-delayed (shifted) realizations of the nodes can be found. After constructing the

two parts (in a manner which we will specify in a moment), the mixed data matrix will be obtained

by ”stapling” them-that is, by appending the static part with the dynamic part.

Regardless of the absence or presence of self loops, we can obtain the static part of the data,

simply by discarding the first column, corresponding to the realizations of the nodes at time point

t = 1. For the dynamic part, we will follow a similar logic as in the pure dynamic case. Hence, the

same two cases need to be distinguished:

BGe score of mixed Bayesian networks without self loops

If self- loops are denied, the dynamic part of the mixed data will an N × m − 1 matrix. How-

ever after stapling, row i is a duplicate, as it is identical to row N+i. Hence , row N+i is discarded,

which results in a (2N − 1)× (m− 1) node specific matrix.

24

D =


D1,1 D1,2 . . . D1,m

D2,1 D2,2 . . . D2,m
...

...
DN,1 DN,2 . . . DN,m


Original matrix D

D(i) =



D1,2 D1,3 . . . D1,m

D2,2 D2,3 . . . D2,m
... . . .

.
DN,2 DN,3 . . . DN,m

D1,1 D1,2 . . . D1,m−1
D2,1 D2,2 . . . D2,m−1

...
...

Di−1,1 Di−1,2 . . . Di−1,m−1
Di+1,1 Di+1,2 . . . Di+1,m−1

...
...

DN,1 DN,2 . . . DN,m−1


Node specific matrix in case

of no self loops

The dependent variable Xi(t+ 1) lies in row i of the matrix, while the rest of the rows corresponds

to candidate explanatory variables. The variables in the static part, Xj , j 6= i, j ≤ N represent the

contemporaneous predictors Xj(t + 1), while the variables corresponding to the last N − 1 rows

of the matrix Xj , j > N correspond the candidate dynamic predictors Xj(t).

BGe score of mixed Bayesian networks with self loops

When self-loops are allowed, the dynamic part of the mixed data will be an N + 1 × m − 1

matrix. After stapling the two matrices, row i is duplicated and identical to row 2N+1. Hence , the

last row of the matrix is discarded, which results in a (2N)× (m− 1) node specific matrix.

D =


D1,1 D1,2 . . . D1,m

D2,1 D2,2 . . . D2,m
...

...
DN,1 DN,2 . . . DN,m


Original matrix D

D(i) =



D1,2 D1,3 . . . D1,m

D2,2 D2,3 . . . D2,m
... . . .

.
DN,2 DN,3 . . . DN,m

D1,1 D1,2 . . . D1,m−1
D2,1 D2,2 . . . D2,m−1

...
...

DN,1 DN,2 . . . DN,m−1


Node specific matrix in case

of self loops

25

Note here that, if self loops are considered valid edges, then the node-specific matrix then we have

D(i) = D(j) for all nodes Xi, Xj .

In order to derive the Gaussian score of a mixed Bayesian network, given the mixed data matrix

D, we want to evaluate the terms in the product (local scores):

P (D|G) =
N∏
i=1

P (D(i){Xi,πi,π̃i}|GC({Xi, πi, π̃i})
P (D(i){πi,π̃i}|GC({πi, π̃i})

(21)

where we denote as πi, We defineD(i)S , is the sub-matrix of the matrix D(i), consisting only of the

rows corresponding to the nodes included in S. Under our assumptions, the BGe score for mixed

Gaussian networks can be computed similarly to the static BGe score. Therefore the score of the

complete graph, regardless the presence of self loops is given by

P (D(i){S}|GC({S})) = (2π)
−|S|(m−1)

2

(
v

v + (m− 1)

) |S|
2 c(|S|, a− Ñ + |S|)
c(|S|, a+ (m− 1)− Ñ + |S|)

(22)

× det(T {S}0)
α−Ñ+|S|

2 det(T {S}D(i),m−1)
−α+(m−1)−Ñ+|S|

2

In the case where self loops are not regarded as valid edges, we have and Ñ = 2N − 1. If self

loops are allowed, and Ñ = 2N .

Here, T SD(i),m−1, T S0 are the square sub-matrices of the square matrices TD(i),m−1, T0 respectively,

which consist only of the rows and columns in S. The matrix TD(i),m−1 is given as

TD(i),m−1 = T0 +
m−1∑
i=1

(D(i).,j − ¯D(i))(D(i).,j − ¯D(i))T +
v(m− 1)

v + (m− 1)
(µ0 − ¯D(i))(µ0 − ¯D(i))T

26

2.4 Markov Chain Monte Carlo

2.4.1 Motivation

Our objective is, to determine the posterior probability of a feature f over all possible network

structures G. This is equal to:

P (f |D) =
∑
G

P (G|D)I(G, f) (23)

where

I(G, f) =

{
1 if f exists inG

0 otherwise

Nevertheless, the exhaustive enumeration of all network structures is not viable, even in low di-

mensions, because the number of networks increases super exponentially on the number on nodes

N , which creates a computational overhead.

A reasonable strategy is to approximate this sum by reducing the space of network structures on a

subset of high scoring networks. A simple and obvious approach, is to take this subset to consist

of the single network structure that maximizes the likelihood P (D|G). Greedy search heuristics

algorithms can be amployed for this task. However, these approach is not always optimal, since

they assume that the posterior is peaked around one single model, which is seldom the case. In

most cases there are several structures with non-negligible posteriors, that is, there exist multiple

local optima that explain the data sufficiently well. Hence, determining a single, top-scoring struc-

ture might prove unreliable when it comes to determining the probability of a feature in the model.

Therefore, a preferable strategy is to average over a larger set of structures with high posterior

probabilities.

In this section, we will present two alternative approaches that will allow us to obtain such a

sample of networks , in subsection 2.4.4. One is Structure MCMC of Madigan and York [28],

and the second is Order MCMC of Friedman and Koller [13]. In the following subsection 2.4.2,

we recapitulate some mathematical theory behind Markov Chain Monte Carlo and the Metropolis-

Hastings algorithm, which is essential for the MCMC techniques we will later employ.

27

2.4.2 Mathematical Background

In order to understand the concept of Markov chain Monte Carlo and the Metropolis-Hastings

algorithm, we need to establish some essential preliminary concepts on discrete Markov chains.

Definition 2.1. A discrete Markov Chain of first order is a stochastic process {Xt}t=1,2,.. with the

discrete state-space S, that has the property

P (Xt = xt|Xt−1 = xt−1, . . . , X1 = x1) = P (Xt = xt|Xt−1 = xt−1)

for every state xt ∈ S

For a discrete Markov chain we can, without loss of generality, write S = {1, 2, ..., k}, where

k = |S|. The definition tells us that the state xt+1 depends only the previous state xt. We will

refer to this property as the local Markov assumption. A Markov chain is fully characterized by

a transition kernel T (x, y) := P (Xt = y|Xt−1 = x) and an initial, prior distribution p0. We can

thus simulate a Markov chain, by choosing an initial state , sampled from the initial distribution

p0, and then sample every new state xt+1 according to the distribution P (xt+1|Xt = xt), which is

specified by the transition kernel. Such a collection of states is called a trajectory.

Therefore, the transition kernel defines a distribution over the succeeding states. This distribu-

tion is usually sensitive to the initial state. However, under certain conditions, and only after a

sufficient number of time steps the chain converges to a stationary distribution π. This distribution

is time invariant, meaning that after convergence, all succeeding states are drawn according to the

stationary distribution π.

A stationary distribution does not always exist, and if it does, it is not always unique. Conver-

gence requires that a Markov chain is ergodic. The ergodicity of a chain is implied by two other

properties: Aperiodicity and irreducibility:

Definition 2.2. A state in S is called periodic with period k if any return to this state occurs in

multiple times k steps. A state that does not have this property is called aperiodic. A Markov chain

is called aperiodic if all of its states are aperiodic.

This definition a discrete Markov chain with finite state-space S is aperiodic if the probability of

reaching any state, in an arbitary, though sufficiently large number of steps, is always non zero.

Definition 2.3. A discrete Markov chain with finite state-space is called irreducible if there is a

28

t > 0 such that P (Xt = j|X1 = i) > 0, for every i, j ∈ S

More intuitively, a discrete Markov chain with finite state-space is called irreducible, if every state

in its state-space is reachable from any other state by a sequence of transitions that have positive

probability, that is, if every two states communicate with each other.

The ergodicity of a Markov chain guarantees that, if a stationary distribution exists, then it is

unique. However, there is an additional requirement to convergence, and that is reversibility.

Definition 2.4. A discrete Markov chain with finite state-space is called reversible if its stationary

distribution satisfies the Equation of detailed Balance

Ti,j
Tj,i

=
p(j)

p(i)
, ∀i, j ∈ S

It is also easy to prove that Detailed balance implies invariance, that is, if a distribution π =

(p(1), p(2), .., p(k)) fulfils the Equation of Detailed Balance, then the distribution π is the sta-

tionary distribution of this ergodic chain. Under ergodicity, a reversible Markov chain inevitably

converges to its stationary distribution.

2.4.3 The MCMC scheme and the Metropolis-Hastings algorithm

In a nutshell, the idea of MCMC is to find a transition kernel of an ergodic Markov chain that has

the posterior distribution as its (unique) stationary distribution. Then, hopefully, if the constructed

chain is simulated for long enough, we will be able to draw samples from a sensibly chosen dis-

tribution, so that they approximate samples from the target distribution. To do so, we will employ

the Metropolis Hastings algorithm as described by Hastings in [30].

Initially, a prior distribution p(·) over the state-space needs to be specified. The algorithm starts

from an initial state x0. In every step, a new succeeding state i is proposed with probabilityQ(i|xt)
The newly proposed state is accepted with probability:

A(i|j) = min

{
p(j)Q(j|i)
p(i)Q(i|j)

, 1

}
If the new state is rejected, then the chain remains to its current state. Below we show the algorithm

in pseudocode:

29

Initialize: x0, randomly selected from S
for t = 1, 2, . . . do

Given xt = j ∈ S, propose succeeding state xt+1 = i ∈ S with probability Q(i, j)
Draw a random number c ∈ [0, 1]
if c < A(i|j) then

accept new state and set xt+1 = i
else

reject new state and set xt+1 = j
end if

end for

Note that the transition probability from state i to state j is equal to the probability of first proposing

and then accepting j. The probability of staying to i is then the probability that the new state j 6= i

is proposed and then rejected. Formally we have:

T (i, j) =

{
A(i, j)Q(i, j) i 6= j

1−
∑

j 6=iA(i, j)Q(i, j) otherwise

If we make a sensible choice of the proposal probabilitiesQ(·, ·), that it, a choice that conserves the

ergodicity of the chain, then it can easily be seen that the transition kernel satisfies the Equation of

detailed Balance, which also establishes reversibility. Both these conditions ensure that the chain

will eventually converge to its stationary distribution.

When sampling from a Markov chain, we need to take into account the autocorrelation of the

chain. Theoretically, from the Markov property, every sample is only dependent on it preceeding

state. This, however ,will possibly induce a positive correlation between a sample and other sam-

ples within a window d. In order to avert this problem, a reasonable strategy is to subsample on

the chain, that is, to sample every n steps of the simulation, for a positive integer n. This is termed

as thinning of the Markov chain. Another commonly used strategy is to discard the states sampled

in the early phase of the simulation, and start gathering samples only after the chain is hopefully

closer to convergence. We call this early phase the burn-in phase. This approach will allow us to

obtain samples that are close to independent.

30

2.4.4 MCMC sampling of Bayesian networks

Now that the foundation of MCMC and the Metropolis Hastings algorithm has been presented, we

can discuss how we can adopt these techniques for our goal, which is, to learn a network structure

from a domain. We present two different schemes, structure-MCMC and order-MCMC. Although

Structure-MCMC (2.4.4.1) performs very well in smaller domains, it comes with convergence

issues in larger domains, that is, as the number of variables or the number ofobservations increase.

In these scenarios, we can employ the alternative approach, order-MCMC (2.4.4.2), which can

improve convergence , with the price of introducing a small amount of bias.

2.4.4.1 Structure MCMC

Structure MCMC is a sampling scheme proposed by Madigan and York, for sampling structures

from the posterior distribution, using a Metropolis-Hastings sampler. To that end, a Markov chain

is defined over the space of structures, that has the posterior distribution P (G|D) as its stationary

distribution. This Markov chain can then serve as a generative mechanism of samplesG1, G2, ...GT

from the posterior. Provided that we have simulated the chain long enough for the stationary dis-

tribution to be reached, we will hopefully obtain a collection of structures that are representative

of the posterior.

In the context of static Bayesian networks, we consider the state space S to be the space of DAGs.

We will afterwards describe the modified scheme that applied to Dynamic and Mixed Bayesian

networks. The general structure MCMC process is summarized below in pseudocode 1:

Algorithm 1 Structure-MCMC sampling scheme
Initialize: G1, selected from S
for t = 1, 2, . . . do

Given Gt, propose new state G ∈ S with probability Q(G,Gt)
Accept network G with probability A(G,Gt)
if G is accepted then

set Gt+1 = G
else

set Gt+1 = Gt

end if
end for

In every step of the MCMC simulation, a succeeding state is proposed. An operator that deter-

mines how succeeding states are proposed needs to be specified- for structure MCMC , we use

31

valid edge operations to transit to new states. In the context of static Bayesian networks, valid

edge operations are edge additions, deletions or reversals that lead to a valid (acyclic) DAG. We

define the neighbourhood of G, denoted N(G), to be the family of DAGs that can be reached from

G, by a valid edge operation.

In order to design a Markov chain in the space of DAGs, we need to specify the transition ker-

nel of this chain, denoted as T (G,G∗), in a way that guarantees that the resulting chain has the

desired properties. In other words, we need to ensure that the transition kernel satisfies the equa-

tion of Detailed Balance.

For the transition kernel, we have:

T (G∗, G) =

{
Q(G∗, G)A(G∗, G) , ifG∗ ∈ N(G)

1−
∑

G′∈N(G)Q(G′, G)A(G′, G) ifG∗ = G

Therefore, the problem reduces to choosing an appropriate mechanism of proposing and accepting

new states. For the proposal probability, a common strategy is to take all reachable states (neighbor

graphs) from G to be equally likely to be proposed. Therefore, if we denote N(G) the set of all

neighbours of G, then we define the proposal probability as:

Q(G,G∗) =

{
1

|N(G)| if G∗ ∈ N(G)

0 otherwise

To ensure the ergodicity and reversibility of our chain, it suffices to define the acceptance probabil-

ity A(G,G∗) so that the transition kernel from G to G∗ ∈ N(G), satisfies the equation of Detailed

Balance.

It can easily be shown that taking:

A(G,G∗) = min

{
1,
P (G∗|D)

P (G|D)

Q(G∗, G)

Q(G,G∗)

}

= min

{
1,
P (G∗|D)P (G∗)

P (G|D)P (G)

|N(G)|
|N(G∗)|

} (24)

will result in a chain that has the desired stationary distribution.

Structure MCMC can be adjusted for the dynamic and the mixed setting- what changes is the

32

state space, and the rule (operator) that defines the neighbourhood N(G) of a structure G.

In the context of dynamic Bayesian networks, the state space includes all directed networks, with

or without self loops, depending on whether we consider self loops valid or invalid edges. The

neighbourhood of a directed network, N(G), is the set of networks that we can obtain from G

by one single edgeaddition or deletion. In contrast to static BNs, the states are not subject to the

acyclicity limitation, therefore all edge additions that result in a directed network in the state-space

are possible. In static and mixed Bayesian networks we need to be more cautious when it comes to

either adding or reversing an edge, as these moves might result in the forming of an invalid cycle.

Edge deletions on the other hand, are always valid in both models.

An additional constraint that is commonly adopted in structure MCMC is what we call the fan-

in restriction. This restriction imposes an upper bound to the number of parents a node can have.

Thus, a network complies with a fan in constraint k, if all nodes in the network have at most

k incoming edges. In every structure MCMC step, all neighbour graphs that violate the fan-in

restriction, are excluded from the neighbourhood, and are thus not considered as candidate suc-

ceeding states in the chain. Imposing a fan-in restriction shrinks the search space, as the number

of possible networks drops significantly. As a consequence, the convergence rate of the Markov

chain is improved. Moreover, the fan in restriction comes with reduced computational costs.

The standard MCMC scheme can straightforwardly be adjusted in the space of mixed Bayesian

networks as well. The search space is the space of mixed Bayesian networks, and the neighbour-

hood of a mixed BN G is defined as family of mixed BNs that can be reached from G with an

edge addition, and edge removal and a reversal of a static edge. Keeping in mind the restrictions

imposed in the two previous models, we summarize:

• An edge addition is valid if it is valid in the induced static subgraph of the mixed network,

and if it does not violate the self loops and fan-in restriction.

• An edge removal is always valid.

• An edge reversal is valid if it is valid in the induced static subgraph of the mixed network,

and if it does not violate the fan-in restriction.

The determination of the number of iterations is crucial. The optimal number of iterations depends

strongly on the size of the network , since a larger number of nodes implies a larger state-space. It

also depends on the shape of the posterior distribution.The smoother the posterior, the more likely

it is for the constructed chain to reach faster convergence and mixing. When applying structure-

33

MCMC, we need to ensure that we adjust the number of iterations properly, so that , if independent

simulations are run on the same data set, then similar estimates of the posterior of the edges are

obtained. Convergence can be monitored using scatter plots of the edge scores obtained by two

independent simulations. If sufficient convergence has been achieved, then the points in the plot

will be close to the diagonal.

While structure MCMC performs well in relatively small domains, it is rather slow in mixing

and convergence as dimensions increase. The size of the search space, as well as the nature of the

posterior, which, in realistic scenarios, is not so smooth and suffers from multiple local optima,

hinders convergence. For these reasons, significant convergence problems are expected in case

structure MCMC is employed for the inference of a mixed Bayesian network: In a mixed Bayesian

network, the nodes are doubled, because the possible, dynamic parents are added. To this end, we

turn to an alternative MCMC approach, called order-MCMC, which was proposed by Friedman

and Koller 2.4.4.2. For reasons that will shortly be discussed, order MCMC leads to a faster and

more reliable convergence to the target distribution.

2.4.4.2 Order MCMC

Order MCMC, ([13]) is a variation of the MCMC algorithm, only, instead of constructing the

Markov chain in the space of structures, order MCMC constructs a Markov chain in the space of

topological orders. An order (≺) is a total ordering of the nodes, such that if Xi ≺ Xj , then if

there is an edge between those two variables, it must be directed from Xi to Xj . In other words,

an order is a permutation σ of the nodes, such that if Xi is an ancestor of Xj , then σ(i) < σ(j).

Denoting Xσ(j) = ij , for all j ∈ [n], we will, for simplicity, write an order as (i1, i2, ..., in). We

say that a parent set for node j is consistent with an order, if all nodes forming this parent set stand

in the left of j in the order. Similarly, a network is consistent with an order, if the parent set of

every node in the network is consistent with the order. With this in mind, we can see an order as a

compact representation of the networks that are consistent with it.

The goal of order MCMC is to generate a sample of orders from the posterior distribution P (≺ |D)

over the space of orders. Assuming that a fan-in restriction k has been imposed, then the likelihood

34

of an order given the data is given by

P (D| ≺) =
∑

G∈Gk,≺

P (G| ≺)P (D|G)

=
∑

G∈Gk,≺

∏
i

score(Xi,PaG(Xi)|D)

=
∏
i

∑
U∈Ui,≺

score(Xi, U |D).

(25)

We denote be score(Xi, U |D) = the local score of Xi, which depends on the model we employ.

In addition, Gk represents the family of networks that are consistent with ≺ and subject to a fan-in

restriction of k, and

Ui,≺ = {U : U ≺ i, |U | ≤ k}

Equation 25 tells us that a fan-in restriction k is essential in order MCMC. As the sum goes over

all possible parent sets that are consistent with the order, we need the fan in restriction so that the

number of consistent parent sets does not explode.

In every step of the order-MCMC, a new order is proposed, and then either accepted or rejected,

according to the standard Metropolis algorithm. The recommended operation for proposing a new

order is node flipping. That is, two nodes are randomly chosen and they exchange places in the

order, while the others remain unchanged:

(i1, .., ij, .., ik, ..in)→ (i1, .., ik, .., ij, ..in)

For the construction of the Markov chain, the proposal probabilitiesQ(≺′ | ≺) need to be specified,

so that the ergodicity and reversibility of the chain are guaranteed. We then accept the newly

proposed order with probability equal to:

A(≺′,≺) = min

{
1,
P (≺′ |D)Q(≺ | ≺′)
P (≺ |D)Q(≺ | ≺′)

}
. (26)

This results in a Markov chain that will converge to the target distribution. The authors have

assumed a uniform distribution over the space of orders, so we have, P (≺) = 1
n!

. The probability

of sampling ≺′ from the reachable states of ≺, that is , the orders that can be obtained from ≺
with one flipping operation is equal to

2

n(n− 1)
. Consequently, in constrast to structure-MCMC,

in order MCMC we have symmetric proposal probabilities. The terms cancel out, which reduces

35

the acceptance probability of a newly proposed order to:

A(≺′,≺) = min

{
1,
P (≺′ |D)

P (≺ |D)

}
. (27)

Apart from the fan in restriction k, Friedman and Koller [13] propose various computational bottle-

necks to improve the efficiency of the model. In the recommended approximation, not all possible

parent sets are utilized. A number C of highest scoring parents from every node is specified, and

then the set of possible parent sets for every node is reduced to all possible combinations of those

parents. Given a fan-in constraint on the cardinality of the parent sets, this will result in
∑k

s=1

(
C
s

)
possible parent sets for every node, whose scores are computed and stored before the MCMC

simulation commences. This bottleneck reduces running time significantly, especially in larger

domains. It does have some shortcomings though, as high scoring parent sets can be left out. In

case there is not a significant difference between the highest and the lowest parent set for a node,

the authors propose what they refer to as a full enumeration of the parent sets.

Another practical shortcut is recommended for the computation of the score of a newly proposed

order. Given that every new order results from flipping two nodes in the order, then the parent

sets that are affected are the ones of the nodes that stand in between, while there is no impact on

the nodes standing before and after the flipped nodes. Therefore, we just need to detect the valid

parent sets of only those nodes in order to compute the score of the new order.

Given a sample of orders≺1,≺2, ... ≺T from the posterior P (≺ |D), a sample of networks can

be obtained following a simple sampling approach ([13]). For every node, a parent set can be

sampled from the distribution

P (PaG(Xi)| ≺, D) =
score(Xi, U |D)∑

U ′∈Ui score(Xi, U ′|D)
(28)

which will generate an entire network, that is consistent with the order. Higher scoring families

and, consequently, higher scoring networks are more likely to be sampled. This is a well defined

sampling scheme, in the sense that it will always result in a valid network in the space of DAGs.

When we sample a valid parent set for Xi, which contains Xj , this implies by default that Xj pre-

cedes Xi in the order. It is therefore impossible for the sampled parent sets to form a cycle, since

all possible parent sets of Xj stand on the left of Xj , and thus, of Xi in the order. Therefore, we

can sample a family for every node independently from the others. This important observation is

36

also implied in 25: Summing over all networks that are consisted with an order ≺ is equivalent to

summing over all possible families for every node and then multiplying over the nodes.

Order-MCMC can easily be adjusted for the the new mixed model. We recall that a mixed Bayesian

network consists of the original set of nodes,V , and a duplicate set of potential dynamic parents Ṽ .

An order in the modified model is an ordering of the nodes contained in V . This arises naturally,

as an ordering of both static and dynamic nodes would not be meaningful, given the construction

of the mixed-BN model. A valid parent set, however, can consist of nodes in both V and Ṽ . There-

fore, in order to determine the highest scoring parent sets for Xi, we compute the scores of all the

edges Xj → Xi, where Xj ∈ V ∪ V . Then we only consider the C more promising parents and

form the possible parent sets of Xi as before.

It is proven in ([13]) that order MCMC outperforms structure-MCMC in terms of mixing and

convergence of the chain. One substantial advantage of the space of orders is that is is signifi-

cantly smaller (O(n!)), while, as we previously discussed, the structure space is enormous in high

dimensions. Moreover , the posterior over the space of orders is smoother, in contrast to the poste-

rior over the space of structures, which appears to suffer from multiple peaks. It is therefore very

common for structure-MCMC to linger around local optima which constitutes to a slower mixing

and convergence of the chain. As we will see in our experiments, structure-MCMC was inefficient

in more demanding settings (i.e high number of observations in the data), where order-MCMC

proved to be superior.

However, order MCMC comes with a disadvantage: If a uniform distribution over the space of

orders is imposed, then a non-uniform prior over the space of structures is induced, which can-

not be explicitly specified. Networks that are consistent with more orders (for instance, sparser

graphs) are more likely than others . For example, the empty network (a network with no edges)

is consistent with all orders and thus can be sampled from any order, whereas a chain graph-that

is, a network of the form X1 → X2 → → XN is only consistent with one single order. Even

equivalent structures can end up having dissimilar priors-if we reverse the first edge in the directed

path X1 → X2 → → XN , then we will obtain a graph that is within the same equivalence

class, but is more likely a priori, as it is consistent with more than one orders. This bias can cause

a problem, especially in smaller domains , where the prior has a stronger impact on the posterior.

37

2.5 Posterior probability of edge relation features

Both structure and order MCMC allow us to obtain a sample G1, G2, .., GT of high scoring struc-

tures, which we can the use in order to estimate the posterior probability of edge relation features.

For static and mixed BNs, we need to evaluate the posterior probabilities of the edges over equiva-

lence classes. Recall that, for these two classes of Bayesian networks, an edge sometimes indicates

a bidirectional relation. Therefore, for static and mixed BNs we need to extract the CPDAGs of

the sampled networks. This is not required for dynamic Bayesian networks, where there are no

equivalence classes.

A consistent estimator of the posterior probability of a dynamic edge relation feature is the fraction

of structures in the sample in which the edge is present.

P̂ (f |D) =
1

T

T∑
t=1

I(Gt, f) (29)

where

I(G, f) =

{
1 if f exists inG

0 otherwise

For the static edge posterior probabilitites, we use the same estimator, but we average over the

CPDAGs of G1, G2, ..GT instead.

When the true underlying network G = (V , E) is known, then we can evaluate the network recon-

struction accuracy using receiver-operator-characteristic(ROC) curves [18]. For various thresh-

olds θ, we consider the set Eθ = {e ∈ E|P̂ (e|G) > θ}. Then, we quantify the number of true

positives, |Eθ ∩ E|, the number of false positives, |Eθ \ E|, the number of false negatives, and the

number of true negatives |Ecθ ∩ Ec|. A ROC curve is simply a plot of the sensitivity, or true posi-

tive rate, (TP
TP+FN

) against the inverse specificity (FP
TN+FP

), or false positive rate, over all chosen

thresholds θ.

The performance of the model can be measured if we consider the Area under the curve (AUC) , or

Area under ROC (AUROC) value. The AUC value ranges from 0 to 1, and the larger this value is,

the better the model performs. An AUROC value that is equal to 1 indicates a perfect prediction,

while a random estimator achieves an AUROC value close to 0.5.

Nevertheless, the AUROC is not always suitable in evaluating network reconstruction accuracy,

especially when it comes to comparing the mix BN model to another model, for instance, dynamic

38

BNs. When dynamic-BNs are applied to data generated from a ”mixed network” with N nodes,

that is , a network with both static and dynamic edges, then there will be a disagreement between

the dimension of the sampled dynamic networks and the true network. In terms of adjacency ma-

trices, every network in the will be represented as an N times N adjacency matrix which reflects

dynamic relations, while the true mixed network is represented in a 2N by N matrix, consisting

of a static and a dynamic part. Because of this disagreement, which stems from the fact that the

dynamic model is intrinsically incapable of learning contemporaneous relations, the performance

of the models are not directly comparable in AUROC terms. One obvious, yet suboptimal ap-

proach is to take into account the performance of both models on detecting only dynamic relations.

However, if we pursue this approach , we do not take the dynamic model’s incapacity of inferring

contemporaneous relations under our judgement. If we only focus on the dynamic relations the

data, then AUROC values for both models will possibly be similar, indicating that both models

perform equally well on mixture data, which overestimates the pure dynamic model. In another

example, if we want to evaluate the mixed model and the dynamic model on pure dynamic data,

focusing only on the dynamic relations in the data will possibly overestimate the mixed model, as

we then ignore all the static edges inferred by the mix BN model, even though some of them might

have been inferred incorrectly.

For all the reasons mentioned above, we employ another, more intuitive measure of performance,

which allows us to compare between models. For a positive integer x, we consider the x highest

scoring edges and employ precision, or positive predictive rate (TP
TP+FP

) among these edges. Pre-

cision allows us to investigate whether the mix model lags behind the other two when it comes to

learning relations from ”pure” data. If the mixed model achieves similar precision values on pure

data, as the corresponding pure model, this implies that the mixed model succeeds in detecting

dominant relations, and that it does not infer many wrong edges from the data. In addition, when

we employ the models on mixture data, precision will indicate if the mixed model outperforms the

other two, by achieving higher precision values.

39

2.6 Advanced methods

Now that we understand how we can learn a network structure from data, we continue building to-

wards our inference strategy on the psychometric data set. This data set is formed by four disjunct

data sets, corresponding to different clinical stages of psychosis (patient groups). Our goal is to

analyze the data by integrating information from all four patient groups, instead of treating each

patient group independently.

In this section, we will describe a coupling approach to handle disjunct data sets , that are hy-

pothesized to imply similar interactions between variables, which is a modification of the model

developed by Werhli and Husmeier [24]. We will first briefly describe the original model (subsec-

tion 2.6.1), and then discuss the modified version that we employ in our experiments, in order to

avert any convergence issues we may possibly encounter. This version includes node ordering, and

is described in subsection (2.6.2).

2.6.1 The Werhli and Husmeier model

In the first part of the paper [24], biological prior knowledge is incorporated into the MCMC in-

ference procedure as a part of a prior distribution over network structures. This concept is then

extended into a second scenario, where the goal is to integrate information from I I different data

sets (D1, ..,DI) obtained under different experimental conditions.

There are two obvious approaches to this kind of problem. The first is to perform independent

analyses on the data sets, and thus infer I different networks. Although this analysis will uncover

the differences between the data sets, it will possibly suppress the common characteristics between

them. A second approach we can pursue is to unify the data sets into one large data set and infer

one single network. This approach will bring to light the similarities between the data sets, but will

possibly fail to capture the heterogeneity among the data sets.

As a compromise between these two strategies, the model of Werhli and Husmeier describes a

mechanism that allows the exchange of information between the data sets. To that end, an hierar-

chical Bayesian model is introduced: Each data setDi is associated its own set of hyper parameters

βi and its own network structureMi. An additional, latent structureM∗ is introduced, which is

referred to as the hyper network. A prior distribution over the space of valid structures Mi is

imposed, whose goal is to subtly urge the networksMi to stay similar to the hyper network. Via

their bonding to the hyper network, the networksMi are indirectly tied with each other as well.

40

This prior distribution has the form of a Gibbs distribution:

P (Mi|βi,M∗) =
e−βi|Mi−M∗|∑

Mi∈M e−βi|Mi−M∗|
(30)

Borrowing terminology from statistical mechanics, the parameter βi corresponds to the inverse

temperature, while the function on the space of structures |Mi−M∗| corresponds to the energy of

Mi and is usually measured in terms of Hamming distance. The denominator is the normalizing

constant (partition function).

An MCMC sampling scheme is proposed where all network structuresMi, all the hyper parame-

ters βi and the hyper networkM∗ are sampled from the posterior. We will thoroughly describe the

sampling scheme in the next subsection. Werhli and Husmeier compare their proposed coupling

scheme to the two extreme approaches, which are referred to as what monolithic approach, [24]

where the disjunct datasets are merged into one large dataset, and the uncoupled approach, where

the disjunct data sets are handled independently from one another. Although coupling proves to

constantly outperform the other two in various settings, the authors report notable convergence

issues in their method. In the next subsection, we discuss how we can attempt to work around this

problem by introducing node ordering in the MCMC process, which has shown to accelerate the

convergence and mixing of the Markov chain.

2.6.2 Introducing node ordering in the Werhli-Husmeier model

In our version of the Werhli-Husmeier model, every data set Di is associated with an order,Oi. An

order can alternatively be seen as a compact representation of the family of its consistent structures.

Recall that structure is consistent with an order if it can be formed by choosing independently, for

every node, a parent set that is valid given the order. Therefore, the main difference is that instead

of a single network structure, every data set is now associated with multiple structures, defined by

the order Oi. In the original model, the state space of the structures associated with the data is the

space of valid DAGs (static Bayesian networks). We can easily generalize the model into the space

of mixed BNs.

The modified model can be represented as the hierarchical Bayesian graphical model illustrated

in figure (5).

41

Figure 5: Hierarchical probabilistic graphical model, picture adapted from [24]. Every data set Di

is associated with a hyperparameter βi and an order oi. The family of networks consistent with the
order is binded through a soft constraint to the hyper networkM∗

The local Markov assumption implies that the joint probability of this graphical model is given by:

P (O1,..,OI , D1, .., DI , β1, .., βI ,M∗)

=
I∏
i=1

P (Di|Oi)P (Oi|βi,M∗)P (βi)P (M∗)
(31)

For every node n, we impose a prior over the set of its possible parent sets, πn. Recall order MCMC

inevitably comes with a fan in restriction, which is optional in the original model of Werhli and

Husmeier. Therefore, πn includes only those parent sets with cardinalities that do not exceed the

fan in k. This prior takes the form of a Gibbs distribution over the space of possible parent sets and

is given by:

P (U,Xn|β,M∗) =
e−β|U⊕PaM∗ (Xn)|

Zn(β,M∗)
, U ∈ πn (32)

where PaM(Xn) represents the parents of Xn in structureM and the operator ⊕ symbolizes the

symmetric difference between two sets. On a more intuitive level, the energy function quantifies

the number of mismatches between a parent set of a node and the corresponding parent set in the

hyper network. The denominator Zn(β,M∗) is the normalizing constant (partition function) and

is equal to:

Zn(β,M∗) =
∑
Un∈πn

e−β|Un⊕PaM∗ (Xn)| (33)

42

where the sum is over all the possible parent sets Un for node Xn.

In the universe of statistical mechanics, the probability of the system being in a state i with en-

ergy Ei , among a set of states, each with its corresponding energy, is proportional to exp(−βEi),

where β is the inverse temperature. Roughly speaking, at high temperatures and equivalently, low

β’s, the exponent drops close to zero, which makes it equally likely for the system to be on any

state. In contrast, as temperature drops and β increases, then the exponent is a decreasing function

of the energy. In this case, the system discriminates between states, and is more likely to be on

states with low energy, rather than states with higher energy.

The analogy is rather straightforward. A lower β imposes a flatter prior over parent sets, which

approximates the uniform distribution as β tends to zero. A larger β corresponds to a more mean-

ingful prior, where parent sets with ”low energy”, that is, parent sets that deviate less from the

hyper network, are favoured. Conversely , dissimilarities are penalized, which renders parent sets

with ”higher energy” less likely to be sampled. Therefore, β can be interpreted as the strength of

the coupling between the hyper network and the corresponding order.

Keeping in mind structure modularity, and defining Z(β,M) =
∏

n Zn(β,M), we observe that

this prior over parent sets induces the following prior distribution over the space of valid structures

that are subject to a fan in restriction k, Mk:

P (M|β,M∗) =
∏
n

P (PaM(Xn)|β,M∗)

=
∏
n

e−β|PaM(Xn)⊕PaM∗ (Xi)|

Zn(β,M∗)

=
e−β|M−M

∗|

Z(β,M∗)

≈ e−β|M−M
∗|∑

Mn
e−β|Mn−M∗|

, M∈ Mk

(34)

where as |M−M∗| =
∑

i

∑
j |Mi,j−M∗

i,j| we denote the Hamming distance between the hyper

network and networkM. In the last equality, we approximate the partition function of the whole

network by a product of single-node partition functions Zn(β,M∗) (perfect gas approximation).

The partition function of the whole network is a sum over all possible valid networksMi in Mk.

As explained in Werhli and Husmeier [24], this approximation slightly overestimates the partition

function , as it does not exclude invalid networks, that is, networks with cycles. However, this bias

43

is a good compromise, as computational complexity is significantly reduced.

The prior over πn induces a prior over the space of orders as well. Although it cannot be specified,

this prior is integrated into the posterior, which is proportional to:

P (O, β,M∗|D) ∝
∏
n

∑
U∈Un,o

score(Xn, U |D) · P (U,Xn|β,M∗)

=
∏
n

∑
U∈Un,o

e−β|U⊕PaM∗ (Xn)|

Zn(β,M∗)
score(Xn, U |D),

=
1

Z(β,M∗)

∏
n

∑
U∈Un,o

e−β|U⊕PaM∗ (Xn)|score(Xn, U |D)

(35)

where we borrow the notation [24] score(Xn, U |D) to symbolize the local score of node Xn, given

that PaM(Xn) = U . In section 2.3 ,where we use the notation of [14], Ψ[·], it is detailed how the

local BGe scores are derived analytically, depending on the model that we employ- static, dynamic

or mixed Bayesian networks. The sum in the equalities goes over the set Un,o, which represents the

set parent sets of node n that are consistent with the order O. We remind the reader that in case of

mixed Bayesian networks, an order is a total ordering of the static nodes, while a parent set U for

node n is consistent with the order if and only if all the static parents in U precede n in the order.

The sampling scheme

Our purpose is to sample the orders, the hyper parameters βi and the hyper network from the

posterior distribution. To do so, we propose new states for our model. We propose new data- asso-

ciated orders, according to the proposal distribution Qi(Oinew |Oiold), new hyper parameters βinew
from the proposal distribution Ri(βinew |βiold) and a new hyper network from the distribution The

acceptance probability A is therefore given by:

A = min

{
I∏
i=1

P (Di,Oinew , βinew ,M∗
new)Qi(Oiold |Oinew)Ri(βiold|βinew)W(M∗

old|M∗
new)

P (Di,Oiold , βiold ,M∗
old)Qi(Oinew |Oiold)Ri(βinew |βiold)W(M∗

new|M∗
old)

, 1

}

For a new order to be proposed, two nodes are chosen randomly, and they exchange places in the

ordering , as explained in [13]. Therefore, the proposal probability Q(Oinew |Oiold) is symmetric.

A new hyper parameter βinew is sampled uniformly from the interval [βiold − d, βiold + d] for a

predefined positive integer d. In addition, the hyperparameters βi are not allowed to exceed or

44

drop below two predefined upper and lower thresholds βmax and βmin. Therefore the proposal

distributions for the hyper parameter βi ,Ri(βinew |βiold) are symmetric as well. If we also consider

uniform priors P (βi), P (M∗) and symmetric proposal distribution for the hyper network, then,

keeping in mind the factorization from 31 the acceptance probability can be rewritten as

A = min

{
I∏
i=1

P (Di|Oinew)P (Oinew |βinew ,M∗
new)

P (Di|Oiold)P (Oiold|βiold ,M∗
old)

, 1

}
(36)

Werhli and Husmeier propose that sampling is broken into three sub moves, so that acceptance

probability is increased. All newly proposed states are accepted according to the Metropolis-

Hastings rule, while all the other states are kept unchanged. Firstly, new orders Oi are proposed

for all data sets in turn, while the rest of the parameters (the hyper parameters β and the hyper

network) are fixed. According to the Metropolis-Hastings update rule, the newly proposed order

Oinew is accepted with probability:

A (Oinew |Oiold) = min

{
P (Oinew , βi,M∗|D)

P (Oiold , βi,M∗|D)
, 1

}

= min

∏
n

∑
U∈Un,Oinew

e−β|U⊕PaM∗ (Xn)|score(Xn, U |D)∑
U ′∈Un,Oiold

e−β|U ′⊕PaM∗ (Xn)|score(Xn, U ′|D)
, 1


(37)

Where the product in the last equality goes over all nodes, while the sums go over different parent

sets, the ones that are consistent with Oinew in the numerator, and the ones that are consistent with

Oiold in the denominator. Recall that a parent set for node j is considered valid given an order, if

and only if it is formed by nodes which precede j in the order. In the newly proposed order, the

nodes whose place in the ordering is before and after the flipped nodes keep the same valid parent

sets, because they are preceded by exactly the same nodes as in the old order. Therefore, the terms

in the product associated with those nodes cross out, and we can focus the computation of the

acceptance probability of the new order only on those nodes that lie between the flipped nodes.

Subsequently, new hyper parameters β are proposed for all data sets. Their acceptance probability

45

is given by :

A (βinew|βiold) = min

{
P (Oi, βinew ,M∗|D)

P (Oi, βiold ,M∗|D)
, 1

}
= min

{
Z(βiold ,M∗)

Z(βinew ,M∗)

∏
n

∑
U∈Un,Oi

e−βinew |U⊕PaM∗ (Xn)|score(Xn, U |D)∑
U∈Un,Oi

e−βiold |U⊕PaM∗ (Xn)|score(Xn, U |D)
, 1

}
(38)

where both sums go over the same parent sets, but the change of hyper parameter results in a

change of the weights of their scores.

Finally, a transition to a new neighbour hyper network is proposed through either an edge addition

, an edge removal or an edge reversal. We do not require the hyper network to comply with the

constraints of a mixed network, that is, cycles among static edges are not forbidden. Moreover, it

does not need to obey to the fan-in constraint. The probability of accepting the new hypernetwork

is equal to:

A(M∗
new|M∗

old) = min

{
I∏
i=1

P (Oi, βi,M∗
new|D)

P (Oiβi,M∗
old|D)

, 1

}

= min

 Z(βi,M∗
old)

Z(βi,M∗
new)

∏
n

∑
U∈Un,Oi

e−βi|U⊕PaM∗new (Xn)|score(Xn, U |D)∑
U∈Un,Oi

e
−βi|U⊕PaM∗

old
(Xn)|score(Xn, U |D)

, 1


(39)

We note that the likelihood of a parent set given the data is not affected by a change of the hyper

networkM∗ or the new hyper parameters β. Therefore, the acceptance probability of these states

strictly depends on the prior terms for the parent sets . If the current order,Oi allows for structures

that are more similar to the newly proposed hyper network, then the acceptance probability in (39)

increases.

Let us now consider the sampling of the hyper parameters β. If the symmetric differences in

the exponents in (38) are systematically close to zero, then, regardless of the value of β, the ex-

ponential terms while be suppressed, and the numerator will become approximately equal to the

denominator in the terms of the product. The acceptance probability will then only depend on the

normalization constant, which is, as we previously mentioned, decreasing in β. Consequently, if

the structures consistent with the order tend to be similar to the hyper network, then higher values

46

for β are favoured in the sampling process. In contrast, if they tend to deviate from the hyper

network, then βi is more likely to linger in lower intervals, since a larger βi will lead to a more sig-

nificant shrinkage of the exponential terms, given that the symmetric differences in the exponents

are rather large.

47

3 Data

3.1 The RAF signalling pathway

The RAF signalling pathway ([22]) is a well-known gene regulatory network ,which describes the

information flow within a cell. The network can be seen in figure 6. The nodes of the network

represent proteins, while the edges encode the cascade of signal transduction.

Figure 6: The Raf signalling pathway, picture from [14]

Under certain circumstances, information flow is stimulated inside a cell. The molecules that are

involved respond to the information they receive , which affects subsequent molecules in the path-

way. The proteins are activated through a process called phosphorylation, which is regulated by

a special group of enzymes, protein kinases. Protein kinases modify the proteins in the signalling

cascade by attaching a phosphate group to them. This event impacts the functionality of the pro-

teins in the cascade, which triggers chemical reactions that subsequently affect the neighbouring

molecules in the pathway.

Protein kinases are known to orchestrate the majority of cellular pathways. The malfunction or

imbalanced activity of the kinases can lead to diseases, such as cancer.

Using the RAF signalling pathway as a gold standard network, we can generate synthetic data

and evaluate the network reconstruction accuracy of our methods. In order to generate indepen-

dent state-space observations (pure static data), the observation of variable Xi is equal to:

Xi =
∑
j

βjiXj + εi

where βji is the strength corresponding to the edge eji, and εi is an m dimensional vector that rep-

resents noise, usually sampled from the standard normal distribution. In case there is no edge from

48

node j to node i, then βji = 0. As a result, the data matrix expands with respect to the topological

order of the network.

We can generate pure temporal data from the RAF signalling pathway in a similar manner. Here,

every node is influenced by its parents with a time delay τ . Having assumed that τ = 1, we can

generate the realization of node i at time point t from:

Xi(t+ 1) =
∑
j

βjiXj(t) + εi(t+ 1)

Here, the data matrix expands column-wise, and the topological order of the network does not need

to be taken into account.

Finally, in order to generate mixture data, the edges of the gold-standard network were divided into

two groups, one corresponding to the static , and the other corresponding to the dynamic edges.

Then, the realization of node i at time point t is given by:

Xi(t) =
∑
j

βjiXj(t) + β̃jiX̃j(t− 1)

where βji is the strength corresponding to the static edge eji, while β̃ji corresponds to the dynamic

edge ẽji. Again, we need to take into account the ordering of the nodes.

3.2 Psychometric data

The Mapping Individual Routes of Risk and Resilience(Mirror) study([5]) is an innovative study

whose main objective is to investigate dynamic networks as means of predicting the progression

of psychotic symptoms. The study adopts a network-based approach to psychopathology, which is

based on the hypothesis that mental disorders result from interplay between symptoms([6]). Most

currently established ”disease models” view symptoms as independent expressions of an underly-

ing disorder. In contrast to these models, the network approach conceptualizes mental disorders

as an causally interconnected system of symptoms (symptom networks). From that perspective,

symptoms are not independent form one another, they interact through causal relations over time

([5]).

The data set consists of 90 measurements for 96 patients aged between 18-35, with ranging psy-

chopathology. The patients are allocated into 4 different groups, which represent successive clin-

ical stages: Patients of group 1 express milder symptoms, while patients of the last group show

49

graver symptoms and are in high risk for psychotic disorder. The measurements focus on 38 dif-

ferent symptoms.

Given the patient specific data sets, we constructed four group specific data sets, that is, all data sets

corresponding to the patients of a specific group were merged into one, large data set. We observed

a significant number of missing measurements, which we imputed using a moving average process

with window size K=4 and exponential weights: A missing measurement was thus replaced taking

into account the four consecutive values before and after it, multiplied with weights that decrease

exponentially:

Xi(t) =
4∑
s=1

(
1

2

)s
Xi(t− s)

It is expected that if the four group-specific data sets are treated independently, then four differ-

ent networks will be inferred. However,as we intend to capture the continuum of psychosis by

highlighting both the heterogeneity and similarities between different clinical stages, we introduce

coupling to the analysis of the psychometric data by employing the modified version of the Werhli

and Husmeier model as described in section (2.6.2) .

50

4 Implementation details

In this section we provide a brief description of the experiments we performed using the methods

previously discussed under section 2. All implementations were in MATLAB, and we also made

use of the Peregrine cluster. In the first subsection, we present some details on the evaluation pro-

cess of our inference methods on synthetic Gaussian data. These experiments were conducted in

order to confirm that our inference methods were correct, before proceeding to further analyses on

real world data. In the second subsection, we give a description of our approach on the psycho-

metric data (4.2). For more details on the software we developed for our implementation, we refer

the reader to the Appendix, at the end of the document. There, we discuss the main functions that

we created for our analysis. A zip folder with the code has been provided to my supervisors, and

is available upon request.

4.1 Synthetic data

4.1.1 Evaluation of the mixed Bayesian network model

In our MCMC simulations, our main objective is to evaluate the mix model in various settings,

and to compare its performance to the already established ’pure’ models, with respect to network

reconstruction. For this purpose, we run structure MCMC simulations on synthetic data, generated

from the RAF signalling pathway (N=11), as described in section 3.1. The edge strengths βi,j
were sampled uniformly from within the interval [0.5, 2], and then weights with the negative sign

with probability 1/2. In all our simulations, the generated data is standardized to zero mean and

marginal variance of one , for all variables. We have tuned the priors so that they have the minimal

possible impact on the posterior: The prior distribution over the space of structures is the uniform

prior, while the hyperparameters of the Wishart prior are tuned to the most uninformative values

possible: α = N + 2, v = 1, T0 = 0.5 IN , µ0 = (0, 0, 0.., 0) ∈ R1×N . For the dynamic structure

MCMC simulation, N is substituted by N + 1, as self loops were allowed.Similarly, for the mix

structure MCMC simulation, N is replaced by 2N . We defined the initial state of all simulations to

be the empty graph, that is, the graph with no edges. This is expressed as an all-zero square matrix

with N rows in case of the pure models, and as an all zero matrix of 2N rows ans N columns for

the structure mix-BN simulation.

In order to ensure that sufficient convergence was achieved, we run independent MCMC simula-

tions, with different initializations for the first state/graph, and monitored the number of iterations

by plotting the resulting edge scores. Every simulation consisted of 500000 iterations, the first

51

100000 of which was discarded (burn-in phase). The frequency of sampling is every 1000 steps.

First, we evaluate the performance of the mix-BN model using AUROC values, and then, we move

on to comparing the models in different settings. For static observational data, we compare the

precision with respect to the highest scoring x = 20 edges, of the static and the mix BN models.

For the pure dynamic data, we compare the precision with respect to the highest scoring x = 20

edges, of the dynamic and the mix BN models. For mixture data, we compare the models using

the same metric.

4.1.2 Comparison between order and structure MCMC

In our order MCMC simulations, all hyper parameters for the BGe model were specified as de-

scribed in the previous subsection, while the initial order is taken to be a random permutation of

the nodes. Moreover, we impose a fan in restriction of 3. The parameter C which corresponds to

the number of parents that will be involved in the forming of all possible families for every node,

is set to C = 10. We run all simulations for 5000 iterations, discarded the first 2000 states in the

trajectory, and sampled every 100 steps.

In order to illustrate how node ordering can overcome the convergence issues that come with

structure MCMC, we compare the two models in terms of convergence . We run the simulations

on synthetic data, generated from a disjunct union of 3 copies of the gold standard network depicted

in 6 (N=33). We apply the models on various data sets, where the changing factor is the number

of observations. We adjust the number of iterations accordingly. All data sets were standardized to

zero mean and variance equal to 1, for all nodes.

4.1.3 The coupling scheme

We will evaluate our modified version of the Werhli-Husmeier model ([24]) on mixture data. We

fix a gold-standard network and generate three data sets. Therefore, all three data sets have the

same underlying network, but the edge strengths differ. We include a fourth data set, which con-

sists of pure noise. Our objective is to compare AUC values between this approach and the two

extreme approaches presented by the authors, that is, the uncoupled and the monolithic approach,

in order to investigate whether the coupling approach leads to any improvement when it comes to

network reconstruction.

Moreover, we are interested in evaluating to what extent the hyper parameters inferred by our

52

model reflect the true relation between the data sets and the hyper network. Recall that β indicates

the strength of the coupling between a data- associated order and the hyper network. Therefore, the

hyper parameters associated with the first three, ’true’ data sets are expected to reach higher values

on average, in comparison to the fourth data set, which consists of nothing but noise. The hyper

parameter associated with this data set should move in lower intervals, indicating the absence of a

meaningful prior over the state of orders: No order explains this data set significantly better that

any other. In other words, the question is whether our model is able to identify the ”corrupted”

data set, among the true data sets.

The initial hyper parameters for all data sets are uniformly sampled from within the interval [0, 30].

In every step of the algorithm, new hyper parameters βinew are sampled uniformly from a window

of length d=4, centered at the current value of βi. The hyper parameter βi is also forced to stay

within the interval [0, 30].

Finally, an initialization for the hyper network is required. Werhli and Husmeier ([24]) mention

that the empty network is not an optimal initial state, as it will give a significant lead to the cor-

rupted data set. For our initialization, we run a short order-MCMC simulation on the unified

(’monolithic’) data set. Once we obtain a sample of networks, we average over them and select

the only the highest scoring edges to be present in our initial hyper network. The initial orders

associated with the four data sets were random permutations of the nodes. We run the model for

104 simulations, discarded the first 5 103 states and sampled every 100 steps.

4.2 Psychometric Data

As a first approach to handling the psychometric data set, we employed structure MCMC inference

methods. Nevertheless, because of the dimensionality of the four datasets, structure MCMC never

reached convergence, which drove us towards order MCMC. Our initial pursuit was to confirm that

order MCMC can reach convergence.

In order to apply order MCMC, we need to sensibly fixate the number C of the highest scoring

parents that will be considered as potential parents of the node accross the simulation. It has been

previously discussed how this number can have a paramount impact on the success of the algo-

rithm and that the inclusion of such an approximation is not optimal. However, performing a full

enumeration of all possible parent sets for a node led to immense computational costs, given the di-

mensionality of the data sets-recall the mix-BN model doubles the nodes of the network. Therefore,

we settled for C = 20. self loops were considered valid edges in these settings. Our experiments

led to the conclusion that a sufficient amount of convergence is reached at 5 104 iterations. The

first 2 104 states were discarded (burn-in phase) and the frequency of sampling was every 100 steps.

53

As a first approach to the data, we performed a simple ”leave-one-out” cross validation scheme

on the 96 patients, in order to compare between the Bayesian network models. Our goal is to ap-

proximate the probabilities P (Dpatient|Di)i=1,..4, where Dpatient represents the 38 times 90 patient

specific data set, andDi represents the i−th group specific data set, which we consider as a ”prior”

data set which we can use to specify the hyper parameters. The part of the data associated with

the patient has firstly been removed from the corresponding group-specific data. Then, an order

MCMC simulation is run on the 4 group specific data sets, and a sample of networksG1, G2, ..., GT

was obtained for each one of them. The predictive probability P (Dpatient|Di) can be approximated

by:

P (Dpatient|Di) =
1

T

T∑
t=1

P (Dpatient|Gt)

When the predictive probability P (Dpatient|Gt), the hyper parameters for the BGe model are not

suppressed like in the previous experiments. T0 is taken equal to the TD,m matrix, computed on the

prior data set Di (20, 12, ??). The hyper parameters a and v are set equal to the second dimension

of the prior data set. The group specific data sets were standardized, but the patient-specific data

sets were left unstandardized.

Our goal is to classify each patient , to the group that maximized the predictive probability P (Dpatient|Di),

in other words, to the group that best explains the patient-specific data. We do so with all three

Bayesian network models: A sample of static, dynamic and mixed Bayesian network is gathered

from the group specific data sets. The goal of this experiment is to compare the missclassification

rates between models. This is a very expensive approach, as for every patient, we need to run three

new order MCMC simulations on the data of the group the patient is allocated to, after extracting

the part of the data that is associated with the specific patient.

Finally, we applied the modified version of the Werhli and Husmeier model on the four data sets.

The model was run for 105 iterations, the first 5 104 states were discarded and we sampled every

100 steps. In order to facilitate convergence, we used more informative initializations for the states:

We run greedy search algorithms on the four data sets, to determine one high scoring network for

each group. The hyper network was chosen as the consensus of these networks. The topological

orders of these networks were chosen as the initial states for the groups. The hyper parameters βi
were initialized as described above.

54

5 Results

5.1 Evaluation of structure mix BN

As a first step, we tested the mix-BN model on synthetic mixture data (n=11) generated from the

RAF signalling pathway under various conditions and evaluated its performance using AUROCs.

In this experiment, we vary the number of observations m. In figure 7 it appears that the model

achieves high AUROCs, which indicates a good performance.

(a) m = 20 (b) m = 50 (c) m = 100

Figure 7: ROC curves

The AUROCs seems to drop with m. This is only reasonable, since the mix model doubles the

number of potential parents. Especially for m = 20, the number of predictors exceeds the number

of observations, which accounts for lower AUROC values.

As a next experiment, we want to compare the performance of the mix-BN model to the perfor-

mance of the pure models, on synthetic data. As we have previously discussed under 2.5, AUROCs

are not comparable between models, and therefore, as our evaluation criterion we employ the pre-

cision among the x=20 highest estimations for the edge scores.

We first evaluate the models on mixture data. In figure 8, we illustrate bar plots of average precision

values achieved by all models, over 10 independent simulations on differents data sets consisting

of mixture data. We observe that the mix-BN models follows the expected trend, with sufficiently

high precision values, which, similar to AUROCs, drop with the number of observations. In ad-

dition, the pure models clearly lag behind, with precision values systematically bounded by 0.5.

This also does not come as a surprise: The pure static model is intrinsically incapable of inferring

dynamic edges (and vice versa), and as we will shortly discuss, can potentially infer wrong edges.

55

Hence, we expected the pure models to learn at most half of the true edges.

Figure 8: Comparison of precision amongst x = 20 highest scoring edges between models

We are particularly interested in investigating if the new model is capable of detecting dominant

features on pure data as well as the pure models. To this end, we now evaluate the models on pure

static and dynamic data. On pure data, the challenge for the mix BN model is to restrict in only

learning the true edges and not additional, irrelevant edges.

Figure 9: Performance on pure static (left panel) and pure dynamic data(right panel)

56

In figure 9, we illustrate bar plots of average precision values, over 10 simulations on 10 inde-

pendently generated data sets, consisting of observational static (left panel) and time series (right

panel) data. On the right panel of figure 9, we observe that the mix BN models performs just as

well as the pure dynamic models.

On the left panel of figure 9, where the performance of mixed and static BN are evaluated on pure

static data, we see that precision values for the mix BN model are not far below compared to those

of the static BN. It can however be seen that the gap between the mixed and the pure model on

pure static data is wider than it is on pure dynamic data. We suspect that this happens because

mix-BN misidentifies the directions of some of the edges. This stems from the fact that some

dynamic edges are probably accepted in the beginning of the simulation, which interferes with the

extraction of the CPDAG. For instance, a true, bidirectional edge can be classified as compelled by

the mix BN model, because of the presence of a dynamic edge. To test our suspicion, we ignore

the directionality of the static edges and calculate precision values under the consideration that all

static edges are bidirectional. The results can be seen in figure 10:

Figure 10: Comparison of precision amongst x = 20 highest scoring edges between mix BN and
static BN on pure static data, without taking directionality into account

In this setting we observe a significant improvement in precision values for the mix BN model, as

it now seems to perform equally well as the static BN model. However, it clearly lags behind when

the number of observations is low (relative to the number of variables).

57

After comparing precision values, we further investigate the performances between models. More

precisely, we want to examine whether the mix BN model gives similar estimates for pure edges, as

the pure models, when applied on pure data. To that end, we create scatter plots of the estimates of

the edge scores between models, obtained from simulations on pure data. In figure 11 we illustrate

the estimates for the true edges obtained from one simulation of the mix BN and the dynamic BN

models on pure dynamic data.

Figure 11: Edge scores of mix BN versus edge scores of dynamic BN on pure dynamic data.

This scatterplot indicates that the mix BN assigns very similar scores on dynamic edges as the

dynamic BN model.

In the case of pure static data, we do not expect such strong agreement between models, as our

experiment so far have indicated a small, yet considerable deviation in results. Indeed, the left

panel of figure 12, where estimates for the edge scores obtained by mix and static BN on pure

static data are compared, confirms our presumption: It appears that the mix BN not only overlooks

some strong edges, it also mistakes some weak relations as rather dominant. However, the right

panel provides evidence that , if we ignore the direction of the static edges, then the edges that are

inferred incorrectly by the mixed model reduce by a significant fraction.

58

Figure 12: Edge scores of mix BN vs static BN on pure static data when edge directions are
considered (left panel)and ignored (right panel).

However, there is still some disagreement between models, which mostly stems from the fact that

the mix BN model seems to learn wrong static edges. A possible explanation for this is that some

interactions that are mediated by other variables are identified as direct interactions by the mix BN

model. More specifically, if two nodes share the same dynamic parent, then they have an indirect

contemporaneous interaction. In this scenario, the mix model can potentially infer a static edge

that is not among the true edges.

Figure 13: Edge scores of mix BN versus static (left panel) and dynamic (right panel) BN on
mixture data.

59

This is one of the challenges that the static BN too has to face when employed on mixture data.

The static model cannot see dynamic edges, but it might be misguided by their effect and either

learn wrong static edges, or mistake compelled edges for bidirectional- if a static edge participates

in a mixed v-structure, then , from a static point of view, it will be classified as reversible. Figure

13 illustrates the results of the previous experiment, from simulations on mixture data, mix versus

static (left hand side) and mix versus dynamic (right hand side). As suspected, the scatterplot on

the left hand side of 13 shows a strong disagreement between models, as it seems that many wrong

edges are inferred by the pure model, while some true static edges are overlooked. The results

on dynamic edges (right hand side of figure 13 show that the dynamic model does not miss true

dynamic edges, but it appears that it learns some wrong ones, possibly because indirect interactions

are, also in this case, misinterpreted for direct ones: If node A has an incoming dynamic parent

B and an outgoing static edge pointing to node C, then there is an indirect dynamic interaction

between nodes C and B, mediated by A. Although the static edge cannot be seen by the dynamic

model, it can possibly detect this interaction and interpret it as an edge.

5.2 Order MCMC

After detecting significant convergence issues in the structure MCMC approach, especially as di-

mensionality increases, we investigated whether convergence and mixing of the Markov chain can

be improved by employing order MCMC instead ([13]). Given that the data sets we intend to an-

alyze are rather large (n = 38, m ≈ 2000) we compare structure and order MCMC on a dataset

generated by the disjunct union of smaller mixed networks. The resulting mixture data sets have

n = 33 nodes, and the m ranges. Below we compare the two MCMC approaches in terms of

convergence, by the use of scatterplots.

On the right hand side of figure 16, we see the scatter plots of the edge scores, on three inde-

pendent data sets with m = 100, m = 500 and m = 1000. Iterations were increased with m,

namely, we run the simulations for 5 · 105, 106 and 5 · 106 steps respectively. From a rather low

number of observations, we see that structure MCMC comes with noteable convergence issues. As

observations increase, convergence becomes more an more unreliable.

60

Figure 16: Convergence of structure (left side) and order (right side) MCMC on synthetic data,
with n = 33 and increasing m. The first row corresponds to m = 100, the second to m = 500 and
the third to m = 1000.

61

Whereas the number of observations seems to have a strong effect on the convergence of the

Markov chain in structure MCMC , it seems to have no impact whatsoever on the convergence of

order-MCMC. This can be seen on the right hand side of the figure. As the number of observations

increase, we leave the number of iterations unchanged and equal to 6 · 103. In all three settings,

convergence is achieved early, compared to structure MCMC. Convergence of structure and order

MCMC were previously discussed on section, and this experiment confirms that order MCMC is

preferable when it comes to larger data sets.

5.3 Integration of data sets derived under different conditions

In this section, we illustrate the empirical results on the modified version of the model proposed

by Werhli and Husmeier. We generate three data sets from the same gold standard network, but

with different parameters, namely, different regression coefficients. We will refer to those data

sets as the ”true” data sets. In the first experiment, we compare the performance of the model to

the two ”extreme approaches”. In the first approach, we handle the three data sets independently,

whereas in the second, we merge the three data sets into one single, large data set. Borrowing

terminology from ([24]), we refer to the three approaches as the ”coupled”, the ”uncoupled” and

the ”monolithic” approach. As our evaluation criteria, we employ AUROC and precision among

the x = 20 highest scoring edges.

Figure 17: Comparison of AUROC and precision values between our coupling scheme, and the
two extreme approaches.

62

We expect to see that the coupling improves performance. Weak underlying relations between vari-

ables, that is, regression coefficients of small magnitude are usually harder to detect, which leads

to lower AUROC/precision values. However, under the light of more data sets, that are generated

from the same network, we expect those more subtle interactions to be more easily detected. On

figure 17, we compare the average AUROC and precision values over 5 independent runs of the

three schemes on different data. It can be seen that coupling indeed leads to both higher AUROC

and higher precision values.

For the second experiment, we introduce a fourth data set, that consists of pure noise. We will

refer to this data set as the ”corrupt” data set.

Figure 19: Traceplots of the hyperparameters beta. Larger Beta values indicate a stonger coupling
with the hypernetwork. The lower right panel corresponds to a data sets that consists of pure
noise, while the other three corresponds to 3 ”true” datasets, generated by the same gold standard
network, but with different parameters.

63

Recall that in this scheme, every data set is associated with a hyper parameter βi, which, as we

discussed in section 2.6.2, indicates the strength of the coupling between the order/ family of net-

works associated with dataset Di, and the hyper network. We expect stronger coupling (larger β

values between the orders associated with the true data sets and the hyper network , in comparison

to the order associated with the corrupt data set. Since the corrupt data set consists only of random

entries, then all orders associated with this data set are approximately equally likely- consequently,

they are accepted at random, and the networks sampled from them do not represent any true, un-

derlying relations between the variables. As a result, we do not expect any connection to the hyper

network, which translates into low values for the hyper parameter β4.

In figure 19 we illustrate trace plots of the sampled hyper parameters for all data sets. It appears

that the method succeeds in identifying the corrupt data set: The hyper parameters associated with

the true data sets have a wider range and reach up to higher values, in contrast to the hyper param-

eter corresponding to the fourth data set, which is systematically close to zero.

Finally, we want to examine whether introducing node ordering into the original model of Werhli

and Husmeier improves convergence and mixing of the Markov chain. Since structure MCMC

moves have proven unreliable in terms of convergence, as detailed in ([24]), we want to investi-

gate whether order MCMC moves can avert, or, at least, improve, this problem. To this end, we

compare the two, slightly different models, on simulated data.

Figure 20: Convergence of the original(left panel) versus the modified (right panel) coupling
scheme..

In figure 20, we see the comparison of edge score estimates, achieved by the original (left panel)

64

and the modified (right panel) version of the coupling scheme, over two independent simulations,

on one of the true data sets. The simulations we run for 3 103 steps. Whereas the modified version

of the model seems to already have converged, the original model, which is based on structure

MCMC moves is still far from convergence. This experiment indicates that introducing node

ordering is meaningful, as it accelerrates convergence and mixing of the Markov chain.

5.4 Psychometric data

After finalizing our strategy, we proceed on the analysis of the psychometric data set. As a first

approach, we perform the simple cross validation scheme for the patients, using mix, static, and

dynamic BN, as described in section4.2. In figure 21, we illustrate the missclassification rate of all

three models on the four patient groups.

Figure 21: Missclassification rates on patients fro mix, dynamic and static BN

It is clear that mix BN achieves higher classification accuracy than the two pure models on average.

Surprisingly enough, dynamic relations between variables perform rather poorly as predictors- es-

pecially in the extreme case of the fourth data set, where missclassification rate of the dynamic

models climbs up to 76%. The mix BN model, which has more information in disposal, coming

from both contemporaneous and the static interactions between the variables, outperforms the pure

models, with the exception of the second group, where the static model achieves a better classifi-

cation accuracy.

65

We then applied the node-ordering version of the Werhli Husmeier model on the psychometric

data set. Although this scheme gave very promising results on synthetic data, we did encounter

significant convergence issues- in fact, convergence was only achieved for the third patient group.

The scatter plots in figure 23 illustrate the different estimates, obtaned from two independent runs

of the model on the psychometric data. The deviation from the diagonal indicates a lack of conver-

gence for all patient groups, except for patient group 3. Recall that in this model, a prior distribution

over possible parent sets for every model is imposed. The prior terms, which are upper bounded

by 1, result in a shrinkage of the posterior of a parent set, when it deviates from the corresponding

parent set in the hypernetwork. Therefore, on an intuitive level, acceptance of MCMC moves is

hindered, as it now depends on two factors: the likelihood term and the prior term. This results in

a significant delay of the mixing of the Markov chain.

Figure 23: Scatter plots for estimates of the edges, for the four patient groups.

In figure 25 we illustrate the four networks that were inferred from the four data sets. These results

are not, however, representative and should be interpreted with caution, since there was

66

Figure 25: Heatmaps of the inferred symptom networks, for the four patient groups.

67

disagreement between independent simulations on a small, yet significant fraction of the inferred

edges for patient groups one, two and four.

Although convergence was not achieved, there was stronger agreement between independent sim-

ulations on the values of the hyperparameters β. In figure 27, we illustrate trace plots of the β

values accross the simulation, for all four groups. It appears that the network associated with the

first data set is the only one that deviated significantly from the hyper network, whereas the other

three networks coupled more strongly with the hyper network and thus, with one another. As pa-

tients of the first group are the ones showing the milder symptoms, it is probable that they share

less common symptoms with patients from the other groups, who suffer from stronger symptoms.

Figure 27: Traceplots of the hyperparameters beta. Larger β values indicate a stonger coupling
with the hypernetwork.

Our approaches on the psychometric data sets were very computationally expensive. For the cross

68

validation scheme on the patients, we needed to run new order-MCMC simulations for every pa-

tient. The reason is that the group specific data set changes for every patient, as we extract the part

of the data which corresponds to the specific patient. The running time of the algorithm in real

life was approximately three days. The coupling scheme was also very costly. The model run for

approximately 6 days on the Peregrine cluster, and even then, convergence was not achieved. .

69

6 Discussion-conclusion

The goal of this thesis was to introduce a new mix Bayesian network model, that combines fea-

tures of static and dynamic Bayesian networks, and is able to infer static and dynamic interactions

simultaneously from temporal data.

We firstly recapitulated some previous work on static and dynamic Bayesian networks (2.1.1. and

2.1.2) Then, in subsection 2.2, we introduced this new model. We presented a way to represent

its connectivity structure by a block matrix, and also discussed a modified version of Chickering’s

algorithm, which allows us to extract the CPDAG of a mixed Bayesian network.

Then, we discussed the BGe scoring metric of Geiger and Heckerman (2.3), which allows us,

under some fairly weak assumptions, to derive a closed form expression for the marginal likeli-

hood. In the first two subsections (2.3.1 and 2.3.2), we showed how the BGe score function of a

static and a dynamic Bayesian network can be derived. In the last subsection (2.3.3), we presented

how, by applying some straightforward modifications, we can also compute the BGe score of a

mixed BN.

We proceeded by discussing a search strategy in order to learn network structures from data, under

subsection (2.4.3). To this end, we presented two different MCMC approaches, structure MCMC

(2.4.4.1), where the Markov chain is constructed in the space of structures, and order MCMC

(2.4.4.2,) where the Markov chain is constructed in the space of orders. We discussed how order

MCMC leads to a faster convergence on the Markov chain, relative to structure MCMC.

We concluded our methods section, with a coupling scheme that allows us to handle disjunct

data sets which stem from similar, underlying networks. The model is proposed by Werhli and

Husmeier ([24]), but we employ a modified version that uses node ordering (2.6.2), in order to

improve convergence.

Afterwards, the methods were applied on synthetic data, generated from the RAF pathway 3.1

and on the psychometric data set 3.2. The results are outlined in section 5.

The simulation study indicated a very good performance of the new model, as it achieved very

high scores on all settings. Comparisons between models showed that the new model competes

70

with the pure models on ”pure” data. Especially on pure temporal data, the dynamic and the mixed

Bayesian network models behaved very similarly.

Results on psychometric data showed that there was important information that could not be seen

by the Dynamic Bayesian network model. The underlying contemporaneous interactions between

symptoms were very strong, and therefore the dynamic model provided inadequate insights on the

domain. Especially in the cross validation scheme , the dynamic Bayesian model achieved very

low classification accuracy, which indicates that the dynamic relations between the variables are

not good predictors for distinguishing between groups. In this experiments , the mixed Bayesian

network model had a very satisfactory performance, as it outperformed both models.

We can conclude that in case a domain consists of temporal data with both dynamic and static

underlying interactions, the mixed model is the best option between the three models. The pure

models are able to only detect the dominant corresponding features, and our experiments indicated

that they tend to infer a significant number of wrong edges . Moreover, the coexistence of dynamic

and static edges provides additional insights that cannot be obtained by applying the pure models

separately, as in the mixed models, some of the symmetries of the static edges can break because

of the presence of the dynamic edges. In other words, static edges that are bidirectional from a

static point of view can be rendered compelled by the dynamic edges, which lifts the ambiguity

and allows us to make for specific statements about the interactions.

However, the mixed model comes with the shortcoming that it doubles the variables of the do-

main, which leads to a big computational overhead, and also hinders convergence, especially when

combined with structure MCMC simulations. In these simulations, our experiments indicated that

the mixed model does not perform that well when we have small data sets (low m) and as the

number of nodes increases. We proposed order MCMC as an alternative , in order to improve

convergence, however this method introduces bias into the model. In the past, there have been

different attempts to improve convergence in structure MCMC, without having to pay the price of

bias, such as the REV move [15] and Partition MCMC [32] . However, these techniques have only

been introduced for the static Bayesian network model, and it is not trivial to adapt them into the

mixed setting, because of the presence of the dynamic edges.

71

References

[1] Balian Roger. From microphysics to macrophysics : methods and applications of statistical

physics / Roger Balian ; translated by D. ter Haar and J. F. Gregg. Volume I. Texts and

monographs in physics. Springer-Verlag, Berlin New York Heidelberg [etc, cop. 1991.

[2] Dan Geiger and David Heckerman. Learning gaussian networks. In Proceedings of the Tenth

International Conference on Uncertainty in Artificial Intelligence, UAI’94, page 235–243,

San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[3] Jack Kuipers, Giusi Moffa, and David Heckerman. Addendum on the scoring of gaussian

directed acyclic graphical models. The Annals of Statistics, 42(4):1689–1691, 2014.

[4] Marco Grzegorczyk, Dirk Husmeier, Kieron D. Edwards, Peter Ghazal, and Andrew J. Mil-

lar. Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian

network and the allocation sampler. Bioinformatics, 24(18):2071–2078, 07 2008.

[5] Sanne H. Booij, Marieke Wichers, Peter de Jonge, Sjoerd Sytema, Jim van Os, Lex Wun-

derink, and Johanna T. W. Wigman. Study protocol for a prospective cohort study examining

the predictive potential of dynamic symptom networks for the onset and progression of psy-

chosis: the mapping individual routes of risk and resilience (mirorr) study. BMJ Open, 8(1),

January 2018.

[6] Denny Borsboom and Angélique O.j. Cramer. Network analysis: An integrative approach

to the structure of psychopathology. Annual Review of Clinical Psychology, 9(1):91–121,

March 2013.

[7] Wray Buntine. A guide to the literature on learning probabilistic networks from data. Knowl-

edge and Data Engineering, IEEE Transactions on, 8:195 – 210, 05 1996.

[8] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search,

volume 81. 01 1993.

[9] Eunice Yuh-Jie Chen, Arthur Choi Choi, and Adnan Darwiche. Enumerating equivalence

classes of bayesian networks using ec graphs. In Arthur Gretton and Christian C. Robert, ed-

itors, Proceedings of the 19th International Conference on Artificial Intelligence and Statis-

tics, volume 51 of Proceedings of Machine Learning Research, pages 591–599, Cadiz, Spain,

09–11 May 2016. PMLR.

72

[10] Max Chickering. Learning equivalence classes of bayesian-network structures. Journal of

Machine Learning Research, 2:445–498, February 2002.

[11] S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano. Combining microar-

rays and biological knowledge for estimating gene networks via bayesian networks. In Pro-

ceedings of the 2003 IEEE Bioinformatics Conference, CSB 2003, Proceedings of the 2003

IEEE Bioinformatics Conference, CSB 2003, pages 104–113, United States, 2003. Institute

of Electrical and Electronics Engineers Inc. 2nd International IEEE Computer Society Com-

putational Systems Bioinformatics Conference, CSB 2003 ; Conference date: 11-08-2003

Through 14-08-2003.

[12] Frank Dondelinger, Sophie Lèbre, and Dirk Husmeier. Non-homogeneous dynamic Bayesian

networks with Bayesian regularization for inferring gene regulatory networks with gradually

time-varying structure. Machine Learning, 90(2):191 – 230, February 2013.

[13] Nir Friedman and Daphne Koller. Being bayesian about network structure, 2013.

[14] Marco Grzegorczyk. An introduction to gaussian bayesian networks. In Systems Biology in

Drug Discovery and Development, pages 121–147. Springer, 2010.

[15] Marco Grzegorczyk and Dirk Husmeier. Improving the structure mcmc sampler for bayesian

networks by introducing a new edge reversal move. Machine Learning, 71(2-3):265–305,

June 2008.

[16] David Heckerman. A tutorial on learning with bayesian networks, 2020.

[17] David Heckerman, Dan Geiger, and David Maxwell Chickering. Learning bayesian networks:

The combination of knowledge and statistical data, 2015.

[18] Dirk Husmeier. Sensitivity and specificity of inferring genetic regulatory interactions from

microarray experiments with dynamic Bayesian networks. Bioinformatics, 19(17):2271–

2282, 11 2003.

[19] David Heckerman and Dan Geiger. Learning bayesian networks: A unification for discrete

and gaussian domains. pages 274–284, 01 1995.

[20] Radford M. Neal. Probabilistic inference using markov chain monte carlo methods. Technical

report, 1993.

73

[21] Mahdi Shafiee Kamalabad, Alexander Martin Heberle, Kathrin Thedieck, and Marco Grze-

gorczyk. Partially non-homogeneous dynamic Bayesian networks based on Bayesian regres-

sion models with partitioned design matrices. Bioinformatics, 35(12):2108–2117, 11 2018.

[22] Karen Sachs, Omar Perez, Dana Pe’er, Douglas Lauffenburger, and Garry Nolan. Causal

protein-signaling networks derived from multiparameter single-cell data. Science (New York,

N.Y.), 308:523–9, 05 2005.

[23] David A Spade. Markov chain monte carlo methods: Theory and practice. Principles and

Methods for Data Science, 43:1, 2020.

[24] ADRIANO V. WERHLI and DIRK HUSMEIER. Gene regulatory network reconstruction

by bayesian integration of prior knowledge and/or different experimental conditions. Journal

of Bioinformatics and Computational Biology, 06(03):543–572, 2008.

[25] David Balding, Chris Cannings, and Martin Bishop. Handbook of statistical genetics. 08

2007.

[26] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[27] Dan Geiger and David Heckerman. Parameter priors for directed acyclic graphical mod-

els and the characterization of several probability distributions. The Annals of Statistics,

30(5):1412 – 1440, 2002.

[28] David Madigan, Jeremy York, and Denis Allard. Bayesian graphical models for discrete data.

International Statistical Review/Revue Internationale de Statistique, pages 215–232, 1995.

[29] Thomas Verma and Judea Pearl. Equivalence and synthesis of causal models. In Proceed-

ings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, UAI ’90, page

255–270, USA, 1990. Elsevier Science Inc.

[30] W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.

Biometrika, 57(1):97–109, 1970.

[31] David Maxwell Chickering. A transformational characterization of equivalent bayesian net-

work structures. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intel-

ligence, UAI’95, page 87–98, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers

Inc.

74

[32] Jack Kuipers and Giusi Moffa. Partition mcmc for inference on acyclic digraphs. Journal of

the American Statistical Association, 112(517):282–299, Jan 2017.

[33] Gregory F. Cooper and Edward Herskovits. A bayesian method for the induction of proba-

bilistic networks from data. Mach. Learn., 9(4):309–347, October 1992.

75

Appendix

We will now provide a brief description of the software developed in this thesis. The programming

tool that we employ is MATLAB. The code has been provided for my supervisors, and is avail-

able upon request. We first describe the functions we created for structure MCMC simulations.

Afterwards, we move on to our order MCMC simulation. Subsequently, we describe the function

we created for the modified version of the Werhli and Husmeier model (coupling scheme). We

conclude with some additional functions that we created for our analysis. An illustration of the

code for a structure MCMC simulation on mixture data is provided in the end of the appendix.

Structure-MCMC

In our implementation of Metropolis Hastings structure-MCMC, we created three functions, cor-

responding to the static, dynamic and mix models. Below we give a general description of some of

the main inner functions we created. Most functions have a static, dynamic and mixed counterpart

and are called when we employ the corresponding model. The static model can be employed if

we call our MCMC static function, whereas for the dynamic case, we created the dyn MCMC

function. For our mixed Bayesian network model, we created the MCMC mix function. These

functions can be called with the following commands:

1

2 %mixed B a y e s i a n n e t w o r k s

3 [s a m p l e d n e t s m i x , BGE scores mix]= MCMC mix(G i n i t s t a t ,

G i n i t d y n , i t e r , D, T0 , mu 0 , v , a , f a n i n , t h i n s t e p s , b u r n s t e p s ,

s e l f l o o p s) ;

4

5 %s t a t i c B a y e s i a n n e t w o r k s

6 [s a m p l e d n e t s s t a t , B G e s c o r e s s t a t]= MCMC static (G i n i t , i t e r , D,

T 0 s t a t , m u 0 s t a t , v , a , f a n i n , t h i n s t e p s , b u r n s t e p s) ;

7

8 %dynamic B a y e s i a n n e t w o r k s

9 [s a m p l e d n e t s d y n , BGe sco re s dyn]= dyn MCMC(G i n i t , i t e r , D, T0 dyn ,

mu 0 dyn , v , a , f a n i n , t h i n s t e p s , b u r n s t e p s , s e l f l o o p s) ;

The functions return a collection of high scoring networks (sampled nets), and their cor-

responding BGe scores (BGe scores). The input arguments G init in MCMC static and

76

dyn MCMC correspond to an initial network/state. In the MCMC mix function, we have the input

arguments, G init stat and G init dyn, which correspond to an initialization for the static

and dynamic part of the initial mixed network state, respectively. In all three functions, the values

of the hyper parameters , T 0, mu 0, a, v, and a positive integer corresponding to the fan-in restric-

tion (fan in) are required as input. In addition, the number of MCMC steps needs to be specified

(iter), as well as the length of the burn-in phase (burn steps) and the frequency of sampling

(thin steps). When it comes to the dynamic or the mix models, an extra Boolean argument

is included (self loops), which tells the function whether self loops are accepted as valid edges.

Within the main loop, a new network is proposed from the neighbourhood of the current net-

work, with the pick neighbour function. As an input argument to this function, we plug three

matrix arguments, namely addition matrix, removal matrix, reversal matrix (in

static and mix case). These are binary matrices, that represent the valid edge operations: additions,

removals, and reversals. The matrices are used not only for the determination of a valid neighbour

of the current network, but also for the computation of the proposal probabilities-note that the sums

of these matrices are the number of neighbours of the current network.

Then, the acceptance probability of the newly proposed state must be computed. To this end,

the BGe score, must be calculated. In order to avoid underflow-overflow issues, we work on loga-

rithmic scale-that is, we consider the logarithms of the BGe scores. The BGe score was detailed in

subsection 2.3. Assuming that the domain consists of N variables and m observations, the equa-

tion for the complete network for the static case is given in 16, whereas the BGe score is given in

14, as a factorization of local scores. For the sake of efficiency, the calculation of the local score,

can be simplified. As explained in the supplementary material of [3], a single term, Ψ(Dπi
i), in the

product of the BGe score in 14 (for the static case) is given by:

Ψ(Dπi
i) = π

−m
2

(
v

v +m

) 1
2 Γ(a+m−N+p+1

2
)

Γ(a−N+p+1
2

)

det(T
{πi}
0)

α−N+p+1
2

det(T
{πi∪Xi}
0)

α−N+p
2

det(T
{πi}
D,m)

α+m−N+p
2

det(T
{πi∪Xi}
D,m)

α+m−N+p+1
2

(40)

where det(·) denotes the determinant of its input matrix argument, whereas Γ(·) denotes the

Gamma fuction. The parent set for node Xi is denoted as πi and its cardinality is denoted as

|πi| = p. The matrix TD,m is given in 12 and the matrices T {S}0 and T {S}D,m are the submatrices of

T0 and TD,m, obtained if all rows corresponding to variables not is S are discarded. This equation

stems from the observation that if we consider the local score, instead of handling the numerator

and the denominator in the local score independently, many of the terms cross out. Equation 40

77

gives the local BGe score of a static network, however, since for the dynamic and the mixed cases,

the same computational steps are followed, the equation applies to these cases as well, after some

straightforward modifications.

For the efficient calculation of the BGe score, we can pre compute the constant prefactors. When

it comes to the derivation of the determinants, we can reduce computational costs by comput-

ing det(T
{S}
D,m) using Cholesky decomposition instead of directly calling the det() MATLAB

command, which uses LU decomposition, keeping in mind that TD,m is a real, positive definite,

symmetric matrix. Furthermore, in case where we set the hyper parameters to be uninformative ,

we can compute det(T {S}0) more efficiently as well. In case the hyperparameters are ”suppressed”,

T0 is of the form cIN , where c is a scalar and IN is the N dimensional identity matrix. In this

scenario, we have det(T {S}0) = c|S|, where |S| is the cardinality of S.

Recall that, in structure MCMC, the new network/state stems from a local modification in the

structure of the current network/state, namely, an edge addition, removal, or reversal. Observe

that if an edge Xi → Xj is either added or removed, then the only parent set that is affected, is

the parent set of node Xj . In terms of local scores, this means that the local scores of all nodes,

except Xj , do not change after an edge addition or removal. In case edge Xi → Xj is reversed

into Xi ← Xj , then only the parent sets of Xi and Xj change. As a consequence, if we consider

the computation of the acceptance probability in 24, after a valid edge operation between nodes Xi

and Xj then the terms of the BGe scores corresponding to the rest of the nodes cross out, which

reduces the acceptance probability to a ratio of the local score of Xj (and Xj and Xi is case of an

edge reversal) times the Hastings ratio, that is, the ratio of the proposal probabilities. The logarithm

of the score of the newly proposed network can then be computed from the logarithm of the score

of the current network, simply by subtracting to logarithm of the affected local score and adding

the logarithm of the scores after the valid edge operation.

The derivation of the Hastings ratio, is a rather costly factor within an MCMC step, as it requires

the enumeration of all possible neighbours of the newly proposed network. In our most demanding

settings (psychometric data set) we can, the sake of efficiency, consider omitting its calculation by

assuming that it is always equal to one.

If the new network is accepted, then we need to update the current network/ state, and its neighbour-

hoods, namely, the matrices representing the reachable states- addition matrix, removal matrix,

78

reversal matrix (in static and mix case case). For this purpose, we created a function called

update matrices, whose role is to update the neighbourhood of a network efficiently, and to

remove the neighbours that violate any restrictions imposed by the models (self loops, fan-in). For

instance, if node i has k incoming edges, and fan in = k, then no edge pointing towards i can be

added in the next step.

Order-MCMC

For the implementation of order MCMC on mixture data, we created a function called order MCMC.

This function returns a collection of high scoring orders (trajectory orders), the cor-

responding scores (scores), a collection of corresponding networks (sampled networks),

sampled from the orders, as described in subsection 2.4.4.2, and a cell array, extracted fams,

in which the families that are consistent with each order in the sample are stored. As input ar-

guments, we need the node specific data matrices, stored in a 3D array D, the corresponding Tm

matrices (3D array), an initial order/state, the hyperparameters T0, mu 0, v, a, the fan in restric-

tion k, a positive integer C specifying the number of highest scoring parents that will be consid-

ered for every node. Furthermore, the number of MCMC steps (iter), the length of the burn

phase (burn steps), and the frequency of sampling (thin steps) must be specified. The

order MCMC function can be called with the following command:

1 %orderMCMC s i m u l a t i o n

2 [t r a j e c t o r y o r d e r s , s c o r e s , e x t r a c t e d f a m s , s a m p l e d n e t w o r k s]=

order MCMC (o r d e r , i t e r , b u r n s t e p s , t h i n s t e p s , D, k , C , a , T0 , Tm, v ,

s e l f l o o p s) ;

Some pre-computations are performed before the MCMC simulation starts: For each node, a col-

lection of the highest scoring candidate families are computed with the pre compute families

function . Within this function, the C highest scoring parents (using a pre compute edges

function) of each nodes are identified, and are then combined into promising parent sets for the

node. Then the top-scoring families for the nodes are stored in a cell array, top fams, whose i-th

cell contains the parent sets for node i, with the corresponding scores, in descending order.

An additional inner function is created, called extract families, whose role is to return the

families that are consistent with the given order, stored in a cell array, the corresponding scores,

and a network, that is sampled from the order. This is required for the computation of the prob-

79

ability of the data given an order, as can be seen in 25. This function runs over all high scoring

families for node i, stored in the top fams cell array, and extracts only those that do not contain

any nodes that succeed i in the given order. This process is followed for all nodes i, starting from

the last node in the order.

This function is developed so that it can be employed on an order that is proposed by node flip-

ping, within an MCMC step. The indices of the nodes that exchanged places in the order have

to be plugged in as input. Then , the function only runs on the ”suborder”, consisting only of

the flipped orders and those nodes that stand between them in the order, as the consistent families

for the rest of the nodes remain unchanged. With this in mind, the order of the new score can

be computed by subtracting the score of the suborder before the flipping and adding the score of

the sub order after the flipping. After the score of the newly proposed order is computed with the

extract families function, it is used to compute the acceptance probability of the order.

The coupling scheme

For the implementation of the modified model of Werhli and Husmeier, we created a function

called wh order, which can be called with the following command:

1 %m o d i f i e d w e r h l i − h u s m e i e r model

2 [t r a j e c t o r y o r d e r , s c o r e s , t r a j n e t w o r k s , e x t r a c t e d f a m s , b e t a s ,

h y p e r n e t]= wh orde r (h y p e r n e t , o r d e r s a l l , b , i t e r , b u r n s t e p s ,

t h i n s t e p s , D cube , k , C , a , T0 , Tm cube , v , s e l f l o o p s , f a n i n) ;

Assume we have I data sets and N variables in the domain. As input arguments, we need to specify

the initial states: An initialization for the hyper network (hyper net), I initial orders associated

with each data set, stored in an I by N matrix orders all, and an I dimensional vector of initial

hyper parameters β (b). Moreover, the hyper parameters T0,mu 0, a , v, as well as the Boolean

argument self loopshave to be specified. Since node-ordering is introduced, the parameters C

and k also need to be determined. The fan in argument concerns the hyper network and is only

optional(we included no fan in restriction for the hyper network). The arguments D cube and

Tm cube are both I dimensional cell arrays, where the node specific data and TD,m matrices are

stored, for all I data sets. Finally, the arguments iter, burn steps, thin steps specify the

length of the simulation, the burn in and the thinning phases. The function returns 6 arguments:

A 3D matrix (trajectory order), where the sampled orders associated with each data set are

80

stored, and the corresponding scores , stored in a matrix scores. The I dimensional cell array

traj networks contains a sample of networks for each data set, stored in 3D matrices. The I-

dimensional cell array extracted fams contains the families that are consistent with the orders

associated with each data set, stored in sub cells. The matrix betas contains the trajectory of the

hyperparameters β, for the data sets. Finally, the output argument hyper net corresponds to the

hyper network.

The function follows the sampling process as detailed in subsection 2.6.2. Within this function,

two cell arrays are defined, called prior scores and prior terms, in which the likelihoods

and the priors of all consistent parent sets given an order are stored. In the first sampling step,

a new order is proposed for all data sets. To this end, a function called propose new order

was created. Every time a new order is accepted, the parent sets that are consistent with the order

change. The parent sets that are consistent with the new order are extracted with the same process

as in the extract families function, described in the previous subsection. If the new order is

accepted, the arrays prior scores and prior terms need to be updated.

Subsequently, new hyper parameters βi are proposed, for all data sets. Every time a new hyper

parameter is accepted, then the prior terms cell array is updated. In the final sampling step,

a new hyper network is then proposed with the function propose hypernetwork wh. This

new hyper network is proposed with an edge operation, with the help of a function similar to

pick neighbour function , which is called in the structure-MCMC simulations. Every time a

hyper network is accepted, the cell array prior terms need to be updated.

Updating the prior terms implies that the normalization constant has to be computed. This is

a very costly calculation, so we came up with a formula for its efficient computation. We de-

note |U | the cardinality of the set U, and πn the set of all possible parent sets for node n. We

define the family of sets associated with a node n, that comply with the fan in restriction k,

and have l miss matches with the corresponding parent set in the hypernetwork, denoted U∗, as

Ul = {U ∈ πn : |U ⊕ U∗| = l, |U | ≤ k}, where ⊕ is the symmetric difference between to sets.

Denoting p∗ = |U∗|, we can rewrite the single node partition function as:

Zn(β,M∗) =
∑
U∈πn

e−β|U⊕U
∗|

=
c∑
l=0

|Ul|e−βl

81

with c = min{N − 1, p∗ + k}. The sum runs over all possible numbers of missmatches between

a parent set for n and the corresponding parent set of n in the hyper network. The problem then

reduces to the enumeration of all possible sets U ∈ Ul, which is a rather simple combinatorial

problem. The key insight is that every set U ∈ Ul has the property of having l missmatches with

the set U∗:

U ⊕ U∗ = l⇒ |U |+ |U∗| − 2|U ∩ U∗| = l⇒

= |U ∩ U∗| = p∗ + p− l
2

where p = |U |. Therefore, a set U with cardinality p can be constructed by choosing p∗+p−l
2

elements from U∗ (the ones they have in common), and then filling the rest of the p − p∗+p−l
2

spaces in U (the elements they disagree on) with elements not in U∗, which leaves N − p∗ − 1

choices, considering that n is also excluded from the possible choices.

|Ul| =
cmax∑
p=cmin

(
p∗

p∗+p−l
2

)(
N − p∗ − 1

p∗−p+l
2

)

with cmin = max{0, p∗ − l} and cmax = min{k, p∗ + l} , and k is the fan in restriction. For the

computation of the normalization constant, we created a function called compute Z, whose role

is, given the hyperparameter β, the fan-in restriction and the hyper network as input arguments, to

return the number

Z(β,M∗) =
∏
n

Zn(β,M∗)

Additional helper fuctions

Extraction of CPDAG and mixed CPDAG

For the extraction of the CPDAG for the static case, we implemented Chickerings algorithm [10],

by creating a function called CPDAG from DAG. To this end, two inner functions were created-

a function called topological order, which returns the order of its input DAG argument,

and the order edges function, which returns an ordering of the edges of its input DAG argu-

ment. Then, the CPDAG from DAG function classifies the edges as either compelled or reversible,

and thus extracts the CPDAG of its input DAG argument. The CPDAG from DAG function is

utilized for the extraction of the mixed- CPDAG of a mixed network, which is achieved by our

CPDAG from DAG mix function. The algorithm is detailed in subsection 2.2: This function re-

82

quires a valid mixed network as an argument. The static part of its incidence matrix is extracted,

and then extended by two rows and to columns, which correspond to the temporarily added pseu-

doparents. Then, the CPDAG from DAG is called on this extended matrix.

Data generation

Or simulation study was performed on synthetic data, as described in subsection 3.1. To this end,

we created three functions that can create static, dynamic and mixture data from the RAF signalling

pathway.

1 %g e n e r a t e m i x t u r e d a t a from RAF s i g n a l l i n g pathway

2 [D mix , G s t a t , G dyn , G mix]= make mixed data RAF (m) ;

3

4 %g e n e r a t e s t a t i c d a t a from RAF s i g n a l l i n g pathway

5 [D s t a t , G s t a t i c]= m a k e s y n t h e t i c d a t a (m) ;

6

7 %g e n e r a t e dynamic d a t a from RAF s i g n a l l i n g pathway

8 [D dyn , G dynamic]= make data dyn RAF (m) ;

The input argument m indicates the number of observations of our domain. Mixture data is gener-

ated by the make mixed data RAF function, which returns an 11 by m data matrix, D mix, a

mixed network G mix, together with its static and dynamic parts (G stat, G dyn). Pure data is

generated by the make synthetic data (static) and make data dyn RAF (dynamic) func-

tions, which return 11 by m matrices of pure static D stat and pure dynamic D dyn data, together

with the true networks G static and G dynamic respectively.

Model evaluation

As a scoring metric for our models, we use the precision among the highest scoring edges (see

subsection 2.5). To this end, a function called precision was created. This function requires

the true graph, the sample of networks (or their CPDAGs, depending on the model that we employ)

as well as a positive integer x, which indicates the number of highest scoring edges that will be

extracted. Then, the function returns the fraction of these edges that are among the true edges.

The AUROC values can be computed using MATLAB’s perfcurve function.

83

Example

In this example, we illustrate how we can call the MCMC mix function to perform a structure-

MCMC simulation on mixture data:

1 %%%%%%%%%%%%%%%%%EXAMPLE

2 %%%%%%%%%%%%%%%%%%%%%%%%

3

4 %%%%%%%%%% STRUCTURE MCMC ON MIXED DATA

5 i t e r =100000; b u r n s t e p s =50000; t h i n s t e p s =100; %d e t e r m i n e number

o f MCMC s t e p s , burn and t h i n phase

6 m=100; n =22;

7 s e l f l o o p s =1; f a n i n =n ;

8

9 [D , ˜ , ˜ , G]= make mixed data RAF (m) ; %g e n e r a t e s t a t i c d a t a from RAF

s i g n a l l i n g pathway (n =11)

10 G t =CPDAG from DAG mix (G) ; % e x t r a c t CPDAG of t r u e

ne twork G

11 a=n +2; mu 0= z e r o s (1 , n) ; v =1; %i n i t i a l i z e

h y p e r p a r a m e t e r s (u n i n f o r m a t i v e p r i o r)

12 T0 =0.5* eye (n) ;

13

14 G i n i t = z e r o s (n / 2 , n / 2) ;

15 [s a m p l e d n e t s m i x , mix BGE scores]= MCMC mix(G i n i t , G i n i t , i t e r ,

D, T0 , mu 0 , v , a , f a n i n , t h i n s t e p s , b u r n s t e p s , s e l f l o o p s) ;

16

17 s a m p l e s i z e = l e n g t h (mix BGE scores) ; %d e t e r m i n e numder o f

n e t w o r k s i n t h e sample

18

19 CPDAGS mix= z e r o s (n , n / 2 , s a m p l e s i z e) ; %e x t r a c t CPDAGs from a l l

n e t w o r k s i n t h e sample

20 f o r n e t =1 : s a m p l e s i z e

21 CPDAGS mix (: , : , n e t) =CPDAG from DAG mix (s a m p l e d n e t s m i x (: , : , n e t

)) ;

22 end

23

84

24 x =20; %e v a l u a t e model u s i n g p r e c i s i o n f u n c t i o n

25 s c o r e m i x = p r e c i s i o n (G t , CPDAGS mix , x) ;

26 %%%

85

	Introduction
	Methodology
	Bayesian network models
	Static Bayesian networks
	 Dynamic Bayesian networks

	Mixed Bayesian networks
	The Gaussian BGe scoring metric
	Static Bayesian Networks
	Dynamic Bayesian Networks
	Mixed Bayesian networks

	Markov Chain Monte Carlo
	Motivation
	Mathematical Background
	The MCMC scheme and the Metropolis-Hastings algorithm
	MCMC sampling of Bayesian networks

	Posterior probability of edge relation features
	Advanced methods
	The Werhli and Husmeier model
	Introducing node ordering in the Werhli-Husmeier model

	Data
	The RAF signalling pathway
	Psychometric data

	Implementation details
	Synthetic data
	Evaluation of the mixed Bayesian network model
	Comparison between order and structure MCMC
	The coupling scheme

	Psychometric Data

	Results
	Evaluation of structure mix BN
	Order MCMC
	Integration of data sets derived under different conditions
	Psychometric data

	Discussion-conclusion

