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Abstract

Purpose: The Milky Way halo has long dynamical time scales meaning that its components
retain imprints of their history. Galaxies grow hierarchically by accreting smaller structures and
stars in the acquired object will retain similar orbital parameters: the integrals of motion. Clustering
is non-trivial in this space. This thesis develops a data-driven and statistically based method for
finding clusters in integral of motion space, together with evaluating their significance. Furthermore,
we extract subgroups in velocity space and derive a membership probability given the measurement
uncertainties in the underlying data. Methods: Our clustering is based on an exhaustive use of
the single linkage algorithm using four features: energy, angular momentum, angular momentum in
z-direction and circularity. In order to evaluate each candidate cluster we generate an artificial halo
by scrambling the velocity components of our data set. We use Poisson statistics with ∆NCi > 3σi
to determine the significance in overdensity of each cluster compared to the artificial halo and
expected density in the same region. Furthermore, it is common that an accreted structure is divided
into different streams or clumps throughout the galaxy due to phase mixing and the nature of
merger events. We therefore apply the HDBScan algorithm in velocity space to get an indication of
substructure within a cluster. Finally, we determine the probability of a star belonging to a specific
cluster given the measurement uncertainties in the underlying data. We linearly propagate the
errors of the raw data into our clustering features and subsequently model each star and cluster as a
probability density function in four dimensions. The membership probability of a star is indicated
using the Mahalanobis distance between the probability density functions of the star and the cluster
respectively, as a function of the cumulative chi-square distribution with four degrees of freedom.
We apply our methods on the Gaia eDR3 RVS sample within 5 kpc. Results: The majority of stars
in our data set, 55%, are assigned to some significant cluster. The method detects 419 clusters. The
majority of clusters depict clear substructure in velocity space, with clusters being divisible into 1-4
components. The membership probability results in a catalogue with stars close to the mean of a
cluster obtaining high confidence in membership, and stars further away from the mean, or with a
large uncertainty, obtaining a lower probability. Conclusions: The thesis provides a data-driven
and probabilistic way of extracting clusters in integral of motion space, together with analysing
subgroups in velocity space and cluster membership probability given measurement errors in the
underlying data. While the methods can be further polished, some improvements have been made
compared to more heuristic methods of previous works. Further analysis is needed to determine
the precise properties of the detected clusters and their correspondence to previously established
structures.
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1 Introduction

According to the currently accepted Lambda cold dark matter cosmological model, galaxies grow hierarchically
by merging with smaller structures [1]. In the Milky Way, footprints from such events can be recovered in the
stellar halo. These footprints are called stellar streams and represent Galactic fossils which are still orbiting
the Milky Way [2]. In addition to accreted dwarf galaxies, stellar streams can also originate from disrupted
globular clusters, an originally tightly bound collection of stars that over time has dissolved due to gravitational
impact. An overview of the Milky Way can be seen in Figure 1a, where the galactic halo is seen as the low
density spherical ”cloud” surrounding the dense bulge and disc.

Astronomers can identify streams by looking at the orbital properties of the stars, possibly also linked together
with some of their chemical or spatial information. One of the most reliable ways to find stellar streams is to
observe them as clusters in integral of motion space. This space involves specific orbital parameters which are
considered to be conserved in a merger event. In an axisymmetric galaxy such as the Milky Way, the integrals of
motion are the energy of the star, together with the angular momentum along the z-axis of the galaxy plane (see
Figure 1b). Hence, establishing statistical significance in clusters in integral of motion space can help recover
the formation history of the Milky Way and confirm galaxy formation theories in general.

In order to get reliable estimates of the integrals of motion of a star, very precise measurements of its
position, velocity and distance from our solar system are needed. Obtaining such measurements becomes
increasingly difficult the more distant and faint the objects are. Luckily, in the past few years the amount
and quality of data mapping stars in the Milky Way has increased significantly. Especially the Gaia survey -
covering more than a billion stars - has contributed to enhancing the knowledge about our galaxy, its structure
and formation [3–5]. Still, only a minority of stars covered in the Gaia survey include measurements for all
observables needed to accurately compute the required orbital parameters pertaining to the integral of motion
space. In addition to this, much of the available data has large measurement uncertainties, making the reliability
of the results more difficult to assess. Even though a significant amount of research has been done into identify-
ing clusters in integral of motion space, defining clustering criteria as well as handling the uncertainty in the
underlying data has proven to be difficult, and has often been done relying on human input and various heuristics.

To complicate things further, clustering in itself is an ill-defined problem. Falling in the category of un-
supervised machine learning, there is no reference solution or labels to verify the accuracy of your clustering [6].
How do you define a cluster in the first place? And even if it looks like a dense collection of data points, how
can you prove its statistical significance? For the application of finding clusters in integral of motion space,
astronomers have so far relied heavily on manual selection and clustering evaluation. This actually works well in
the most conspicuous cases, as the astronomers know exactly what kind of distributions to expect in certain
regions. Problems with this arise when the dimensionality and amount of data increases, and cases become less
and less distinguishable to the human eye.

(a) (b)

Figure 1: (a) Structural overview of the Milky Way. (b) The Milky Way overlaid with a Cartiesian coordinate
system centered around the sun (adapted from ESA image gallery). Image credit: NASA/JPL-Caltech
and ESA.
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In computing science there is a whole field related to evaluating clustering results [7], and so called internal
evaluation is often applied to assess the fit. This involves various techniques to measure how well separated the
clusters are, as well their density - for example using the Dunn index [8] or Silhouette coefficient [9]. However,
many clustering algorithms and evaluation methods assume that the whole data set should be clustered, or
that every data point belongs to some cluster. This is not necessarily true for our application, as we expect to
sift trough plenty of background noise (incidentally located stars) in our search for dense clusters. Therefore
the method we develop will have to distinguish between noise and significant signal, and we will have to look
further than many of the most common clustering algorithms and evaluation methods.

Furthermore, we have an issue with measurement uncertainties in the underlying data. Say that we are
able to say that a group of data points display significant clustering given their measured values. How can we
be sure that a data point is part of the cluster in case the true values of its energy or angular momentum differ
from the measured ones? The importance of taking the measurement uncertainties into account becomes even
more pertinent when trying to determine what is noise and what is signal in this data set.

The purpose of this thesis is to develop an efficient and precise method to identify clusters in integral of
motion space, together with proving their statistical significance. The work consists of three parts. First,
we present a data-driven and statistically based clustering method which provides an exhaustive detection of
signal in the data set. Second, we extract substructure within an established cluster by looking at velocity
space - this would reveal the different stellar streams originating from the same accreted object. Third, we
present a method to assess cluster membership probability given measurement errors in the underlying data.
We would like to answer the following research questions. How can we develop a clustering method for in-
tegral of motion space whose elements are mathematically based to the largest extent possible? How many
clusters can we detect in the Milky Way halo and what is their statistical significance? What properties do they
display in velocity space? How much do the uncertainties in the underlying data affect the reliability of clustering?

Section 2 describes the background related to topics treated. Section 3 describes the methods we have
used in order to answer our research questions and Section 4 displays the results. Finally, in Section 5 we analyse
the results and discuss possible future work.
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2 Background

This section presents the background necessary to understand which quantities are needed for reliable clustering
in the search for streams, together with their derivations from the available astrometric data. It covers stellar
streams and their properties, the origin of our data set, and how to compute the integrals of motion. Previous
research related to clustering in integral of motion space is covered in order to review existing approaches to the
problem and the possible improvements which can be made.

2.1 Stellar streams

A stellar stream is a once independent globular cluster or dwarf galaxy, which has been ”eaten up” and merged
into a larger galaxy [10]. They often appear on the sky as elongated strings, due to the orbits of the accreted
objects being impacted by tidal forces - hence the name. During a merger event, stars of the orbiting satellite
object are gradually absorbed by the larger galaxy, in a process called tidal disruption. In the Milky Way the
best place to observe streams is in the stellar halo (see Figure 1a). The halo has a sparse distribution of stars,
implying minimal gravitational interaction with nearby objects. This contributes to preserving their dynamics
and trajectories over time. The halo is mainly populated by old stars and the dynamical time scales are long
- the objects here preserve their orbits for a long time, and hence we can observe traces of accretion events
even after billions of years. The stars of a stream move along similar orbits, but do not necessarily move to-
gether as clumps in space, since their spatial distribution has been stretched out by tidal forces and phase mixing.

Streams will also display clustering in velocity space. This could be in the form of string-like structures
or separate subgroups. The latter can occur when a stream wraps around its orbit, in which case two portions
of the same stream could cross each other in space. Since we observe the stream from a single region of the
galaxy, the solar neighbourhood, we do not have data from every location of the orbit of the stream. The data
we have available would then show different subgroups in velocity space for the same stream.

Stellar streams are also expected to display some patterns in the metallicity, which in astronomical terms is the
abundance of all elements heavier than helium. The iron abundance (Fe/H) is a typically dominating measurable.
The metallicity of stars originating from a single globular cluster have a distinctly lower dispersion than an
arbitrary sample from the galaxy, due to originating from the same birth place [11]. The metallicity of a dwarf
galaxy would show a larger dispersion, while supposedly still being narrower than for the full Milky Way. Stars
of a stream may also fall on roughly the same isochrone line when plotted in a color-magnitude diagram, in
case the stars originate from the same generation of star formation. This diagram describes the life cycle of a
group of stars born around the same time, based on their color (corresponding to temperature) and luminosity
(brightness) [12].

It is theorised that the outer halo of the Milky Way might be entirely built up my mergers, whereby this area
should be full of streams. Unfortunately this is very far from our solar system and it is difficult to obtain high
quality data from this region. Furthermore, scientists predict the number of streams in the local stellar halo to
be between 300 and 500, where each stream should contain no more than 5% of the stars [2, 13].

The phase-space in this context consists of six parameters that can uniquely determine the orbit of a star - the
phase space coordinates. These are listed in Table 1. An integral of motion is a function of the phase-space
coordinates that is constant along the orbit. As stars in a stellar stream move along similar orbits, this is the
reason that we expect streams to appear as clusters in integral of motion space. The integral of motion space is
described more closely in the next section.

2.2 Integral of motion space

For stars with orbits around an axisymmetric potential such as the Milky Way, the integrals of motion are the
total energy E and the angular momentum along the z-axis of the galactic coordinate system, perpendicular
to the galaxy plane, denoted Lz. These are orbital parameters which are independent of time if the system is
static and axisymmetric. A third integral of motion may exist, but not for all orbits and galactic potentials, and
it may not have an analytic form [14]. The two aforementioned values can characterise stellar streams, since
they are considered to be conserved in a merger event, and the stars will preserve these similar characteristics in
their orbits after the accretion. In addition to E and Lz, the total angular momentum L is often used as an
additional feature, since it is considered quasi-conserved in a merger event. Similarly one can choose to use
the perpendicular angular momentum L⊥ (magnitude along the x- and y-axes) instead of L, as Lz is already a
component in L. The energy and two features of angular momentum are referred to as the integral of motion space.
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An example of clustering in this space can be seen in Figure 2, where Helmi et. al. performed a simula-
tion of galaxy accretion events, followed by tracing of these events in integral of motion space 12 billion years
later [2]. Figure 2a shows their initial distribution of halo stars in En− Lz space and Figure 2b the same stars
after simulating their dynamics forward in time. As can be seen, the values of the integrals of motion for each
cluster are very similar to the initial distribution even after billions of years of orbiting the galaxy and adding
noise representing observational errors.

Next, we describe how the integrals of motion are calculated based on various raw data products obtained from
astrometric surveys.

With precise instruments it is possible to measure how much a star moves over time with respect to more distant
objects, even though this is impossible to see by the naked eye. This is called the proper motion µ and is often
measured in two directions: right ascension µα and declination µδ. The position of a star on the sky at a certain
moment in time can correspondingly be indicated as right ascension α and declination δ. These measurements
are given in equatorial coordinates relative to the earth, but to study things in the Milky Way the observations
are converted to the Galactic coordinate system (l, b). This is a spherical coordinate system where galactic
longitude l corresponds to the angle between the sun, observed star and the galactic centre, and b indicates the
angle between the disk (b = 0) and the star [15]. The conversion of equatorial to galactic coordinates can be
done by multiplication by a rotation matrix B. Given galactic coordinates the position of the star can be given
in Cartesian coordinates, according to xy

z

 =

d · cos(b) · cos(l)d · cos(b) · sin(l)
d · sin(b)

 (1)

The cartesian coordinates above are expressed with the sun as the origin, and this coordinate system can be
seen in Figure 1b. The coordinates can also be expressed with the galaxy center as origin by translation of the

(a) Initial distribution

(b) Distribution after 12 Gyr, with added observational errors

Figure 2: Initial and final distribution of stars in the integral of motion space according to Helmi’s merger
simulation from 2000 [2]. This work simulated a number of merger events for a stellar halo and
modelled the distribution of the stars in integral of motion space at the time at the merger (a), as well
after 12 billion years (b).
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heliocentric coordinates, depending on your needs. The distance (parsec) to a star can be calculated given the
parallax π, according to

d =
1

π
(2)

The radial velocity vrad describes the component of the velocity vector of a star along the line of sight, and is
measured using a star’s Doppler spectrum (blueshift or redshift) [12]. The 3D space velocity vector of a star
can be calculated given the radial velocity vrad, proper motion µ, and distance d [16]. Here k = 4.74 is a unit
conversion factor and B is a matrix defining the transformation to the Galactic coordinate system.

~v =

vxvy
vz

 = B

 vrad
k · µα · d
k · µδ · d

 (3)

When calculating the integrals of motion we have also added corrections for the motion of the sun and around
the galactic center to the velocity components, assuming VLSR = 232 km/s (the velocity of the Local Standard
of Rest) and a peculiar motion for the Sun of (U�, V�,W�) = (11.1, 12.24, 7.25) km/s [17]. We assume that the
sun is located at a distance of 8.2 kpc from the Galactic Centre.

Yet another coordinate system used is the galactic cylindrical coordinate system: (R,φ, z). R is the dis-
tance from the galactic centre to the star, φ is the angle between the sun, galactic centre and the object, and z is
height compared to the galactic plane, equivalent to the Cartesian z-coordinate. Given cartesian galactocentric
coordinates, R =

√
x2 + y2 and tan(φ) = y/x. Based on this, the energy can be calculated as

E = K + U =
1

2
v2 + Φ(R, z) (4)

Here K is kinetic energy and U the potential energy. The potential energy represents the energy needed to
escape the system that the star is orbiting, and depends on the mass distribution of the structure that is being
orbited. This is expressed as a galactic potential Φ. Since the structure of the Milky way cannot be directly
observed we can only make a guess for this expression, however, there is much support for that we can make
reasonable assumptions. We will model the galactic potential of the Milky Way similarly to some previous
work [18], with a Navarro–Frenk–White profiled halo, Miyamoto-Nagai disk and a Hernquist bulge. These
components can be expressed as

Φ(R, z) = Φhalo + Φdisk + Φbulge

Φhalo(R, z) =
GMhalorsln(1 +

√
(
√
R2 + z2)/rs)

(
√
R2 + z2)(rvir(ln(1 + ch)− ch

1+ch
))

Φdisk(R, z) = − GMdisk√
R2 + (ad +

√
z2 + b2d)

2

Φbulge(R, z) = − GMbulge√
R2 + z2 + cb

(5)

where ad = 6.5 kpc, bd = 0.26 kpc, cb = 0.7 kpc, rs = 21.5 kpc, rvir = 258 kpc, ch=12, G = 4.301 × 10−6,
Mhalo = 1012M�, Mdisk = 9.3× 1010M� and Mbulge = 3.0× 1010M� are constant parameters of the model.

The angular momentum can be derived given the velocity ~v and Cartesian coordinates according to

Lx = yvz − zvy
Ly = zvx − xvz
Lz = xvy − yvx

L⊥ =
√
L2
x + L2

y

L =
√
L2
x + L2

y + L2
z

(6)

These are the equations that have been used to compute the required integrals of motion based on the raw data
measurements. The form of the equations is also of importance when modelling the errors in our clustering
features, as we will do in Section 3.3.
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Table 1: 6D phase space data fields in Gaia eDR3 [5,19]. These components are the basis for computing the
integrals of motion.

Data product Symbol Unit

Right ascension α milliarcsec
Declination δ milliarcsec

Parallax π milliarcsec
Proper motion (right ascension) µα milliarcsec/year

Proper motion (declination) µδ milliarcsec/year
Radial velocity vrad km/s

2.3 Gaia eDR3

The Gaia mission is a European effort to map the stars in the local Milky Way [3]. The Gaia satellite was
launched in 2013 and released its first data in 2016. This work uses data from the Gaia early Data Release 3
(Gaia eDR3), which for this work conveniently was released on the third of December 2020 [5]. The Gaia eDR3
catalogue contains five parameter astrometry (position, parallax and proper motion) for roughly 1.5 billion stars.
A subset of 7.2 million stars contain measurements for radial (line of sight) velocity. While the catalogue also
covers various other data products, this work is concerned with the above mentioned six-dimensional phase
space coordinates. These are listed in Table 1. In the data catalogue, each measurement is associated with an
individual measurement error. Out of the mentioned radial velocity sample (RVS), we make a selection in order
to extract the halo stars - the area where we are interested in finding streams - together with some other quality
cuts on the data. These are further described in Section 3.1.1.

2.4 Related work

Many works have already used clustering in integral of motion space successfully for identifying stellar streams
in the Milky Way halo. In recent years, works using more advanced machine learning to find clusters have also
been published.

As mentioned in Section 2.1, Helmi and de Zeeuw started already in the year 2000 to prepare methods
for when the first data from Gaia would be released 16 years later [2] - specifically, performing a simulation
investigating to what extent merger events can be recovered billions of years after they took place. They let 33
satellite galaxies with known properties be disrupted by a galactic potential similar to the Milky Way, in order
to build up the full galactic stellar halo. They then integrated the orbits of the satellites 12 billion years forward
in time and subsequently created an artificial Gaia catalogue by observing the properties of the stars involved in
the simulation. Observational errors were also added to the measurements based on expected precision levels
(see Figure 2). They then applied the Friends of Friends algorithm in integral of motion space (E,L,Lz) in
order to extract clusters. Given the measurements of the stars observed after 12 billion years, they were able to
recover around 50% of the streams. Some problems that were faced is related to the clustering features: for an
axisymmetric potential only E and Lz are fully conserved, while the total angular momentum L is conserved
only partially. Assuming a (static) galactic potential also influences the calculation of E and may not accurately
reflect the Milky Way. However, even when they performed the clustering using slightly different potentials,
they were able to recover a similar number of streams.

Once the first data release of Gaia had been made, Helmi et al. [20] isolated a sample of halo stars by
combining data from Gaia DR1 and RAVE. They identified significant substructure in velocity space using a
velocity correlation function - measuring the proportion of pairs of stars having a significantly small difference
in their velocity components compared to random sets. Their random sets were realized by shuffling the velocity
components of their data set, and this correlation in velocity vectors is predicted to be an additional byproduct
from merger events. They proceeded to identify overdensities in two versions of integral of motion space (E,Lz)
and (E,Lz, L⊥) using a non-parametric density estimator with a Epanechnikov kernel, and used a maximum
filter to find local maxima in densities. These overdensities were then compared to overdensities found in their
randomized data set. The Watershed algorithm was used to determine the extent of members of a cluster.
Altogether, this resulted in finding nine new substructures, named VelHel-1 to -9.

Koppelman et al. [21] isolated the retrograde halo (stars orbiting in the opposite direction compared to
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the predominant) in order to map its substructures and their properties. Here, a combined dataset from the
surveys Gaia, APOGEE, DR14, LAMOST and RAVE was used, containing 6D phase space data and chemical
information. For mapping out substructures in the retrograde halo, they used HDBSCAN to look for fine-grained
clusters using four parameters: E,Lz and eccentricity, which is a measure of how much the orbit deviates from a
circle, together with metallicity [Fe/H]. This resulted in identifying an additional structure, Thamnos, together
with mapping the properties of previously identified structures in the retrograde halo.

Borsato et al. [22] used DBSCAN to identify clusters in the Gaia DR2 radial velocity sample. Here, they deal
with the measurement errors in the data by modelling each data point as a multivariate Gaussian distribution
with the standard deviation of each feature reflecting the measurement error in the raw data products. They then
run 200 Monte Carlo simulations on this data by sampling from the joint probability distribution representing
the measurements of each star, and subsequently calculate the corresponding integrals of motion. After applying
DBSCAN on each of the 200 subsets, clusters that have less than four stars in common with any other cluster are
removed and considered noise. The remaining stars in the subsets were then clustered with optimised parameters.
Statistical significance of a cluster was established by comparing the density of the observed clusters with the
expected density in a theoretical model of the Milky Way. Finally, they use a colour-magnitude diagram to
verify that the observed clusters have similar physical properties.

An overview of the most important previously found structures in the Milky Way halo can be seen in Figure 3 [23]
(note that the Lz axis in this diagram is flipped compared to the standard used in this thesis). This work by
Naidu et al. made a detailed analysis of the substructure in the stellar halo using metallicities and integrals of
motion and was able to assign more than 95% of their sample to some substructure.

Figure 3: Map of the most important previously found structures in the Milky Way halo, according to [23].

To summarize the existing methods, astronomers have used either manual selection or various clustering
algorithms, together with domain knowledge, in order to extract clusters in integral of motion space. While a
great deal of structure has been detected this way, one of the main problems with manual selection is the difficulty
to precisely motivate the observed structures. When applying a clustering algorithm, the choice of parameters
is a problem. As the parameter choice will inherently dictate the outcome, it becomes impossible to prove
that the outcome of the algorithm is an ideal clustering, as we cannot use physics to argue which parameters
would be ideal for a data set. The result of this is having to heuristically select a strict set of parameters
for the clustering, and there is a risk of missing less obvious but still significant structures. Furthermore, the
space we are operating in has a non-uniform density, with more stars at lower energies and angular momentum
(see Figure 2a). This further complicates parameter choices. Assessing the statistical significance becomes
especially difficult in the case of manual selection, as the human expertise which it is based on is not necessarily
quantifiable. Furthermore, many clustering algorithms work as a black box giving little insight and control of
how the outcome was obtained. This makes the results difficult to interpret and clusters whose origin cannot be
precisely explained invite a certain amount of scepticism. Lastly, the measurement errors of the data are often
ignored, which may have unsettling effects, as the errors may be even more emphasised in a derived quantity.
Furthermore, it may be the case that the uncertainties are so large that it affects the validity of the cluster. One
way to handle the uncertainties is to use repeated stochastic experiments in order to control the robustness of a
clustering, as done in [22]. While this is promising in principle, it is computationally expensive, which becomes
especially troublesome when the amount of data increases. Therefore, we will aim for a more analytic way to
model the uncertainties.
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3 Methods

One of the primary goals of this work has been developing a data-driven algorithm, where the extracted
structures are statistically based and self-explanatory in nature. We also want a method that detects more
than the most obvious clusters, which ideally is able to scan through data set without missing any significant
structure. In this section we explain the methods we have used to achieve this. In Section 3.1 we explain the
quality cuts we have made on the data set, feature selection and data scaling before proceeding to explain the
considerations of the clustering algorithm. We also explain the steps taken in order to prove the statistical
significance of the clusters we find. This is the first objective of the thesis. The second objective is extracting
substructure in velocity space for the established clusters, and the method for this is described in Section 3.2.
Lastly, in Section 3.3 we derive a membership probability for a star belonging to a cluster by modelling the
stars and clusters as probability density functions given their propagated measurement uncertainties.

We will use the following basic notation: xi for a data point in our four-dimensional clustering space. Xi for a
data point modelled as a probability density function given its observed values and propagated uncertainties,
corresponding to the mean µi = xi and covariance matrix Σi. N is the number of stars in the data set after
applying quality cuts, and we will call this selection the halo set. Ci denotes a candidate cluster, which is a
connected component in the halo set for which we want to evaluate the statistical significance. We denote the
number of members of a candidate cluster NCi

.

3.1 Clustering in Integral of Motion space

This section describes the methods for the principal part of the thesis, which is developing a clustering algorithm
to detect significant structures in integral of motion space. Section 3.1.1 describes the quality cuts made on
the Gaia RVS sample together with some basic descriptions of its characteristics. Section 3.1.2 describes how
we make the feature selection and data scaling. Section 3.1.3 describes our choice of clustering algorithm and
how we use it to find all candidate clusters, corresponding to connected components in the data set. Finally, in
Section 3.1.4 we describe how we evaluate the statistical significance of all the candidate clusters we find.

3.1.1 The data set

The data set we use in this work is the Gaia eDR3 radial velocity sample. Before we apply our clustering
algorithm, we need to ensure that the data we enter is of the most premium quality possible. We place the
following quality cuts on data fields in the Gaia catalogue: parallax over error> 5, ruwe < 1.4 and d < 5
kpc, where the distance is calculated according to Equation 2 after correcting the parallaxes for a zero-point
offset of 0.017 mas. These cuts pertain to the reliability of measurements in the Gaia catalogue and have been
done according to recommendations in previous work, e.g. Koppelman et al. [18]. We note that we have 76229
sources with |V − VLSR| > 180 km/s, and we will use this selection as later described in Section 3.1.4.

We extract halo stars by demanding |V − VLSR| > 210 km/s, a common condition which selects stars in
the halo based on their large velocity magnitude compared to the local standard of rest. This cut is not too
conservative, and will allow for some contamination from the thick disk [17, 18]. Additionally, the energy as
calculated by Equation 5 and the galactic potential we define may result in an energy larger than zero (meaning
that the star would have exceeded the escape velocity). We remove the small number of stars this regards from
the data set. The resulting data set contains N = 48880 sources and we will refer to this selection as the halo
set. The halo set is visualized by its Cartesian coordinates in Figure 4. Most sources are in the near vicinity of
the sun (the origin), with a higher density of observations towards the positive x-axis (the galactic centre). Part
of this is interpreted as contamination from the disc. We see a gap in observations around z = 0. This is due to
the Gaia catalogue containing less stars with radial velocities in the Galactic bulge and disk, in combination
with our selection procedure for the halo [24].

3.1.2 Feature selection and scaling

The first consideration at hand is what features to use in the clustering step. Energy E and angular momentum
in z-direction Lz are given, as these are true integrals of motion and better preserved in a merger event. The
total angular momentum L (and similarly the perpendicular angular momentum L⊥) are quasi-preserved and
thus also carry information, even though this signal will be more noisy than the one contained in E and Lz. In
addition, it can be seen that the clusters in general are not expected to have a spherical shape, but rather follow
a slightly outwards bent shape in E − Lz space - look for example at Figure 2. This becomes a problem for
many clustering algorithms, as the most common objective function is to maximize the density in a spherical
region. Looking more closely at the way the structures bend in E − Lz space, this domain is in fact bounded
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(a) (b) (c)

Figure 4: The halo set as visualized in Cartesian coordinates with origin centered around the sun.

by physical laws and for each value for E there is a maximum possible Lz. This funnel-like shape is due to
energy having a quadratic dependency on the total velocity |v| while Lz is linearly depending on vx and vy.
Astronomers call this slightly bent shape and orbital parameter the circularity of a star, and it can be calculated
as a function of E and Lz. We will denote the circularity as η. In addition to the total angular momentum L,
we choose η to be a fourth input feature, as this conveys additional important information about the shape of
the clusters, and will effectively make a distance-based clustering algorithm prioritize a tendency towards the
slightly bent curves of constant circularity. The circularity for each data point has been calculated according to

η = Lz/L
max
z (E) (7)

where Lmaxz (E) is the largest possible Lz for a given energy (corresponding to a circular orbit) [25].

Each feature is linearly scaled to the range of [-1, 1] (except for the circularity, which is already in this
range). We use a fixed reference range for this min-max-scaling in order to fix the relationship between the
unscaled and scaled data coordinate system, which is necessary for being able to compare towards random
reference data sets as we will do in Section 3.1.4. Our equal range in scaling also implies that each of the four
features will be considered equally important in a distance-based clustering algorithm. In order to increase the
weight of a particular feature, it can be scaled to a larger range than the other features. In this case, Lz and E
could be seen as being given slightly more weight than L, as the circularity is directly derived from the two
former, and also positively correlated with Lz. In addition, as the total angular momentum depends partially
on the Lz-component, these two features are correlated. This indirect emphasis on Lz also is supported by
the knowledge that the clusters are expected to have a larger spread in E and L than in Lz [2]. The halo set
visualized in all combinations of clustering features can be seen in Figure 5.

Figure 5: The Gaia eDR3 RVS halo sample after applied quality cuts, visualized for our four clustering features.
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3.1.3 Selection of clustering algorithm

Next, we must choose a clustering algorithm that best fits our purposes. While there is a range of options to
choose from, what we want is maximum control over the process combined with an exhaustive vacuum cleaning
of information in the data set. This is especially important as we are dealing with unsupervised machine learning,
so there is simply no ground truth to verify our findings with, apart from possibly results from simulations.

Our clustering algorithm will have to deal with a potentially large amount of noise in search for signifi-
cant clusters, which immediately rules out traditional clustering algorithms such as K-means or Expectation
Maximization with Gaussian Mixture Models [7], as they assume that all data points should be assigned
to some cluster. Options that also can handle noise would be the Friends-of-Friends algorithm, DBSCAN,
and HDBSCAN [26–28]. The main problem with the former two is that they require specifying some static
parameters, for example the smallest distance between data points of the same cluster. As our halo set consists of
non-uniform density regions, using static parameters for this will only work well on some parts of the data space.
HDBSCAN is able to extract variable density clusters, but in addition to having a bit of a black box tendency
in the application it also requires specifying some parameters. As we want to make as little assumptions as
possible about the properties of the clusters, as well as desiring full control over the clustering process, we look
for a simpler option.

Hierarchical clustering is a group of algorithms that offers many of the requirements that we are demanding [7].
More specifically, agglomerative clustering is a bottom up approach which does not require any parameters.
For each iteration of the algorithm, it merges the two clusters with the smallest distance between each other,
with each data point initially being considered a singleton cluster. The method aligns well with our desire to
approach our clustering from a perspective of probability theory, since under the hypothesis that the most likely
clusters are the groups of data points with the smallest distance between each other, the algorithm provides a
hierarchy of the most likely clusters in an exhaustive manner.

Hierarchical clustering can be based on various ways to measure the distance between two clusters. Av-
erage linkage measures the average distance between the data points of the clusters, and Ward linkage measures
the distance such that the within-cluster variance is minimized. However, both of these assume isotropic cluster
shapes, and in our case we would have to apply some advanced transformations to the data space before we could
expect spherical clusters. The single linkage method, however, considers the distance between two clusters to be
the shortest distance between any two data points belonging to the first and second cluster respectively. This
way it allows for any cluster shape and is also computationally more efficient than other linkage methods, as it
is only necessary to compute the distance matrix of the data points once, giving the algorithm a computational
and memory complexity in O(N2). In this work we use the standard Euclidean distance metric to compute the
distances between the data points.

The single linkage algorithm is also closely related to graph theory, as it is equivalent to finding the min-
imum spanning tree in a graph [29]. The minimum spanning tree consists of the set of edges between nodes in a
graph for which the total weight of the edges is minimized, and each node is included. In our case, the nodes
are our data points and the edges the distance between them.

The single linkage algorithm outputs a so called linkage matrix, giving information about which data points
or clusters have been merged at each step of the algorithm, and the merge cost or distance between the two
clusters. These steps will indicate iteratively larger connected components [29]. This is a great thing, since
it means that the algorithm will iteratively merge groups of data points into clusters that are most likely to
belong to the same structure, and as the merge cost increases, it is less and less likely that the merging of two
clusters is desirable. The algorithm performs N − 1 steps - it will keep going until every data point has been
assigned to a cluster, or each connected component has been connected into the minimum spanning tree. By
this process we obtain N − 1 potential clusters encoded in the linkage matrix returned by the algorithm, each
given by the the connected components that were merged at the corresponding step of the algorithm. This is
another great thing, as we can now reverse engineer the linkage matrix and examine any candidate cluster, or
connected component, for a quality criterion.

The basic idea is, test all N − 1 candidate clusters included in the linkage matrix and evaluate them by
a cluster quality criterion. The clusters that examine statistical significance according to the selected criterion
are accepted. This way or method will also be able to handle noise, as the data points that do not belong to any
cluster displaying statistical significance will be discarded. The criterion for statistical significance is described
in the next subsection.
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3.1.4 Evaluating the statistical significance

The single linkage algorithm provides an efficient way to examine every possible cluster of the data set in
an efficient manner, since the hierarchical way of building clusters bottom up provides a list of all connected
components in the data set being connected by edges shorter than or equal to the nth smallest edge length at
step n. In this way, it maximizes the probability of obtaining the most closely connected components.

In order to examine the quality of each candidate cluster included in the linkage matrix, we need a clus-
ter evaluation metric. As mentioned, a challenge is that our 4D clustering space has a higher density of
stars with low energy and angular momentum than regions with higher energy - see the funnel-like shape in
Figure 2. This makes it less straightforward to evaluate and compare clusters in different regions with a standard
cluster evaluation metric such as the Silhouette Coefficient, as clusters in different regions will have different
characteristics. Hence, we would like a method which takes the expected density of a region into account,
combined with a metric which evaluates the quality of the clusters. In order to assess the expected density of a
region, we need a reference frame for what a galaxy halo without structure would look like. In order to do this,
we use the given data set but calculate the integrals of motion using random permutations of the vy and vz
components. This way we obtain an artificial data set which has similar properties to the observed data, but
where the correlations in the velocity components and hence structure in the integrals of motion space is broken
up. The same method to generate a random reference data set was used in [20]. This method provides one of the
most realistic non-structured distributions of stars in a galaxy halo that we can currently realistically achieve,
since assuming a theoretical model of a galaxy and generating a halo based on this may lead to subtle issues
related to the assumptions of the theoretical model. To generate each artificial data set we use a sample which
is slightly larger than the selection we have used for our halo set, in order to obtain enough halo-qualifying
stars in each artificial set. We therefore scramble the velocity components of all stars with |V − VLSR| > 180
km/s (so the halo, but also a little bit more - 76229 sources in total). We then recompute the integrals of
motion of the resulting data points, before randomly selecting N stars out of the set of artificial stars ending up
with |V − VLSR| > 210 km/s. We generate Nart = 100 artificial data sets as reference. An example of these
artificial data sets used is displayed in Figure 6, where an arbitrarily chosen realization is visualized. Comparing
to Figure 5 we see that the two data sets are very similar in their characteristics, but that the by eye visible
substructure in the halo set has been diluted.

Next, we examine each candidate cluster which is included in the linkage matrix resulting from applying the
single linkage algorithm to our halo set. We want to statistically either prove or reject that the candidate cluster
that we are examining is significant, or with other words, not just a random collection of stars close to each
other. We can assess this by first computing the expected density of stars in a region, and compare the difference
between the observed and the expected count, while also taking the statistical error of these quantities into
account.

We determine the expected number of stars in a region by defining an elliptical boundary around each

Figure 6: Artificial dataset number two out of Nart = 100, visualized in all subspaces of our clustering features.
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candidate cluster Ci. This is achieved by applying principal component analysis (PCA) to the set of data
points {xCi} belonging to Ci. PCA approximates the shape of the cluster by computing the set of eigenvectors
{e} = [~e1 ~e2 ~e3 ~e4]T and corresponding eigenvalues λ = [λ1, λ2, λ3, λ4]T of the covariance matrix of Ci [30].
These give the direction and magnitude of the principal components of the data distribution of the cluster,
where first principal component corresponds to the direction of maximum variance in the distribution, together
with its magnitude. Each principal component is orthogonal to each other. If we transform the data points of
Ci to PCA-space Pi by mapping them according to

pj = (xCi
− µCi

)T e (8)

we obtain a mean-centred and rotated version of the data where the axes of the coordinate system correspond
to each principal component. Here µCi

is the mean of all data points in Ci. We can relate this to the standard
equation of an ellipse, since the data points in Pi are centered around the origin and the direction of maximum
variance is aligned with each coordinate axis. The standard equation of an n-dimensional ellipsoid can be seen
below, where ai denotes the length of each axis [31].

n∑
i=1

x2
i

a2
i

= 1 (9)

Since the variance along each principal component of our cluster is given by the eigenvalues, we can define the
length of each axis of the ellipse based on this, selecting

ai = 2
√
λi (10)

corresponding to two standard deviations of the distribution along ai, or covering approximately 95% of the data
points along this axis. We can also consider a larger or smaller value for the length of the axis, but selecting
two standard deviations provides a tightly fitting boundary around the data while neither being too strict nor
including too much empty space. Now we can compute the expected count in the region of a candidate cluster
Ci by analysing its PCA transformation, and mapping the data of the artificial data set to the PCA-space
defined by Ci. Then, the expected count is the number of data points satisfying

p2
1

(2
√
λ1)2

+
p2

2

(2
√
λ2)2

+
p2

3

(2
√
λ3)2

+
p2

4

(2
√
λ4)2

≤ 1 (11)

where p denotes a data point from the artificial set having been mapped to PCA-space according to Equation 8.
We do not have to apply the PCA-transformation to all stars in the artificial data set for each Ci, it is enough
to inspect the near vicinity of each cluster, so we reduce the amount of mappings necessary by only inspecting a
rectangular neighbourhood around Ci.

We can easily compute the standard deviation σartCi
of the counts that we find in each artificial data set

in the region of a candidate cluster Ci. As we have generated 100 artificial halos, σartCi
is the standard deviation

of the of the counts that we find in a region for each of the artificial halos, and should not be confused with
any standard deviation obtained from our (real) halo set. The former is equivalent to the statistical error on
the region count of the artificial data sets, earti = σartCi

. If we treat the observed data as having Poissonian

properties, the statistical error on the observed cluster count becomes ereali =
√
NCi , as the variance is equal to

the mean in a Poisson distribution [32]. The statistical significance of a cluster can then be obtained by the
difference between the observed and expected count, divided over the sum of the squared errors. If we choose
the significance level to be 3σ, this becomes

NCi
−Nart

Ci
> 3σi (12)

σi =
√

(ereali )2 + (earti )2 (13)

or similarly,
NCi −Nart

Ci√
NCi

+ (σartCi
)2
> 3 (14)

This can be interpreted as how many standard deviations the real and the artificial counts differ from each other.
It can be noted that Nart

Ci
is the average count in the artificial data sets.
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Hence, all candidate clusters that satisfy Equation 12 are accepted as significant structures. As the link-
age matrix contains hierarchically overlapping components, we need to make a decision on how to treat
overlapping significant structures. The linkage matrix is likely to contain signal starting from the core of a
significant cluster, and each after following merge of the algorithm. We therefore select the largest cluster which
is significant when extracting cluster labels for the data set. In the worst case scenario we obtain some noise
in the clusters by using this method, as a dense core together with a less dense surrounding might still result
in a statistically significant overdensity compared to a semi-uniform background. However, we can detect and
discard this potential noise by investigating the properties of each cluster further - this is described in the next
subsection. Another way to approach the overlapping subclusters problem would be to stop merging structures
when Equation 14 reaches its maximum value, but there are issues with this method, as there is no guarantee
that this maximum will occur at the ”real” cluster boundary.

Furthermore, to save computation time, we only investigate candidate clusters which contain less than 20% of
all data points. This is motivated by that each stream in the local stellar halo is predicted to contain less than
5% of the stars [13], and considering this prediction investigating clusters smaller than 20% of the full data set
is on the safe side. We also demand at least five members in a candidate cluster to investigate it further, but
due to our criterion for statistical significance, the smallest number of members possible in an accepted cluster
is 12. This is since we assign any expected normalized count of a region Nart

Ci
smaller than one the value one,

and same goes for the standard deviation σartCi
. Therefore NCi = 12 is the smallest integer which can satisfy

Equation 14 with the smallest possible values for the expected count plugged in: (NCi − 1)/
√
NCi + 12 > 3.

The parameter choices covered in this paragraph can be changed according to the desired needs, for example
the significance level in Equation 12.

The result of the methodology described above is a flat label assignment to the data set, where each unique
label denotes the largest significant cluster that a data point belongs to, and data points not belonging to any
significant structure are labelled as noise.
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3.2 Extracting subgroups in velocity space

Velocity space, or more specifically, the vφ, vR and vz components of a cluster can give us more clues about its
validity and properties. In velocity space we also expect stars of the same cluster to be clumped together, but
possibly broken up into many subgroups. These could be in the shape of elongated strings or dense clumps, as a
result of tidal effect and phase mixing. Since the velocity components indicate the direction of movement of
the stars, while not necessarily being in the same phase of the orbit, we are able to see more versatile patterns
in velocity space compared to the constant integrals of motion. Hence, we want to extract substructure in
each cluster that we have determined to be significant, which could represent groups originating from the same
merger event but in different phases of their orbits.

We approach this by applying another round of clustering on each cluster which has been established as
statistically significant. Thankfully each data set representing a cluster in velocity space is far smaller and less
complex than our original halo set where we first needed to sort out what is significant and what is noise. An
example of what we can expect in velocity space can be seen in Figure 7. Here wee see the same simulation by
Helmi et al. as in Figure 2, with the distribution of the clusters depicted in velocity space. The original clusters
can be seen in the top panel, with the clusters recovered in their simulation in the bottom. As the figure shows,
some clusters consist of a single string, or bratwurst shaped structure, while others consist of distinct subgroups
with for example opposite signs in vR. Hence, our goal with this method is to extract labels for these distinct
subgroups. Some considerations to take into account is that our clusters may contain some noise due to the
way that we extract flat cluster labels, and that the clusters may have various shapes, sizes, and number of
subgroups in velocity space. Much like in integral of motion space, we are not exactly sure of the shape and
characteristics of the subgroups in this space. Hence, we need a clustering algorithm that is able to extract the
most likely subgroups in the data while handling some possible noise.

Figure 7: Halo star distribution in velocity space according to the simulation by Helmi et al. [2], corresponding
to the clusters in integral of motion space in Figure 2.

We select the HDBSCAN algorithm to perform the clustering in velocity space, as it is both able to extract
clusters of various shapes and sizes and sift out possible noise. HDBSCAN stands for Hierarchical Density-Based
Spatial Clustering of Applications with Noise, and extends the DBSCAN algorithm by providing a hierarchical
approach to extracting clusters [28]. HDBSCAN is closely related to the DBSCAN algorithm, but while the
latter relies on fixed parameters for the neighbourhood radius and minimum number of neighbours to distinguish
between clusters and noise, HDBSCAN is a form of robust single linkage algorithm which extracts stable clusters
from the cluster hierarchy tree with an Excess of Mass algorithm. The reason we find it suitable in velocity space
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Table 2: Parameters used for applying HDBSCAN in velocity space.

Parameter Value Function

min cluster size min(10,
√
NC) Smallest number of members in a cluster

min samples min(3, 4
√
NC) Smallest neighbourhood for a core point

allow single cluster True Singleton cluster allowed as output

but not the best choice in integral of motion space is mainly related to its black box character, decreasing the
explainability of the extracted clusters, and having to specify parameters. However, in velocity space we have
already established the statistical significance of each cluster and mainly want an indication of possible subgroups.

HDBSCAN works as follows. First, it defines the distance between two data points a and b as their mu-
tual reachability distance. This is defined as the maximum of the Euclidean distance between the datapoints,
the distance to the kth neighbour of a, and the distance to the kth neighbour of b. This way, outliers are
penalized since their mutual reachability distance will be high. A minimum spanning tree (corresponding to
applying single linkage) can then be formed based on the distance matrix defined by the mutual reachability. It
then proceeds to analyse the resulting clustering hierarchy tree. The parameter min cluster size denotes the
smallest group of data points that the algorithm will accept as a cluster in this context. Furthermore, a data
point is a core point if it has at least min samples in its neighbourhood given some specific distance threshold,
and is otherwise either a border point belonging to a cluster, or noise. Increasing this parameter will result in
the algorithm being more likely to classify outliers as noise. When analysing the cluster hierarchy, the algorithm
distinguishes between boundary points falling out of a cluster and a parent cluster splitting into two, based
on the min cluster size. The stability of each candidate cluster is evaluated over varying values for distance
threshold and integrating the result. The clusters that stay the most stable when varying the distance threshold
are chosen as the best clusters.

We apply HBDSCAN directly to the vR, vφ and vz components of each cluster, without scaling, as the
range for these values are already of the same magnitude. The parameter choices we make are listed in Table 2.
We choose 10 as smallest cluster size and 3 as value for min samples, as the former is a sufficient number of
stars to be an interesting subgroup for astronomers, and we do not want to be too strict on noise classification
with the latter. We also allow for a single cluster to be returned as output in addition to noise, as this is not
allowed by default in HDBSCAN. Since we have some clusters that are as small as 12 members, while still

possibly containing distinct components, we allow min cluster size to be
√
NC and min samples

√√
NC in

case we have a small cluster. The value for min cluster size in this case reflects the Poissonian error on NC ,
and the value for min samples the Poissonian error on the min cluster size.

The output of this is an additional column in our halo catalogue, indicating subgroup membership. The
algorithm also labels data points that do not qualify as either a core or border point, being particularly far from
the established clusters, as possible noise.
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3.3 Assigning cluster membership probability

Once we have established significant clusters, we would like to obtain an estimate of the probability that a star
belongs to a cluster given the, often significant, measurement errors in the raw data. Should we not already
have taken these uncertainties into account earlier, when applying our clustering algorithm to our data sample?
Not necessarily. The reason for this is that each measurement uncertainty can be seen as a statistical dispersion
expressed in terms of a standard deviation around the mean [19]. Therefore, maximum likelihood estimation is
applicable, and the most likely values are in fact the observed values. Therefore it would be possible to take the
measurement errors into account when doing the clustering step, but it would add greatly to the complexity,
while not necessarily providing much more accurate results.

Since we can interpret each raw measurement as a having a Gaussian distribution, this means that each
quantity derived based on the raw measurements and their uncertainties also will have some theoretical proba-
bility distribution. Describing the nature of the error in a derived quantity is called error propagation and we
will use this to model each star as a probability density function in our clustering space. Based on this, we can
also model a cluster as the probability density function of all contributing members. We can then assess the
membership probability based on how well the probability density of a star fits to the cluster distribution. The
details of how we implement this is described below.

3.3.1 Error propagation

In order to be able to indicate the uncertainty for each feature in integral of motion space, we need to propagate
the errors in the raw data. Ideally this would be done by deriving exact analytical expressions for the distribution
of errors in the derived space, but unfortunately this is only feasible for simple expressions [33]. For non-linear
transformations, an often used method to propagate errors is using a first-order Taylor expansion about the
point x = µx. Then, the covariance matrix Σy of the transformed variable y = f(x) can be obtained based on
the covariance matrix Σx and its Jacobian Jx, according to [16,34]

Σy = JxΣxJ
T
x (15)

The Jacobian Jx is a matrix defining all first order partial derivatives of the covariance matrix. The above
equation can be applied independently of how many input and output variables the transformation consists of.

We propagate the errors for our clustering features E,L,Lz and η. For each star this gives us the covari-
ance matrix of its four features Σi, which we use together with the previously computed values for our data
points xi, the latter being equivalent to the mean µi around which the Taylor expansion was made.

Even though this is an approximation and it assumes that the error distribution on the dependent vari-
able is Gaussian (which is not the case for non-linear transformations), it is a good approximation when the error
in x is small [34]. It also enables us to model the stars as four-dimensional Gaussians instead of more complicated
distributions, which becomes extremely useful when proceeding to analyse the membership probabilities.

3.3.2 Clusters as probability density functions

Based on the propagated uncertainties and their covariances, we can now model each star as a probability
density function in the form of a multivariate Gaussian X, with mean µ and covariance matrix Σ [35].

X ∼ N (µ,Σ) (16)

µ =
[
E L Lz η

]T
(17)

Σ =


σ2
E σ(E,L) σ(E,Lz) σ(E,η)

σ(E,L) σ2
L σ(L,Lz) σ(L,η)

σ(E,Lz) σ(L,Lz) σ2
Lz

σ(Lz,η)

σ(E,η) σ(L,η) σ(Lz,η) σ2
η

 (18)

The probability density of a multivariate Gaussian evaluated at point x is determined by

N (x | µ,Σ) = (2π)d/2|Σ|−1/2e(− 1
2 (x−µ)T Σ−1(x−µ)) (19)
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We can analytically describe each cluster as a Gaussian multivariate distribution based on its member stars and
their uncertainties. While Expectaton Maximization for Gaussian Mixture Models (EM-GMM) is a well known
method to estimate the parameters of a Gaussian distribution given a set of data points [7], it is also possible to
perform this expectation maximisation for the case where each data point is associated with an uncertainty.
This is called extreme deconvolution [36] and extends traditional GMM by modelling each observed data point
wi as a noisy projection of their true values vi: wi = vi + noise, where the noise is drawn from the known
covariance matrix Σi associated with the uncertainty of wi. The extreme deconvolution algorithm maximizes
the objective function φ, being the log-likelihood of each data point wi belonging to the model given the model
parameters θ (in this case being the cluster mean µC and covariance matrix ΣC). Fitting a single Gaussian
component per cluster, the objective function becomes

φ =
∑
i

ln(p(wi | θ)) =
∑
i

ln(N ( wi | µC , ΣC)) (20)

Evaluating the probability density of wi against the cluster distribution yields [36]

p(wi | θ) = N (wi | µC , ΣC + Σwi
) (21)

Applying an iterative expectation maximization algorithm using the objective function φ will converge to
the Gaussian multivariate distribution N (µC ,ΣC) of each cluster C given the uncertainties in the underlying
data [36].

3.3.3 Evaluating membership probability

As we now have an expression for probability density function of each cluster, we can obtain estimates for how
well each participating data point fits to this distribution by looking at its distance to the cluster mean in
combination with the covariance of both distributions. More specifically, we obtain the likelihood of each Xi

belonging to the cluster distribution N (µC ,ΣC) by Equation 21, which can be expressed as

p(xi | θ) = N (xi | µC , ΣC + Σxi
) (22)

for each observed data point xi belonging to cluster C. This is equivalent to the probability density of N (µC ,ΣC)
evaluated at Xi. The likelihood represents the relative probability that the cluster distribution takes the value Xi,
and integrating over the full distribution gives the value 1. While the relative likelihood provides a value which
enables comparison of how well various data points fit the cluster distribution, it does not give an immediately
interpretable indication of membership probability. The value of the likelihood at a certain Euclidean distance
is also dependent on the shape of the distribution. A wide distribution gives a lower likelihood at a constant
Euclidean distance than a highly concentrated one - this is evident for example when comparing a one-dimensional
normal distribution with a large standard deviation to a normal distribution with a small standard deviation.
Therefore we would like to relate the likelihood to a more independent measure of membership probability.
Fortunately, given a specific dimensionality, a Gaussian probability density function will have constant likelihood
at ellipsoids of constant Mahalanobis distance D [37, 38]. This quantity measures distance in terms of variance
along the axis between the data point x and mean of the distribution µ, and is defined as

D =
√

(x− µ)TΣ−1(x− µ) (23)

Where Σ−1 is the inverse of the covariance matrix describing the shape of the distribution. The Mahalanobis
distance can be thought of as the distance to the mean, in terms of standard deviations, after the distribution
has been normalized to spherical covariance. In 1D, the Mahalanobis distance is equivalent to the number of
standard deviations a data point is from the mean. We can compute the Mahalanobis distance between the
probability density Xi and the cluster distribution given the likelihood obtained from Equation 22, and noting
that the likelihood of a specific n-dimensional multivariate normal distribution is uniquely determined by the
Mahalanobis distance. Relating to Equation 19 and Equation 23, a Gaussian probability density function can
be expressed in terms of Mahalanobis distance as

N (x | µ,Σ) = (2π)n/2|Σ|−1/2e(− 1
2D

2) (24)

The squared Mahalanobis distance can then be solved out as

D2 = −2(ln(N (x | µ,Σ)) + ln((2π)n/2) +
√
ln|Σ|) (25)

where the likelihood for the data point in question, N (x | µ,Σ), is the value obtained by Equation 22.
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Furthermore, for a spherical Gaussian distribution, the sum of squares of its n independent and identically
distributed random variables follows a pre-determined distribution: the chi-square distribution with n degrees
of freedom χ2

n. The chi-square distribution with n = 4 is visualized in Figure 8. We see the probability
density function fn(x) in 8a, and its cumulative distribution function Fn(x) in 8b. As the Mahalanobis distance
represents the distance to the mean of a distribution after the distribution has been normalized to spherical
covariance, the squared Mahalanobis distance D2 follows a chi-square distribution.

We can use the cumulative chi-square distribution to indirectly integrate over our cluster probability den-
sity, and determine the proportion of the distribution that is within a certain Mahalanobis distance, and how
much falls outside. For each star, we indicate the proportion of the cluster distribution that falls further away
than the Mahalanobis distance of the star according to

p(x ≥ D2) = 1−
∫ D2

0

fn(x) dx = 1− Fn(D2) (26)

Here the number of degrees of freedom is n = 4, as our data points are four-dimensional. Based on this we
can choose to discard e.g. the 5% furthest away data points by choosing 1− Fn(D2) < 0.05 - treating them as
outliers - and accepting the rest of the data points as the 95% most likely cluster members. As can be seen in
Figure 8b, this corresponds to the datapoints with a squared Mahalanobis distance of 9.5 or larger.
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Figure 8: Probability density of the chi-square distribution with four degrees of freedom fn(x) (a) and its
cumulative distribution function Fn(x) (b). This chi-square distribution in this case describes the
theoretical distribution of data points of a spherical four-dimensional Gaussian distribution as a
function of their squared distance to the mean. The blue shaded regions represent common confidence
intervals, corresponding to squared Mahalanobis distances covering 68%, 95%, 99.7% and 99.9% of the
distribution. It can be noted that 95% of the distribution falls within a squared Mahalanobis distance
of approximately 9.5.
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3.4 Experiment

Here we summarize the methods described in the sections above and how they were used to obtain the results
of Section 4. We impose quality cuts on the Gaia radial velocity sample and select halo stars according to
V − VLSR > 210, giving N = 48880 sources. We apply single linkage clustering in four dimensions: E,Lz, L
and η (circularity), with features scaled to a range of [−1, 1]. We generate 100 artificial data sets simulating a
halo without structure by scrambling the velocity components of the quality filtered radial velocity sample and
recalculating the four clustering features. We then investigate each candidate cluster (or connected component)
included in the linkage matrix returned by the single linkage algorithm, and compute the expected density for
each cluster. The expected density is defined as the normalized count in the artificial data sets in the same
region as the candidate cluster. We consider an elliptical cluster boundary defined by the principal components
of each candidate cluster with axis lengths equalling two standard deviations of spread. If the density in this
region is more than three standard deviations away from the mean expected density of the artificial data sets,
according to Equation 12, we accept this as a significant cluster.

We then extract subgroups in velocity space (vR, vφ, vz) by applying HDBSCAN separately on each clus-
ter, with the parameters listed in Table 2. The result of this is another column indicating the labels for our
substructures, where possible noise is also flagged.

Finally, we obtain an indication of membership probability for each star in a cluster by modelling the star as a
multivariate Gaussian given their linearly propagated measurement uncertainties. By modelling the uncertainty
in each star as a probability density function like this we can fit a multivariate Gaussian representing the cluster
using an extreme deconvolution algorithm [36]. For each star, we then calculate how much of the probability
density function of the cluster is within (or outside) the Mahalanobis distance of the probability density of the
star by relating it to the cumulative chi-square distribution.

We use Python and the following libraries to implement our method in code: Vaex, for efficient handling
of the data set, data exploration and error propagation [39]. Scipy, for implementation of the single linkage
algorithm and chi-square distribution [40]. HDBSCAN for extracting substructure in velocity space [41]. The
XDGMM Python wrapper for computing membership probabilities [42,43]. We also use NumPy and Matplotlib
for utility functions [44,45].
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Table 3: Summary statistics of significant clusters extracted in Gaia eDR3.

Statistic Value

Clusters 419
Stars assigned to some cluster 26677

Members (range) [12, 9987]
Members (average and standard deviation) 63.8± 496.6

Members (median) 24
Members (mode) 16

4 Results

Here we present the results obtained by applying the methods described in Section 3. The cluster and subgroup
labels and the associated membership probabilities are available as a catalogue provided as additional material.

4.1 Integral of motion space

We extract 419 significant clusters in integral of motion space. Summary statistics for these are presented in
Table 3. 55% of the stars, 26677 out of 48880, have been assigned to some significant structure. The number of
members in a cluster ranges between 12 and 9987 with mean 63.8, while it is possible that the largest cluster in
fact comprises multiple streams so close to each other that the algorithm is unable to distinguish between them.
We see a histogram of the number of members in each cluster in Figure 9. As we only have six clusters larger
than 200 members we truncate the histogram at the seventh largest cluster, having 182 members. We note that
the vast majority of clusters (85%) have less than 50 members, with the median being 24 and the mode 16.

Figure 9: Histogram of the number of members in the clusters. The histogram is truncated for readability, and
we have six clusters that exceed the range of the histogram, with 182, 225, 249, 379, 425, 1970, and
9987 members respectively.

The clusters are plotted for all combinations of our clustering features in Figure 10. Clusters can be found all
over the data space. As structures are overlapping and it becomes quite a clutter to visualize all clusters in one
figure, we plot the clusters over 15 subpanels in Figure 11. Here we see 27 or 28 clusters per subpanel in E −Lz
space. We plot the same clusters in Lz − L⊥ space in Figure 12. We do not use the perpendicular angular
momentum L⊥ as a clustering feature, but some structures are known to have a distinct shape in this space,
such as the Helmi stream [46]. The Helmi stream can be seen as the red brown cluster in the third panel in
the second row around L⊥ = 2000 and Lz = 1000. The algorithm picks up on the Helmi stream as a single
cluster, while it is possible that it consists of two substructures, as illustrated by the small gap between the
left and right part of the cluster [18]. The same clusters are plotted in velocity space in Figure 13, where the
shape of the structure we see aligns well with what is expected according to simulations [2, 47]. In the next
section we look more closely into what subgroups exist for each cluster in velocity space. Finally, in Figure 14
we plot the distribution of stars not in assigned to any cluster. It is interesting to assess the level of smoothness
in this distribution, but purely by the naked eye it is not quite possible to determine whether there may exist
undetected clumps.
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Figure 10: Statistically significant clusters plotted for each subspace. Please note that as we obtain 419 significant
clusters, the colourmap above presents some clusters in the same or almost the same nuance.

Figure 11: Statistically significant clusters in E − Lz space, with 27-28 clusters per subpanel.
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Figure 12: Statistically significant clusters in Lz − L⊥ space, with 27-28 clusters per subpanel.

Figure 13: Statistically significant clusters in velocity space, with 27-28 clusters per subpanel.
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Figure 14: The distribution of stars not assigned to any cluster plotted for each subspace.
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Table 4: Summary statistics on subgroups extracted in velocity space.

Statistic Value

Total number of subgroups 799
Number of subgroups per cluster [1, 4]

Average number of subgroups per cluster 1.9
Number of clusters with one subgroups 132
Number of clusters with two subgroups 207

Number of clusters with three subgroups 67
Number of clusters with four subgroups 13

4.2 Velocity space

Here we present the subgroups that HDBSCAN separates our clusters into in velocity space. Summary statistics
on this is presented in Table 4. We obtain 799 subgroups in velocity space, meaning that each cluster is split
into 1.9 subgroups on average. We find between one and four subgroups for each cluster, two being the most
frequent with 207 subgroups, and four the least common with 13 occurrences. As we have 419 clusters in integral
of motion space, we do not display plots of the subgroups in velocity space for all of them, but select five that
display some representative properties. These are displayed in Figure 15. The subpanels depict the following:
cluster number 29 is the largest cluster that we extract in integral of motion space and this is determined to be
a single group in velocity space. Possible noise in the outskirts of the distribution is displayed in grey. Cluster
number 80 is one of the clusters split into three subgroups. Cluster number 274 is the second largest cluster
containing four subgroups. Cluster 382 displays two particularly distinct clumps in vR − vφ. Finally, cluster
number 413 is a single dense component in vφ-vz but displays an interesting circular structure in vR-vz.

Furthermore we compute the dispersion in the principal components after applying PCA to the Cartesian
velocity components of each cluster and subgroup. A small dispersion in these velocity components could
indicate a particularly narrow and interesting stream. Here we only consider a volume of 2 kpc from the sun as
otherwise large gradients in the velocities might inflate the dispersions. We compute the dispersion for clusters
or subgroups with more than three members. Figure 16 displays histograms of these standard deviations for
each cluster and subgroup within 2 kpc having at least four members. We clearly see lower dispersions within
the subgroups, which is to be expected, as the signal that can be picked up in the latter case will be diluted if
the cluster contains more than one subgroup in velocity space. We can see that there is a remarkable number of
subgroups with an extremely small dispersion in the second principal component: 17 with a dispersion less than
1 km/s and 100 where the dispersion is smaller than 5 km/s. These groups are surely of interest when looking
for streams with especially clean orbits.
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(a) Cluster number 29 (9987 members, one subgroup).

(b) Cluster number 80 (73 members, three subgroups).

(c) Cluster number 274 (47 members, four subgroups).

(d) Cluster number 382 (37 members, two subgroups).

(e) Cluster number 413 (182 members, one subgroup).

Figure 15: Subgroups in velocity space for a selection of clusters. Possible noise is displayed in grey.

25



(a) Clusters

(b) Subgroups

Figure 16: Histograms of the standard deviation (km/s) along each principal component after applying PCA to
the Cartesian velocity components of (a) each cluster and (b) each subgroup in velocity space. Here
we only consider the stars within 2 kpc and compute the standard deviation if a cluster or subgroup
has at least four members within this distance.
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4.3 Membership probability

In Figure 17 we see the same clusters as presented in Figure 15, now illustrated by their uncertainties in all
subspaces. The probability density of each data point is modelled by an ellipse with axis lengths equalling one
standard deviation of spread, with the mean marked as a circle with black borders. The cluster distribution as
fitted by the XDGMM algorithm is marked in light blue, for a region covering two standard deviations of spread
along each principal axis. As can be seen, the uncertainties in each individual star are highly correlated in the
subspaces, to the extent that the length of the minor axis is almost zero, forming lines in the plots instead of
ellipses. The intensity of the color of a circle indicates the value obtained for membership probability, with
darker blue indicating higher membership probability and lighter blue lower membership probability. As we can
see, the high probability data points are mostly close to the mean of the cluster distribution, having smaller
uncertainties, while lower probability data points lie towards the outer regions of the confidence ellipses.

We can choose a significance level when deciding how strict we want to be when trying to detect outliers,
according to the methods we describe in Section 3.3. If we choose the significance level to be 0.05, or choosing
to consider the 5% furthest away data points as outliers, we discard 709 stars for cluster 29, 9 for cluster 80,
3 for cluster 274, 3 for cluster 382 and 13 for cluster 413. As this corresponds to 7%, 12%, 6%, 8% and 7% of
the cluster members respectively for each cluster, we can see that these numbers are somewhat larger than the
expected 5%. This may hint at that our clusters cannot be perfectly approximated with a multivariate Gaussian
distribution. Please note that the outliers here were computed by consulting the chi-square distribution with
four degrees of freedom and should not be confused with that we choose to visualize the cluster distribution
with ellipses covering two standard deviations of spread along each axis in Figure 17.

We can evaluate the viability of the membership probability method by comparing the values obtained to the
outliers as determined by HDBSCAN in Section 4.2. Computing the Pearson correlation coefficient between
a data point being assigned to a subgroup in velocity space and its membership probability gives r = 0.0957,
indicating a negligible to weak correlation. Similarly, we can choose to consider stars with a membership
probability less than 0.05 as an outlier. Out of the 2397 stars labelled as outliers in velocity space, the
membership probability also labels these as outliers in 19% of the 2397 cases. In velocity space we have
24280 stars in total assigned to some subgroup and here the membership probability gives a value higher than
0.05 for 86% of these 24280 stars. We obtain 3799 outliers in total for a membership probability threshold of 0.05.

The results of evaluating the membership probability is a value in the range [0, 1]. It is in fact possible
to evaluate the membership probability of a star belonging to any neighbouring cluster, if this analysis is wanted.
We have not included this analysis in the thesis, instead the additional material of the thesis provides the
membership probability only for the stars that have already been assigned to a cluster in Section 4.1.
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(a) Cluster number 29

(b) Cluster number 80

(c) Cluster number 274

Figure 17: Probability density distribution for a selection of clusters (light blue region) and member stars.
Darker blue indicates a higher membership probability.
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(d) Cluster number 382

(e) Cluster number 413

Figure 17: Probability density distribution for a selection of clusters (light blue region) and member stars.
Darker blue indicates a higher membership probability.
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5 Discussion

Here we discuss the interpretation of the results, the correctness aspects of the methods, and the considerations
of the algorithm from a computational perspective.

5.1 Interpretation of results

Our results assign more than half of the stars in our data set to some significant cluster (see Table 3). This
large a fraction is promising but not unrealistic according to predictions on substructure in the halo and other
previous work [23]. While the clusters extracted are proven to be statistically significant overdensitites, they do
not necessarily have a one-to-one correspondence with individual stellar streams. To begin with, accreted objects
that are close to each other or possibly overlapping in our clustering space run a risk of being labelled as the
same cluster. Due to always selecting the largest significant structure when making the flat cluster assignment,
the algorithm will currently be unable to distinguish between separate objects that are located sufficiently close
to each other, as the union of these will also display statistical significance according to our criterion. Ideally we
would analyse the merging hierarchy of these clusters in order to see whether the cluster may actually consist of
multiple different structures, but it is not certain that the merging hierarchy would be able to give unambiguous
results. We can also analyse other properties to map the nature of the extracted clusters: location in velocity
space, metallicities, and their HR-diagram. This could possibly enable identification of several streams being
labelled as one.

Another consideration is that it is in fact possible that the full outer halo, and at least part of the inner,
is built up by mergers [20]. If this is true, the use of our artificial reference halo may pose a paradox in the
sense that while the small-scale structure is broken up in the artificial set, the average density for the full data
space is still identical to our halo set. This may make it difficult for the algorithm to detect massive mergers
with a large dispersion in the integrals of motion, as we require observing a remarkable difference in density
compared to same region in the artificial halo. If the progenitor covers a large region, with perhaps multiple
local overdensities, the algorithm may not be able to display statistical significance for the full region of the
progenitor, and will instead indicate the local overdensities. It is highly likely that a notable part of our clusters
represent this scenario, and that they are in fact local overdensities belonging to the same progenitor.

Furthermore, our distance-based algorithm may suffer from the fact that the data space is non-uniform:
there are more stars in the lower energy regions of the V-shape we observe in E − Lz space than for higher
energies (see Figure 5). This, in combination with the algorithm finding local overdensities as argued in the
previous paragraph, are likely the main reasons to why the algorithm is unable to extract for example the
well established dwarf galaxy Gaia-Enceladus [48] (see Figure 3) as a single cluster. Gaia-Enceladus covers
both the more high density region below in the V-shape and extends upwards towards less dense regions. The
algorithm will perform merging steps purely based on the Euclidean distances between the data points, and since
these distances will be smaller in higher density regions, the merging process may prioritize linking together
components in this region. One way to correct for the non-uniform data space might be to normalize the data set
by the average density of the region. However, this poses challenges with regards to preserving the correctness of
the data space and not destroying the signal that we want to detect. Future work could investigate association
between the smaller clusters that we think originate from Gaia-Enceladus, and how they relate to each other in
the merging hierarchy.

Looking at the clusters we find, some of them are just plain (non-disrupted) globular clusters, which are
well-mapped structures of the Milky Way. While these are not interesting in terms of finding streams, they
display a strong clustering in both configuration and integral of motion space, and it is natural that our method
picks up on these. While many of the other clusters detected display properties that align well with what is
expected from streams, further analysis is needed in order to map their properties, which clusters correspond
to previously identified structures, and whether some new structures may have been identified. Comparing
Figure 3 and Figure 10, we can draw the conclusion that the extracted structures cover at least the same regions
as previously established ones. By a preliminary manual comparison, some of the clusters can be linked to
Gaia-Enceladus, the Helmi stream, Thamnos, Sagittarius and Sequoia [21,46,48–50].

There may be a slight bias in the data in the sense that it only covers the local stellar halo, and signal
is not detectable if it is not strong enough in the solar neighbourhood, even though data points that are
currently labelled as noise may be part of more distant streams for which we currently do not have enough data.
Furthermore, brighter and more nearby stars will have more accurate measurements, while stars originating from
regions with extremely high-density, such as the cores of globular clusters, will have less accurate measurements.
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At large distances we also only have measurements from bright stars. Furthermore, some of our clusters are likely
to be a result of contamination from the disk. The halo sample could potentially be further refined by combining
our velocity based selection with metallicity information, as part of the halo is more metal poor than the disk [51].

The completeness of the data is also a discussion point when looking at the results from Section 4.2, es-
pecially when looking at the subgroups formed in velocity space. For some string-like structures, it possible
that the split is a result of missing data in between subgroups, and that this is in fact the same portion of the
stream, or subgroup in velocity space. As an example we can look it Figure 15b, where it might be possible that
the pink and orange subgroup should actually be joined by some missing data around vR = 0. Another thing to
investigate in velocity space is how the results would change when varying the parameters, for example the
velocity dispersions or the number of subgroups. Still, an advantage of HDBSCAN is its robustness in extracting
clusters, so varying the parameters slightly should not result in drastically different results.

As previously mentioned, it is possible to treat the membership probability as an indication of outliers that could
be filtered away as potential noise in a cluster. A way to assess the outcome of this method is cross-matching it
with the outliers as determined by HDBSCAN in velocity space. The outliers do not match to a broad extent as
illustrated by a mere 19% agreement when comparing the outliers found by the membership probability (using a
significance level of 0.05) to the ones found by HDBSCAN. This indicates that we should not necessarily filter out
stars falling below some threshold without further consideration. One aspect is that despite having an indication
for the membership probability, there is still no ground truth for what the real cluster members are. The mem-
bership probability is also merely an indication of the how each data point falls with respect to the distribution of
all stars assigned to the same cluster, and just because a star falls in the outskirts of this distribution it does not
mean that it is not a true member. Similarly, for some other cluster we may need to use a much higher threshold
in order to obtain the true members. Due to this speculative nature, I recommend using the membership
probability primarily as an optional tool when investigating the properties of the extracted clusters as they are
- for example comparing to outliers in the metallicity distribution. Overall, we should interpret the member-
ship probability as a relative indication and which should be used in combination with analysis of other properties.

We also note that each cluster Gaussian is fitted based on all contributing members and having a lot of
noise in a single cluster may scew the fit of the cluster Gaussian in an unfavourable way. This noise could be
the result of a cluster with a very dense core, having had some random neighbours added to it by the merging
process. To combat unrepresentative cluster distributions we may want to consider using methods to obtain
more robust estimates of the Mahalanobis distances, for example using the minimum covariance determinant
method [52]. It is also not known whether a multivariate normal density is a good representation of a cluster at
all, as the single linkage algorithm can produce various non-ellipsoidal cluster shapes. However, ellipsoids are
quite flexible geometries, and it can be argued that they are better than rectangular regions or dividing the
data space into bins.

5.2 Correctness

An advantage of this method is the exhaustive approach - under the assumptions that we make, and from
a probabilistic point of view, no significant structure goes undetected. However, there are always inherently
uncertain parameters. The uncertainty in the underlying data remains a problem for any distance-based
clustering algorithm, despite our efforts to indicate a membership probability after applying our clustering
algorithm. We could solve this by instead of measuring the statistical significance as the difference in count
between a candidate cluster and the same region in the artificial data sets (NCi −Nart

Ci
), we could measure the

difference in probability density spanning the same region. However, this method would require much higher
computational complexity, as we would need to scan variable regions all over the data space, and subsequently
obtain a measure to compare the total probability density of each region. The latter could theoretically be
done by computing sums of integrals over each probability density included in a region, but as this is very
computationally heavy to do with high precision in 4D, I do not recommend it at the moment of writing.
However, it can be noted that this work does in fact take the uncertainty in NCi

into account when determining
the statistical significance of cluster Ci (see Equation 12), which makes not taking the measurement uncertainties
into account in the clustering step acceptable.

Related to modelling the cluster boundary, we select the axes of this ellipsoid to have a length equalling
two standard deviations of spread in the direction of each axis. This is equivalent to covering 95% of the data
along each corresponding principal axis (in a one-dimensional case). As we model our requirement of statistical
significance according to NCi −Nart

Ci
> 3σi, without mapping and counting the cluster members to PCA-space,

we may want to correct for the region actually not covering 100% of the distribution of the data points in Ci. In
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fact, it can be argued that we again should consult the chi-square distribution with four degrees of freedom in
order to obtain axis lengths that cover a sufficient amount of the distribution in 4D. We could also formulate
our criterion for statistical significance as r ∗NCi

−Nart
Ci

> 3σi where r is the fraction of the distribution that
theoretically is covered by our current choice of axes lengths. Alternatively, we could map also the cluster
members to its PCA space and count how many members fall within the defined ellipsoid. On the other hand,
the cluster boundary defined may also work in the opposite direction, providing a fit which produces somewhat
overestimated counts in the artificial data sets instead of underestimated. This could happen in case that
the ellipsoid turns out to produce regions with unnecessary empty space within the cluster distribution. The
definition of the cluster boundary is a choice to be made and it would also be possible to observe how the results
change if the length of the axes of the cluster boundary ellipsoid is varied.

The single linkage algorithm can also be sensitive to noise, and a single data point can form a bridge be-
tween two structures that should actually be separate. The effect of this could be decreased by using the mutual
reachability distance to form the linkage matrix, similarly to HDBSCAN [28]. Using mutual reachability has
proved to combat noise well in many applications of the single linkage algorithm. However, if there exists two
separate components in our halo set, only linked together by some random noise, it is possible that our method
for determining statistical significance is already able to handle this. It would be likely that the union of these
structures do not display statistical significance, while treating them separately will. The extent of this effect
requires further investigation.

Furthermore, the parameter choices for extracting structures in velocity space are somewhat heuristic, but as
it is difficult to define exactly what characteristics in subgroups the astronomers are interested in, the results
form an acceptable indication of the subgroups that can be found. The clustering in this space is also aided by
that the data set encompassing a single cluster is far less complex than the full halo set, and that the stars in a
cluster already have been established to belong to a significant overdensity.

We would also like to assess the suitability of modelling the uncertainties in our stars as Gaussian proba-
bility densities. In fact, a non-linear transformation on a Gaussian measurement uncertainty will be guaranteed
to not have a Gaussian distribution. However, linear error propagation has been shown to provide good
approximations of the real distributions when the errors are small [34], and the uncertainties in our halo set
have been subject to quite strict quality cuts.

5.3 Efficiency and Scalability

The method we develop is computationally quite efficient, with the single linkage algorithm having a compu-
tational and memory complexity of O(N2). Due to the similarity between the single linkage algorithm and
graph theory the computational complexity of the method can be reduced to O(N log(N)) by using for example
Bor̊uvka’s algorithm for finding the minimum spanning tree [53]. The memory complexity could be reduced by
computing the distance between all data points according to a tree-structure or treating the clustering space as
n-orthotopes (or four-dimensional rectangles) for which you would only have to calculate the distance matrices
within each rectangle together with its neighbouring volumes. This should reduce the memory complexity with
a factor of O(

√
N).

The heaviest step of the algorithm is evaluating the statistical significance of each candidate cluster Ci,
as it involves repeated PCA analysis. We map all members (falling within a sufficiently large rectangular
region around Ci) in the 100 artificial halo sets to the PCA space defined by Ci, and count the number of
members within the ellipsoid we define. Still, this step is fully parallelizable, and lasts ”only” a couple of
hours running on 20 cores for our problem size of N = 48880 halo stars and 4888000 stars in the artificial halo sets.

Analysing the efficiency of our methods in Section 3.2 and 3.3, HDBScan and XDGMM are both efficient
algorithms, and applying them separately on each cluster is inherently fast as the input size is small.
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5.4 Future work

The Gaia radial velocity sample which we use in this work is actually only a small subset of the full data set,
and there is much more data available, but with a missing value for the radial velocity. We have speculated in
developing a method to infer clusters in the 5D data sample, but for the scope of this thesis this falls into future
work. We could for example take the verified clusters found in the 6D sample, and impute (or infer) values
in radial velocity in stars from the 5D sample. We could then assess the fit to an already established cluster.
One could also impose other constraints, such as a match in metallicity, available velocity components and
HR-diagram. However, imputing the radial velocities is a very difficult problem and there would be some highly
speculative elements in this endeavour.

Future work should also examine the nature of the analytic distribution of the error in integral of motion
space, to confirm that the peak of the probability density function representing a star and its measurement
errors in integral of motion space in fact lies at the observed value, and has not been shifted by the non-linear
transformations required to calculate the integrals of motion from the raw measurements. Currently we assume
that the peak of the probability density function representing a star corresponds to the observed integral of
motion value, but if this is not the case, we should shift the value of each data point we cluster on by a similar
vector in order to obtain the most accurate results.

Furthermore, it will be a large task to map out the dynamics and properties of the clusters we extract
in integral of motion space, together with their relationship to previously established structures. We also want
to analyse their metallicity and age estimates. This is in fact currently undergoing work, and we expect to show
further results related to this in a few months from the current time of writing.

5.5 Conclusion

The thesis takes some important steps towards a more data-driven method of detecting substructure in integral
of motion space of the Milky Way halo, and is able to assign 55% of our halo set of N = 48800 stars to some
statistically significant cluster. A large portion of the detected structures display promising stream-like properties.
The algorithm finds 419 clusters in total, with the median in cluster size being 24. It is likely that some clusters
represent local overdensities of the same orbiting progenitor, for example in the case of Gaia-Enceladus. One of
the main challenges for our distance-based clustering algorithm is the non-uniform data space, with less stars
at higher energies. While the results look promising, further investigation into the properties of the extracted
clusters is needed. Future work encompasses mapping of their dynamics and characteristics, together with their
relationship to previously discovered structures.
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[47] Facundo A Gómez, Amina Helmi, Anthony GA Brown, and Yang-Shyang Li. On the identification of
merger debris in the gaia era. Monthly Notices of the Royal Astronomical Society, 408(2):935–946, 2010.

[48] Amina Helmi, Carine Babusiaux, Helmer H Koppelman, Davide Massari, Jovan Veljanoski, and Anthony GA
Brown. The merger that led to the formation of the milky way’s inner stellar halo and thick disk. Nature,
563(7729):85–88, 2018.

[49] Heidi Jo Newberg, Brian Yanny, Connie Rockosi, Eva K Grebel, Hans-Walter Rix, Jon Brinkmann, Istvan
Csabai, Greg Hennessy, Robert B Hindsley, Rodrigo Ibata, et al. The ghost of sagittarius and lumps in the
halo of the milky way. The Astrophysical Journal, 569(1):245, 2002.

[50] GC Myeong, NW Evans, Vasily Belokurov, JL Sanders, and SE Koposov. Discovery of new retrograde
substructures: the shards of ω centauri? Monthly Notices of the Royal Astronomical Society, 478(4):5449–
5459, 2018.

[51] Lorenzo Posti, Amina Helmi, Jovan Veljanoski, and Maarten A. Breddels. The dynamically selected stellar
halo of the galaxy with gaia and the tilt of the velocity ellipsoid. Astronomy Astrophysics, 615:A70, Jul
2018.

[52] Hamid Ghorbani. Mahalanobis distance and its application for detecting multivariate outliers. Facta Univ
Ser Math Inform, 34:583–95, 2019.
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