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Abstract
In computer vision the problem of 3D object recognition has been tackled by many
successful algorithms. In particular, in recent times, convolutional neural networks
based on multi-view approaches figure among the best performing classifiers on 3D
object datasets such as Princeton ModelNet, constituting de facto state-of-the-art.
Although the research on the architectures for such networks has been widely ex-
plored, there has been little investigation on the benefits of employing best-views
estimation algorithms to select the views for prediction. Many objects have regular
3D shapes which carry symmetrical features and sets of projections of such objects
carry redundancy of information which can be reduced selecting only very informa-
tive views. To demonstrate the employability of best-view selection algorithms, we
propose an entropy estimation model to retrieve best-views for a multi-view convo-
lutional neural network to perform simultaneous recognition and pose estimation
on 3D objects. We demonstrated that our model learns features to generate entropy
maps that approximate closely the entropy evaluation of depth-images projections
of a 3D object. With such evaluation we select a small number of highly-informative
camera poses to observe the object in space. We demonstrated that the views ob-
tained from such positions are descriptive enough to achieve accuracy scores com-
parable to other state-of-the-art approaches on the ModelNet10 dataset.
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1 Introduction
Recent object recognition and pose estimation approaches are designed based on
Convolutional Neural Networks. These approaches can be categorized into three
main categories, volume-based, point-based, and view-based approaches. Volume-
based approaches use volumetric representation of data, in particular they employ
voxels to obtain a discrete representation of objects and define a data structure.
These networks learn features from the occupancy grids which represent the ob-
jects in space. Point-based approaches are popular with data retrieved with 2.5D
depth sensors. These sensors capture a dense set of depth samples from the scene,
representing the surface of the objects as a collection of points in the Euclidean
space named ‘Point Clouds’. PCs can be easily processed into 2D matrices, there-
fore they are one of the most efficient representations for deep learning. Point-
based neural networks learn features about the positional relations between points
on the surfaces of objects. View-based approaches use one or more images repre-
sentations of the objects, usually captured with a camera from a specific viewpoint.
CNNs trained on such representations learn features from the visible attributes of
the objects. Among these approaches, it has been shown that view-based methods
outperformed other methods and achieved better performance. In most view-based
approaches, the number of virtual cameras is predefined in advance, and therefore,
they are not optimized for real-time applications. In this research we propose a deep
learning approach to handle 3D object recognition and pose estimation simultane-
ously based on multiple views of the object. Similar to other multi-view methods,
our approach uses multiple projections of an object to jointly recognize its class
and estimate its orientation (Figure 1). Our approach uses a supplementary model
to infer which orientations provide the most informative views of an object. In par-
ticular, the model learns to predict the most descriptive views of the object mainly
by learning an entropy estimation function based on depth images. This allows the
system to detect the most valuable information to perform multi-view classifica-
tion while removing the redundancy of views that carry less information about the
object.

1.1 Object Recognition
When we speak of object recognition we refer to the ability to visually classify
an object as an instance of a determined kind, or ‘class’, that identifies different

8



Figure 1: Sphere distribution of camera viewpoint around a 3D model.

objects having specific features in common. For example; we commonly use the
word ‘table’ to define an object having four legs supporting a rectangular flat top,
however, some tables have a different number of legs or a different shaped top
while still being referred as tables, and other objects with four legs and a flat top
might be classified as different objects, such as stools or a very minimalist night
stand. Therefore, detecting the features to determine the membership of an object
to a class is non-trivial, hence, deciding on the most informative way to digitally
represent an object and retrieve these features is up for discussion.

In the field of machine learning the type of data already partially defines the
methods to use to build the model. The two main domains of inference are either
classification or regression, when respectively the data comes in the discrete or in
the continuous domain. Trying to detect the breed of a dog would be a classification
task, since the number of breed is limited to a list of possibilities, while predicting
the temperature of tomorrow would be a regression task since the temperature can
vary in a pseudo-continuous domain (the values are still limited by the precision of
the measures and the digitalization of the numerical value). The case of visually
recognizing an object falls in the former category, as the target of the prediction is
a discrete label among a limited collection that we assign to the object.
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1.2 Pose Estimation
Within an unchanging environment, such as an automated chain of production, a
classifier would only be expected of making a prediction on the object’s class, for
example detecting anomalies in the product, while the object positioning would be
irrelevant due to the mechanical repetitiveness on the processes. However, a more
complex robot would require the perception tools necessary to recognize the object
and its pose, to then carry out manipulation tasks. Let’s think about a household
helper robot: to implement the capability to put back standing a spilled glass it
would need the ability to recognize the object and to understand it was spilled.
Pose estimation is the ability to identify the position and the rotation of a stationary
target, therefore it is a critical task for modern applications of robotics. The pose
is indicated by coordinates in 6 dimensions: x, y and z define the position of the
object in space while roll, pitch and yaw define its rotation.

1.3 Object Data Representations
The input data domain depends on the context of the task: classification is per-
formed on representations of features of an object, which, as mentioned before, can
have multiple formats. We are discussing the most common ones.

1.3.1 Images

The most common type of representation of an object is an image, as in the pro-
jection of the object’s appearance on a plane, ‘rasterized’ to a matrix of pixels (or
many in case of different color channels). In this format, each pixel represents the
value in color intensity of a specific area, and depending on the point of view of the
source taking the picture, defined as ‘camera’ or ‘eye’, and the environment where
the object is located, these values may vary substantially. Images depend on the
source in terms of resolution and color quality, and then may be compressed by
the file type encoding. We are not going to discuss the impact of these factors on
the classification, however, we must keep in mind that to ensure the quality of the
results the images need to be processed in the same way, otherwise the classifier
might detect variations in the images due to the different sources and learn them as
features, while they are not relevant for the decision. It is also worth to mention that
higher resolution images potentially give more information about the object, while
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increasing the number of parameters to train, hence increasing the computational
cost and the likeliness of learning unrelated features.

1.3.2 Feature-based Representations

Another way of representing an object is to summarize its appearance in a number
of key features. There are several methods to extract features from data through
processing: in the image domain, for example, it is possible to detect edges with
the Canny algorithm [3] or to use a feature descriptor such as SIFT [17] or SURF
[2]. Representing an object via extracted features instead of the original data may
prove to be more efficient, since the amount of data is usually lower and it provides
the classifier only with the relevant information. On the other hand, these methods
need to be calibrated manually and they might not generalize well on a dataset
where the data varies widely.

1.3.3 Polygon Meshes

The most common representation of objects in three dimensions is a polygon mesh.
A mesh is a collection of vertices, edges and faces that represent an object as a poly-
hedral approximation of its shape. The faces are usually simple convex polygons,
such as triangles or quadrilaterals, combined to represent complex surfaces. Meshes
can be a very precise method to represent an object in 3D, in fact they are the most
popular data structure in computer graphics and 3D design however, in comparison
to other structures, they are more complex and require more data. Hence, in ma-
chine learning it is a common practice to process this type of data to more efficient
representations.

1.3.4 Point Clouds

When it comes to representations in space the information about the objects be-
comes more complex but also more complete. Since in three dimensions the data
becomes observable from multiple points-of-view, all of the visible features of the
objects become potentially available within a single data structure. However, 3D
data is exponentially more complex than - for example - images, hence its visualiza-
tion and manipulation are computationally heavy tasks. Point clouds are collections
of points, in the 3D space, sampled from the observed objects. Only requiring the
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coordinates of a number of positions, point clouds are one of the most efficient data
structures for 3D representation, and depending on the complexity of the surface
they can retain most of the object information even at lower sample rates. Point
clouds are susceptible to noise, so if the surface of the objects presents many irreg-
ularities, a low sample rate might return some representations that do not resemble
the original object or makes it difficult to classify.

1.3.5 Voxel Grids

Voxel grids are volumetric occupancy grids, they consist of a multi-dimensional
matrix of 3D pixels, the ‘voxels’, where each position represents a unit cube in
space. In the most simple implementation they only consist of a three dimensional
binary matrix defining the shape of the object. An algorithm is needed to perform
the ‘voxelization’ of a point cloud or a polygon mesh, hence the quality of a voxel
grid is determined by the previous data and mostly by the resolution given by the
size of the unit cube. While being less complex structures than polygon meshes, the
voxel grids require more computational resources to be visualized and manipulated
in comparison to point clouds, although they are less sensitive to noise: the vox-
elization algorithm can act as a smooth filter for the objects, simplifying irregular
surfaces into less complex shapes.

1.4 Classification
There is a wide array of techniques to make statistical modeling on different for-
mats of data. Some of the more complex of these techniques are suitable to perform
high-level tasks such as object recognition. Methods for object recognition gener-
ally fall into either machine learning or deep learning-based approaches. In machine
learning it is necessary to first define features of the objects, extract them and train
classifiers such as the K-Nearest Neighbours algorithm (k-NN) or the Support Vec-
tor Machine (SVM) to make the classification on the resulting data. Deep learning
based techniques usually perform end-to-end object recognition on data without the
need of explicitly defining specific features: a neural network is capable of extrap-
olating and learning features from data within itself in a black-box fashion, with
no direct manipulation of the parameters in its hidden layers. While it is not the
objective of this thesis to give a comprehensive study on these practices, we are dis-
cussing the main concepts behind the methods applicable to the visual classification

12



of objects.

1.4.1 Support Vector Machines

As we mentioned, it is common practice in machine learning to synthesize com-
plex data, such as images and 3D shapes, into specific features (for example, sharp
angles, roundness, color, etc.). The SVM is a supervised learning algorithm that
analyzes data for classification: given a set of labeled training data, it produces a
model that is capable of assigning labels to previously unseen data from the same
domain. In practice it uses known data to subdivide the domain into regions de-
fined by non-linear functions, implicitly mapping the inputs into high-dimensional
feature spaces, then it assigns to all of the new data falling within a region its re-
spective label. SVMs proved to be quite effective, even with data where the number
of features is greater than the number of samples, however, the main drawback of
using an SVM is its nature as a binary classifier. The most common way to perform
multi-class classification with SVMs is to reduce the problem to multiple binary
classifications, either in a one-versus-all binary labeling for each class or in a one-
versus-one classification between each pair of labels. These approaches increase
largely the computational cost of the classification.

1.4.2 Artificial Neural Networks

A modern approach to solve classification tasks is using deep learning algorithms.
The core concept of these algorithms is to build a Neural Network, a complex net-
work of parameters and functions, capable of learning high-level features from la-
beled data to then make predictions on unseen new data. The single unit of a neural
network is called a ‘neuron’ and it consists of a numerical parameter combined with
its activation function. Neurons are grouped in vectors or matrices called ‘hidden
layers’, which are stacked on top of each other by linking each neuron with neu-
rons of the adjacent layers. If each neuron is linked to every neuron of the adjacent
layers it is called a ‘fully connected’ or ‘dense’ layer. When we refer to the most
common acyclic structure of a network we refer to it as a ‘feed-forward’ network.
Neural networks are supervised algorithms that ‘learn’ by comparing their output
to the correct results given by the training data. They evaluate the error with a
‘loss’ function, whose derivatives indicate how to modify the parameters within the
hidden layers via a cascading procedure called ‘backpropagation’.
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1.4.3 Convolutional Neural Networks

While neural networks composed of fully connected layers proved to be a very
consistent method of supervised learning when it comes to learning specific pat-
terns from data with a strong correlation between neighboring features (eg. images,
speech, etc.) some more complex architectures achieve more accurate results. In
the last few years, state-of-the-art accuracy scores have been achieved by networks
implementing many different types of layers, one of them being the convolutional
layer which gave the name to the most popular archetype of networks for object
recognition: the convolutional neural network (CNN). A convolutional layer dif-
fers from a fully connected layer in the relationship between a layer and its sub-
sequent: every convolutional layer implements a set of filters (or kernels), lower
dimensions matrices of parameters which are multiplied by convolution across the
width and height of the input volume. The operation of stacking convolution lay-
ers to perform recognition on visual data was inspired by biological processes in
that the connectivity pattern between neurons resembles the organization of the an-
imal visual cortex, hence CNNs generally achieve better generalization on vision
problems.

1.5 3D Object Recognition Archetypes
In this section, we discuss the main concepts behind popular methods that have
been employed in recent years to achieve state-of-the-art performances for object
recognition tasks on three-dimensional data.

1.5.1 The Multi-View paradigm

The availability of three-dimensional data is generally scarcer than two-dimensional
data. The reason for this unbalance is due to the difficulty of obtaining sets of digi-
tal 3D objects, since they are required to be either inferred from the interpolation of
2D images, retrieved with a depth-camera or manually designed with specific CAD
software. On the other hand images datasets are easily produced from data already
available on the internet or by taking pictures with common equipment such as cam-
eras or even smartphones. Image data is also easier to visualize and manipulate:
about any computing device with a sufficient resolution and color space capability
can display a picture and perform basic alterations such as rotations and color shift-
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ing, while 3D data is computationally more expensive to visualize and to modify
and needs sufficiently powerful resources. Given the difference in availability of
image datasets and the demand for applications on image data, the development of
object recognition algorithms has resulted in substantially more powerful and effi-
cient classification models for 2D images. Well integrated in deep learning frame-
works, there are instances of pre-designed architectures for image recognition such
as VGG [24], Mobilenet [8] or ResNet [7] where parameters have been pre-trained
on the popular dataset Imagenet [4]. Instead, the 3D object recognition remains a
field open to improvements where there are not well defined standard architectures
yet. For the aforementioned reasons, a recent approach to 3D object recognition
has been to transform the problem into an image recognition task. MV-CNN [25]
and OrthographicNet [10] employ this approach, essentially making use of efficient
architectures to classify a 3D object from a collection of pictures synthesized from
the original data.

1.5.2 The Voxel-Based paradigm

Deep learning frameworks require data to be processed into regular structures as
matrices and vectors, and often times the data provided for 3D object recognition
is in the form of polygon meshes or point clouds. In both cases the structure of
the data is variable and requires to be processed to a standard format before being
fed to the learning algorithm. Point clouds are relatively simple to reformat, as
they can be subsampled to a constant number, given this number is less than the
number of points in the smallest cloud. Polygon meshes are more complex to deal
with since removing points would require a complete re-factor of the edges and
faces of the polygons. As we mentioned in Section 1.3 both these data structures
can be transformed into voxel grids via a ‘voxelization’ algorithm. The concept of
voxelization is quite simple: a limited portion of space is subdivided into a grid, for
each cube in the grid the algorithm searches for at least a vertex, edge, face or point
located within the boundaries of the cube and marks the ‘presence’ of the object in
that location, therefore producing a 3D mask of the object, with the resolution given
by the fineness of the grid. Voxel grids represent a convenient way to represent a 3D
object as matrices of constant shapes, compatible with deep learning algorithms.
Recent competitive approaches are based on VoxNet, a 3D convolutional neural
network that uses these occupancy grids to deal with large amounts of point cloud
data [18].
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2 Related Work
In this section we discuss the theoretical framework of our project, reporting ap-
proaches for object recognition and pose estimation of 3D objects visioned while
studying the problem and designing our approach.

2.1 CNNs for 3D Object Recognition
There are substantially two main approaches for CNN-based object recognition:
voxel-based and 2D image-based approaches. Qi et al. [21] provides a comprehen-
sive study on voxel-based CNNs and multi-view CNNs for three-dimensional object
classification, stating that empirical results from these two types of CNNs exhibit
a large gap, indicating that existing volumetric CNN architectures and approaches
are unable to fully exploit the power of 3D representations.

2.1.1 Voxel-based CNNs

Among voxel-based systems, the earliest work would be 3D ShapeNets [29] which
developed a Convolutional Deep Belief Network to learn probability distributions
of binary occupancy grids. The principle of using Convolutional Neural Networks
with voxel grids as inputs is conceptually similar to the feature mapping performed
by convolution layers of image recognition CNNs: A 3D CNN can be used to pro-
gressively extract higher-level representation of the shapes of the objects as shown
in Figure 2.

Figure 2: 3D ShapeNets Architecture and feature understanding [29].
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The latest researches on similar approaches achieved improvements in perfor-
mance by enhancing the architecture of the network. Among these, we cite a few
notable examples: VoxNet [18] is a CNN architecture designed to tackle object
recognition by integrating the voxel representation to deal with large amounts of
point cloud data. FPNN [16] employs field probing filters to efficiently extract fea-
tures from voxel data. 3D-GAN [28] implements Generative Adversarial Networks
(GAN) to generate 3D objects from a probabilistic space and obtain a 3D object
descriptor from an adversarial discriminator.

2.1.2 Multi-View CNNs

The availability of 3D data usually induces to directly apply recognition algorithms
on three-dimensional representation of that data. However, as resulted from the
work of MVCNN [25], it is possible to achieve significant improvements in classi-
fication accuracy by using collections of rendered views of 3D objects. They ob-
tained view images by retrieving 2D projections of the objects with a set of virtual
cameras positioned in a regular setup, as shown in Figure 3.

The authors opted for a fixed number of virtual camera points, positioning of
the cameras on a regular structure around the objects. However, they mention that
in many cases a single view already achieves satisfying classification accuracy.

They demonstrated that a convolutional neural network, trained on a fixed set
of rendered views of a 3D shape, could outperform most architectures trained on
three-dimensional structured data.

RotationNet [9] to this date achieved the best accuracy score on the ModelNet

Figure 3: Architecture of Multi-View Convolutional Neural Network (MVCNN). [25].
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datasets [29], resulting in the current best approach for 3D object recognition. They
proposed a CNN-based model which takes multi-view images as input and jointly
estimates its pose and object category. Viewpoint labels are learned in an unsu-
pervised manner during the training and the architecture is designed to use only a
partial set of multi-view images for inference (Figure 4). Unlike MVCNN, their
method is able to classify an object using a partial set of images that may be se-
quentially observed by a moving camera. The system infers the probability of a
retrieved view to match the camera position it has been taken from, subsequently
determining the orientation of the object.

2.2 Simultaneous Object Classification and Pose Estimation
Joint learning of object classification and pose estimation has already been unrav-
eled [23, 13, 30, 1], however, very few of them address inter-class features learning
for pose alignment. It has been proved beneficial to share appearance information
across classes to simultaneously solve for object classification and pose estimation
[12]. Elhoseiny et al. [6] studied CNNs for joint object classification and pose
estimation based on multi-view images, discussing architectures of the following
archetypes: Parallel Model (PM) consisting of two base networks running in par-
allel; Cross-Product Model (CPM) explores a way to combine categorization and
pose estimation by building the last layer capable of capturing both; Late Branching
Model (LBM) splits the network into two last layers, each designed to be specific to
the two tasks; Early Branching Model (EBM) similar to LBM, however, the branch-

Figure 4: RotationNet Multi-View CNN [9]
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Figure 5: Models showing the joint loss layer in CPM, late branching in LBM and early branching in
EBM. Blue layers correspond to layers with convolution, pooling and normalization. Violet colored
layers correspond to layers with just convolution. Green layers correspond to fully-connected layers.
[6]

ing is moved to an earlier layer in the network. Examples of these archetypes are
shown in Figure 5. While their method takes a single image as input for its pre-
diction, later works focused on how to aggregate predictions from multiple images
captured from different viewpoints: RotationNet [9] used a model that makes use
of images with view-point labels that are shared across classes to achieve state-of-
the-art accuracy on both tasks.

2.3 Best-View Selection
The best-view selection corresponds to the automated task of selecting the most
representative view of a 3D model. Dutagaci et al. [5] provides a benchmark for the
evaluation of best-view algorithms and a survey on popular methods of best-view
selection. The algorithms discussed by Dutagaci et al. differ with respect to the
descriptor they use to assess the goodness of a view, which are assumed to measure
the geometric complexity of the visible surface of an object. The descriptors are
listed as follows:

• View Area: The area of the surface of the object seen from a specific point
of view.
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• Ratio of visible area: the ratio of the visible surface area to the total surface
area of the object [20].

• Surface area entropy: in this method, the ratio of the projected area of a
triangle to the total projected area of the object is assigned to be the “proba-
bility” of the triangle with respect to a particular viewpoint. The entropy over
this probability distribution is the surface area entropy-based view descriptor
[27].

• Silhouette length: Length of the outer contour of the silhouette of the object
as seen from a particular viewpoint [20].

• Silhouette entropy: Entropy over the curvature distribution of the outer con-
tour of the silhouette [19].

• Curvature entropy: Entropy of the curvature distribution over the visible
surface of the object. By maximizing this quantity, the view with the most
diverse curvature values is selected as the best view. We used the mean cur-
vature at the visible vertices to calculate the curvature entropy [19].

• Mesh saliency: Mesh saliency is also based on the local curvature over the
surface. The mean curvature at each vertex is weighted by two Gaussian
filters one with scale twice the other. The absolute difference between the
weighted curvatures at two scales corresponds to the mesh saliency at that
scale pair. Then, the total mesh saliency at a vertex is calculated as the sum
of mesh saliency values at successive scale pairs. The best view is selected
as the one which maximizes the sum of saliency values at the visible vertices
[14].
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2.4 Research Objectives
The objectives of this research project is to investigate on the following concepts:

• With regards to the 3D Object Classification and Pose Estimation problem,
we want to determine the viability and performance of using a CNN-based
model to predict the best-views for classification of an object. Such model
should take a triangular mesh or a point-cloud representing the object as an
input and return a set of camera points.

• We want to validate the hypothesis that the images retrieved from the camera
points detected by the model represent sufficient information about the object
to allow for satisfactory recognition accuracy.

• We want to develop a system for Object Recognition and Pose Estimation that
employs the best-views prediction to select the inputs for a Multi-View Con-
volutional Neural Network. We will then test its performance and compare it
to the current state-of-the-art.
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3 Methods
The intention of this project is to answer the points declared in section 2.4. To
achieve our goals, we design a Convolutional Neural Network to infer the best-
views of a 3D model and uses them to make the classification. We subdivided the
problem in two main tasks, the first being the best-view prediction and the second
being the multi-view based object recognition.

3.1 Best-Views Prediction Model
We first discuss the theoretical approach to the problem, then we report on the
design choices during the realization.

3.1.1 Approach

The first objective is to design a model that predicts which point of views are most
informative. At first, we need to define how we measure quantitatively the goodness
of a view. We opted for designing our own descriptor: we evaluate the quantity of
information for each view by obtaining a grayscale depth image from the same
point of view and calculating the entropy of it with the definition from Shannon’s
information theory:

H(X) =−
n

∑
i=1

P(xi)logP(xi) (1)

Most measures require a less extensive evaluation of the 3D model, while this
method expects to have several projected views of the object which are compu-
tationally expensive to obtain. However, our intention is to make use of a 3D-CNN
to directly infer the best-views from the 3D model, in fact providing an evaluation
of the information about its surfaces with no processing required. At first our ap-
proach had been of utilizing the network to infer directly a number of viewpoints
and coordinates deemed to be the most informative by a threshold on the entropy
values. This approach carried a few issues which we report in the next section.
We later moved to a more effective method: instead of a multi-label classification
problem where we classified each viewpoint as informative or not, we defined the
problem as a regression to infer the entropy values of every viewpoint, generating
in fact a spherical entropy map of the object. The entropy map H(φ,θ) is learned in

22



the form of a 2D function that maps two spherical coordinates, φ and θ necessary to
identify the viewpoints on a sphere around the object to the inferred entropy values.

H : φ,θ−→ h (2)

Evaluating the peaks of the entropy map we obtain a set of coordinates of the most
informative views.

{(φv,θv)}= argφ,θ(
d2

dφdθ
H = 0) (3)

3.1.2 Design Choices

The first step is to generate a dataset taking depth images from a number of views
of a collection of objects, in particular, we took images from 60 positions, regularly
distributed on a sphere as shown in Figure 6. The virtual cameras are positioned on
12 points on a section ring of the sphere, each one at an angle of 30 degrees from
the next one. The sphere is circled by 5 rings, parallels to the horizontal axis of the
object, which are looking at the center of the sphere from each at an angle of 30
degrees from the next one, cutting the sphere at 30, 60, 90, 120 and 150 degrees
from the vertical axis of the object. The structure of the camera positions ensures
we obtain a complete overview of any object while having a limited number of fixed
positions.

Once we have the positions for the cameras, we take a grayscale depth image of
224× 224 pixels of the object for each of the 60 views. We can then evaluate the

Figure 6: Distribution pattern for the viewpoints.
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quantity of information in each picture from calculating their entropy. We build the
dataset by matching each 3D model to its 60 ordered entropy values and extracting
the best-views.

A variable number of outputs is non-trivial to obtain when designing a CNN
architecture: we managed to circumvent this problem by encoding the outputs in n-
hot vectors. Each output is defined by a binary vector carrying 1s on the positions of
the encoded view coordinates which have entropy values higher than a set threshold.
This method tended to provide a list of best-views based on the most common
perspectives for high entropy values instead of learning the relationship between
silhouettes and entropy. This issue was due to the unbalance in the training data:
the models were presented always aligned to the x-y axes, hence frontal and lateral
point of views were often the most informative ones. The distribution would be at a
100:1 ratio for many labels, reaching 1000:1 for the most represented label over the
least represented. This issue was partially solved by adding a randomized rotation
to the 3D models and by operating some balancing techniques of subsampling and
oversampling over the dataset.

Anyway, at a later moment, we opted for a more simple and efficient solution:
we built the dataset by matching each 3D object to its entropy values and trained the
3D-CNN to infer by regression the values from any 3D model. With this solution,
we observed the network generalizes better on new data and it allows for a more
precise evaluation of the best-views (Figure 7).

3.1.3 Data Processing

To build the dataset for our entropy model we started from the 3D polygon meshes
provided by the Princeton ModelNet10 dataset [29]. ModelNet is a dataset for
computer vision and robotics of 3D CAD models. The version we employed is
ModelNet10 which consists of a collection of meshes from 10 popular object cat-
egories. The CAD models are in Object File Format (OFF) and represent triangle
meshes. As mentioned in Section 1.3, 3D object data is among the most com-
plex and computationally expensive type of data to manage in object recognition.
Polygon meshes are not an efficient way of representing 3D data for deep leaning
applications, hence, while we captured the depth images from the original data,
when used as input for the CNN we applied a series of transformations to obtain
their occupancy grids. To achieve a consistent input we scaled each model to fit in a
unit cube centered in the origin, we then subdivided the unit cube in a 50×50×50
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Figure 7: Comparison between predicted and ground truth for entropy evaluation on an object of
class Toilet.

matrix of cubes and run an algorithm of voxelization which marks values at 1 in
the position corresponding the coordinates in the voxel grid that are occupied by at
least a component of the model, while setting the rest to zeros. The binary matrix
obtained represent the 3D model silhouette at a resolution of 50× 50× 50 voxels.
We experimented with different grid sizes, while an higher number would have in-
creased the resolution of the object, it would have increased exponentially the size
of the data. We settled for a grid size of 503 which offered an acceptable trade off
between size and resolution. The smoothing effect due to the little details in the
object being cut of by the voxelization resolution happened to have a regularization
effect in the learning, since the convolution layers of the network would not try to
learn such details as high-level features. To supply to the closeness of the models
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to the sides of the cube due to the scaling and bounding process, we added a zero-
padding of 3 voxels per side resulting in the occupancy grids to be of 56×56×56
voxels.

3.1.4 Development and 3D-CNN Design

As the framework of choice we decided to use the Keras API with Tensorflow 2.3.1
backend for Python. The manipulation of the 3D data was performed with the sup-
port of the Open3D library [31]. All of the computation heavy tasks were performed
on the HPC Peregrine of the University of Groningen. Due to the headless nature
of the cluster and the incompatibility for a direct installation of the Open3D library,
the employment of the library was enabled by the use of a container for an Ubuntu
18.04 image with Singularity 3.6.3.

The dataset was generated by a script that stored 60 views per object of the
ModelNet10 dataset, it calculated the entropy values via the Scikit-Learn method
for Shannon’s entropy and stored them in a local Pandas DataFrame. The best-views
were selected from the obtained entropy maps with a peak detection algorithm for
images from the Scikit-Image library. The algorithm would find the peak entropy
values in the matrix. An example of the extraction of the views from an entropy
map is shown in Figures 8 and 9.

The design of our CNN for estimating the entropy maps employs a splitting
branches approach. We decided to employ two convolutional branches with kernels
of different sizes separating the flow of the graph from the input layers. Supposedly
the different kernel size help the network identifying high level features of different
scales. The output of the convolutional branches both receive average pooling,
batch normalization ad dropout before being transformed into flat vectors. The
outputs of the branches are then concatenated in a single vector and sent as input to
a fully connected hidden layer. After a new batch normalization and a higher factor
dropout the last layer is a fully connected output layer with linear activation that
outputs 60 entropy values (Figure 10).

The optimal number of filters for the convolutional layers and the number of
units in the hidden layer was estimated empirically with a hyper-parameters tuner
provided with the library Keras-Tuner for Python. The library provided the search
algorithm Hyperband [15], a bandit-based approach to hyper-parameters optimiza-
tion that speeds up random search through adaptive resource allocation and early-
stopping. It evaluates architectures by training a set of configurations for a limited
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Figure 8: Entropy map calculated from the model of a Toilet object from the ModelNet10 dataset.
The color coding shows the highest entropy values in orange-red. The black dots represent the
best-views selected by the peak detection algorithm.

Figure 9: The best-views selected by the peak detection algorithm from the map in Figure 8.

number of epochs and carrying the evaluation only for the most promising half until
it reaches the best set of parameters.
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Figure 10: Design for the 3D-CNN employed for the entropy estimation.

3.2 Multi-View Classifier
In this section, we discuss the design and realization of the second module of the
project, which consists of a Multi-View based Convolutional Neural Network for
object classification and estimation of poses.

3.2.1 Architecture Design

Our approach is to train a Convolutional Neural Network to learn shared high-level
features for the joint classification of class and viewpoints. Following the nota-
tion from Elhoseiny et al. [6], our design falls in the category of Late Branching
Models (LBM). The network we designed uses a core module that employs an in-
stance of a popular architecture for image recognition, splitting the last layer into
fully connected layers with softmax activation of size 10 for the object classifica-
tion and 60 for the pose estimation. Our model employs MobileNetV2 [22] as its
core architecture, pre-trained with weights from Imagenet [4]. However we also
experimented with other well-known architecture such as VGG-16 [24] and Effi-
cientNet [26] achieving similar results. As regularization techniques, in addition to
the structural methods already employed in the configurations of the core architec-
tures (e.g. dropout layers, etc.), we used a dynamic learning rate. This allows the
learning process to switch to a progressively finer tuning in the later stages of the
training. The network was trained as a single-view classifier on the whole dataset of
views, it takes a single-view as an input and it predicts the class of the originating
object and the estimated viewpoint. The multi-view consists of the aggregation of
M single-view classifiers where M is the number of views provided for the predic-
tion. This method allows the network to accept a variable number of view images,
to then return as outputs the classes represented by the majority votes. While the
object labels are quite straightforward to aggregate, different views result in differ-
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ent viewpoints. The predicted viewpoints are matched to the angle the image views
they were taken, the offset between these two values is the predicted rotation of
the object from a standing front-facing position. With this values we can evaluate
a majority vote for the pose estimation with precision up to half the distance be-
tween each of the 60 originating viewpoints in the dataset (15 degrees on rotation
around the z-axis and 15 degrees on rotation around the y-axis). This precision
can be utterly improved generating a dataset with a more dense configuration of
viewpoints and reshaping the network to classify a larger number of positions. This
approach would however increase the complexity of the network and the number of
parameters, and potentially reduce the accuracy of the classifier.

3.2.2 Data Management

We generate the dataset with the support of the Open3D library by rendering the
3D objects in an empty space and positioning the camera on viewpoints on a sphere
around them, as described in previous sections. The view images are taken by
a virtual depth camera, which stores the information as grayscale images. The
core architectures we employed are pre-trained via transfer learning from Imagenet,
which is a 3-channel color image dataset. While our depth image dataset is a single-
channel image set, with the simple trick of ‘faking’ the second and third channel we
can still make use of the pre-trained weights and achieve satisfactory results with
fine tuning.

The dataset is composed of about 240.000 views, each of the size of 224×224
pixels multiplied by 3 channels during the pre-process, hence the process of loading
the full extent as Numpy matrices in a Python script requires an amount of memory
that often exceeded our possibilities. We solved this issue with a data generator
function, to load batches of images at runtime, which resulted in a more efficient
use of the memory space.
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4 Results
In this section, we present and discuss the implementation of our system and we
report the performance and the results we obtained with tests we performed on of
our system.

4.1 Entropy Distribution
The first data we report is a fundamental component in the building of the model
we designed to infer the entropy values, which is the dataset we generated to train
the model. As mentioned in previous sections we produced a set of 60 depth images
from every object in the ModelNet10 dataset. We evaluated the quantity of infor-
mation of every image with Shannon’s Entropy definition (1). In Figure 11 we show
the average entropy distribution for the class Bed. Given the shape of the average
bed, a low rectangular cuboid, the larger entropy values are found in correspon-
dence to viewpoints closest to the four angles, since such viewpoints frame more
faces of the cuboid. It can be seen from the orange-red colours being predominant
in the columns relative to the rotation around the z-axis at the values of 30, 120,
210 and 300 degrees. The lowest values instead are found on the row relative to the
90 degrees rotation on the y-axis, meaning the object is being observed frontally.
This is the worst angle to observe a cuboid since the upper and lower faces are not
visible, hence resulting in the blue-violet row at 90 degrees.

Figure 11: Average distribution of the 60 views entropy for the class Bed. The coordinates (x, y) of
the graph indicate the rotation (θ, φ). θ represents the yaw angle, while φ represents the pitch angle.
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4.2 Entropy Model
The Hyperband algorithm resulted in a simpler architecture than we expected. With
respect to Figure 12, for input Voxel Grids of size 56× 56× 56 we designed two
branching 3D convolutional layers with kernels sizes 3×3×3 and 5×5×5. The
Hyperband algorithm [15] evaluated 8 as the best number of kernels for both the
convolutional layers and 512 units for the fully connected layer before the output
layer. The architecture of the network is relatively simple, however the dimen-
sionality of the problem makes the number of parameters quite large (179,864,364
trainable parameters). To accelerate and stabilize the learning process we applied
batch normalization in-between layers. We also applied regulation techniques such
as a progressively smaller learning rate (starting at 5 ·10−5 until reaching 3 ·10−7)
and dropout factors of 0.25 on the convolution layers output and of 0.5 on the fully
connected layer.

As we mentioned in Section 3.1.2 the problem is in form of a multi-output re-
gression with 60 values, hence the output layer uses a linear activation function and
the resulting values are to be intended as entropy values and not probabilities. To
evaluate the quality of the learning we used two measures: Mean Absolute Error
(MAE) and Mean Squared Error (MSE), the former being employed as the loss
function. The resulting learning process is shown in Figures 13 and 14. The net-
work seems to learn a function to approximate the entropy of 60 viewpoints. We
show in Figure 15 an example comparison between the original entropy map ex-
tracted evaluating the view-images of a Chair object and the map built with the pre-
diction from our model. The distribution of the predicted values resembles closely
the distribution of the true values. To extract the best-views from the entropy map
we use a peak detection algorithm that returns the coordinates of the local maxima
in the matrices. In both cases the peak detection algorithm returns the coordinates:
{(30,30), (30, 120), (210, 60), (210, 150), (300, 90), (330, 30} which results in the

Figure 12: Architecture of the 3D-CNN employed for entropy modelling.
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views shown in Figure 16.
When the input is an object of an unseen class the model still uses the high-level

features it learned to predict the best views for the new object. As shown in Figure
17 the distribution of the predicted entropy values is very close to the ground truth.

Figure 13: Mean Absolute Error (MAE) on 100 epochs training of the Entropy Model

Figure 14: Mean Squared Error (MSE) on 100 epochs training of the Entropy Model
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4.3 Multi-View System
The purpose of this project is to explore the possibility of an entropy-based ap-
proach to the pre-evaluation of the best-views, in depth image format, for object
recognition. To establish this approach as viable we developed a second model to
classify the images-views retrieved from the first model output.

4.3.1 Single-View CNN

We experimented with two core architectures, VGG-16 [24] and MobileNetV2
[22], which are reliable CNN architectures for image recognition, pre-trained us-
ing the ImageNet dataset [4], a large dataset consisting of 1.4M images and 1000
classes. The architecture is instantiated without the top layers, to adapt to the
branching structure for object classification and pose estimation. The branching
is performed at the last layer, following the Late Branching Model (LBM) example

Figure 15: Comparison of the entropy map extracted from the depth-views with the entropy map
predicted from our model.
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by the notation from Elhoseiny et Al. [6]. We experimented with different branch-
ing archetypes, however the number of parameters increased dramatically without
a corresponding improvement in accuracy. The last layer of the core architecture is
split into two fully connected layers of size 10 and 60 which represent the number
of possible classes and poses. We used the Adam [11] optimizer with a starting
learning rate of 0.0001 which is dynamically reduced on plateauing validation loss.
As loss functions we employed categorical cross-entropy for both class ad pose. We
trained the architectures on a dataset of 293,940 RGB images of size 224×224×3,
composed of projections from 60 viewpoints of 4,899 3D models from The Model-
Net10 dataset. The results and the learning process are shown in Table 1 and in the
Appendix in Figures 30-41.

4.3.2 Multi-View CNN

The complete system bases its final classification on majority vote. Each prediction
from the instances of the single-view CNN is pooled and contributes to the decision
of the system (Figure 18).

We tested the full system with the best performing models with architectures
based on VGG and MobileNetV2. The tests were conducted on the unmodified
ModelNet10 dataset, transforming the objects in 50×50×50 voxel grids at execu-

Figure 16: Depth views detected by the peak detection algorithm from the entropy maps in Figure
15.
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tion time. For a fair comparison we trained the single-view CNN and then tested
the full system using the training and test split of the original dataset as in [29, 9].
The accuracy scores are presented in Table 2. MobileNetv2 proved to perform bet-

Figure 17: Comparison of ground truth and predicted entropy maps for an object of an unseen class.

Table 1: Accuracy on single-view recognition based on VGG and MobileNetV2 architectures. The
dataset has been randomly sampled with the indicated ratio from the original dataset at every epoch,
speeding up the training process substantially of a corresponding factor.

Architecture Dataset Subsamp. Class Acc. View Acc.
VGG 1:1 0.8339 0.7890
VGG 1:3 0.8257 0.7972
VGG 1:20 0.7807 0.7239

MobileNetV2 1:1 0.8459 0.8110
MobileNetV2 1:3 0.8312 0.8092
MobileNetV2 1:20 0.7985 0.7473
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Table 2: Class and Pose accuracy scores for the Multi-View system based on the VGG and Mo-
bileNetV2 architectures. The data used for the evaluation is the proposed test split from the Model-
Net10 dataset to allow for a fair comparison with other approaches.

Architecture Class Accuracy Pose Accuracy
VGG 0.9020 0.9394

MobileNetV2 0.9130 0.9372

ter than VGG for the classification of the objects, while the latter showed a slightly
improved performance in the estimation of the pose.

To better understand the features learned by the two architectures we can ob-
serve the confusion matrices in Figure 19. From these graphics we notice how both
architectures achieve more than 90% accuracy over the classes bed, chair, dresser,
monitor, sofa and toilet. The differences between learned features are highlighted
by the different scores on the bathtub, desk and night-stand.

The VGG architectures mistakes bathtub objects for sofas more times than Mo-
bileNetV2. It also misclassifies more frquently a desk for other objects. While the
overall accuracy on the desk class is better for MNV2, VGG is more stable when
separating the classes table and desk which are arguably the most difficult to dis-
tinguish. Another difference lies in the classification of the night-stand class where
VGG performs significantly better. Overall both architectures seem to have diffi-
culties in separating objects with very similar shape features, this might be solved
with a system that also considers the sizes of the objects.

Figure 18: Multi-View Architecture: example with 3 views estimated by the entropy model.
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Figure 19: Confusion matrix for classification with VGG architecture.
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5 Conclusions
In this thesis, we proposed a system that employs an entropy-based model to re-
trieve the best-views for a multi-view convolutional neural network to tackle the
simultaneous recognition and pose estimation of 3D objects. We demonstrated that
a convolutional neural network can learn features to approximate closely the eval-
uation of the entropy of the depth-images of projections of a 3D object. With such
evaluation we can detect the most informative camera poses to observe the object in
space. We also demonstrated that the image-views obtained from such positions are
descriptive enough to achieve accuracy scores on the ModelNet dataset comparable
to other state-of-the-art approaches. Similarly to other methods, our system uses
a multi-view approach to classify the object, however, our system uses a model to
detect the most informative views to base the multi-view classification.

5.1 Future Work
Our work investigated the viability of an entropy-based estimation a priori of best-
views, however the objective of the project was not to compete with state-of-the-art
approaches when it comes to accuracy scores. We believe further experiments with
network architectures and other entropy-based descriptors might benefit our sys-
tem’s performance. It could also be beneficial to test the architectures on the wider
ModelNet40 dataset and other 3D object classification datasets to obtain a clearer
comparison with other methods. At last, the discrete nature of the pose estimation
of this system leaves the sensitivity of the classifier depending on the density of the
dataset, hence it would be possible to achieve more precise estimations by sampling
a dataset with a larger number of viewpoints.
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Appendix

Table 3: Class accuracy scores on the ModelNet10 dataset for comparison with other approaches.

Algorithm Class Accuracy
RotationNet 98.46
VoxNet 92
MORE 91.3
3D-GAN 91
DeepPano 85.45
3DShapeNets 83.50
PointNet 77.6

Figure 20: Average distribution of the 60 views entropy for the class Bathtub.

Figure 21: Average distribution of the 60 views entropy for the class Bed.
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Figure 22: Average distribution of the 60 views entropy for the class Chair.

Figure 23: Average distribution of the 60 views entropy for the class Desk.

Figure 24: Average distribution of the 60 views entropy for the class Dresser.
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Figure 25: Average distribution of the 60 views entropy for the class Monitor.

Figure 26: Average distribution of the 60 views entropy for the class Night-Stand.

Figure 27: Average distribution of the 60 views entropy for the class Sofa.
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Figure 28: Average distribution of the 60 views entropy for the class Table.

Figure 29: Average distribution of the 60 views entropy for the class Toilet.

Figure 30: VGG architecture: class accuracy on train (orange) and validation (blue) data per epoch
on 1:1 dataset.
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Figure 31: VGG architecture: view accuracy on train (orange) and validation (blue) data per epoch
on 1:1 dataset.

Figure 32: VGG architecture: class accuracy on train (blue) and validation (green) data per epoch
on 1:3 dataset.

Figure 33: VGG architecture: view accuracy on train (blue) and validation (green) data per epoch
on 1:3 dataset.

Figure 34: VGG architecture: class accuracy on train (orange) and validation (pink) data per epoch
on 1:20 dataset.
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Figure 35: VGG architecture: view accuracy on train (orange) and validation (pink) data per epoch
on 1:20 dataset.

Figure 36: MobileNetV2 architecture: class accuracy on train (orange) and validation (blue) data
per epoch on 1:1 dataset.

Figure 37: MobileNetV2 architecture: view accuracy on train (orange) and validation (blue) data
per epoch on 1:1 dataset.

Figure 38: MobileNetV2 architecture: class accuracy on train (blue) and validation (orange) data
per epoch on 1:3 dataset.
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Figure 39: MobileNetV2 architecture: view accuracy on train (blue) and validation (orannge) data
per epoch on 1:3 dataset.

Figure 40: MobileNetV2 architecture: class accuracy on train (pink) and validation (green) data per
epoch on 1:20 dataset.

Figure 41: MobileNetV2 architecture: view accuracy on train (pink) and validation (green) data per
epoch on 1:20 dataset.
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