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Abstract

Keywords— SIDAREV model, optimal control, Pontryagin’s maximum principle, COVID-19
This study seeks for optimal control strategies for the implementation of measures during a disease
outbreak. The existing SIDARE model, which stands for Susceptible (S), Infected Undetected (I), Infected
Detected (D), Acutely symptomatic or Threatened (A), Recovered (R), and Extinct (E), is modified by
adding a compartment for vaccination (V), creating the SIDAREV model. An optimal control problem is
formulated to minimize the threatened and deceased population and the overall costs. Model parameters
for simulating the COVID-19 pandemic have been used. The control inputs u1, u2 and u3 for affecting
the infection rate (β), testing rate (ν) and vaccination rate (ψ), respectively, are proposed. Pontryagin’s
maximum principle is applied to determine the optimal controls. Consequently, the optimal strategies
for the control inputs have been determined. By applying optimal control strategies the socio-economic
costs and the costs associated with the threatened and deceased population are minimized. Moreover, it
appears that the peak of threatened individuals can be flattened and pushed further into the future and
that the deceased individuals at the end of a disease outbreak will be reduced.
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Chapter 1: Introduction to Optimal Con-
trol of Epidemics

This chapter provides an introduction to this research and describes the problem and objective.
The research questions are mentioned, and a report outline is given.

1.1 Research motivation
At the beginning of December 2019, an outbreak of COVID-19 was reported in Wuhan, China.
The virus was spreading fast to other countries, and consequently, on March 11 2020, the World
Health Organization (WHO) declared COVID-19 a pandemic (Organization et al., 2020). When
there is no immunity in a population, and no vaccines are available yet, it becomes hard to
prevent a new disease from spreading. Therefore, measures can be taken to counteract the
spreading of the disease. For instance, non-pharmaceutical interventions (NPIs) such as intensive
hand hygiene, home quarantine, and social distancing measures. COVID-19 measures should be
taken so that the available number of intensive care unit (ICU) beds are not exceeded (Kantner
and Koprucki, 2020).

Epidemiological models can help understand the spread of a disease. It is also possible to assess
the efficacy of different NPIs and estimate the corresponding demands of a health care system.
Various variables can be added to models, such as the amount of susceptible, infected, recovered,
etc. As a result of the new COVID-19 virus, several new models have been developed quickly.
Models differ from each other because different variables and parameters are used. Models can be
controlled by adding a controller to the system. A controller ensures that one or more variables
are steered to a specific desired direction.

It is necessary to pursue an optimal policy so that effective measures can be taken to obtain the
desired outcome with minimal costs. In the outbreak of the COVID-19 pandemic, it is desirable
that hospital capacities are not exceeded and that the deceased population remains minimal.
Measures that can be taken are government intervention, which includes measures such as social
distancing, closing of public buildings and schools, curfews, and lockdowns. Another measure is
a testing policy so that infections can be diagnosed and people can be quarantined to prevent
further spread. Moreover, vaccinations can be administered so that immunity against the disease
is obtained.

1.2 Problem and goal statement
The problem is that the total costs of a disease outbreak should be minimized. These costs consist
of socio-economic costs and the costs associated with the threatened and deceased population.
Socio-economic costs are the costs associated with the implementation of measures. For example,
a lockdown policy has economic costs because shops are closed, companies go bankrupt, and
people cannot go to work. But also, social costs due to the prohibition of people’s freedom
of movement. Costs associated with the threatened and deceased population are costs for
hospitalization and extra care that people need. The problem statement is therefore: Both the
socio-economic costs and the costs associated with the threatened and deceased population must
be minimized.

To minimize the costs, a trade-off must be made between the socio-economic costs and the costs
associated with the threatened and deceased population. This study therefore looks for the most
optimal strategy to achieve this. The goal statement is: Seek for optimal control strategies for the
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implementation of government intervention-, testing-, and vaccination policies during a disease
outbreak.

1.3 Research questions
Research questions have been devised for this study. The main question of this research is:
’What are the optimal control strategies for implementing government intervention-, testing-,
and vaccination policies if the costs associated with the threatened and deceased population and
socio-economic costs must be minimized?’ To answer the main question, sub-questions have been
devised, and they are as follows.

1. Which epidemiology models are available that include government intervention-, testing-,
and vaccination policy, or how can such a model be made?

2. How can the epidemiological model be adapted such that government intervention-, testing-,
and vaccination policies can be controlled?

3. How can an optimization problem be formulated such that the costs of the implementation
of measures, the socio-economic costs and the costs associated with the threatened and
deceased population are minimized?

4. How can the aforementioned optimization problem be solved, such that the optimal strategy
for the implementation of measures can be found?

5. What is the influence of optimal measures compared to non-optimal measures for the above
optimization problem?

1.4 Research report outline
In chapter 2, the background of epidemiological models and optimal control is described, and
preliminaries of optimal control theory are explained. Chapter 3 describes the model analysis
for the SIDAREV model used in this study. Chapter 4 describes the optimal control analysis,
whereas the control design is explained, and the optimal control problem is formulated. Chapter 5
describes which experiments were performed. In chapter 6, the results of the experiments are
analyzed. Chapter 7 describes the discussion and the future research. Chapter 8 draws the
conclusions of the study. Lastly, in chapter 9 the MATLAB codes that are used for the simulations
are provided.

2



Chapter 2: Background in Optimal Control
and Preliminaries

This chapter describes the background in mathematical modelling of epidemics and optimal
control. It also examines how an optimal control problem can be formulated and be solved.

2.1 Mathematical modelling of epidemics
The evolution of an epidemic of a disease outbreak can be simulated using mathematical models.
By dividing a population into several subpopulations, which are called compartments, different
stages of a disease outbreak can be represented (Eubank et al., 2020) (Sharomi and Malik, 2017).
The compartments are, for example, ’Susceptible’ (S), which means that an individual does not
carry the disease at the present moment, but can get the disease because no immunity has been
built up (the individual is not vaccinated), or ’Exposed’ (E) where an individual is infected
with the disease but cannot yet transmit it to other individuals. Other compartments can be
’Infected’ (I), in which logically the individual has contracted the disease but is also infectious to
other individuals or ’Recovered’ (R), where the individual has been cured of the disease and has
become immune so that it cannot be re-infected. A compartment model can be expanded with
different compartments such as ’Diagnosed’ (D), ’Ailing’ (A), ’Recognized’ (R), ’Threatened’
(T), ’Extinct’ (E) and ’Vaccinated’ (V) (Giordano et al., 2020). The disease dynamics can be
represented by connecting the different compartments and the flow from one compartment to
another.

The Susceptible-Infected (SI) model, the Susceptible-Infected-removed (SIR) model and the
Susceptible-Exposed-Infectious-Removed (SEIR) model, are common in literature and often
form the basis of more complex compartment models. In the SI model the entire population
consists of just two groups, namely susceptible and infected individuals, and in the SIR model
the population consists of three groups, namely susceptible, infected and recovered individuals.
Lastly, in the SEIR model, the population is divided into four groups that consist of susceptible,
exposed, infected and recovered individuals. A schematic example of an SI and SIR compartment
model is shown in figure 2.1.

Figure 2.1: SI model (left) and SIR model (right) (Nowzari et al., 2016). In the SI model,
susceptible individuals can transition to infected individuals with infection rate β and can return
to become susceptible with recovery rate δ. Note that individuals cannot become immune to the
disease. In the SIR model, the ’Removed’ (R) compartment is added. Once an individual reaches
the recovered state, it is not able to go back to the susceptible nor infected state, and thus has
become immune

The dynamics of a compartment model can be described based on ordinary differential equations
(ODEs). As an example, the SIR model dynamics are described below (Kermack and McKendrick,
1927), (Hethcote, 2000).
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Ṡ = −βIS/N, S(0) = S0 ≥ 0,
İ = βIS/N − γI, I(0) = I0 ≥ 0,
Ṙ = γI, R(0) = R0 ≥ 0,

 (2.1)

where S(t), I(t), and R(t) are the number of individuals in the compartments and S(t) + I(t) +
R(t) = N .

The system dynamics are programmed in MATLAB, and a plot is made to show the behaviour
of the variables (figure 2.2). The MATLAB script that was created can be found in section 9.1.
What can be seen in the figure is that at the start of a disease outbreak, almost everyone is
susceptible, and only a few individuals are contagious. As soon as more people are contagious,
the total infected individuals quickly reach their peak. After that, the number of infected also
decreases rapidly. The number of recovered individuals increases as long as people recover from
an infection. In this specific example, it can be seen that no more infections take place after
about 150 days. However, a small number of individuals is still susceptible, and so not everyone
is recovered. This is because a balance has been reached in which there are too few individuals
who can transfer the disease to susceptible individuals, causing the disease to die out.

Figure 2.2: SIR model dynammics

2.2 Optimal control in epidemiology
A model can be controlled by adding controllers to the model. Controllers are added to direct the
model variables in a specific desired direction. According to Nowzari et al. (2016), a distinction
can be made between two sorts of control in epidemiology, namely spectral control and optimal
control. Spectral control focuses on static resource allocation to make a disease-free state stable
at minimum costs, i.e. optimally invest resources to diminish the spread of disease when having
a fixed budget. Optimal control focuses on dynamic feedback strategies in which both the costs
of a control strategy to be applied and the economic and healthcare costs are minimized. So
optimal control looks at the ideal situation for minimizing the total costs and maximizing the
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desired outcome. In this report, only optimal control is used and discussed, and thus spectral
control is not taken into account.

Research has already been conducted into optimal control in epidemics (particularly due to the
COVID-19 pandemic). In the study of Djidjou-Demasse et al. (2020), an optimal control strategy
was investigated in which the number of deaths and the costs related to the implementation
of the control strategy is minimized. An important assumption was made that no vaccine is
available during the control period. It turns out that optimal control strategies outperform
other strategies. In the study of Deressa and Duressa (2021), an optimal control analysis was
performed, which showed that optimal preventive strategies such as public health education,
personal protective measures and treatment of hospitalized cases effectively reduce the number
of COVID-19 deaths. Furthermore, in the research of Köhler et al. (2020), two optimal control
policies are analyzed. The first is the open-loop optimal control policy, in which it appears that
the number of fatalities can be decreased significantly under the assumption of exact model
knowledge. However, they state that this is not a realistic scenario in the real world since there
should be dealt with uncertain data and model mismatch. Therefore they designed a feedback
strategy that updates the policy weekly using model predictive control (MPC). They found this
feedback control is robust and also necessary for reliably handling an outbreak. Other studies
where optimal control is applied can be found in (Kantner and Koprucki, 2020), (Hansen and
Day, 2011).

2.3 Formulating the optimal control problem
An optimal control problem must be formulated to create an optimal control strategy for a disease
outbreak. An important part of the optimal control problem is the function to be optimized,
also called the objective function. This is a cost function that must be minimized. The general
form of the objective function consists of the sum of the cost of the state variable(s) x(t) to be
minimized (e.g. infected and/or deceased population) and the cost of implementing the control
variable u(t) and can be described as:

J(u) =
∫ T

0
x(t) dt+ b

∫ T

0
u2(t) dt. (2.2)

Coefficient b is to weight the cost associated with the control input u(t) to the relative importance
of the state variable x(t). It is also possible that the costs are evaluated at the final time so
that a term S(x(T )) must be added to the objective function. A common time interval [0, T ] is
from the pandemic start to vaccination deployment, as it is believed that when vaccinations are
available, the population becomes immune, and control strategies are no longer needed. It often
happens that there are quadratic terms in the objective function because either it is assumed
that the costs are non-linear or that the differential equations obtained from this optimal control
problem have a known solution. Moreover, functions without quadratic terms appear difficult to
solve) (Lenhart and Workman, 2007). Ultimately, the goal is to find a function u∗ that satisfies
the function:

J (u∗) = min
u∈U

J(u), (2.3)

on the set U = {u ∈ L∞(0,∞) : 0 ≤ u(·) ≤ umax} , where umax ≤ 1, and L∞ is the vector space
of essentially bounded measurable functions (Djidjou-Demasse et al., 2020). The solution of
equation (2.3) can be found by formulating the optimal control problem that consists of the
objective function subject to the model dynamics and initial conditions.

2.4 Solving the optimal control problem
The optimal control u(t) can be derived by using Pontryagin’s maximum principle. Pontryagin’s
maximum principle is a tool that creates a system of ODE’s in terms of state and adjoint variables
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(with initial and boundary conditions, respectively) which are satisfied at the optimum. The
created system can then be solved numerically. The optimal control can be denoted as u∗(t)
and state and adjoint variables evaluated at the optimum can be denoted as x∗(t) and λ∗(t),
respectively.

It should be noted that in most literature, different names and symbols are used when describing
Pontryagin’s maximum principle. For example, the optimal control is often described as u(t),
but sometimes also as c(t). Likewise, in the literature, different terms for the same mathematical
theory are used, so does the adjoint variable mean the same as the co-sate variable. In addition,
the symbols for these variables can be expressed as p, ψ or λ. Furthermore, Pontryagin’s
maximum principle explained as Pontryagin’s minimum principle, but this can be changed by
multiplying the objective function by −1.

According to Pontryagin’s maximum principle, it is necessary to derive the Hamiltonian function.
The Hamiltonian function connects the objective function to the state equations using Lagrange
multipliers λ(t). The general form of the Hamiltonian function H can be described as:

H(t, x, λ, u) = f(t, x, u) + λg(t, x, u), (2.4)

where the adjoint variable is expressed as λ, the optimal control as u and the state variable as
x (Kirk, 2004). The term f(t, x, u) represents the integrand of the objective function, and the
term λg(t, x, u) represent the adjoint variable times the right-hand side (RHS) of the differential
equations of the state variable (RHS of model dynamics).

The first-order necessary optimality condition for solving the optimal control problem can be
derived by applying Pontryagin’s maximum principle, which is as follows.

Theorem 1. For the optimality of control u*(t) and corresponding state trajectory x*(t) with
t ∈ [0, T ], it is necessary that there exist a piecewise differentiable adjoint function λ(t), such that

ẋ(t) = ∂H

∂λ
(x(t), u(t), λ(t)), (2.5)

λ̇(t) = −∂H
∂x

(x(t), u(t), λ(t)), (2.6)

so that
H (x∗(t), u∗(t), λ∗(t)) ≤ H (x∗(t), u(t), λ∗(t)) , u ∈ U , (2.7)

and the corresponding boundary conditions hold

x(0) = x0, (2.8)

λ(T ) = S(x(T )). (2.9)

Equation (2.6) is called the adjoint equation and equation (2.9) is called the transversallity
condition. From equation (2.7) the optimality equation can be derived, i.e.

∂H

∂u
(x(t), u(t), λ(t)) = 0, (2.10)

where umin ≤ u(t) ≤ umax. The proof can be found in (Lenhart and Workman, 2007). Further-
more, for the minimization of the control problem the following equation at u∗ must hold:

∂2H

∂u2 ≥ 0. (2.11)
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2.5 Forward-backward sweep method
The forward-backward sweep method is an indirect method to solve the optimal control problem.
In this method, the created ODEs of Pontryagin’s maximum principle are solved numerically
(McAsey et al., 2012). The block diagram in figure 2.3 shows which steps must be performed to
implement the method.

According to Lenhart and Workman (2007), the steps to perform the forward-backward sweep
method are as follows. First, the model parameters must be entered to obtain the desired
simulation for the disease outbreak. After that, an initial guess has to be made for the control
input u (= uold), where the initial guess uold = 0 almost always suffices. The state equations
(ẋ) must now be solved forward in time. After that, the adjoint equations (λ̇) must be solved
backwards in time. Now that the variables x and λ are solved, a new optimal control unew can
be calculated based on the optimality equation. The calculated unew and the initial guess uold
must be updated with a update policy to obtain control input uupdate. Various update policies
are possible. A common update policy is to calculate the average value of the two u′s. However,
it is possible that this update policy does not always work. Another update policy is where a
certain weight is added to the old or new u′s, namely

unew ∗
(
1− ci

)
+ uold ∗ ci, (2.12)

where 0 < c < 1 and i is the current iteration. Ultimately, it must be examined whether
convergence can be achieved. Convergence is achieved when the variables of the current iteration
compared to the previous iteration are within a certain tolerance, i.e.

‖uupdate − uold‖
‖uupdate‖

≤ δ, (2.13)

where δ is the accepted tolerance. If the outcome is not within the accepted tolerance, the
updated u (uupdate) must replace the old u (uold), and the forward-backward sweep method must
be performed again. The method stops when uupdate is within the accepted tolerance. If the
latter is the case, then these are the final values, and the optimal control has been determined.
It should be noted that convergence can also occur with the variables x and λ, meaning that
once these variables achieve convergence, the method stops as well.
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Figure 2.3: Block diagram forward backward sweep method
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Chapter 3: SIDAREV Model Analysis
This chapter describes the epidemiological compartment model that is used for this research.
The model used is a modified version of the existing SIDARE model used in the research of Kasis
et al. (2021). In the proposed model, a vaccination compartment is added to the model, and
therefore this model is called SIDAREV.

3.1 Compartment model description
The compartment model consists of seven compartments, namely Susceptible (S), Infected
Undetected (I), Infected Detected (D), Acutely symptomatic - Threatened (A), Recovered (R),
Extinct (E) and Vaccinated (V). A schematic representation of the SIDAREV model is shown in
figure 3.1.

Figure 3.1: Schematic representation of the SIDAREV compartment model.

It can be seen that there are parameters between the different compartments. A certain value can
be given to the parameters that indicate the transfer rate between the different compartments.
By not assigning values to certain parameters, it is possible to exclude compartments. For
example, by not giving a value to the parameter ψ, that is, when ψ = 0, no transfer will occur to
the ’Vaccinated’ compartment, and as a result, the model functions similar to the SIDARE model.
It is also possible to omit the vaccination compartment and link the vaccination parameter ψ
directly to the recovered compartment (Couras et al., 2020). However, it was decided not to do
this because it is considered less clear.

3.2 System dynamics
The dynamical behavior of a disease outbreak can be mathematically described with a set of
differential equations (i.e. the dynamic system), and can be described as follows:

ẋ1 = −βx1x2 − ψx1 (3.1)

ẋ2 = βx1x2 − γix2 − ξix2 − νx2 (3.2)

ẋ3 = νx2 − γdx3 − ξdx3 (3.3)
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ẋ4 = ξix2 + ξdx3 − γax4 − µx4 (3.4)

ẋ5 = γix2 + γdx3 + γax4; (3.5)

ẋ6 = µx4 (3.6)

ẋ7 = ψx1 (3.7)

x1(0) = x10 , x2(0) = x20 , x3(0) = x30 , x4(0) = x40 , x5(0) = x50 , x6(0) = x60 , x7(0) = x70 (3.8)

Note that for computational reasons the variables (S, I, D, A, R, E, V) have been changed to
x-values ∈ [0, 1] and for clarity this means the following:

• x1(t) portion of susceptible population at time t
• x2(t) portion of infected - undetected population at time t
• x3(t) portion of infected - detected population at time t
• x4(t) portion of threatened population at time t
• x5(t) portion of recovered population at time t
• x6(t) portion of deceased population at time t
• x7(t) portion of vaccinated population at time t

Furthermore the values x10 , x20 , x30 , x40 , x50 , x60 , x70 are the initial values of x1, x2, x3, x4, x5,
x6, x7 ∈ [0, 1]. The parameters that are used are constant and non-negative and their functions
are described below.

• β describes the infection rate for susceptible individuals.
• ν describes the rate of detection of infected individuals based on the level of testing.
• γi, γd, γa describe the recovery rate for infected undetected, infected detected, and acutely

symptomatic (threatened) individuals.
• ξi, ξd describe the rate at which infected individuals become acutely symptomatic (threat-

ened).
• ν describes the rate at which acutely symptomatic individuals decease.
• ψ describes the rate at which susceptible individuals got vaccinated.

Assumptions
The SIDAREV uses the same assumptions as the SIDARE model as described in the research of
Kasis et al. (2021). Also, there is an additional assumption regarding the vaccinated individuals.
For clarity, the assumptions are listed below.

• Recovered individuals are immune to the disease and thus cannot become susceptible
anymore.

• The considered population is constant; this means that births and deaths not attributed to
the particular disease outbreak are not considered.

• The concerned population (or area) is isolated, and imported cases are not included.
• Infected detected individuals (thus positively tested individuals) are assumed to be isolated

immediately so that they do not contribute to new infections.
• Infected individuals become first acutely symptomatic before they decease.
• Acutely symptomatic individuals should be hospitalized as they are considered threatened

for decease.
• Only susceptible individuals are vaccinated.
• Vaccinated individuals are immune to the disease and thus cannot become susceptible

anymore.
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Chapter 4: Optimal Control Design for
SIDAREV Model

This chapter describes the optimal control design for the SIDAREV model. First, it is explained
which control actions are applied to the current model and how the dynamic system should be
adapted. Then the optimal control problem for the model is explained, after which Pontryagin’s
maximum principle is applied. Subsequently, it is explained and substantiated which parameters
are used. Finally, the proposed control design is validated based on simulations.

4.1 Control design
The control inputs u1, u2 and u3 have been added to the SIDAREV model, and their functions
are explained in the following sections. For the sake of clarity, the schematic SIDAREV is shown
in figure 4.1 with the controllers incorporated.

Figure 4.1: Schematic SIDAREV model with controllers

4.1.1 Control input u1 for controlling the rate of infection
The first controller applied to the model is control input u1. Control input u1 indicates the
strength of the government interventions. The function of this control input is to optimize the
infection rate β. To realise this, the current β is replaced by β(1− u1). If no control input is
applied, the control input will remain 0, and the infection rate will not be affected. However,
once u1 gets a value, the term (1− u1) will become smaller than 1, affecting the β parameter.

4.1.2 Control input u2 for controlling the rate of testing
The second controller applied to the model is control input u2. Control input u2 indicates the
strength of the testing policy. The function of this control input is to optimize the testing
parameter ν. By replacing the parameter ν in the model with νu2, the ν parameter can be
controlled. Since ν is multiplied with control input u2, the value of ν changes linearly with the
control input. If there is no control input, so where u2 = 0, the value of ν will also be 0. However,
if the value of u2 ≥ 0, the value of ν would increase.
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For this study, it is assumed that the minimum testing rate is 0, meaning that no tests are being
done, and the maximum testing rate is 0.1, which means that 1 in 10 infected individuals got
tested positively, and must go into quarantine. In addition, a distinction is made between no,
slow and fast testing, with the testing rates being ν = 0, ν = 0.05 and ν = 0.1, respectively. The
assumptions made for the testing rates are described in section 4.4.

4.1.3 Control input u3 for controlling the rate of vaccination
The third controller applied to the model is control input u3. Control input u3 indicates the
strength of the vaccination policy. The function of this control input is to optimize the vaccination
rate ψ. By replacing the parameter ψ in the model with ψu3, the ψ parameter can be controlled.
Since ψ is multiplied with control input u3, the value of ψ changes linearly with the control input.
If there is no control input, where u3 = 0, the value of ψ will also be 0. However, if the value of
u3 ≥ 0, the value of ψ would increase.

For this study, it is assumed that the minimum vaccination rate is 0, meaning no vaccinations are
administered, and the maximum vaccination rate is 0.01, meaning 1 in 100 people is vaccinated
daily. In addition, a distinction is made between no, slow, medium and fast vaccination, with
the vaccination rates being ψ = 0, ψ = 0.001, ψ = 0.0025 and ψ = 0.01, respectively. The
assumptions made for the vaccination rates are described in section 4.4.

4.1.4 Mortality rate when healthcare capacity is exceeded
As with the research of Kasis et al. (2021), the impact of healthcare capacity on mortality rate is
included. It is assumed that once the healthcare capacity is exceeded, the mortality rate will
increase. This is because regular care can no longer take place at this time, and as a result, many
more individuals decease. This change in the mortality rate can be modelled as follows:

µ̄(x4) =
{
µx4, if x4 ≤ h̄,
µh̄+ µ̂(x4 − h̄), if x4 > h̄,

(4.1)

where the function µ̄ : R→ R describes the mortality of the acutely symptomatic population.
Furthermore, h̄ indicates the hospital capacity and µ̂ a five times higher than the current morality
rate, i.e. µ̂ = 5µ. The formula states that the more the healthcare capacity is exceeded, the
higher the mortality rate becomes.

4.1.5 Dynamics of controlled model
The dynamics of the SIDAREV model including the controllers and the change of the mortality
rate can be described as follows:

ẋ1 = −βx1x2(1− u1)− ψx1u3
ẋ2 = βx1x2(1− u1)− γix2 − ξix2 − νx2u2
ẋ3 = νx2u2 − γdx3 − ξdx3
ẋ4 = ξix2 + ξdx3 − γax4 − µ̄(x4)
ẋ5 = γix2 + γdx3 + γax4
ẋ6 = µ̄(x4)
ẋ7 = ψx1u3


(4.2)

4.2 Optimal control problem
The optimal control problem consists of a function that minimizes the threatened and deceased
individuals. Besides, the costs associated with the implementation of an optimal control strategy
have also been added. The function is defined over a time period of [0, T ].
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The first term of the optimization function refers to the integral of the portion of threatened
individuals (x4) and can be described as∫ T

0

c1
2 x4(t)2dt. (4.3)

This term enumerates the portion of threatened individuals to minimize them in the optimization
function. The term c1 is a positive weight factor to get balance in the optimization function.
Specifically, the factor describes how much weight is given to the portion of threatened individuals
compared with the costs of intervention policies. When the weight factor c1 is high, the focus is
to save people who become acutely symptomatic or threatened. On the other hand, when the
weight factor c1 is low, the focus is on minimizing the cost of intervention policies, resulting in a
low optimal control. As can be seen, the term is quadratic because of the ease of the solution.

The second, third and fourth terms of the optimization function refer to the optimal control
inputs u1, u2 and u3. For the same reason as before, an integral and a quadratic function are
used. The functions are as follows:∫ T

0
(b1

2 u
2
1 + b2

2 u
2
2 + b3

2 u
2
3)dt. (4.4)

The factors b1, b2 and b3 measures the relative cost of optimal control input and can be adjusted
as desired.

The last term of the optimization function ensures that the total portion of deceased individuals
at the final time T can be minimized. This term can be described as follows:

c2x6(T ). (4.5)

As with the first term, the factor c2 provides a positive weight factor to balance the optimization
function. Compared to the first term, the difference with this function is that with a high weight
factor of c2, the focus is to save people who might decease. Also, when weight factor c2 is small,
the focus is on minimizing the cost of intervention policies, resulting in a low optimal control.

The total optimization function is the sum of all the terms mentioned and can be described as

Jc(x4, x6, u1, u2, u3) =
∫ T

0
(c1

2 x4(t)2 + b1
2 u

2
1 + b2

2 u
2
2 + b3

2 u
2
3)dt+ c2x6(T ). (4.6)

The optimal control problem is the minimization of the cost function where the cost function
is subjected to the constraints given by dynamics or the epidemiological model. The optimal
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control problem can be described as follows:

min J(x4, x6, u1, u2, u3) =
∫ T

0 ( c12 x4(t)2 + b1
2 u

2
1 + b2

2 u
2
2 + b3

2 u
2
3)dt+ c2x6(T )

subject to
ẋ1 = −βx1x2(1− u1)− ψx1u3
ẋ2 = βx1x2(1− u1)− γix2 − ξix2 − νx2u2
ẋ3 = νx2u2 − γdx3 − ξdx3
ẋ4 = ξix2 + ξdx3 − γax4 − µ̄(x4)
ẋ5 = γix2 + γdx3 + γax4;
ẋ6 = µ̄(x4)
ẋ7 = ψx1u3
0 6 u1 6 0.8
0 6 u2 6 1
0 6 u3 6 1
x1(0) = x10 , x2(0) = x20 , x3(0) = x30 , x4(0) = x40 ,
x5(0) = x50 , x6(0) = x60 , x7(0) = x70 .

(4.7)

4.3 Applying the Pontryagin’s maximum principle
In this section, Pontryagin’s maximum principle is applied. First, the Hamiltonian function is
derived. Thereafter, the adjoint system is created. Finally, the solution to the optimal control
problem is given.

The Hamiltonian function can be described as follows:

H(x, u, λ, t) = c1
2 x4(t)2 + b1

2 u1(t)2 + b2
2 u2(t)2 + b3

2 u3(t)2 + λ1k1(t) + λ2k2(t)

+λ3k3(t) + λ4k4(t) + λ5k5(t) + λ6k6(t) + λ7k7(t)
where,
k1 = −βx1x2(1− u1)
k2 = βx1x2(1− u1)− γix2 − ξix2 − νx2u2
k3 = νx2u2 − γdx3 − ξdx3
k4 = ξix2 + ξdx3 − γax4 − µ̄(x4)
k5 = γix2 + γdx3 + γax4
k6 = µ̄(x4)
k7 = ψx1u3

(4.8)

To create the adjoint system, the Hamiltonian function must be differentiated with respect to
the adjoint variables λj , j ∈ 1, 2, ..., 7. This results in the following adjoint system:

λ̇1 = dλ1
dt = − ∂H

∂x1
= −{λ1(−βx2(1− u1) + λ2(βx2(1− u1)) + λ7ψu3}

λ̇2 = dλ2
dt = − ∂H

∂x2
= −{λ1(−βx1(1− u1)) + λ2(βx1(1− u1)− γi − ξi − νu2) + λ3νu2 + λ4ξi}

λ̇3 = dλ3
dt = − ∂H

∂x3
= −{λ3(−γd − ξd) + λ4ξd}

λ̇4 = dλ4
dt = − ∂H

∂x4
= −{λ4(−γa − µ̄(x4)) + λ6µ̄(x4) + c1x4}

λ̇5 = dλ5
dt = − ∂H

∂x5
= 0

λ̇6 = dλ6
dt = − ∂H

∂x6
= 0

λ̇7 = dλ7
dt = − ∂H

∂x7
= 0
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Simplifying gives:

λ̇1 = (λ1 − λ2)βx2(1− u1) + λ7ψu3
λ̇2 = (λ1 − λ2)βx1(1− u1) + λ2(γi + ξi + νu2)− λ3νu2 − λ4ξi
λ̇3 = λ3(γd + ξd)− λ4ξd
λ̇4 = λ4(γa + µ̄(x4))− λ6µ̄(x4)− c1x4
λ̇5 = 0
λ̇6 = 0
λ̇7 = 0


(4.9)

Furthermore, the transversality conditions can be described as:

λ(T ) = ∂S

∂x
(x(T ) = ∂

∂x
c2x6(T ) =



0
0
0
0
0
c2
0


(4.10)

The optimal controls can be determined by taking the derivative of the Hamiltonian function
with respect to the optimal control input u. For the optimal control inputs u1, u2 and u3 this
means the following.

∂H

∂u1
= b1u1 − λ1βx1x2 + λ2βx1x2 = 0

u1 =


0 if ∂H

∂u1
< 0

(λ2−λ1)βx1x2
b1

if ∂H
∂u1

= 0
0.8 if ∂H

∂u1
> 0

(4.11)

∂H

∂u2
= b2u2 − λ2νx2 + λ3νx2 = 0

u2 =


0 if ∂H

∂u2
< 0

(λ2−λ3)νx2
b2

if ∂H
∂u2

= 0
1 if ∂H

∂u2
> 0

(4.12)

∂H

∂u3
= b3u3 − λ1ψx1 + λ7ψx1 = 0

u3 =


0 if ∂H

∂u3
< 0

(λ1−λ7)ψx1
b3

if ∂H
∂u3

= 0
1 if ∂H

∂u3
> 0

(4.13)

The optimality conditions can then be described as:

u∗1(t) = min[0.8,max(0, (λ2−λ1)βx1x2
b1

)]
u∗2(t) = min[1,max(0, (λ2−λ3)νx2

b2
)]

u∗3(t) = min[1,max(0, (λ1−λ7)ψx1
b3

)]
(4.14)
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4.4 Parametrization of the model
Assumptions have been made for the model based on the COVID-19 disease outbreak. This
section describes the assumptions made for the various parameters. The parameters with
corresponding description and values are summarized in table 4.1.

The infection rate β is calculated based on a reproduction number. A reproduction number
indicates how many second cases one case will give in a disease outbreak. The basic reproduction
number (R0) is the reproduction number when there is no immunity to previous exposures of
the disease and when no vaccinations have been made to immunize a disease, or deliberate
interventions have been made against the spread of disease. From the latter, the infection rate
can be calculated with the formula R̄0 = βs0/ (γi + ξi + ν). The basic reproduction is assumed
to be 3.27 (Yuan et al., 2020). Assuming that at the beginning of a disease outbreak, i.e. when
t = 0, the rate of detection is 0, the infection rate is 0.251.

According to WHO (2020) the recovery rate for mild cases is approximately two weeks. Therefore,
it has been assumed that both the recovery rate for detected (γd) and undetected (γi) individuals
are 1/14, which means that an individual has recovered 14 days after infection. The recovery rate
of an acutely symptomatic (or threatened) individual is the length of time that an individual is
hospitalized. According to Wang et al. (2020), an average hospitalization takes 12.4 days. For
this reason, the recovery rate for threatened individuals (γa) is assumed to be 1/12.4.

The testing rates are taken from the research of Kasis et al. (2021), where the minimum and
maximum testing rates are between 0 and 0.1. A distinction is made by applying different testing
policies, namely ’no testing’, ’slow testing’ and ’fast testing’. In slow testing, 5% of the infected
population is tested positive, and in fast testing, 10% is tested positive on the disease. The
associated testing rates (ν) are 0, 0.05 and 0.1, respectively.

The rate that infected individuals become threatened and therefore also have to be admitted
to hospital has also been taken over from the research of Kasis et al. (2021). The rate is based
on findings from the study of Verity et al. (2020), where estimates are made of the severity
of COVID-19 and where the hospitalization rate per age group are examined. The rate at
which both infected individuals become threatened (ξi) and infected detected individuals become
threatened (ξd) is assumed to be 0.0053.

The healthcare capacity indicates how many care beds are available. The healthcare capacity is
assumed to be 333 per 100,000 individuals (Rhodes et al., 2012). The corresponding healthcare
capacity parameter (ĥ) is therefore 333/100, 000 = 0.00333.

Several studies have shown that the disease mortality rate of COVID-19 is just below 1%
Mallapaty (2020). In the research of Kasis et al. (2021), a disease mortality rate of 0.0085 and for
convenience, it has been chosen to use the same mortality rate (µ). Also, the article of Catena
and Holweg (2020) reads that when the healthcare capacity is exceeded up to about 5 times
more people decease, thus the mortality rate when healthcare capacity is exceeded is assumed to
be 5µ.

The vaccination rates are assumed based on current vaccination rates achieved by countries
worldwide (in the period December 2020 to February 2021). An overview of the data on
vaccination rates is shown in chapter B. According to OurWorldData (2021), Israel is currently
the fastest country that vaccinates, achieving vaccination rates of over 2 in 100 people per
day. Since two vaccinations are currently required for immunity, the rate at which immunity is
achieved is 1/100 = 0.01. This rate is therefore used in the controlled model and characterized as
’fast vaccination’. Furthermore, it can be seen that the United Kingdom can vaccinate 0.5 in 100
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people per day, resulting in a rate that can be used in the model of 2.5/1000 = 0.00025. This rate
is characterized as ’medium vaccination’. Finally, European countries such as The Netherlands,
Germany, Italy and Belgium are currently a lot slower with vaccinations. The vaccination rate
used for the model is 1/1000 = 0.0001 and is characterized as ’slow vaccination’.

Table 4.1: Overview parameters for SIDAREV model

Symbol Description Value
β Infection rate susceptible individuals 2/3
γi Recovery rate undetected individual 1/14
γd Recovery rate detected individual 1/14
γa Recovery rate threatened individual 1/12.4
ν Rate of detection of infected individuals (level of testing) 0 - 0.10
ξi Rate infected individual threatened 0.0053
ξd Rate infected detected individual threatened 0.0053
ĥ Healthcare capacity 0.00333
µ Mortality rate of disease 0.0085
µ̄ Mortality rate of disease when healthcare capacity is exceeded 5µ
ψ Vaccination rate of susceptible individuals 0 - 0.01

The initial conditions for the SIDAREV model are as follows. It is assumed that 0.0001% of the
population is infected with the virus at the start of the pandemic. The susceptible population is
thus 1− 0.0001%. Furthermore, it is assumed that there are no detected, acutely symptomatic,
deceased or recovered individuals at the start of the pandemic. Also, it is assumed that there
are no vaccinated individuals at the start of the pandemic. The pandemic is simulated with the
above parameters on a time frame of [0, T ]. The final time T is set equal to 365 days.

Table 4.2: Initial conditions SIDAREV model

State variable Symbol Initial value
S0 x10 1− 0.00001
I0 x20 0.00001
D0 x30 0
A0 x40 0
R0 x50 0
E0 x60 0
V0 x70 0

4.5 Validation of the control design
In the research of Kasis et al. (2021), different government intervention strategies are compared
to a certain percentage of the deceased population while different testing policies are applied.
The different testing policies are no testing at all (ν = 0), slow testing (ν = 0.05) and fast testing
(ν = 0.1). To validate the model and approach described in this chapter, it was decided to
perform the same experiments. The results of the experiments can be seen in the figures below.
The results are compared with the results of the experiment conducted by Kasis et al. (2021)
(chapter C). It appears that the results are the same, and therefore it is assumed that the control
design described in this chapter is valid.
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Figure 4.2: Optimal intervention with varying testing policies - decease tolerance is 1%

Figure 4.3: Optimal intervention with varying testing policies - decease tolerance is 0.1%
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Figure 4.4: Optimal intervention with varying testing policies - decease tolerance is 0.01%
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Chapter 5: Experiments Design
Section 5.1 describes the experiments related to optimizing control inputs u1, u2 and u3. In
these experiments, one or more control inputs are switched off or fixed to a value to analyze the
influence of specific control input. Section 5.2 explains the experiments for the optimization of
an optimal government intervention strategy when a vaccine is available and when a decease
tolerance is maintained. Section 5.3 describes the experiment comparing optimal control with
non-optimal controls. For clarity, the created optimization function from section 4.2 is stated
again:

Jc(x4, x6, u1, u2, u3) =
∫ T

0
(c1

2 x4(t)2 + b1
2 u

2
1 + b2

2 u
2
2 + b3

2 u
2
3)dt+ c2x6(T ). (5.1)

5.1 Experiment 1-5: Optimizing control inputs u1, u2 and u3
The purpose is to optimize the control inputs both independently and simultaneously. Experiment
1 concerns the case where no control inputs are optimized. In experiments 2, 3, and 4, the control
inputs u1, u2 and u3, respectively, are optimized separately from each other. In experiment 5
control inputs u1 and u3 are optimized simultaneously. In experiment 6 control inputs u1, u2
and u3 are optimized simultaneously.

Experiment 1: No optimization of control inputs
No control inputs are optimized in this experiment. This experiment is performed to show the
course of the different variables of the SIDAREV model. In this experiment, all control inputs
are set to 0. This means that no government interventions are carried out, no tests are taken,
and no vaccinations are given. In other words, this experiment shows what the effects of a disease
outbreak are when a disease can run its free course.

Experiment 2: Optimization of control input u1
This experiment concerns the case where only control u1 is optimized. Control input u1 affects
the infection rate (β) of susceptible individuals. The maximum value that u1 can take is 0.8.
This means that the number of infection can be decreased at its max by 80%. In this experiment,
multiple scenarios are created in which weight factor c1 changes continuously such that different
effects on the optimal control can be analyzed. The c1 values indicate costs related to the
threatened population, thus the higher c1 the more costs are given to the threatened population.
The scenarios start with weight factor c1 = 0 and are continuously increased with either a step
size of 1,000 (section 6.1.2) or 10,000 (section 6.1.2). The following assumptions are made:

• No vaccinations are available, i.e. control input u3 = 0
• A constant testing rate is applied, whereas u2 is fixed to 1 and the testing policies are:

– fast testing: ν = 0.1 (results in section 6.1.2)
– slow testing: ν = 0.05 (results in section D.1)
– no testing: ν = 0 (results in section D.1)

Experiment 3: Optimization of control input u2
This experiment concerns the case where only control u2 is optimized. Control input u2 affects
the rate of detection (ν) of infected individuals. The maximum value that u2 can take is 1. When
the control input equals 0, the rate of detection of infected individuals is 0%. When the control
input equals 1, the rate of detection of infected individuals is 100%. In this experiment, multiple
scenarios are created in which weight factor c1 changes continuously such that different effects
on the optimal control can be analyzed. The scenarios start with weight factor c1 = 0 and are
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continuously increased with either a step size of 1,000 (section 6.1.3) or 10,000 (section 6.1.3).
The following assumptions are made:

• No government intervention is done, i.e. control u1 = 0
• No vaccinations are available, i.e. control input u3 = 0
• The (maximum) testing rate ν is set to 0.1

Experiment 4: Optimization of control input u3
This experiment concerns the case where only control u3 is optimized. Control input u3 affects
the rate of vaccination (ψ) of susceptible individuals. The maximum value that u3 can take is
1. When no control input is applied, the rate of vaccination of susceptible individuals is 0%.
When the maximal control input is applied, the rate of vaccination of susceptible individuals
is 100%. In this experiment, multiple scenarios are created in which weight factor c1 changes
continuously such that different effects on the optimal control can be analyzed. The scenarios
start with weight factor c1 = 0 and are continuously increased with either a step size of 1,000
(section 6.1.4) or 10,000 (section 6.1.4). The following assumptions are made:

• No government intervention is done, i.e. control u1 = 0
• A constant (fast) testing rate is applied, i.e. u1 = 1 and ν = 0.1
• The (maximum) vaccination rate ψ is set to 2.5/1000

Experiment 5: Optimizing control inputs u1, u2 and u3 simultaneously
This experiment concerns the case where the control inputs u1, u2 and u3 are optimized
simultaneously. The influence of the control inputs will be analyzed based on a changing
weight factor c1. Scenarios are created in which weight factor c1 changes continuously. The
scenarios start with weight factor c1 = 0 and are continuously increased with either a step size of
1,000 (section 6.1.5) or 10,000 (section 6.1.5). The following assumptions are made:

• The (maximum) testing rate ν is set to 0.1
• The (maximum) vaccination rate ψ is set to 2.5/1000
• The costs of applying control input u1 are the most expensive, followed by control input u2

and the cheapest is applying control input u1
• The weight factors for b are assumed to be b1 = 3, b2 = 2 and b3 = 1

5.2 Experiment 6: Optimal exit strategies
This experiment examines optimal exit strategies for a disease outbreak. As soon as a vaccine is
available, the goal is to optimally eradicate a disease or build up group immunity so that no new
infections occur. This experiment explores how optimal government interventions (u1) can be
performed when different vaccination policies are applied. Instead of continuously adjusting the
weight factor c1, a decease tolerance of 0.01% is maintained in this experiment. This means that
the weight factors are adjusted so that the maximum percentage of the deceased population at
the final time does not exceed 0.01% of the total population. The vaccination policies used in
this experiment are, no vaccination (ψ = 0), slow vaccination (ψ = 1/1000), medium vaccination
(ψ = 2.5/1000) and fast vaccination (ψ = 1/100). It is assumed that there is a test policy at all
times where fast testing is applied, i.e. ν = 0.1.

The experiment is run three times using different initial conditions. Different initial conditions
represent different stages of the progress of the disease outbreak.

• Experiment 6A uses initial conditions representing a disease outbreak where 0.0001% of
the population is infected with the disease.
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• Experiment 6B uses initial conditions that represent a disease outbreak where 0.001% of
the population is infected with the disease.

• Experiment 6C uses initial conditions representing a disease outbreak where 0.06% of the
population is infected with the disease.

5.3 Experiment 7: Different (non-optimal) control strategies
In this experiment, different control strategies will be applied to analyse to what extent a
non-optimal control strategy differs from an optimal control strategy. First of all, the most
extreme control possibilities will be applied, namely the minimum and maximum control. The
minimum control inputs for all control inputs u1, u2 and u3 are equal to zero. The maximum
control strategy for control input u1 is 0.8 and the maximum control inputs for both u2 and u3
is 1. Also the optimal control strategy whereby weight factor c1 is set to 50, 000 will be applied
for all control inputs u1, u2 and u3. Finally, the average of the optimal control strategy will be
calculated and then will be set as a continuous control input. By plotting these four different
control strategies in one figure, it is possible to compare the optimal government intervention
strategies and their influences on the threatened and deceased population. Experiments 7A, 7B
and 7C analyze the control inputs u1, u2 and u3, respectively.
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Chapter 6: Results from Experiments
In this chapter, the results of the simulation experiments are described.

6.1 Results experiment 1-5: Optimizing control inputs u1, u2
and u3

The results are discussed in which optimal control inputs u1, u2 and u3 are optimized separately
and simultaneously.

6.1.1 Results from experiment 1: No optimization of control inputs
Figure 6.1 shows the graph from the simulation where no optimization of control inputs are done
and where all control inputs are fixed to 0. Thus, no government intervention is done, no tests
are taken, and no vaccinations are given. At the start of the disease outbreak, almost the entire
population is in the susceptible state. The initial condition of the susceptible individuals (x1) is
1-0.00001, which equals 99.99%. The susceptible population decreases as infections occur. There
is a clear peak in the infected undetected individuals (x2). The peak reaches its top on day 59,
and by that time, about 34% of the population is infected undetected. No infected detected
individuals (x3) can be seen in the graph because testing is not taking place. A smaller peak can
be seen in the threatened individuals (x4). This peak reaches its top on day 68, and by that
time, about 1.6% of the population is in a threatening situation. Moreover, these people must
be hospitalized. Since it is assumed that hospitals have a capacity of 0.33% of the population,
it can be noted that this capacity is far exceeded. Also, it can be noted that the peak of the
threatened individuals is 9 days later than the peak of the infected undetected individuals. It can
also be seen that the recovered individuals (x5) increase as more people have become infected
with the disease. At the end of the disease outbreak, the majority of the population, about
95%, is recovered from the disease. There are two reasons why not everyone is recovered from
the disease outbreak. The first is that a part of the population is deceased (x6) at the end of
the disease outbreak, namely around 2.1%. The second reason is that the disease has been
eradicated because there were too few infected individuals, and too many recovered individuals
to create new infections. Finally, it can be seen that no vaccinations have been taken because
the vaccinated population (x7) is 0 during the entire disease outbreak.

Figure 6.1: System dynamics SIDAREV model without optimizing the control inputs
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6.1.2 Results from experiment 2: Optimizing control input u1
The influence of control input u1 with different weights for c1 is analyzed. Two simulations have
been performed where the first simulation uses a step size for c1 of 1,000 (figure 6.2) and the
second simulation uses a step size for c1 of 10,000 (figure 6.3).
Results experiment 2A where step size is 1,000
Figure 6.2 shows that the control effort must be built up quickly and then reduced very slowly
until the end of the time horizon. The maximum control effort required is 0.25. An increasing
weight factor c1 results in a reduction in the peak of the threatened population from 0.51%
to 0.09%. Moreover, the peak of the threatened population is spread over a longer period.
Furthermore, an increasing weight factor decreases the deceased population from 0.39% to 0.15%.
Also, the amount of the deceased population is more gradual than with a low weight factor.

(a) Threatened population (b) Deceased population

(c) Control effort u1
Figure 6.2: Optimization control input u1 - step size 1,000

Results experiment 2B where step size is 10,000
Figure 6.3 shows that a more continuous control effort is required for higher weight factors, i.e.
directly start controlling and hold it for a long period. Accordingly, the peak of the threatened
population flattens completely. It should be noted that at the end of the horizon, the threatened
population is rising again. An increase of up to 0.04% in the threatened population can be seen
at the end of the horizon. This is a consequence of a finite horizon problem and is also called
’turnpike behaviour’, meaning that the consequences of decision making become visible after the
time horizon has passed Köhler et al. (2020). In other words, by stopping the control effort early,
the threatened and deceased population increases, but because this mainly falls outside the time
horizon, the associated costs are not included in the cost function. Furthermore, an increasing
weight factor results in a decrease of the deceased population to 0.02%.
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(a) Threatened population (b) Deceased population

(c) Control effort u1
Figure 6.3: Optimization control input u1 - step size 10,000

Conclusion experiment 2
The optimal control strategy is to build up and slowly reduce the control effort quickly. The
higher the value for c1, thus the more costs are given to the threatened population, the longer
the control effort must be held. Due to the highest proposed control effort the peak of the
threatened population can be reduced by 92% and the deceased population can be reduced by
95% compared to when no control effort is applied.

6.1.3 Results from experiment 3: Optimizing control input u2
The influence of control input u2 with different weights for c1 is analyzed. Two simulations have
been performed where the first simulation uses a step size for c1 of 1,000 (figure 6.4) and the
second simulation uses a step size for c1 of 10,000 (figure 6.5).
Results experiment 3A where step size is 1,000
Figure 6.4 shows that the control effort must be built up quickly to the maximum and must
remain at maximum for a while and then be reduced again until the end of the time horizon. The
maximum control effort is reached, which may indicate that more control effort is required than
is possible. In other words, the used testing rate (ν = 0.1) should be increased if possible. An
increasing weight factor c1 results in a reduction in the peak of the threatened population from
1.35% to 0.59%. Furthermore, an increasing weight factor results in a decrease of the deceased
population from 1.64% to 0.78%.
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(a) Threatened population (b) Deceased population

(c) Control effort u2
Figure 6.4: Optimization control input u2 - step size 1,000

Results experiment 3B where step size is 10,000
Figure 6.5 shows that higher weight factors show fairly similar behaviour as in the previous
simulation. However, this time, faster and more control effort must be delivered in the beginning
and the control effort must be kept maximum for a longer period of time. A rapid decrease in
control effort can be seen after 150 days, this is the moment when the peak of the threatened
population is almost over. If the rapid decrease has been, a slow decline follows until the end of
the time horizon. Again the maximum control effort is reached, which implies higher testing rate
may be desirable. Due to higher weight factors, the threatened population falls to 0.52%. In
addition, the peak has been moved further into the future, where the peak used to be on day 67,
it is now on day 115. It is noticeable that the peak first decreases in size, after which it hardly
decreases but is moved further into the future. Furthermore, an increasing weight factor results
in a decrease of the deceased population to 0.58%. Lastly, it is also clearly visible that the curves
are getting closer to each other. This indicates that a higher weight factor contributes relatively
less to the optimization problem.
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(a) Threatened population (b) Deceased population

(c) Control effort u2
Figure 6.5: Optimization control input u2 - step size 10,000

Conclusion experiment 3
The optimal control strategy is to quickly build up and slowly reduce the control effort. In most
cases, the control effort reaches its maximum, which indicates that a higher testing rate may be
desirable. The higher the value for c1, the longer the control effort must be held at its maximum.
Due to the highest proposed control effort, the peak of the threatened population can be reduced
by 61% and the deceased population can be reduced by 65% compared to when no control effort
is applied. Besides, the peak of threatened population will be moved further into the future by
48 days. Finally, it can be noted that a higher weight factor contributes relatively less to the
optimization because the curves are getting closer to each other.

6.1.4 Results from experiment 4: Optimizing control input u3
The influence of control input u3 with different weights for c1 is analyzed. Two simulations have
been performed where the first simulation uses a step size for c1 of 1,000 (figure 6.6) and the
second simulation uses a step size for c1 of 10,000 (figure 6.7).
Results experiment 4A where step size is 1,000
Figure 6.6 shows that the control effort must be made immediately and can then be reduced. The
maximum control effort required is 0.56. An increasing weight factor c1 results in a reduction in
the peak of the threatened population from 0.51% to 0.30%. Also, the peak is moved slightly
further into the future, where the peak used to be on day 118, it is now on day 135. Furthermore,
an increasing weight factor results in a decrease of the deceased population from 0.54% to 0.23%.
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(a) Threatened population (b) Deceased population

(c) Control effort u3
Figure 6.6: Optimization control input u3 - step size 1,000

Results experiment 4B where step size is 10,000
Figure 6.6 shows that a much higher weighting factor c1 show fairly similar behaviour as in the
previous simulation. However, this time the maximum control effort is reached, which indicates
that a higher vaccination rate may be desirable. In other words, the used vaccination rate
(ψ = 2.5/1000) should be increased if possible. Due to higher weight factors, the threatened
population falls to 0.10%. Besides, the peak has been moved further into the future, where the
peak used to be on day 119, it is now on day 139. Furthermore, an increasing weight factor
results in a decrease of the deceased population to 0.11%. Lastly, it is also clearly visible that
the curves are getting closer to each other. This indicates that a higher weight factor contributes
relatively less to the optimization problem
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(a) Threatened population (b) Deceased population

(c) Control effort u3
Figure 6.7: Optimization control input u3 - step size 10,000

Conclusion experiment 4
The optimal control strategy is to make an immediate control effort, that in some cases mush be
held for some time, after which it can be reduced. In some cases the control effort reaches its
maximum, which indicates that a higher vaccination rate may be desirable. The higher the value
for c1, the longer the control effort must be held at its maximum. Due to the highest proposed
control effort, both the peak of the threatened population and the deceased population can be
reduced by 80% compared to when no control effort is applied. Besides, the peak of threatened
population will be moved further into the future by 20 days. Finally, it can be noted that a
higher weight factor contributes relatively less to the optimization because the curves are getting
closer to each other.

6.1.5 Results from experiment 5: Optimizing control inputs u1, u2 and u3
The influence of control inputs u1, u2 and u3 with different weights for c1 is analyzed. Two
simulations have been performed where the first simulation uses a step size for c1 of 1,000
(figure 6.8) and the second simulation uses a step size for c1 of 10,000 (figure 6.9).
Results experiment 5A where step size is 1,000
Figure 6.8 shows that the control effort for u1 must be made immediately and can then be reduced.
The control efforts for u2 and u3 must be built up quickly and reduced slowly. Due to the control
effort of all the three control inputs, the peak of the threatened population decreases from 1.34%
to 0.37% and is spread over a longer period of time. Moreover, the deceased population decreases
from 1.64% to 0.48%.
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(a) Threatened population (b) Deceased population

(c) Control effort u1, u2 and u3
Figure 6.8: Optimization control input u1, u2 and u3 - step size 1,000

Results experiment 5B where step size is 10,000
Figure 6.9 shows that a much higher weighting factor c1 show fairly similar behaviour as in the
previous simulation. However, this time, the control efforts must be held for a longer period of
time. Accordingly, the threatened population decreases to 0.06% and the deceased population
decreases to 0.11%. At the end of the time horizon in the threatened population, an increase can
be seen, which again indicates turnpike behavior, just as mentioned in experiment 2B.
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(a) Threatened population (b) Deceased population

(c) Control effort u1, u2 and u3
Figure 6.9: Optimization control input u1, u2 and u3 - step size 10,000

Conclusion experiment 5
When the control inputs u1, u2 and u3 are applied simultaneously, similar control effort must be
applied as when applied separately. The higher the value for c1, the longer the control effort
must be held. Due to the highest proposed control effort, the peak of the threatened population
can be reduced by 96% and the deceased population can be reduced by 93% compared to when
no control effort is applied. Furthermore, a higher weight factor contributes relatively less to the
optimization because the curves are getting closer to each other.

6.2 Results experiment 6: optimal exit strategy
This section shows the results of the optimal exit strategies. The subsections describe optimal
exit strategies with low initial conditions, medium initial conditions and high initial conditions.

6.2.1 Results experiment 6A: Optimal exit strategy - low initial conditions
The course of the optimal government intervention strategy, disease and immune population is
shown in the figures below. Figure 6.10c shows that a low vaccination rate leads to relatively
high government intervention intensity, and a faster vaccination rate leads to a relatively low
intensity of government intervention. Moreover, the fast vaccination policy no longer requires
government intervention at all. Figure 6.10a shows that with a higher vaccination rate, the
deceased population will increase less quickly. The deceased population remains very low when a
fast vaccination policy is applied. Figure 6.10b shows the amount of immunity built up. The
immune population consists of susceptible individuals who have been vaccinated and recovered
individuals. As the vaccination rate increases, more asymptotic growth can be seen. This can be
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explained by the fact that the susceptible population continues to decrease, but the vaccination
rate remains the same.

(a) Deceased population (b) Immune population

(c) Intensity government intervention
Figure 6.10: Optimal exit strategy - low initial conditions

6.2.2 Results experiment 6B: Optimal exit strategy - medium initial condi-
tions

The course of the optimal government intervention strategy, disease and immune population
is shown in the figures below. The same findings can be made as with the case when low
initial conditions are applied. However, differences can be seen in the course of the intensity of
government intervention and the course of the deceased population. It can be seen that during
the first days, a maximum intensity of government interventions is required, while this was not
necessary in the case with low initial conditions. It can also be seen that the deceased population
increases sharply in the beginning instead of gradually, as in the case with low initial conditions.
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(a) Deceased population (b) Immune population

(c) Intensity government intervention
Figure 6.11: Optimal exit strategy - medium initial conditions

6.2.3 Results experiment 6C: Optimal exit strategy - high initial conditions
The course of the optimal government intervention strategy, disease and immune population
is shown in the figures below. Again, the same findings can be made as in the cases above.
The difference compared to the case where medium initial conditions are applied is that at the
beginning, the intensity of government interventions has to be maintained for an even longer
time. Also, the deceased population continues to rise steeply for a longer period of time.
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(a) Deceased population (b) Immune population

(c) Intensity government intervention
Figure 6.12: Optimal exit strategy - high initial conditions

6.3 Results experiment 7: Different (non-optimal) control
strategies

The different strategies that have been applied are maximum control, minimum control, optimal
control and average control of the optimal control effort. The different control strategies for
control inputs u1, u2 and u3 are described in the subsections.

6.3.1 Results experiment 7A: different control strategies for u1
Different control strategies for u1 show different behaviour in the effects of the threatened and
deceased population. It can be seen that when maximum and average control is applied that a
clear peak is visible in the threatened population. The peak decreases as the constant control
effort increases, and besides, the peak moves further into the future. At maximum control effort,
there is no peak at all, and the number of head threatened population remains zero. The effects
of optimal control are that the peak is flattened and distributed over the entire time horizon. It
can also be seen that when maximum and average control is applied, the deceased population
increases rapidly and then remains constant. With maximum control, the amount of the deceased
is zero. With the optimal control input, there is an almost constant increase in the amount of
deceased.

34



(a) Threatened population (b) Deceased population

(c) Control strategies for u1
Figure 6.13: Non-optimal control strategies for u1

6.3.2 Results experiment 7B: Different control strategies for u2
Different control strategies of u2 show different behaviour in the effects of the threatened and
deceased population. A peak in the threatened population remains visible in all forms of control
strategies. The peak decreases significantly with both optimal and maximum control. Also,
the optimal control strategy spreads the threatened population over a longer period. With the
maximum control strategy, the peak moves further into the future. It can also be seen that
the effects of minimum control, maximum control and average control strategy show the same
behaviour in the deceased population, namely the shape of the curve remains the same. The
optimal control strategy ensures a constant increase in the deceased population; namely, the
corresponding curve is much more gradual.
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(a) Threatened population (b) Deceased population

(c) Control strategies for u2
Figure 6.14: Non-optimal control strategies for u2

6.3.3 Results experiment 7C: Different control strategies for u3
Different control strategies of u3 show different behaviour in the effects of the threatened and
deceased population. It can be seen that with a minimal and average control strategy, a high
peak in the threatened population remains. This peak decreases sharply if a maximum or optimal
control strategy is applied. The peak will then also be moved slightly further into the future.
Also, it can be seen that with a minimal and average control strategy, the deceased population
remains high. With a maximum or optimal control strategy, the deceased population will be
much lower. It is striking that despite the short control effort with the optimal control strategy
compared to the long control effort with maximum control strategy, the effects on the threatened
and deceased population are almost the same.
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(a) Threatened population (b) Deceased population

(c) Control strategies for u3
Figure 6.15: Non-optimal control strategies for u3
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Chapter 7: Discussion and future research
By using a wide range of weight factors for the threatened population, it was possible to create
multiple scenarios in which different optimal control effort are compared with the dynamics of
the threatened and deceased population. This makes it possible to make the right trade-off for
the implementation of the measures and the consequences of a disease outbreak, such as the
expectation in the threatened and deceased population. The experiment in which no control
inputs are used can be addressed as the reference scenario. The other experiments in which
control inputs were used can be compared with this. This makes it possible to express the
effectiveness of the controls inputs in percentages.

The results where the control input is optimized both separately and at the same time indicate
what the control effort should be. The results show a continuous control effort trajectory. This is
very useful so that it can be seen at what times and how much control effort must be applied.
However, it is unlikely to provide a continuous control effort in the real world. In practice, this
will mean that the measures will have to be continuously adjusted during the day. A discrete
control strategy is more applicable to use in the real world. This means that the control strategies
should be divided into portions, whereas each portion contains a specific package of measures.
In contrast to this research, it has been included in the research of Kasis et al. (2021) where
various policy changes indicate this. Accordingly, in future research a translation to a discrete
control policy could be done.

The usefulness of optimal control results in testing policy (experiment 3 and 5) can be questioned.
This experiment looks at variable test rates depending on the degree of infected individuals.
Since testing is essential to find out to what extent the population is infected, it is not logical to
implement a changing testing policy. It makes more sense that once a certain testing capacity is
available and it is possible that people can have themselves tested for symptoms of the disease,
this capacity is fully used to estimate the level of infections in the population. Hence, it is logical
to consider how government interventions should be adapted to a constant testing policy, as was
done in the other experiments in this study.

For experiment 5, where all three control inputs are applied simultaneously, it was assumed
that the costs for the implementation of government intervention policy are the most expensive,
followed by the testing policy and finally the vaccination policy. It was therefore assumed that the
weight factor for government intervention policy is three times as high as vaccination policy and
that the testing policy is twice as high. However, these assumptions can be strongly questioned
as it is very difficult to estimate the actual implementation costs of the control inputs.

Furthermore, the research leans towards a socio-technical problem. Human behaviour plays an
important role in the effectiveness of the solution to the problem. In particular, the effectiveness
of government intervention strongly depends on this. It strongly depends on the extent to which
people adhere to the imposed measures. Where people adhere to the measures, in the beginning,
it may be that after some time, this no longer applies (RIVM, 2021). Changing human behaviour
has not been included in the assumptions of this study. The optimal control theory that has
been used is based on an open-loop circuit where the optimal strategy is determined with the
initial conditions and parameters. Hence, strategies are not adjusted during their implementation.
In the research of Köhler et al. (2020), a feedback strategy that updates the policies using
model predictive control was analyzed, and it was concluded that this contributes to the reliable
handling of a disease outbreak. For future research the use of such a feedback algorithm can be
considered.
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Lastly, it was assumed that the individuals are equal to each other and that all assumptions
are the same for every individual. In the real world this is not the case. For example, there
is a difference between the mortality rate of individuals. The mortality rate in old people is
much higher than in young people (O’Driscoll et al., 2021). Moreover, the research of Costa
et al. (2020) shows that the degree of infections also depends on the geographic location. A
metapopulation can be used to include such differences in the model. Thus, future research can
focus on how optimal control theory can be applied in a metapopulation model to get more
accurate results.
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Chapter 8: Conclusion
In this report, the epidemiological SIDAREV model is proposed, and the optimal control strategies
for a disease outbreak have been analyzed. Three controls have been added to the model that
can influence the infection-, testing-, and vaccination rate. Optimal control theory was used to
optimize the control strategies for government intervention-, testing-, and vaccination policies.
Pontryagin’s maximum principle was applied to find the necessary conditions for the optimal
control problem and the forward backward sweep method was used to find the optimal controls.

The research question that was formulated in the introduction of the report was: ’What are the
optimal control strategies for implementing government intervention-, testing-, and vaccination
policies if the costs associated with the threatened and deceased population and socio-economic
costs must be minimized?’ The report answered this question by proposing different optimal
control strategies. Since each measure requires its own trajectory of optimal control effort, the
findings are summed up below:

• The optimal control strategy for government intervention policy is to quickly build up and
slowly reduce the control effort until the end of the time horizon. It appeared that by only
applying optimal government interventions, the peak of the threatened population could be
reduced by 92% and the deceased population by 95% compared to when no control effort
was applied.

• The optimal control strategy for the testing policy is to quickly build up and slowly reduce
the control effort until the time horizon. It appeared that by only applying optimal testing
policy, the peak of the threatened population could be reduced by 61% and the deceased
population by 65% compared to when no control effort was applied.

• The optimal control strategy for vaccination policy is to immediately start with control
effort, after which it can be reduced. It appeared that by only applying optimal vaccination
policy, both the peak of the threatened population and the deceased population could be
reduced by 80% compared to when no control effort was applied.

• When all three optimal control measures are applied simultaneously, it appears that the
peak of the threatened population could be reduced by 96% and the deceased population
by 93% when no control effort was applied.

Furthermore, it was investigated what the optimal exit strategy is for a disease outbreak, i.e.
analyzing the optimal government interventions using different vaccination rates and a constant
testing rate. It was found that higher vaccination rates require less government intervention
than lower vaccination rates. The strength of government intervention depends on the amount
of infected individuals during disease outbreak. It has been found that, when a relatively large
number of individuals are infected with the disease, the optimal control strategy is to provide
maximum control effort to bring the infections down, after which the control effort can be slowly
reduced.

Finally, non-optimal control strategies were compared with the optimal control strategies. The
different control strategies were maximum control, minimum control, optimal control and average
control of the optimal control effort. The results of average control came close to the results
of minimum control, and the results of optimal control were close to maximum control. This
means that a high effectiveness can be achieved with optimal control. In addition, the advantage
of optimal control compared to maximum control is that it leads much lower costs. This
motivates to apply optimal control strategies in a disease outbreak for the best trade-off between
socio-economic costs and costs related to the threatened and deceased population.
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Chapter 9: MATLAB codes

9.1 MATLAB code for SIR model example
1 clc; close all; clear all; % Clear command, close figures, clear workspace
2

3 t0 = 0; % Initial time
4 tf = 365; % Final time
5 M = 999; % Number of nodes
6 t = linspace(t0,tf,M+1); % Time variable
7 h = tf/M; % Spacing between nodes
8

9 % PARAMETERS
10 N = 17280000; % Population of The Netherlands
11 gamma = 1/14; % Recovery rate undetected: 14 days
12 beta = 0.25; % Infection rate
13

14 % INITIAL CONDITIONS MODEL
15 S = zeros(1,M+1); % Susceptible
16 I = zeros(1,M+1); % Infected
17 R = zeros(1,M+1); % Recovered
18 S(1) = (1-0.00001).*N;
19 I(1) = 0.00001.*N;
20 R(1) = 0;
21

22 % SYSTEM DYNAMICCS
23 for i = 1:M
24 m11 = - beta*S(i)*I(i)./N;
25 m12 = beta*S(i)*I(i)./N - gamma*I(i);
26 m13 = gamma*I(i);
27 S(i+1) = S(i) + h*m11;
28 I(i+1) = I(i) + h*m12;
29 R(i+1) = R(i) + h*m13;
30 end
31

32 figure(1)
33 plot(t,S, t,I, t,R, 'LineWidth',2); grid on;
34 title('SIR model');
35 xlabel('Days'); xlim([0 365]);
36 ylabel('Population');
37 legend('S', 'I', 'R', 'Location', 'east');
38 saveas(1,'SIR_model_example.png');
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9.2 MATLAB script controlled SIDAREV model
1 clc; close all; clear all; % Clear command window, close tabs/figures, clear ...

workspace
2

3 % SETUP FOR FORWARD-BACKWARD SWEEP METHOD
4 test = -1; % Test variable; as long as variable is negative ...

the while loops keeps repeating
5 t0 = 0; % Initial time
6 tf = 365; % Final time
7 ∆ = 0.00001; % Accepted tollerance
8 M = 999; % Number of nodes
9 t = linspace(t0,tf,M+1); % Time variable where linspace creates M+1 ...

equally spaced nodes between t0 and tf, including t0 and tf.
10 h = tf/M; % Spacing between nodes
11 h2 = h/2; % Spacing equal to 2 for Runge-Kutta method
12

13 % MODEL PARAMETERS
14 gamma_i = 1/14; % Recovery rate undetected: 14 days
15 gamma_d = 1/14; % Recovery rate detected: 14 days
16 gamma_a = 1/12.4; % Recovery rate threatend: 12.4 days
17 beta = 0.251; % Infection rate
18 xi_i = 0.0053; % Rate infected undetected to acutely symtomatic
19 xi_d = 0.0053; % Rate infected detected to acutely symtomatic
20 mu = 0.0085; % Mortality rate
21 mu_hat = 5*mu; % Mortality rate when hospital capacity is exceeded
22 nu = 0.1; % Testing rate (no, slow, fast testing = 0, 0.05, 0.10)
23 h_bar = 0.00333; % Hospital capacity rate (0.00222, 0.00333, 0.00444)
24 psi = 0; % Rate of vaccination
25

26 % WEIGHT FACTORS
27 c1 = 0; % Weight on threatened population
28 c2 = 0; % Weigth on deceased population
29 c3 = 0;
30 b1 = 1;
31 b2 = 1;
32 b3 = 1;
33

34 % INITIAL CONDITIONS MODEL
35 x1=zeros(1,M+1); % Susceptible
36 x2=zeros(1,M+1); % Infected - undetected
37 x3=zeros(1,M+1); % Infected - detected
38 x4=zeros(1,M+1); % Acutely symptomatic - Threatened
39 x5=zeros(1,M+1); % Recovered
40 x6=zeros(1,M+1); % Deceased
41 x7=zeros(1,M+1); % Vaccinated
42

43 x1(1) = 1-0.00001;
44 x2(1) = 0.00001;
45 x3(1) = 0;
46 x4(1) = 0;
47 x5(1) = 0;
48 x6(1) = 0;
49 x7(1) = 0;
50

51 % INITIAL GUESS FOR OPTIMAL CONTROL INPUT
52 u1 = zeros(1,M+1); % Control input for government intervention
53 u2 = zeros(1,M+1); % Control input for testing
54 u3 = zeros(1,M+1); % Control input for vaccinating
55

56 % INITIAL CONDITIONS ADOINT SYSTEM
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57 L1 = zeros(1,M+1);
58 L2 = zeros(1,M+1);
59 L3 = zeros(1,M+1);
60 L4 = zeros(1,M+1);
61 L5 = zeros(1,M+1);
62 L6 = zeros(1,M+1);
63 L7 = zeros(1,M+1);
64

65 L1(M+1) = 0;
66 L2(M+1) = 0;
67 L3(M+1) = 0;
68 L4(M+1) = 0;
69 L5(M+1) = 0;
70 L6(M+1) = c2;
71 L7(M+1) = 0;
72

73 % FORWARD-BACKWARD SWEEP METHOD
74 loopcnt = 0; % Count number of loops
75 while(test < 0)
76 loopcnt = loopcnt + 1;
77

78 oldu1 = u1;
79 oldu2 = u2;
80 oldu3 = u3;
81

82 oldx1 = x1;
83 oldx2 = x2;
84 oldx3 = x3;
85 oldx4 = x4;
86 oldx5 = x5;
87 oldx6 = x6;
88 oldx7 = x7;
89

90 oldL1 = L1;
91 oldL2 = L2;
92 oldL3 = L3;
93 oldL4 = L4;
94 oldL5 = L5;
95 oldL6 = L6;
96 oldL7 = L7;
97

98 % SYSTEM DYNAMICCS
99 for i = 1:M

100

101 % IMPACT HEALTHCARE CAPACITY ON MORTALITY RATE
102 if x4(i) ≤ h_bar
103 mu_bar = mu*x4(i);
104 else
105 mu_bar = mu*h_bar + mu_hat*(x4(i) - h_bar);
106 end
107

108 m11 = -beta*x1(i)*x2(i)*(1-u1(i)) - psi*u3(i)*x1(i);
109 m12 = beta*x1(i)*x2(i)*(1-u1(i)) - gamma_i*x2(i) - xi_i*x2(i) - ...

nu*x2(i)*(u2(i));
110 m13 = nu*x2(i)*(u2(i))-gamma_d*x3(i)-xi_d*x3(i);
111 m14 = xi_i*x2(i)+xi_d*x3(i)-gamma_a*x4(i)-mu_bar;
112 m15 = gamma_i*x2(i) + gamma_d*x3(i) + gamma_a*x4(i);
113 m16 = mu_bar;
114 m17 = psi*u3(i)*x1(i);
115

116 x1(i+1) = x1(i) + h*m11;
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117 x2(i+1) = x2(i) + h*m12;
118 x3(i+1) = x3(i) + h*m13;
119 x4(i+1) = x4(i) + h*m14;
120 x5(i+1) = x5(i) + h*m15;
121 x6(i+1) = x6(i) + h*m16;
122 x7(i+1) = x7(i) + h*m17;
123

124 end
125

126 % ADJOINT SYSTEM
127 for i = 1:M % From initial to final value
128 j = M + 2 - i; % From final value to initial value
129

130 n11 = (L1(j)-L2(j))*beta*x2(j)*(1-u1(j)) + L7(j)*psi*u3(j);
131 n12 = (L1(j)-L2(j))*beta*x1(j)*(1-u1(j)) + L2(j)*(gamma_i + xi_i) + ...

L2(j)*(nu*(u2(j))) - L3(j)*(nu*(u2(j))) - L4(j)*xi_i;
132 n13 = L3(j)*(gamma_d + xi_d) - L4(j)*xi_d;
133 n14 = L4(j)*(gamma_a + mu_bar) - L5(j)*mu_bar - L6(j)*mu_bar - c1*x4(j);
134 n15 = 0;
135 n16 = 0;
136 n17 = 0;
137

138 L1(j-1) = L1(j) - h*n11;
139 L2(j-1) = L2(j) - h*n12;
140 L3(j-1) = L3(j) - h*n13;
141 L4(j-1) = L4(j) - h*n14;
142 L5(j-1) = L5(j) - h*n15;
143 L6(j-1) = L6(j) - h*n16;
144 L7(j-1) = L7(j) - h*n17;
145 end
146

147 % OPTIMALITY CONDITIONS
148 U1 = min(0.8,max(0,(L2-L1).*beta.*x1.*x2./(b1)));
149 u1 = 0.01.*U1 +0.99.*oldu1;
150

151 U2 = min(1, max(0, (((L2-L3).*nu.*x2)./(b2))));
152 u2 = 0.01.*U2 +0.99.*oldu2;
153

154 U3 = min(1, max(0, (((L1-L7).*psi.*x1)./(b3))));
155 u3 = 0.01.*U3 +0.99.*oldu3;
156

157 % COST FUNCTION
158 J = c1./2*sum(x4.^2)*h + b1./2*sum(u1.^2)*h + b2./2*sum(u2.^2)*h + ...

b3./2*sum(u3.^2)*h+ c2*max(x6);
159

160 Cost1 = c1./2.*cumsum(x4.^2)*h; % Total cost of threatened population
161 Cost2 = b1./2.*cumsum(u1.^2)*h; % Total cost of control input u1
162 Cost3 = b2./2.*cumsum(u2.^2)*h; % Total cost of control input u2
163 Cost4 = b2./2.*cumsum(u3.^2)*h; % Total cost of control input u3
164 Cost5 = c2.*x6; % Total cost of deceased population
165 J2 = Cost1 + Cost2 + Cost3 + Cost4 + Cost5; % Cost at each time for ...

plotting graphs
166

167 % CHECK CONVERGENCE TO STOP SWEEP METHOD
168 temp1 = ∆*sum(abs(u1)) - sum(abs(oldu1 - u1));
169 temp2 = ∆*sum(abs(u2)) - sum(abs(oldu2 - u2));
170 temp3 = ∆*sum(abs(u3)) - sum(abs(oldu3 - u3));
171

172 temp4 = ∆*sum(abs(x1)) - sum(abs(oldx1 - x1));
173 temp5 = ∆*sum(abs(x2)) - sum(abs(oldx2 - x2));
174 temp6 = ∆*sum(abs(x3)) - sum(abs(oldx3 - x3));
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175 temp7 = ∆*sum(abs(x4)) - sum(abs(oldx4 - x4));
176 temp8 = ∆*sum(abs(x5)) - sum(abs(oldx5 - x5));
177 temp9 = ∆*sum(abs(x6)) - sum(abs(oldx6 - x6));
178 temp10 = ∆*sum(abs(x7)) - sum(abs(oldx7 - x7));
179

180 temp11 = ∆*sum(abs(L1)) - sum(abs(oldL1 - L1));
181 temp12 = ∆*sum(abs(L2)) - sum(abs(oldL2 - L2));
182 temp13 = ∆*sum(abs(L3)) - sum(abs(oldL3 - L3));
183 temp14 = ∆*sum(abs(L4)) - sum(abs(oldL4 - L4));
184 temp15 = ∆*sum(abs(L5)) - sum(abs(oldL5 - L5));
185 temp16 = ∆*sum(abs(L6)) - sum(abs(oldL6 - L6));
186 temp17 = ∆*sum(abs(L7)) - sum(abs(oldL7 - L7));
187

188 test = min([temp1 temp2 temp3 temp4 temp5 temp6 temp7 temp8 temp9 temp10 ...
temp11 temp12 temp13 temp14 temp15 temp16 temp17]);

189 end
190

191 disp(['number of loops: ' num2str(loopcnt)]);
192 disp(['Cost function: ' num2str(J)]);
193 disp(['Portion deceased: ' num2str(max(x6))]);
194

195 y(1,:) = t;
196 y(2,:) = x1;
197 y(3,:) = x2;
198 y(4,:) = x3;
199 y(5,:) = x4;
200 y(6,:) = x5;
201 y(7,:) = x6;
202 y(8,:) = x7;
203 y(9,:) = L1;
204 y(10,:) = L2;
205 y(11,:) = L3;
206 y(12,:) = L4;
207 y(13,:) = L5;
208 y(14,:) = L6;
209 y(15,:) = L7;
210 y(16,:) = u1;
211 y(17,:) = u2;
212 y(18,:) = u3;
213 y(19,:) = J;
214

215 % IMMUNITY REACHED
216 imm = x5+x7.*100; % Percentage immune
217

218 x4_per = x4*100; % percentage threatened
219 x6_per = x6*100; % percentage deceased
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Appendix A: Deriving the optimality equa-
tion

Theorem 2. Suppose that f(t, x, u) and g(t, x, u) are both continuously differentiable functions
in their three arguments and concave in u. Suppose u∗ is an optimal control for the optimal
control problem, with associated state x∗, and λ a piecewise differentiable function with λ(t) ≥ 0
for all t. Suppose for all t0 ≤ t ≤ T

0 = Hu (t, x∗(t), u∗(t), λ(t)) (A.1)

Then for all controls u and each t0 ≤ t ≤ T, we have

H (t, x∗(t), u(t), λ(t)) ≤ H (t, x∗(t), u∗(t), λ(t)) (A.2)

Proof.
Fix a control u and a point in time t0 ≤ t ≤ T . Then,

H (t, x∗(t), u∗(t), λ(t))−H (t, x∗(t), u(t), λ(t))
= [f (t, x∗(t), u∗(t)) + λ(t)g (t, x∗(t), u∗(t))]
− [f (t, x∗(t), u(t)) + λ(t)g (t, x∗(t), u(t))]

= [f (t, x∗(t), u∗(t))− f (t, x∗(t), u(t))]
+λ(t) [g (t, x∗(t), u∗(t))− g (t, x∗(t), u(t))]
≥ (u∗(t)− u(t)) fu (t, x∗(t), u∗(t))
+λ(t) (u∗(t)− u(t)) gu (t, x∗(t), u∗(t))
= (u∗(t)− u(t))Hu (t, x∗(t), u∗(t), λ(t)) = 0
= Hu (t, x∗(t), u∗(t), λ(t)) = 0
hence, ∂H∂u (t, x∗(t), u∗(t), λ(t)) = 0

(A.3)
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Appendix B: Data vaccination program

Figure B.1: Vaccination doses per 100 people on daily basis (OurWorldData, 2021)

Figure B.2: Vaccination doses per 100 people on daily basis (OurWorldData, 2021)
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Appendix C: Comparison research results

Figure C.1: Research results from Kasis et al. (2021)
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Appendix D: Additional results from exper-
iments

D.1 Additional results from experiment 2
Result experiment 2 - slow testing

(a) Threatened population (b) Deceased population (c) Control effort u1
Figure D.1: Optimization control input u1 - step size 1,000 - slow testing

(a) Threatened population (b) Deceased population (c) Control effort u1
Figure D.2: Optimization control input u1 - step size 10,000 - slow testing

Result experiment 2 - no testing

(a) Threatened population (b) Deceased population (c) Control effort u1
Figure D.3: Optimization control input u1 - step size 1,000 - no testing

51



(a) Threatened population (b) Deceased population (c) Control effort u1
Figure D.4: Optimization control input u1 - step size 10,000 - no testing
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