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Abstract
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The recent COVID-19 pandemic leads to global social and economic disruption. Decision-makers continu-
ously face the challenge of choosing the right mitigating strategies to fight the pandemic. One strategy
that is still not fully understood is the effectiveness of implementing travel restrictions at the early stage
of the spreading. Therefore, this report simulates different travel restricting measures and evaluates their
effectiveness. The simulation is done by creating a novel metapopulation SIDARE model. This model
captures the effect of travel on the spreading of COVID-19 in the Netherlands and is able to describe the
evolution of the pandemic accurately. It is found that travel restricting measures on themselves delays,
but not mitigates, infections. Moreover, the most effective way to implement travel restrictions is regional,
in the province where the initial infection occurred. When 99 % of the travel from and to that region is
reduced, a delay of 48 days on the national infection peak can be achieved. Finally, the usefulness of this
delay is studied by combining travel restricting measures with different vaccination strategies. It is found
that travel restricting measures can be used to increases the potential lives saved by vaccinating.
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Chapter 1: Introduction
In December 2019, a novel coronavirus called SARS-COV-2 arose in Wuhan, China. The virus
is highly contagious and causes the disease COVID-19 through human-to-human transmission.
On 12 March, The World Health Organization (WHO) officially characterized COVID-19 as a
pandemic (WHO, 2020a) and by 18 October 2020, more than 40 million cases were confirmed
with nearly 1.1 million deaths. (WHO, 2020b). In order to reduce the spreading of COVID-19,
countries implement non-pharmaceutical intervention policies (NPIs). Some examples of NPIs
are social distancing, the closing of public places, and lock-downs. The decision on the duration
and intensity of the NPIs differ per country. Spreading disease models take an essential role in
this decision process (Nowzari et al., 2016). Spreading disease models capture the dynamics of
disease and use them to study how diseases evolve. This information can be used by public health
authorities to predict necessities during an outbreak. Subsequently, by combining real-world
data, these models can evaluate the effectiveness of taken NPIs.

The most well-known spreading disease model is the simple SIR model, which describes how
diseases evolve using three differential equations (Kermack and McKendrick, 1927). This model
can roughly estimate the evolution of a disease. Since then, many studies have been conducted
on improving this model. For example, the SEIR model by Hethcote and Van den Driessche
(1991) is such an improvement. This model captures the disease’s properties that there is a
delay between being infected and being infectious, resulting in more accurate predictions. Later,
more advanced models were created. These models are now often used to study the effects of
disease-fighting strategies. Giordano et al. (2020) made the extended SIDARTHE model, which
studies the effectiveness of contract tracing policies. Furthermore, Djidjou Demasse et al. (2020)
made the SEAIRD model, which studies the optimal control strategy until vaccine deployment.

Fewer models take spatial dynamics into consideration. An important contribution in this
field has been done by Gatto et al. (2020), who uses the SEPIAHQRD model to simulate the
effectiveness of localized containment measures. Della Rossa et al. (2020) uses a spatial model to
develop a differentiated feedback control strategy for fighting the COVID-19 pandemic using
regional containment measures. Using this strategy, they found that the total number of infected
and deceased cases will be almost the same as when a national lock-down strategy is taken.
However, the differentiated strategy significantly reduces economic costs. Very little work has
been done on the effectiveness of travel restricting measures. Chinazzi et al. (2020) did study the
effectiveness of travel restricting measure taken by the government. They found that the taken
measures only delayed the spreading of the disease by 3 to 5 days. However, this travel ban was
executed after the disease already spread throughout the whole country. A natural question that
rises would be: would the travel restricting measures be effective if they were taken on time, or
are they not effective at all?

In this report, the existing SIDARE model will be upgraded to a metapopulation SIDARE model.
The metapopulation SIDARE model can model the effects of travel between regions on the
spreading of the disease. This model is then used to simulate travel restricting measures for four
different cases. These different cases give insights into which way travel restricting measures
should be implemented by the government. The novelty of this report is that it studies travel
restricting measures if they were taken on time. Moreover, this report is the first to study if
these effects can be used to save lives (to the best of my knowledge).

In the rest of this chapter, the problem and goal statements are formulated, which lead to the
research questions. Then, a brief methodology will be given on these research questions will
be answered. In chapter 2, a literature study is carried out. This literature study reviews the
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CHAPTER 1. INTRODUCTION 6

existing models that are created throughout history. Chapter 3 describes the construction of the
extended SIDARE model and validates the design. The model is then used to study different
NPIs, which is described in chapter 4. In chapter 5, the combination of travel restricting measures
and vaccination is studied. Finally, the conclusion, discussion, and future work are stated in
chapter 6/7/8, respectively.

1.1 Problem context
"If we don’t have a vaccine—yes, we are all going to get it" is an infamous quote by a doctor
during the early stages of the SARS outbreak in 2002. This opinion was widely shared by many
experts at that time, leading to great concern in public (Shaw, 2007). History has shown that
this prediction was wrong. The misconception of the strength of the virus was partially due to
modelling flaws. The models calculated an R0 of 6, meaning that every individual would infect
six others on average. Luckily, this number later happened to be far lower than that. Despite the
calculation mistake, infectious disease models were also part of the solution. The models were
used to predict which measures would be the most effective to fight the spreading—eventually
leading to full containment of SARS.

This case stresses the impact of spreading disease models. Nowadays, during the COVID-19
pandemic, spreading disease models also play a significant role. Decision-makers continuously
face the challenge of fighting the disease without harming the economy too much. They need
to answer questions like: when and how long should schools, theatres, stores, and other public
places be closed/opened? To what extend is it needed to force behavioural changes like wearing
mouth masks or disinfecting hands? Should the necessary measures count for the whole nation
or only for regions with many infections? All these decisions have a significant impact on the
daily life of people and the economy. Therefore, the efficiency and efficacy of these measures
have to be understood.

1.2 Scope
There are numerous factors that influence the spreading of a disease, which makes them hard
to model. Pica and Bouvier (2012) describes different factors that influences the spreading. In
this research, some of these factors are left out. The factors that are included and excluded are
shown infigure 1.1. The focus of this report will be on the travel factor. By "travel" is meant: the
movement of people within the Netherlands on a daily bases. Travel for a longer period (such
as a vacation) or a short one time trip is excluded in this research. For simplicity, seasonality
effects such as the weather are left out. Moreover, ventilation and other localized measures are
not modelled.
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Figure 1.1: Scope of the research, showing which factors that influences the spreading of a disease
are modeled in this research.

1.3 Goal statement
Based on the research background, the following goal statement is formulated

"Design a metapopulation SIDARE model which can be used to test and evaluate the
effectiveness of travel restricting measures"

The focus of this report is to test whether travel restricting measures would be useful for fighting
COVID-19 in the Netherlands. However, the designed model can also be used to study outbreaks
of different disease in other countries.

1.4 Research approach
Choosing a research approach can help in keeping track of the bigger picture during a research
(Van Aken and Berends, 2018). To determine which research approach will be taken, we will
consider several aspects. The aspects are 1) Is this research practical or theory-oriented? 2) Is
the origin of the problem known or not? 3) Can the problem be considered as an implementation
problem?

1) This problem can be considered both practical and theory-oriented. Practical (known)solutions
will be tested to test their effectiveness. However, studying the effects of travel on the spreading
of diseases will result in insights that can be added to the knowledge base.

2) The origin of the problem seems logical. It is known that more travel leads to more infections.
This means that there is no need for further investigating the origin of the problem. And thus,
no diagnostic phase is needed.

3) This problem cannot be considered as an implementation problem. The implementing of
travel restriction will be evaluated, but the actual implementation will obviously not been done
in this research.

Considering these aspects, a logical research approach would be the design cycle (Wieringa, 2014).
The design cycle is a part of the larger engineering cycle. However, the design cycle excludes the
actual implementation and the implementation evaluation figure 1.2. The actual implementation
will not be part of this project, so the design cycle is more suitable. Consequently, the design
cycle is chosen over the problem-solving cycle of van Aken (Van Aken and Berends, 2018). The
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problem-solving cycle includes a diagnostic phase. In this project, the origin of the problem is
already known, so there is no need for a diagnostic phase. The design cycle of Wieringa implies
that the project should contain the following phases: Problem investigation, treatment design,
design evaluation. These phases are shortly summarized below

• Problem investigation To investigate the problem, a broad literature review will be
carried out. This literature review will help in finding knowledge gaps and potential research
opportunities

• Treatment design In this phase, the design requirements are defined. These design
requirements will be used to make a new artefact.

• Design evaluation The created artefacts will be evaluated. This can be done by simulating
the artefact. In this simulation, multiple KPI’s can be compared to the earlier made
requirements.

Figure 1.2: This picture shows the engineering cycle. Only the first three steps are taken, so the
implementation and implementation validation steps are excluded. This smaller circle is called
the design cycle (Wieringa, 2014)

Subsequently, these three main phases of the project lead to research questions. The research
question are further elaborated in section 1.5.
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1.5 Research questions and operationalization
In this section, the main research question is divided into five sub-questions. These sub-questions
are then be further elaborated in each section. Finally, the tools that will be used for the
operationalization are discussed. The main research question of this research is:

What is the effect of travel restricting measures in the Netherlands on the spreading
of the COVID-19 pandemic?

To answer this question, five sub-questions will be answered
SQ1: What spreading disease models exist, and what are their differences?
SQ2: How can a spreading disease model be constructed to study the effects of travel within the
Netherlands?
SQ3: What different travel restricting measures can be thought of, and how effective will they be?
SQ4: Can the effects of travel restricting measures be used in fighting the pandemic?

1.5.1 Sub-question 1: What spreading disease models exist, and what are
their differences?

The goal here is to get insights on how to model the spreading of the COVID-19 pandemic. These
insights will be obtained by exploring existing spreading disease models in the literature. The
models will be compared in terms of how they work, their usefulness and their pros and cons.

1.5.2 Sub-question 2: How can a spreading disease model be constructed to
study the effects of travel within the Netherlands

Out of the insights obtained is SQ1 requirements can be set up for a new model. This model
will be created in Matlab. The existing SIDARE model will be recreated and extended to a
version that contains travel between provinces. This model will be validated by remaking graphs
of previously done research. After that, data will be obtained to simulate the spreading of
COVID-19 in the Netherlands. The most important data that will be obtained is the movement
of people between regions. This movement will be estimated by public commuting data.

1.5.3 Sub-question 3: What different travel restricting measures can be
thought of, and how effective will they be?

To answer this sub-question, four different cases are simulated and evaluated.

• Case I: A Nationwide travel restriction will be enforced. Only people with vital professions
(doctors, fireman etc.) will be allowed to travel. The travel restriction will vary from light
travel restriction (0% of the reference travel) up to a complete travel ban (99% of the
reference travel).

• Case II: Travel restriction will be enforced by isolating one province from the rest of
the Netherlands. The travel restriction will vary from light travel restriction (0% of the
reference travel) up to a complete travel ban (99% of the reference travel). This simulation
will be done for every province.

• Case III: In this case the Netherlands will be split into two clusters: the Northeast and
the Southwest. People are only allowed to travel within their cluster, but not to the other.
It can be argued that less travel is needed when the clusters are this big. Therefore, it is
decided only to simulate a complete travel ban of 99% of the reference travel.

• Case IV: In this case, the Netherlands will also be split into two clusters. However, in
this case, ’smarter’ clusters are chosen. Here, the clusters consist of the provinces that have
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the most travel between them. In this case, it is also decided to enforce a complete travel
ban of 99% of the reference travel.

For every scenario, the total amount of infected and deceased people will be calculated. Every
measure’s effectiveness will be evaluated by analyzing the total amount of infected, deceased, or
the infection peak’s timing. This will be compared to the control effort needed for that measure.
After that, the robustness of each measure will be tested through a parameter variation study.
The infectiousness of COVID-19 can change naturally (mutation or weather) or through taken
NPIs by the government. Therefore, the parameter variation evaluates the travel restricting
measure when these conditions change.

1.5.4 Sub-question 4: Can the effects of travel restricting measures be used
in fighting the pandemic?

To answer this question, a fifth case is set up. This case studies whether the effects found in case
I - IV can be used to fight the pandemic. Chinazzi et al. (2020) showed that travel restrictions
cause a delay in the infection. The time won by this delay can be used to vaccinate people.
Therefore the different cases are now simulated together with a vaccination rate. This case will
be evaluated by comparing the different amount of deceased expected due to COVID-19.



Chapter 2: Analysis spreading disease mod-
els

To get a better understanding of spreading disease models, the most relevant research in this
field is analyzed. For every research, the used spreading disease model is analyzed and their
contribution is summarized. A distinction is made between population models, network models
and metapopulation models. At the end of the chapter, an overview of the models is given and
the findings are summarized

2.1 Population models
The most prominent spreading disease models are ’agent based’ or ’population’ models. These
models divides the population into different compartments, which represent the state of an agent.
The most commonly used compartments are Susceptible (S) and Infected (I). The movement of
the agent from susceptible to infect is called ’infection rate’ and the movement from Infected to
Susceptible is called ’curing rate’. These movements can either be deterministic or stochastic.
Deterministic means that movement happens at a specific rate while stochastic assume that the
state transition happens with a certain probability (Nowzari et al., 2016). The latter is more
accurate to model a spreading disease because, in the real world, it is not always guaranteed
that someone gets infected. However, when the population is large enough, the deterministic
model suffices too. Often, stochastic models are created and then a deterministic approximation
is made. This deterministic approximation makes the model easier to analyze. To understand
the differences between spreading disease models, two terms have to be explained.

• Initial/basic reproduction number is a term that describes the strength of a disease
(often denoted by R0. A reproduction number of 1.6 means that 100 people infect 160
others on average. When the reproduction number is bigger than 1, the disease’s spreading
grows, and when it’s lower than 1, the disease typically dies out.

• Threshold conditions are used to describe the requirements for a disease to reach certain
equilibria. The two most described equilibria are disease-free and epidemic. A disease-free
equilibrium occurs when a disease dies out, and epidemic equilibrium occurs the disease
spreads.

• Mean-field theory uses assumptions to simplifies stochastic systems, which makes them
easier to analyse.

2.1.1 SIR model
The most commonly known spreading disease model is the classical SIR model. The SIR model
is a simplified model which divides the population into three compartments: Susceptible (S),
Infected (I), or Removed (R)(Kermack and McKendrick, 1927). The susceptible represent
individuals that have not been infected yet and are susceptible to the disease. The infected
represents individuals who are infected and able to spread the disease. The Removed represents
the individuals that are not susceptible to the disease anymore (immune or dead). Figure 2.1
shows the compartment and its interrelations on the left side and the corresponding differential
equations on the right side.

11
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Ṡ = −βSI
İ = βSI − γI

Ṙ = γI

(2.1)

Figure 2.1: Schematic representation of the SIR model. Showing the compartments and its
interrelations on the left and the corresponding differential equations on the right

The first equation describes the change of the S compartment over time Ṡ. This depends on the
amount of infected, amount of susceptible and the infection rate β. The infection rate β is a
constant which is used to capture the infectiousness of a disease. The second equation describes
the change of the I compartment over time İ. This depends on the amount of infected minus
the amount of recovered. At last, the removed Ṙ over time is equal to the curing rate γ times
the infected. It is important to notice that this is a very oversimplified infectious disease model.
This model can roughly estimate the amount of susceptible, infected or recovered. However, it is
important to know the limitations of this model. Some limitations are:

• This model assumes a constant homogeneous infectious and recovery rate, while in reality
this varies.

• This model assumes that an infected individuals is immediately infectious. In reality there
can be a certain delay.

• The model dependents on the ’best guess’ of the parameters. These parameters can change
and are often met with a certain uncertainty.

The basic reproduction number R0 can be calculated R0 = β
γ

2.1.2 SIS model
Influenza viruses are known to not confer long-lasting immunity, meaning that the SIR model does
not suffice (Johnson et al., 2017). Therefore, the SIS (Susceptible-Infected-Susceptible) model
is created. The first SIS model was described by Kermack and McKendrick (1927). Figure 2.2
shows the compartment and its interrelations on the left side and the corresponding differential
equation on the right side.

Ṡ = bI − aSI
İ = aSI − bI

(2.2)

Figure 2.2: Schematic representation of the SIS model. Showing the compartments and its
interrelations on the left and the corresponding differential equations on the right

After analyzing these dynamics, it is found that when β ≤ γ the system will converge to a unique
equilibrium of x = 0, where x represents the potion of the population infected. This implies
that the disease dies out when. If β > γ, the system will converge to a unique equilibrium
x = (β − γ)/β.

2.1.3 SEIR/SEIRS model
The SIR and the SIS model assume that an individual immediately becomes infectious when
an individual gets infected. However, there is often a delay between those stages (called ’latent
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period’). The SEIR/SEIRS model models the latent period by adding the ’E’ compartment .
The ’E’ in the SEIR model stands for Exposed and represents the infected individuals who are
not infectious. Figure 2.3 shows the compartments and its interrelations on the left side and the
corresponding differential equations on the right side.

Ṡ(t) + Ė(t) + I(t) + Ṙ(t) = 1
Ė = βg(I)(1− E − I −R)− (ε+ µ)E
İ = εE − (γ + µ)I
Ṙ = γI − (δ + µ)R

(2.3)
Figure 2.3: Schematic representation of the SEIRS model. Showing the compartments and its
interrelations on the left and the corresponding differential equations on the right.

Hethcote and Van den Driessche (1991) studied the SIRS and SEIRS models properties when a
nonlinear infection rate is applied. They argue that a bilinear infection rate, which is used by
the SIR and SIS model, does not match real-world situations. They found that this nonlinear
infection rate barley impacts the dynamical behaviour of the models. Moreover, they found that
this model leads to multiple unique endemic equilibria. The equilibria are later proven to be
globally stable by Li and Muldowney (1995). Later, Li et al. (1999) relaxes the assumption that
the population size stays the same. In this model, the population size depends on time and
whether the disease will become an endemic or not. They found endemic criteria dependent on
the infected fraction of the population.

2.1.4 SEAIRD model
Djidjou Demasse et al. (2020) constructed the so-called SEAIRD model to study the optimal
COVID-19 epidemic control until vaccine deployment. The compartments represent Susceptible
(S) Exposed (E) Asymptomatic (A) Infected (I) Recovered (R) Dead (D). This model splits the
infected cases into ’severe’ and ’mild’ cases, as shown in figure 2.9. The corresponding differential
equations can be found in appendix A. The reason for this is that they argue that mild cases
have significantly different characteristics than severe cases.

Figure 2.4: Schematic representation of the SEAIRD model. Showing the compartments and its
interrelations.
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In their research, they describe that there are two ways to halt the spread of an epidemic. The
first one is by immunising the population through vaccines, and the second one is by achieving
’herd immunity’. The latter is studied in this paper. It is found that alleviate control too early
only delays the epidemic wave. Also, varying the control over time provides the best results. The
optimal control will be a short, intense control at the beginning of the period followed by a lower
intermediate control.

2.1.5 SIDARTHE model
Giordano et al. (2020) made the so-called SIDARTHE model. This is a deterministic population
model, dividing the population into eight compartments. The compartments of this model are:
Susceptible (S), Infected(I) Diagnosed (D), Healed (H), Ailing (A), Recognized (R), Threatened
(T), and Extinct (E). The compartments and their interrelations are shown in figure 2.5 and the
corresponding differential equations in appendix A.

Figure 2.5: Schematic representation of the SIDHARTE model. Showing the compartments and
its interrelations on the left and the corresponding differential equations on the right

The main contribution of this model is that it discriminates between detected and undetected
infected. By doing so, diagnosing strategies can be studied. An example of this is studying the
effects of contact tracing and testing. They found that when massive testing and contact tracing
is applied, the lock-down can be weakened, and this will result in almost no extra deaths. This
model can be extended to include co-existing disease, which can lead to a better approximation
of the total collateral deaths. Co-existing diseases can lead to a faster-overloaded health care
capacity, which results in indirectly COVID-19 deaths.

2.2 Network models
The drawbacks of the population models are that they assume a well-mixed population (ho-
mogeneity), which means that the movement from one compartment to another is equal for
every individual. Not every individual has the same, for example, infection or curing rate in the
real world. Therefore, network models are created. Network models consider the population
by a connected graph G = (V,E) where V is the number of nodes (representing individuals)
and E the number of edges (representing interactions). The adjacency matrix "A" describes
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the interrelations between the nodes. The advantage of these models that state changing rates
can differ per node. The infection rate in these models often dependents on the amount of
neighbouring infected nodes—these aspect results in more heterogeneity, and better match the
real world.

2.2.1 Network topologies
The topology of a network can significantly impact the strength of a virus propagation (Ganesh
et al., 2005). The most common topologies are random homogeneous networks, small-world
networks and heavy-tailed networks. To understand the differences between network topologies,
several graph properties have to be defined.

• The degree of a node in an undirected graph is the sum of all neighbours of the node. In
a directed graph, the degree is the number of edges pointing towards the node.

• The average degree of a graph is the sum of all the node’s degree divided by the number
of nodes.

• The shortest path Is the minimum amount of ’steps’ between a pair of nodes.
• The average path length is the sum of the minimum amount of node steps between

each pair of nodes divided by the total amount of shortest paths.
• The clustering coefficient is a measure to define how much a node tend to cluster. Node

V’s clustering coefficient is the fraction of the number of possible interconnections between
node V and its neighbours. The clustering coefficient can be calculated by (2.4)

(Number of links between the neighbors of V) * 2
(Degree of node V)∗(Degree of node V - 1) (2.4)

Random homogeneous networks.
A Random homogeneous network is characterized that every node has the approximately same
degree. The clustering coefficient is given by the network 〈k〉N , where 〉k〉 denotes the average
degree and N the total amount of nodes. The average shortest path is given by 〈l〉 = logN/log〈l〉,
where 〈l〉 represents the average shortest path (Dorogovtsev, 2010). Real-world properties like
high clustering coefficients are absent in this model

Small-world networks
The small-world network is a network where most of the nodes are not neighbours of each other,
but a small number of steps can reach every node (Watts and Strogatz, 1998). This network
is generated by an ordered lattice of hubs (a group of nodes with a high clustering coefficient).
Between these hubs, several "short cuts" are generated, which significantly reduces the average
path length. The result is a network with a high average clustering coefficient and a low average
path length. Small-world characteristics are often found in website-links or social networks.

Heavy-tailed Networks
Heavy-tailed networks are networks where the degree of the nodes follow the power-law distribu-
tion. The power-law imposes that new nodes tend to connect with nodes that have already a
higher degree. This preferential attachment causes a network to be highly centralized. Many
real-world networks are considered "scale-free" (Pastor-Satorras et al., 2015). Scale-free networks
follow the power-law distribution (P (k) = k−γ) with power-law exponent γ taking a value
between 2 and 3.

Time-varying networks
The topologies described above assume that the network is static. However, in the real world,
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interactions between individuals change over time. If someone gets infected, it is logical that
he/she temporary cuts connections with others. Therefore, some researchers study the effects of
time varying topologies.

2.2.2 Network SIS model
Kephart and White (1992) constructed a network SIS model, which formed the basis of a large
class of mean field models. This model is described by equation (2.5). Here, y denotes the
fraction of infected nodes, k the average in-degree of each node, β the infection rate, and δ the
curing rate.

ẏ = βky(1− y)− δy (2.5)

Kephart and White (1992) applied this model on a random homogeneous network and found
an epidemic threshold of τc = 1

k . However, this thresholds only holds for random homogeneous
networks.

Discrete-time network SIS model
Wang et al. (2003) created a discrete-time network SIS model to study the spreading of a virus
in various networks. The infection and curing of each node happen with a probability described
by equation (2.6) and equation (2.7) respectively. Here, pi,t denotes the probability that node
i is infected at time t, and ζi,t the probability that node i does not receive infections from its
neighbors at t.

ζi,t =
∏

j:neighbor of i
(pj,t−1(1− β) + (1− pj,t−1))

=
∏

j:neighbor of
(1− β ∗ pj,t−1)

(2.6)

1− pi,t = (1− pi,t−1) ζi,t + δpi,t−1ζi,t

+ 1
2δpi,t−1 (1− ζi,t) i = 1 . . . N

(2.7)

After conducting simulations on different topologies (random homogeneous and heavy-tailed),
they found that the epidemic threshold can be described using only one parameter for both
topologies. The epidemic threshold can be described by τ = 1/λ1,A, where λ1,A corresponds to
the eigenvalue of the graph. Subsequently, they found that below this epidemic threshold, the
number of infections decreases exponentially

Continues-time network SIS model
Van Mieghem et al. (2008) describes the continuous N-intertwined Markov-chain SIS model. In
contradiction to previous papers, only one mean-field approximation is made in the derivations
of this model. The mean-field assumption holds that a nodes infection rate is the average of the
infected neighbours instead of a random variable. The resulting probability Pi that node i is
infected can be described by equation (2.21).

ṗi = −δpi +
N∑
j=1

aijβpj (1− pi) (2.8)
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Here is δ the recovery rate, β the infection rate, and aij the corresponding adjacency matrix.
They found that if the virus strength is smaller than the epidemic threshold (τ < τc), the
N-intertwined Markov chain is very accurate. If τ > τc, the N-intertwined Markov chain is only
accurate if the network size is big enough. The stability properties for both the continues and
discrete-time are later studied by Ahn and Hassibi (2013).

SIS dynamics on adaptive topology
Gross et al. (2006) studied the effect of adaptive topology on the SIS dynamics. In this model, a
link between susceptible and infected can be removed, and the susceptible node can be rewired
to another random susceptible node. The real-world application of this feature is that susceptible
individuals can avoid infected individuals. After analyzing this model, new threshold conditions
and properties are found. It is found that the epidemic threshold increases, limiting the chance
of an epidemic.

2.2.3 Network SIR model
Moreno et al. (2002) Studied epidemic outbreaks on complex networks using the SIR model. The
SIR model is applied to two complex networks: the Watts-Strogatz model and the Barab’asi-
Albert. The Watts-Strogatz network is a small-world network with bounded connectivity, and
the Barab’ asi-Albert is a scale-free network. The network SIR model is described by

dρk(t)
dt = −ρk(t) + λkSk(t)Θ(t) (2.9)

dSk(t)
dt = −λkSk(t)Θ(t) (2.10)

dRk(t)
dt = ρk(t) (2.11)

In their research, they showed that the topology of a network greatly influences the behaviour of
spreading. The Watts-Strogatz model’s epidemic threshold is described by equation (2.12) and
the epidemic threshold for the Barab ’asi-Albert by equation (2.13). However, if the model uses
an infinitely large scale-free network, the disease will spread unconditionally. This means that
there will not be an epidemic threshold.

λc = 〈k〉
〈k2〉

= 2
1 + 4m (2.12)

λc(N) ∼ 1
logN (2.13)

Effect of time delay
Xia et al. (2012) studied the effect of time delay on the epidemic properties within a network SIR
model. They made an extended SIR model, which contains three infection states. This model is
then be analyzed and simulated for two different topologies: homogeneous and heterogeneous.
It is found that the effect of time delay significantly impact the epidemic threshold conditions.
The new epidemic threshold are described by equation (2.14) for homogeneous topologies and by
equation (2.15) for heterogeneous topologies.
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λ > λc =
1

T+1 − β1β2

〈k〉
(2.14) λ > λc = 〈k〉

〈k2〉

( 1
T + 1 − β1β2

)
(2.15)

Where in this case λ represents the effective strength (normally R0), T represents the time delay,
β represents the propagation vector and 〈k〉 represents the average degree. After simulating
the dynamics some interesting conclusion have been found. Time delay between transmissions
leads to a higher infection level and a lower epidemic threshold. Moreover, the introduction of a
propagation vector accelerates the spreading of the disease.

2.2.4 Network G-SEIV model
Nowzari et al. (2014) constructed the generalized network SEIV model (G-SEIV). In contrast
to the SEIR/SEIRS model, this model captures the possibility that someone can be infected
but not be aware of it. This unawareness leads to different social behaviour and thus, different
infection rates. Therefore, the vigilant (V) compartment added, which represents the people
that are aware. These compartments are assigned to nodes in random directed graphs to study
the network dynamics. The stability properties for both homo- and heterogeneous infection
parameters are found. Later, Nowzari et al. (2015) applies mean-field approximation to obtain
ODE’s describing its dynamics. These ODE’s are used to solve several optimal control problems.
Figure 2.6 shows the compartment and its interrelations on the left side and the corresponding
differential equations on the right side.

Si(t) = 1− Ei(t)− Ii(t)− Vi(t)

Ėi(t) = (1− Ei(t)− Ii(t) −Vi(t))

 ∑
j∈N in

i

βEEj(t) + βIIj(t)

− εEi(t)
İi(t)εEi(t)− δIi(t)
V̇i(t) = δIi(t) + θ (1− Ei(t)− Ii(t)− Vi(t))− γVi(t)

(2.16)

Figure 2.6: Schematic representation of the G-SEIV model. Showing the compartments and its
interrelations on the left and the corresponding differential equations on the right.

2.3 Metapopulation models
A downside of network models are that it is very hard to model every single individual in
a population separately and it would take a lot of computing power Duan et al. (2015). To
overcome this, metapopulation models are created. Metapopulation models are network models
where every node represents a subpopulation (such as a city or a county) instead of an individual.
Within each subpopulation the dynamics are homogeneous. The benefits of metapopulation
are that it can easily capture heterogeneous dynamics. This can ultimately be used to study
localized control intervention policies.

2.3.1 Metapopulation SIS model
Lajmanovich and Yorke (1976) created one of the first metapopulation models to study the
evolution of Gonorrhea. The disease Gonorrhea doesn’t lead to immunity, and therefore, they
only used the S, and I state. A metapopulation model is used because there is a big difference in
the infection rates between sub-populations. They proposed 8 different sub-populations based
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on gender and sexual activity. The resulting model is described by equation (2.17), where Lij
denotes the contact matrix, Ni the size of the sub-populations, Ii(t) the fraction of infected at
time t, and 1/Di the chance of an infective recovering.

d (NiIi)
dt

=
8∑
j=1

Lij (1− Ii)NjIj − NiIi
Di

(2.17)

They studied threshold conditions to reach different equilibria and the stability properties of
those equilibria.

2.3.2 Homogeneous metapopulation SIR model
Hethcote (1978) made a metapopulation version of the SIR model, to study the effect of
immunization on network models. The metapopulation SIR model divides the population into N
groups (denoted by i). These groups can either be in the S, I or R state. The dynamics of the
network SIR model is shown (2.18)

Ṡi(t) = −βsi(t)
n∑
j=1

aijij(t)

İi(t) = βsi(t)
n∑
j=1

aijij(t)− γii(t)

Ṙi(t) = γii(t)

(2.18)

Here, β is the infection rate, γ the curing rate and aij represents the adjacency matrix. As can
be seen, the infection rate β and the curing rate γ are homogeneous for all nodes. However, in
contrast to the population SIR model, the state change of a node depends on its neighbours.
The dynamics show that the infection rate is proportional to the number of infected neighbours.
Mei et al. (2017) analyzed the properties of these dynamics. They found that the effective
reproduction number is R(t) = βλmax(t)/γ, where max represents the dominant eigenvalue of
the adjacency matrix. When R(t) > 1, an epidemic outbreak occurs, and when R(t) < 1, the
infection will die out exponentially fast.

2.3.3 Heterogeneous metapopulation SIR model
Mendoza (2020) constructed a heterogeneous metapopulation SIR model. In this model, each
subpopulation has a time-dependent transmission rate. These transmission rates depend on the
subpopulations’ onset times (time when the first infection arose) and the exchange of individuals
in between the subpopulations. In contrast to previous studies, the heterogeneous infection
rates are introduced internally by a dynamical equation. The resulting system of equations are
described by equation (2.19).
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dsi
dt

= −si(t)
1
n

n∑
j=1

βijij(t)

dii
dt

= si(t)
1
n

n∑
j=1

βijij(t)− γii(t),

dri
dt

= γii(t)

(2.19)

Where i represents the subpopulation and the other variable represent the usual network SIR
parameters. As can be seen, the curing rate γ is chosen to be the same over all the subpopluations.
The infectious rate βij is described by

β(t) = β0
seff (t)
s(t)

Where seff (t) is described by,

seff (t) ≡
n∑
i=1

si (t− ti)
[ 1
n

∑n
j=1 βij (ti, tj) ij (t− tj)

nβ0i(t)

]

This equation shows how the onset time si (t− ti) and the internal infection rate βij (ti, tj) relate
to the effective infection rate. After comparing the model to real data, they found that this
model can accurately predict the behaviour of COVID-19. After analyzing this model, several
conclusions are drawn. A larger dispersion in onset times (asynchronicity) leads to a higher delay
of propagation and on the long term lead to less infected individuals. Another conclusion that is
taken is that more asynchronization lead to a less probability of infections. In the real-world,
this means that imposing travel restriction and partially isolating subpopulations enhances the
mitigation of the virus.

2.3.4 Metapopulation SIS model
Sattenspiel et al. (1995) Argues that travel between different regions has a high impact on the
spreading of the disease. Therefore, he proposes one of the first heterogeneous metapopulation
models. The biggest contribution of this model is that travel between locations is incorporated
in the existing SIR model. Two case studies are presented to validate this model. Later, Arino
and Van den Driessche (2003) applied this theory on a SIS model. In addition, they added the
effect of deaths and births to the model while keeping a constant population. They studied the
stability of the equilibria and derived the expression to calculate the reproduction number R0.
The dynamics of the SIS metapopulation model is described by (2.20)

dSii
dt

=
n∑
k=1

rikSik − giSii −
n∑
k=1

κiβiki
SiiIki
Np
i

+ d (N r
i − Sii) + γIii

dIii
dt

=
n∑
k=1

rikIik − giIii +
n∑
k=1

κiβiki
SiiIki
Np
i

− (γ + d)Iii
(2.20)

Where Sij and Iij denote the number of susceptible and infected individuals from city i who
are present in cities j.βikj > 0 denotes the transmission of the proportion of contacts in city
j between a susceptible from city i, j, k. κj > 0 is the average number of contacts in city j.
γ denote the recovery rate. As can be seen from the dynamics, the recovery rate is assumed
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to be the same for each population. Shen et al. (2012) argues that the curing rate differs per
region. Therefore, they made an extended model with a curing rate depending on the indegree of
each node (k). This model is then be used to study the effect of proper distributing of medical
resources. It is found that nodes with high degree (big cities) should be allocated more resources.
The optimal resources allocation of a node is proportional to k1.3

2.3.5 Metapopulation SEIIR model
Birge et al. (2020) studies the optimal economical control of different regions in New York City.
A heterogeneous metapopulation (in this paper described as "spatial") model was created. In this
model every region in NYC has its own SEIIR dynamics. The SEIIR compartments represent
susceptible (S), exposed (E), Infected symptomatic (I), Infected asymptomatic or sub-clinical
(I) and recovered (R). The compartments and their interrelations are shown in figure 2.7 and
the corresponding differential equations in appendix A. The Infected are split into two separate
compartments because they expect that subclinical patients have a lower infection rate. The
compartments of each node, together with the graph, create the dynamics of NYC. Here it is
assumed that the control parameter is a number between 0 and 1 which represents the economic
activity of each region.

Figure 2.7: Schematic representation of the SEIRR model. Showing the compartments and its
interrelations.

After that, this model is used to determine the optimal economic activity level per region.
Optimal control is considered to maximize economic activity while decreasing infections. They
found that by closing targeted regions, the maximum efficiency can be achieved. Moreover, they
found that not necessary the region with the highest infections should be closed. Some regions
with a higher economic value should have a higher closing threshold. Meaning that it can be
possible to shut the surrounding regions is preferable.

2.3.6 Metapopulation SIQHDR model
Della Rossa et al. (2020) made a heterogeneous metapopulation model of Italy, to study the
effect of regional differences during the COVID-19 pandemic. The nodes in this metapopulation
model represent twenty different regions in Italy. The dynamics of each node is described by six
compartments, which are susceptible (Si) , infected (Ii) , quarantined (Qi) , hospitalized (Hi) ,
recovered (Ri) and deceased (Di) are. figure 2.8 shows the graph of the network (left) and the
relationship between the compartments (right). The corresponding differential equations can be
found in appendix A.
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Figure 2.8: Schematic representation of the SIHQDR model. Showing it’s compartments and
their interrelations on the right and the topology on the left

This model is used to study 1) the effect of heterogeneity in between the regions 2) the effects of
the flows across regions 3) differentiated region-specific interventions strategies. Using this model,
they acknowledge found that heterogeneity between regions matter. Moreover, they found that
when only one region relaxes its containment measures, the disease will still spread to the closed
regions. Moreover, they constructed a differentiated feed-back strategy. This strategy holds that
every region takes containment measures based on infected individuals and hospitalized patients.
Above all, they found that the effects on the total number of infected will be almost the same as
a nationwide lock-down strategy, while it mitigates the economic costs.

2.3.7 Metapopulation SHARUCD model
Aguiar et al. (2020) studied the COVID-19 infections in the Basque Country. Their goal was
to make a model which can help healthcare authorities and the government with predictions in
amount of infections, ICU admissions, hospitalizations, and deceased cases. To reach this goal
they made the SHARUCD model, which compartments are Susceptible (S), hospitalization (H),
Asymptomatic or sub-clinical (A), Recovered (R), patient on the intensive care (U), cumulative
recorded cases (C), and deceased (D).
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Figure 2.9: Schematic representation of the SHARUCD model. Showing the compartments and
its interrelations.

This model makes a clear distinction between hospitalized individuals and sub-clinical individuals
to make accurate predictions on health care necessities. Moreover, this is a stochastic model
and it’s deterministic approximations leads the differential equations described in appendix
A. An interesting refinement in this model was that it synchronizes the ICU admission on
hospitalizations instead of deceased or recovered. This refined model was then used to accurately
make short and mid-term predictions.

2.3.8 Metapopulation SEPIAHQRD model
Gatto et al. (2020) met a metapopulation model, where each node represents a region in Italy.
The dynamics of each region is described by the SEPIAHQRD dynamics, which exists of the
following compartments: Susceptible (5), Exposed (E), Presymptomatic (P ) Infected with heavy
symptoms (I), Asymptomatic/mildly symptomatic (A), Hospitalized (H), Quarantined at home
(Q), Recovered (R), and Dead.
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Ṡ = −λS
Ė = λS − δEE
Ṗ = δEE − δPP
İ = σδPP

− (η + γI + αI) I
Ȧ = (1− σ)δPP − γAA
Ḣ = (1− ζ)ηI − (γH + αH)H
Q̇ = ζηI − γQQ
Ṙ = γlI + γAA+ γHH

Ḋ = αlI + αHH

(2.21)

Figure 2.10: Schematic representation of the SEPIAHQRD model. Showing the compartments
and its interrelations on the left and the corresponding differential equations on the right

The goal of this model is to test the effects of localized containment measures and travel
restrictions. The papers uses this model to evaluate the effects of the measures taken by the
government in march 2020. It is estimated that the measures reduced transmission by 45 %.
This results in a total amount of averted hospital cases of 733.000 individuals at the end of
march. Moreover, this paper shows that the presymptomatic patients significantly contribute to
the spreading of the disease. this implies that massive testing can contribute to the containment
of the disease.

2.4 Overview of the models
In table 2.1, an overview of the models are listed. For every model, the variant, type, stochasticity,
and the contribution of its corresponding paper is described. The variant lists the altered versions
of the corresponding compartment model. The type is divided into population, network and
metapopulation. ’Population’ is assigned to the papers that consider the population as a whole,
resulting in much heterogeneity. ’Network’ is assigned to papers that consider every individual
separately as a node in a graph. ’Metapopulation’ is assigned when every node represents a small
subpopulation instead of an individual. The fourth column distinguishes between deterministic or
stochastic. In deterministic models, infections happen at a specific rate while stochastic models
assume a probability for every individual to get infected (Nowzari et al., 2016). The last column
describes the contribution of the paper.
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Comparison
Model Variation Type Deterministic/

Stochastic
Papers contribution

SIR Kermack and
McKendrick
(1927)

Population Deterministic First spreading disease
model

Xia et al. (2012) Network Deterministic New SIR network model
containing the infection
delay property of a virus

Mei et al. (2017) Network Deterministic Analytical results for
transient behavior,
threshold conditions,
stability properties, and
asymptotic convergence

Hethcote (1978) Metapopulation Deterministic A homogeneous
metapopulation SIR
model

Mendoza (2020) Metapopulation Deterministic A heterogeneous infec-
tion rate dependent on
time

SIS Kephart and
White (1992)

Network Deterministic Constructed a network
SIS model

Wang et al. (2003) Network Stochastic Studied the properties
of the discrete-time SIS
model

Van Mieghem
et al. (2008)

Network Stochastic Studied the properties of
the continuous-time SIS
model

Gross et al. (2006) Network Stochastic and De-
terministic

Showing effects of chang-
ing topologies

Lajmanovich and
Yorke (1976)

Metapopulation Deterministic First SIS metapopula-
tion model to study Gon-
orrhea

Shen et al. (2012) Metapopulation Stochastic Using a heterogeneous
curing rate, optimal
medical distribution is
found

SEIR/
SEIRS

Hethcote and
Van den Driessche
(1991)

Population Deterministic Modeled the incubation
period of a disease

Li and Mul-
downey (1995)

Population Deterministic Found the stability prop-
erties of the SEIR/-
SEIRS model

Li et al. (1999) Population Deterministic Modeled a varying pop-
ulation size

G-SEIV Nowzari et al.
(2014)

Network Stochastic Providing a generalized
network model
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Nowzari et al.
(2015)

Network Stochastic / deter-
ministic

Providing a determinis-
tic G-SEIV model and
study optimal control
problems

SEIIR Birge et al. (2020) Metapopulation Deterministic Showing the effects of
region targeted control
measures

SIQHDR Della Rossa et al.
(2020)

Metapopulation Deterministic Proposing a optimal dif-
ferentiated feedback con-
trol strategy for fighting
COVID-19 in Italy

SEAIRD Djidjou Demasse
et al. (2020)

Population Deterministic Showing the optimal
control intensity on in-
fection rate until vaccine
development

SHARUCD Aguiar et al.
(2020)

Population Stochastic Accurate short and mid-
term predictions for the
basque country in the
number of infections,
ICU admissions, hos-
pitalizations, and de-
ceased cases

SIDARTHE Giordano et al.
(2020)

Population Deterministic Discriminates between
detected and undetected
infected and sheds light
on the effects of contact
tracing

SEPIAHQRD Gatto et al. (2020) Metapopulation Stochastic Showing the effects of
localized containment
measures in Italy

Table 2.1: Overview reports

2.5 Conclusion
Out of this literature review, it became clear that the decision of a spreading disease model
highly depends on the research question. For this research, the following decisions are made:

• It is chosen to design a metapopulation model over an agent-based model. The reason for
this is that population models become accurate when the population size is large enough.
The randomness of disease is then simplified to certain rates.

• The model will have six compartments, namely: Susceptible (S), Infected undetected (I),
Infected Detected (D), Infected Acutely Symptomatic (A), recovered (R), Extinct (E).
Splitting the infected into three different compartments is needed due to their different
infection rates. More compartments would lead to more unnecessary complexity.



Chapter 3: Design of the SIDARE model
In this chapter, the design of the metapopulation SIDARE model is discussed. First, the SIDARE
compartments and its corresponding dynamics are explained. After that, The chosen parameters
are shown and justified. Finally, the model’s accuracy is validated in by comparing the outcomes
to an earlier done research.

3.1 SIDARE model formulation
The metapopulation SIDARE model will be an extended version of the population SIDARE model
(Andreas Kasis, 2021). The scope of this research is to take the Netherlands as population. The
Netherlands has a large population of around 17 million; thus, a deterministic approach will suffice.
The SIDARE model divides the population into six compartments, namely: Susceptible (S),
Infected Undetected (I), Infected Detected (D), Infected Acutely Symptomatic (A), Recovered
(R), Extinct (E). The population is assumed to be constant so at any time t : S(t) + I(t) +
D(t) +A(t) +R(t) +E(t) = N(t), Where N(t) is equal to the population size of the Netherlands.

At the beginning of the pandemic, individuals are classified as susceptible and get infected
through contacts with Infected with rate β. After that, a proportion of the infected progresses to
D(t) with testing rate ν or to A(t) with severity rate ξi. The Recovered compartment increases
with rate γi, γd, γa from the compartments A(t), D(t), I(t) respectively. The amount of extinct is
proportional to the amount of Acutely Symptomatic with death rate µ. The resulting differential
equations are shown in equation (3.1)

Ṡ = −βsi (3.1a)
İ = βsi− γii− ξii− νi (3.1b)
Ḋ = νi− γdd− ξdd (3.1c)
Ȧ = ξii+ ξdd− γaa− µa (3.1d)
Ṙ = γii+ γdd+ γaa (3.1e)
Ė = µa (3.1f)

In the metapopulation SIDARE model, every province in the Netherlands has its own local
SIDARE dynamics. This means that a total of 6 ∗ 12 = 72 differential equations describe the
COVID-19 dynamics in the Netherlands. These sets of differential equations are linked by a φ
matrix that represents the travel between them. Figure 3.3 Shows the compartments including
its interrelations on the left and the topology on the right. As can be seen from the figure,
the graph’s nodes represent the different provinces in the Netherlands. The link between them
shows the fluxes of people that move between the provinces on a daily bases. For clarity, only
the neighbouring provinces are shown in this figure. In reality, there is a link between all the
provinces.

27
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Figure 3.1: Schematic representation of the metapopulation SIDARE model, used to describe
the evolution of the COVID-19 pandemic. On the left, the compartments and its’ interrelation
are shown. The right figure shows the topology of the metapopulation network. A link is drawn
between all the neighbouring regions while in reality there is a link between all the regions.

In figure 3.3, every compartments contain an subtext i representing the different regions. Moreover,
the ξd, ξi, γa, γi, γd, are changed to ξ1, ξ2, γ1, γ2, γ3 respectively. The reason for this change is to
avoid confusion about the meaning of the subtext i. The resulting system of differential equations
is given by equation (3.2)

Ṡi = −
M∑
j=1

M∑
k=1

βφijSi
φkjIk

Nj
(3.2a)

İi =
M∑
j=1

M∑
k=1

βφijSi
φkjIk

Nj
− γ2I − ξ2I − νI (3.2b)

Ḋi = νi− γ3D − ξ1D (3.2c)
Ȧi = ξ2I + ξ1D − γ1A− µ̄(A) (3.2d)
Ṙi = γ2I + γ3D + γ1A (3.2e)
Ėi = µ̄(A) (3.2f)

Where Si, Ii, Di, Ai, Ri, Ei ∈ (0, 1) ⊂ Rn represents the amount of Susceptible, Infected Unde-
tected, Infected Detected, Recovered, Acutely Symptomatic, Extinct respectively for region i.
The model parameters are described as follow:

• φij ∈ Rn×n is a matrix where each entry denotes the percentage of people travelling between
regions (flux). More specifically, this matrix denotes the ratio of people from region i (rows)
that move to region j (columns). This is a normalized matrix, meaning that the sum of
each row is equal to 1 ∑j φij = 1. Similarly, φkj denotes the ratio of people coming from
region k that interact with region j.

• β ∈ R denotes the rate at which susceptible get infected
• Nj ∈ N denotes the total inhabitants of region j that are able to move (Susceptible +

Infected undetected + Recovered).
• ν ∈ R denotes the detection rate of individuals
• γ1, γ2, γ3 ∈ R denotes the recovery rate of Acutely Symptomatic, Infected and Infected

Detected respectively.
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• ξ1, ξ2 ∈ R denotes the rate of becoming Acutely Symptomatic from Infected and Infected
Detected respectively.

• µ̄ ∈ R denotes the rate of deceased which is explained in section 3.1.1. This rate doesn’t
include the natural death rate.

3.1.1 Mortality rate
The mortality rate highly depends on the healthcare capacity. If the healthcare capacity is
exceeded, Acutely Symptomatic individuals are more likely to die. Therefore, the equation (3.3)
is set up. This equation shows that when the amount of Acutely Symptomatic is smaller than
the healthcare capacity (a < h̄), the mortality rate is set to a constant rate µ. However, if the
healthcare capacity is exceeded (a > h̄), the mortality rate increases. Equation (3.3) shows that
mortality rate stays the same for the people that get the usual care (µh̄), and the mortality
rate for the others changes to û. The mortality rate û will be larger than µ. In this case, it is
assumed that the hospital capacity stays constant.

µ̄(a) =
{
µa, if a ≤ h̄,
µh̄+ µ̂(a− h̄), if a > h̄,

(3.3)

3.2 Parameter values identification
In this section, the input parameter values are determined. The parameter values are based on
earlier done research and current COVID-19 data. The data that is selected is from the start
of the outbreak in the Netherlands, march 2020, till end of December 2020. To get a realistic
model of the Netherlands, data of the Netherlands is used as much as possible. If there is no data
available of the Netherlands, logical assumptions are made. A summary of the chosen parameter
values can be found in table 3.1. The rest of the section is used to explain how these values are
determined.

Table 3.1: Summary of the parameter values used in the metapopulation SIDARE model
Parameter Value Justification
β 0.171, 0.2 Section 3.2.1
γ1 (1/14) WHO (2020c)
γ2 (1/14) WHO (2020c)
γ3 (1/12.1) WHO (2020c)
ε1 0.005 Verity et al. (2020)
ε2 0.005 Verity et al. (2020)
ν 0.05 Assumed, Andreas Ka-

sis (2021)
µ 0.0062 (health agency of swe-

den, 2020),Perez-Saez
et al. (2020)

µ̂ 5*µ Assumed, Andreas Ka-
sis (2021)

φij Section 3.2.3 Section 3.2.3

The total inhabitants of the Netherlands in 2018 was 17.181.084. (CBS, 2018). The curing
rates γ1,γ2,γ3 are the inverse of the average amount of days it takes for a person to recover. For
infected and infected detected, this is 14 days, and for acutely symptomatic 12.1 days (WHO,
2020c). The true mortality rate of a disease is hard to estimate. The mortality rate depends
on the patient’s health condition and the quality of healthcare given to the patient. A common
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method to describe the severity of diseases is through the Infection Fatality Ratio. The estimates
of the IFR vary. A study conducted in Zwitserland reported an IFR of 0.64% (Perez-Saez et al.,
2020) and a study conducted in Sweden reported an IFR of 0.6% (health agency of sweden, 2020)
to 0.6 %. Therefore an average of 0.0062 is assumed.

3.2.1 Infection rate
The literature often gives different estimations of the initial reproduction number R0.(Billah
et al., 2020). Also, the reproduction number changes when NPIs are enforced. Therefore, two β
values calculated 1) The initial infection rate when no measures are taken and 2) The infection
rate where NPIs are taken.

1) The initial β is estimated using the initial reproduction number R0 of 2.64 in the Netherlands
(Max Roser and Hasell, 2020). The β is then calculated with the formula R̄0 = βs0/ (γi + ξi + ν)
assumed that the initial ν = 0 at t = 0. This results in a β = 0.2

2) The infection rate can change when the government takes NPI’s such as social distancing,
the closing of public places, and a lockdown. These NPI’s are often taken simultaneously, so
it is hard to estimate the β of each NPI independently. Therefore, a β is calculated at a time
where multiple NPI’s are active simultaneously. The β is calculated through "parameter fitting".
Parameter fitting is a technique which compares the modelling outcome to the real data. Multiple
β’s are taken, and the one that "fits best" is chosen. The best fit is evaluated by the least-squares
method. The least-squares method minimizes the sum of the differences between the actual data
and the model. The parameter estimation is applied from the beginning of June till October the
13Th. Some of the NPI’s active at that time were (Rijksoverheid, 2021b):

• Social distancing of 1.5 meter
• Maximum gathering of 30 people
• The catering industry has limited opening times
• Travelers by public transport are obligated to wear a mouth mask

On October the 13th, stricter lockdown measures were taken by the dutch government. The
estimated β obtained by parameter fitting is 0.172. The real data and the model estimation is
shown in figure 3.2. Note that this β is only a snapshot of the actual continuously changing β.
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Figure 3.2: Cumulative amount of infected cases from the beginning of July till October 6th. The
blue bars show the real data found at (Max Roser and Hasell, 2020), and the red line shows the
model’s estimation

3.2.2 Hospitalization rate
The hospitalization rate ε1 and ε1 are calculated by comparing the proportion of infected that
are hospitalized (Verity et al., 2020) with the population of the Netherlands per age group
(Nations, 2020). This data is shown in 3.2. The total amount of hospitalized divided by the total
inhabitants of the Netherlands is 1031, 08/17062 = 0.06. 0.06 divided by the average length of
COVID-19 (Approximately 12 days) results in a ε1 and ε2 of 0.005.

Table 3.2: Calculation of the hospitalization rate ε1 and ε2
Age Amount (*1000) Proportion hospitalized Hospitalized (*1000)
0-9 1777 0 0
10-19 1990 0,04 0,81
20-29 2117 1,04 22,02
30-39 2053 3,43 70,42
40-49 2260 4,25 96,05
50-59 2506 8,16 204,49
60-69 2099 11,80 247,68
70-79 1457 16,60 241,86
>80 803 18,40 147,75
Sum 17062 1031,08

3.2.3 φij matrix
To estimate the φij matrix, commuting data is used. This method is consistent with the research
of Della Rossa et al. (2020). The commuting data can be extracted from statline CBS (2018).
this data set contains information on how many people living in province i have a job in province
j. The data set is shown in table 3.3.
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Table 3.3: Data retrieved from CBS (2018) showing the amount of commuting between the 12
provinces of the Netherlands ∗10−3. The rows denotes the home region and the corresponding
columns denote the where those people work
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Groningen 524,9 10,9 27,9 5,3 1,4 2,5 1,9 3,3 2,6 0 2 0,2
Friesland 17,5 594 8,1 6,6 4 3,1 2,2 5,4 3,5 0,1 2,5 0,2
Drenthe 30,1 4,9 413,9 28,1 1,7 4,6 1,8 2,4 2,2 0 2 0,4
Overijssel 2,4 3 13,5 1044,3 14,8 47,8 7 6,4 4,8 0,1 5,5 1,9
Flevoland 0,5 1,4 0,8 10,9 307,5 25,8 9,6 45,2 4,3 0,1 3,6 1,9
Gelderland 1,1 1,4 2,1 42,4 11,2 1808,3 62,3 24 22,8 0,7 49 34,8
Utrecht 0,6 0,5 0,7 3,9 4,4 34,7 1087,2 103,8 43,1 0,4 13,6 2,5
Noord-Holland 1,3 1,5 1,2 4,3 10,1 10,6 60,6 2672,7 51,9 0,5 14,1 2,3
Zuid-Holland 0,1 0,1 0 0,3 0,1 1,1 1,6 1,7 3535,3 126,7 13,7 0,3
Zeeland 0,2 0,2 0,1 0,4 0,2 0,7 1,7 1,9 10,1 356,504 9,9 0,4
Noord-Brabant 0,8 0,4 0,7 4,8 1,3 34,2 22,4 17,5 78,6 14,8 2324,286 28,5
Limburg 0,2 0,1 0,4 1,6 0,4 14,1 3,7 4,6 9 0,5 66,9 1015,698

Commuting data is believed to give a good approximation of the travel between provinces. To
get to a realistic normalized φij matrix, some operations have to be done. Firstly, the people
that don’t work have to be taken into account. These will be added on the diagonals, meaning
that it is assumed that they don’t travel on a daily bases. Secondly, not everyone travels to
work. It is assumed that 10 % of the people work at home on a daily bases. Thereby, in the
Netherlands, it is common to have five working days a week. These values are multiplied to the
number of people that work in another region. Finally, the matrix is normalized such that the
sum of each row is equal to one. The resulting φij matrix is sown in table 3.4.

Table 3.4: φ matrix shows the percentage of the people who live in one region and work in another
region based on commuting data. The rows denote the home region, and the corresponding
columns denote the where those people work. The calculation of this matrix can be found in
chapter E line 20-33
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Groningen 0,94 0,01 0,03 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Friesland 0,02 0,95 0,01 0,01 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00
Drenthe 0,04 0,01 0,90 0,04 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00
Overijssel 0,00 0,00 0,01 0,94 0,01 0,03 0,00 0,00 0,00 0,00 0,00 0,00
Flevoland 0,00 0,00 0,00 0,02 0,84 0,04 0,01 0,07 0,01 0,00 0,01 0,00
Gelderland 0,00 0,00 0,00 0,01 0,00 0,92 0,02 0,01 0,01 0,00 0,02 0,01
Utrecht 0,00 0,00 0,00 0,00 0,00 0,02 0,90 0,05 0,02 0,00 0,01 0,00
Noord-Holland 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,96 0,01 0,00 0,00 0,00
Zuid-Holland 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,97 0,02 0,00 0,00
Zeeland 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,02 0,96 0,02 0,00
Noord-Brabant 0,00 0,00 0,00 0,00 0,00 0,01 0,01 0,00 0,02 0,00 0,95 0,01
Limburg 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,00 0,01 0,00 0,04 0,94

3.3 Assumptions SIDARE
The following assumptions are made in the metapopulation SIDARE model.

• In this model a constant population is assumed and no birth or death ratio is taken into
account.

• This model assumes that the individuals in the recovered compartment will be immune to
the disease.
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• There is no travel modelled in or outwards the Netherlands, meaning that no infected cases
are imported.

• Infected Detected and Acutely Symptomatic are assumed to not contribute to the spreading
of the disease. Moreover, Acutely Symptomatic are assumed to require hospitalization

• All provinces in the Netherlands are assumed to be homogeneous. This means that all the
parameters mentioned in section 3.2 will be the same for every province

• In this model the reduced traffic doesn’t lead to less social interactions. In reality, it would
be logical that not traveling to another province results in less contacts. Above that, the
travel in this model is based on commuting data.

3.4 Travel control by changing the Phi-matrix
Travel control is modelled by changing the φ matrix. The new φ matrix is calculated by
manipulating the commuting matrix and then normalize it. The formula that manipulates the
commuting data is shown in equation (3.4).

Anew = Aij ∗ (1− U) ◦ (1−Adj) +Adj ◦
(
Aij +

12∑
i=1

(Aij ◦ (1−Adj) ∗ U)
)

(3.4)

Here Anew denotes the new commute matrix and Aij the original commuting matrix shown in
table 3.3. U ∈ [0, 1] ⊂ R denotes the control input that is applied. The Adj denotes the adjacency
matrix, which shows whether pairs of vertices are adjacent or not. The ◦ denotes the Hadamard
product (Element-wise multiplication). The formula can be explained by an example where a
nationwide travel restriction of 90% is applied. The first part of the equation Aij ∗ (1− U) ◦Adj
reduces the number of commuters from the off-diagonals. So, in this case, the off diagonals will
be 10% of the original commuting matrix. The second part of the formula adds the reduced
commuters from the off-diagonals to the diagonals.

To obtain the resulting φ matrix, the commuting matrix Anew has to be normalized such that∑
j φnew = 1. This strategy can be used to simulated the four different cases discussed in this

report.

3.5 Validation of the SIDARE
To validate the SIDARE model, the model is applied to a previously done study. The research
that is chosen to compare SIDARE model with is the SIDQHR Della Rossa et al. (2020). As
described in section 2.3.6, this paper studies the effect of regional differences and traffic between
regions in Italy during the COVID-19 pandemic. This study is chosen because they use a similar
model which can describe the evolution of COVID-19 accurately. However, there is a difference
between the compartments that are chosen. The compartments that overlap are susceptible,
infected and extinct. It is chosen to compare the models on the infected compartment. To
compare this, the relevant data of the SIDQHR is imported into the SIDARE model. By making
a few changes, a figure given in the supplementary materials can be recreated.

The comparison is shown in section 3.5. The left picture shows the graph of Della Rossa et al.
(2020) with only social distancing as NPI. Blue, magenta, red, green, and black solid lines
correspond to the fraction of infected, quarantined, hospitalized requiring ICU, recovered, and
deceased in the population (right y-axis). The right picture shows the recreated amount of
infected using the SIDARE model. It can be seen that the blue line on the left image reaches
the same amount of infected within the same amount of time as the left picture. The same
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experiment is run on a regional level. Figure D.1 shows that the amount of infections calculated
by both models are similar. It can be concluded that the SIDARE model gets the same results
as the SIDQHR model.

Figure 3.3: The left picture shows the graph of Della Rossa et al. (2020) with only social distancing
as NPI. Blue, magenta, red, green, and black solid lines correspond to the fraction of infected,
quarantined, hospitalized requiring ICU, recovered, and deceased in the population (right y-axis).
The right picture shows the recreated amount of infected using the SIDARE model.



Chapter 4: Simulating travel restricting mea-
sures

In this chapter, four cases containing travel restricting measures are simulated. The goal is to
investigate to what extend travel restriction measures makes sense and if so, what will be the
best way to execute it. The four different cases are:

• Case I Nationwide travel restricting measures. In this case, every province will be isolated,
meaning that only travel within each province is allowed.

• Case II Regional travel restricting measures. In this case, one of the provinces is isolated
from the rest. This case will be repeated for every province.

• Case III In this case, a cut-set is used to divide the Netherlands into two clusters: the
Northeast and the Southwest. Individuals are able to travel within each cluster, but not to
the other cluster.

• Case IV Only permitting travel in a ’target’ cluster. This case is the same as case III, but
in this case, one of the clusters is smaller. The composition of the target cluster is now
based on the amount of travel between provinces.

For every case, the effect on the timing and magnitude of the national infection peak is analyzed.
Also, for the relevant cases, the effect on regional infections are analyzed. A parameter variation
is applied on the β to see the effects of changing infection rates.

Figure 4.1: Visualization of the four different cases that are studied in this chapter

The initial conditions for every case are shown in equation (4.1). The one initial infection in I(0)
represents the first detected individual in Noord-Brabant on 27th February 2020 (RIVM, 2020).
The initial susceptible are each province’s inhabitants ( ~N) minus the initial infections. The rest
of the initial conditions are set to zero.

I(0) =


0
...
0
1
0

 ∈ R12, S(0) = ~N − I(0), D(0) = A(0) = R(0) = E(0) = ~0 ∈ R12 (4.1)

35
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4.1 Case I: Nationwide travel control
Nationwide control is simulated by using equation (3.4). The adjacency matrix corresponding to
can be found in appendix C. A simulation is run with a control effort from 0 to 99 %.

Figure 4.2: The effect of nationwide travel restrictions from 0 to 99% on the national infection
peak. The lightest colour shows the highest control effort

For a β = 0.2, it is found that no matter the control effort, the total cases and total deceased
will still be the same (11.5 million cases and 271.000 deaths). This can be explained due to
the fact that the virus will still reach all the provinces. Within those provinces, there are no
containment measures so that the equilibrium will stay the same. However, a difference can be
found in the magnitude and the timing of the infection peak. These effects are visualized in
figure 4.2. When no control effort is applied, the peak of infections will have a magnitude of
0.087 fractions of the population at day 210. By increasing the control effort, the magnitude can
be decreased and the time of the peak delayed. When 99% control effort is applied, the peak of
infections will have a magnitude of 0.067 fractions of the population at day 261—resulting in a
total delay in the infection peak of 51 days and a decrease of 0.02 in magnitude. These delays
are relatively low compared with the results of Della Rossa et al. (2020). This can be explained
by the fact that the φ matrix in this research is different. In the Netherlands, an average of 5%
of the people working in another province, while in Italy this is less than 1%. The high amount
of travel in the Netherlands makes a higher restriction needed to achieve the same delay. The
effect of nationwide travel restricting measures on the acutely symptomatic are similar to the
infected. These results are plotted in figure D.2 in appendix D. The black dotted line represents
the health care capacity of 337 per 100.000 inhabitants (Rhodes et al., 2012). It can be seen that
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the health care capacity is greatly exceeded.

4.2 Case II: Regional travel control
In this section, regional control will be analyzed. Regional control means that only one province
is isolated from the rest, so that all the in- and outgoing travel of that province is restricted. The
regional control experiment is repeated twelve times such that the isolation of every province is
studied. For every isolated province, the effect of the total delay and magnitude on the national
infection peak will be analyzed. The results of these experiments are shown in table 4.1 and
table 4.2.
Table 4.1: This table shows the effects of isolating one province on the national infection peak’s
delay. The columns correspond to the isolated province and the rows to the amount of control
effort (0 to 99%).
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0-60 0 0 0 0 0 0 0 0 0 0 0-2 0
70 0 0 0 0 0 1 0 1 1 0 4 0
80 0 0 0 0 0 1 0 1 1 0 8 0
90 0 0 0 0 0 1 1 1 2 0 15 0
99 0 0 0 0 0 0 0 -2 -1 0 48 0

Table 4.1 shows the delay in the national infection peak compared when no control is applied. The
delay depends on the control effort (rows) and the province to which the control effort is applied
(columns). The table shows that for 0 to 60% the infection peak will have no delay. An exception
can be seen in the province Noord-Braband, where the initial infections occurred. It can be
concluded that isolating one province makes sense when it is the only province with infections.
The peak can be delayed by 48 days. By comparing this result with the nationwide effects in
section 4.1, it can be seen that controlling nationwide wins you only three days. Nationwide
travel restrictions have more impact than regional travel restriction on the daily life of people.
This means that regional travel restrictions are significantly more effective than nationwide
travel restrictions.Table 4.2 shows that the peak of infections can be decreased to 7.4% of the
population. This implies that heavy regional travel restrictions have little effect on the national
infection peak.

Table 4.2: This table shows the effects of isolating one province on the national infection peak’s
magnitude. The columns correspond to the isolated province and the rows to the amount of
control effort (0 to 99%).
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0-40 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,6 8,7
50 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,5 8,7
60 8,7 8,7 8,7 8,7 8,7 8,6 8,7 8,6 8,7 8,7 8,4 8,7
70 8,7 8,6 8,7 8,6 8,7 8,6 8,7 8,6 8,6 8,7 8,3 8,7
80 8,6 8,6 8,7 8,6 8,7 8,6 8,7 8,5 8,5 8,7 8,1 8,7
90 8,6 8,6 8,6 8,5 8,7 8,5 8,6 8,2 8,2 8,7 7,8 8,7
99 8,4 8,4 8,5 8,2 8,5 7,8 8,2 7,4 7,5 8,6 7,4 8,3
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4.3 Case III: Cut-set travel control
By cut-set control, the Netherlands is divided into two clusters. The people are only allowed to
travel within their cluster fully but are restricted to travel to the other. In this case, neighbouring
provinces in the Northeast and the Southwest will form the two clusters. Therefore, cluster 1
contains the provinces Groningen, Friesland, Drenthe, Overijssel, Flevoland, and Gelderland.
Cluster 2 contains the provinces Utrecht, Noord-holland, Zuid-holland, Zeeland, Noord-Brabant,
Limburg.

Figure 4.3: The effects of travel restricting measures when the Netherlands is divided into two
clusters. The effects on the national infection peak (red), detected peak (magenta), and the
amount of deceased(cyan) is shown before (dotted) and after (solid) 99% control is adopted.

Just as with previous travel restricting measures, the total number of cases and deceased will not
be affected. However, a change can be found in the timing and magnitude of infections. Figure 4.3
shows the infections (red line), infected detected (magenta line) and acutely symptomatic (cyan
line). Here the dotted line represents the original values, and the solid line represents the values
when a 99% restriction is applied. It can be seen that the peak of infected will now be flattened
and reach a maximum fraction of the population of 6.2%. On the contrary to the previous
measures, the peak will be a little bit earlier. The regional plot is shown in figure 4.4. As expected,
a delay in the infection peak can be observed in the provinces belonging to the Northeast cluster.
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Figure 4.4: The regional effects of travel restricting measures when the Netherlands is divided
into two clusters. The effects on the national infections (red), infected detected (magenta), and
acutely symptomatic (cyan) is shown before (dotted) and after 99% control (solid) is adopted.

4.4 Case IV: Target cluster travel control
In this case, a target cluster control is simulated. By target cluster control is meant that
not just the province with the initial infection is closed, but also three other provinces. The
other provinces are the ones who has the most travel from and to Noord-Brabant. So the two
clusters are 1) Noord-Braband, Gelderland, Utrecht, Zuid-Holland and 2) Friesland, Groningen
Drenthe Overijsel, Flevoland, Noord-Holland, Zeeland, Limburg. As can be seen in figure 4.1, the
provinces Limburg and Zeeland are isolated. In this hypothetical case they are allowed to travel
through the red provinces to other blue provinces, but only interact in the other blue provinces.
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Figure 4.5: The effects of travel restricting measures on the national infections after target cluster
control. The effects on the national infections (red), infected detected (magenta), and acutely
symptomatic (cyan) is shown before (dotted) and after (solid) 99% control is adopted.

After running the simulation, similar outcomes with target cluster control are found (section 4.3).
The total amount of cases and deceased are the same, and a decrease in the national peak can be
observed. The national infection peak is now decreased to 5.2% of the population. Interestingly,
is this lower than the cut-set control case, while fewer provinces have travel restrictions. Also, the
average regional infection peak delay is bigger than with cut-set control (figure D.3 in appendix
D). Therefore, it can be concluded that target cluster control is more efficient then cut-set control.

4.5 Robustness travel restriction measures
The literature often gives different estimations of the initial reproduction number R0 (Billah
et al., 2020). Also, the reproduction number changes when NPIs are enforced. Therefore, in this
section, the robustness of each travel restrictions are tested by a parameter variation on the β.
The β values that are simulated are: 0.14 , 0.17, 0.2, 0.23, 0.26, where 0.14 corresponds to a low
R0 and 0.26 to a high R0.

4.5.1 Robustness of nationwide and regional travel control
It is found that travel restricting measures change in terms of their effect on the infection peak’s
timing and magnitude. These effects are plotted in figure 4.6 and section 4.5.1.The left diagram
shows the total amount of days the infection peak will be delayed. The right diagram presents
the infection peak magnitude decrease. Here the decrease is measured in a percentage of the
original peak. From section 4.2 it became clear that regional control only makes sense if it’s on
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the region with the initial infection. Therefore, the parameter variation for this case is only run
for the province Noord-Braband.

Figure 4.6: The left diagram shows the infection peak delay when nationwide control is applied
for different β values. The bars represent the absolute values corresponding to the left y-axis, and
the cyan lines represent the percentages corresponding to the right y-axis.The right diagram shows
the infection peak magnitude when nationwide control is applied for different β values. Here the
decrease in magnitude is given in percentage of the peak when no control effort is applied

The following observations can be made: In combination with a high control effort, lower β values
show a significant delay in the absolute infection peak. It can be seen that in both cases, a higher
control effort results in a higher peak delay. Furthermore, the infection peak magnitude will
decrease almost equally. It can be concluded that both nationwide and regional travel restrictions
are more effective when the disease’s infectiousness is lower. Therefore, it is more effective in
enforcing travel restricting measures simultaneously with other NPIs. For all β values, nationwide
control has slightly more impact. Therefore, we conclude that no matter how infectious a disease
is, regional control will be more effective than nationwide control.

Figure 4.7: The left diagram shows the infection peak delay when regional control is applied for
different β values. The bars represent the absolute values corresponding to the left y-axis, and the
cyan lines represent the percentages corresponding to the right y-axis. The right diagram shows
the infection peak magnitude when nationwide control is applied for different β values. Here, the
decrease in magnitude is given in percentage of the peak when no control effort is applied.
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4.5.2 Robustness of cut-set and target cluster control
In section 4.3 and section 4.4, a flattening behaviour was observed in the national infection
peak, but no significant peak delay. However, the regional peaks in the cluster where no initial
infections occurred show a delay. Therefore, it is chosen to compare the change in the national
infection peak’s magnitude and the regional peaks’ delay. The results of this comparison can
be found in table 4.3 and table 4.4. For simplicity, the average of the regional peak delay is
shown. Here, the difference in the peak magnitude gets higher when the β values rise. Again,
lower β values have a higher absolute delay on the regional peaks. So it can be concluded that
decreasing the disease’s transmission simultaneously increases the travel restrictions’ impact.
Moreover, the delay in the regional peaks for both cut-set and target cluster control are very
similar. However, it can be seen that target cluster control has more impact on the national peak
magnitude. Therefore, target cluster control can be considered more effective.

Table 4.3: This table shows the results of the parameter variation on β when 99% of the travel is
restricted between the Northeast and the Southwest of the Netherlands. The two most significant
changing parameters are compared: the change in magnitude of the national infection peak and
the delay of the regional infection peaks.

Parameter variation
β = 0, 14 β = 0, 17 β = 0, 2 β = 0, 23 β = 0, 26

Peak magnitude before control 0,49 3,94 8,7 13,5 18,2
Peak magnitude after control 0,37 2,84 6,2 9,64 12,8
Peak magnitude difference 0,12 1,10 2,50 3,86 5,40
Average regional peak time before
control

897 335 215 161 130

Average regional peak time after
control

1089 413 266 199 161

Average regional peak delay 192 78 51 38 31

Table 4.4: This table shows the results of the parameter variation on β when 99% of the travel is
restricted between the target cluster and the rest of the Netherlands. The two most significant
changing parameters are compared: the change in magnitude of the national infection peak and
the delay of the regional infection peak.

Parameter variation
β = 0, 14 β = 0, 17 β = 0, 2 β = 0, 23 β = 0, 26

Peak magnitude before control 0,487 3,96 8,7 13,5 18,2
Peak magnitude after control 0,311 2,22 4,7 7,61 10,3
Peak magnitude difference 0,176 1,74 4 5,89 7,9
Average regional peak time before
control

897 335 215 161 130

Average regional peak time after
control

1075 411 265 198 160

Average regional peak delay 178 76 50 37 30



Chapter 5: Combining vaccination with travel
restricting measures

In this chapter, the possibility of using the infection peak delay and flattening behaviour for
fighting COVID-19 is studied. In particular, the travel restriction measures will be simulated
together with a vaccination rate. First, the model is adjusted so that it can capture the vaccination
dynamics. Then the four cases described in chapter 4 will be repeated but now together with a
vaccination rate.

5.1 Model adjustment
Modelling vaccinations can be done in different ways. Cai et al. (2018) models vaccination
by adding an extra vaccination compartment to the model. Making an extra compartment
provides the possibility to give other properties to that state. Gaff and Schaefer (2009) chooses a
more straightforward approach. They added a percentage of the susceptible to the recovered
compartment. In this report, the latter option is chosen. This is motivated by the fact that the
recovered and vaccinated are assumed to have the same properties, such as staying immune to
COVID-19. The new dynamics are shown in equation (5.1),where ψ ∈ R denotes the vaccination
rate. Note that in this case, it is assumed that only susceptible are vaccinated.

Ṡi = −ψ −
M∑
j=1

M∑
k=1

βφijSi −
φkjIk

Nj
(5.1a)

İi =
M∑
j=1

M∑
k=1

βφijSi
φkjIk

Nj
− γ2I − ξ2I − νI (5.1b)

Ḋi = νi− γ3D − ξ1D (5.1c)
Ȧi = ξ2I + ξ1D − γ1A− µ̄(A) (5.1d)
Ṙi = γ2I + γ3D + γ1A+ ψ (5.1e)

Ėi = µ̄(A) (5.1f)

5.2 Vaccination rate identification
In this case, the same initial conditions are used as mentioned in chapter 4. It is chosen to use
the realistic β = 0.17. Remember that a β = 0.17 included social distancing measures, but the
infections will still grow sub-exponentially. Furthermore, the vaccination will start after 316 days.
This is the time between the first detected case and the first vaccination in the Netherlands
(RIVM, 2020) (Rijksoverheid, 2021a).

The vaccination rate highly depends on the approval, operation, delivery and distribution of
the vaccines. This makes estimating the actual vaccination rate is difficult. The Netherlands
started vaccinating with only 5000 a day, while their goal is to vaccinate more than 70% of the
populations within nine months (Rijksoverheid, 2021c). The latter means that around 45.000
people a day need to be vaccinated. Therefore, in this case, three different rates are used: low,
medium, and high, corresponding to 5000, 25.000 and 45.000 vaccinations a day. For simplicity,
the rates are assumed to be constant,
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5.3 Vaccination distribution strategy
There are multiple ways to distribute vaccinations over the provinces. Therefore, three vaccination
strategies are studied, and the optimal will be used. The three vaccination strategies are:

1. Distribute based on population size. In this strategy, the percentage of the inhabitants
in every province is equal to the percentage of vaccinations received. For example, 7,6 % of
the population lives in Utrecht, which means that they get 7,6 % of the vaccinations each
day.

2. Distribute by prioritizing one province. This strategy studies the possibility to
vaccinate more in one province than in the others. It is chosen to give the double amount
of vaccinations to the prioritized province than to the others. This experiment is repeated
twelve times such that every province is prioritized.

3. Distribute uniformly. This strategy equally divides the vaccinations over the provinces.

The three strategies are evaluated on the total amount of fatalities. The fatalities are calculated
when 25000 vaccines are available per day. The resulting fatalities per strategy are shown in
figure figure 5.1.

Figure 5.1: This figure compare the number of fatalities when distributing 25000 vaccinations
in different ways. The red bar corresponds to strategy 1, ’Distribute based on population size’,
the green bar to strategy 3 ’Distribute uniformly’, and the blue bars to strategy 2 ’Distribute by
prioritizing one province’.
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It can be seen that the most optimal strategy is strategy 1: ’Distribute based on population size’,
which leads to 61800 fatalities. Moreover, If it is chosen to prioritize one province, Zuid-Holland
will be the best choice.

5.4 Simulating case I-IV in combination with vaccination
In this section, the effects of travel restricting measures in combination with vaccination strategy
one are studied. In figure 5.2 a medium vaccination rate together with regional travel restriction
in Noord-Braband is simulated. Here, the dotted line represents the case with no control effort
and the solid lines with 99% control effort. It can be seen that the national infection peak greatly
decreases. More interestingly, the number of fatalities is significantly reduced.

Figure 5.2: Figure showing the effects of regional travel in combination with a medium vaccination
rate. The effects on the national infections (red), acutely symptomatic (cyan) and the amount
of deceased (black) is shown. The dotted line corresponds to no control effort and the solid to
when 99% control effort is applied. The brown line represents the total amount of vaccinated and
corresponds to the right y-axis

From figure 5.2 it became clear that vaccinations combined with travel restricting measures lead
to fewer fatalities than just by vaccinating. Therefore, cases I-IV are repeated in combination with
a vaccination rate, and the number of fatalities is compared. The fatalities by only vaccinating
are for a low vaccination rate 76.499, medium vaccination rate, 61.940 and high vaccination rate
52.275. The number of lives saved when travel restrictions are used is shown in figure 5.3 and
section 5.4. These lines represent the difference in the amount of deceased between the case
where vaccination is applied with the case where vaccination is applied in combination with
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travel restrictions. Therefore, these lines can be regarded as lives saved by travel restrictions.

Figure 5.3: Figure showing the number of lives saved by travel restrictions combined with a
medium vaccination rate.

Figure 5.3 shows the results of simulations with a medium vaccination rate. It can be seen that
the regional control results are again very close to the nationwide control results. Considering
the vast impact nationwide control has on the daily, regional control can be regarded as more
effective. Moreover, it can be seen that Cut-set control and Target cluster control also lead to
saved lives. Therefore, even if there is no delay in the infection peak, still a significant number of
lives can be saved. Furthermore, it can be seen that target cluster control saves more lives than
separating the Northeast and the Southwest. However, both measures have less impact than
regional or nationwide control. It can be concluded that regional control is the most effective
travel restricting measure in fighting COVID-19. The same conclusion can be drawn from a low
and high vaccination rate (figure 5.4)
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Figure 5.4: Figure showing the number of lives saved by travel restricting measures combined
with a low (left) and high (right) vaccination rate.



Chapter 6: Conclusion
In this report, an answer is given to the research question: ’What is the effect of travel restricting
measures in the Netherlands on the spreading of the COVID-19 pandemic?’ In order to answer
this question, a literature study is carried out on spreading disease models. The information out
of this literature study is used to construct the metapopulation SIDARE model. After that, the
metapopulation SIDARE model is used to simulate different travel restricting measures. The
following conclusions can be drawn:

• Despite the assumptions made in the metapopulation SIDARE model, it can be used to
accurately predict the amount of infections.

• The effectiveness of travel restricting measure depends on the time of enforcing. When the
travel restricting measure are taken immediately, directly after detecting the first infection,
a significant delay in the nationwide infection peak can be achieved. By contrast, if the
disease has already spread through the whole country, the national infection peak will
barely be affected. However, lately imposing travel restriction can affect the regional peaks.
A province can delay its local infection peak if it imposes a travel restriction between a
region with more infections.

• Regional control is more effective than nationwide control. This statement is supported by
the fact that nationwide control causes a delay of 51 versus local control causes a delay of
48 days at 99%. The difference of three days is nearly negligible, given that now only one
province has to enforce travel restrictions.

• Splitting the Netherlands into the Northeast and the Southwest only affects the magnitude
of the national peak, but not the delay. A bigger effect can be achieved by target cluster
control. The target cluster should consist of the neighbouring provinces that have the most
travel between them.

• The parameter variation study showed that all forms of travel restricting measures are
more effective when the disease’s infectiousness is lower. Therefore, it is more effective in
enforcing travel restricting measures simultaneously with other NPIs.

• A significant decrease in the amount of deceased by COVID-19 can be achieved when travel
restricting measures are combined with a vaccination strategy. The delay in infections
enhances the effect of a vaccination strategy. Moreover, regional control results in a slightly
lower amount of deceased than nationwide control. The difference is so small that regional
control can seen as more effective.
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Chapter 7: Discussion
The effects of travel restriction measures found in this report are consistent with the existing
literature. Chinazzi et al. (2020) found that the travel ban in China was too late. The reason
for this is that the spread has already through the country. However, limiting travel to other
countries (where COVID-19 wasn’t reported yet) delayed the outbreak in that country. Linka
et al. (2020) found similar results for Europe. They mentioned that the overall travel restricting
measures were taken a week after the first COVID-19 case in that country.

In this report, travel restricting measures are evaluated on their effectiveness in fighting the
pandemic. However, there are some limitations that aren’t included in this report. In this report,
it is assumed that travel can immediately be reduced by 99%. In reality, the feasibility of this
measure is questionable. There will always be people that aren’t willing to obey this measure.
More importantly, these measures will have a great social and economical impact.

Knowing that travel restricting measures on their own only slow but not halter the spread of a
disease begs the question of their desirability. Maier and Brockmann (2020) argues that other
NPI’s have a lower social impact but can also reach the same effect. In summary, this report
only gives insights into travel, restricting measures’ effectiveness but is not holistic enough for
decision-makers.

Besides the overall usefulness of the results, some technical aspects can be improved. The model
can be improved by relaxing some of the assumptions mentioned in section 3.3. The most
prominent missing aspect of the metapopulation SIDARE model is the lack of heterogeneity
between regions. Heterogeneous infection rates can have an impact on the efficacy of travel
restricting measures. However, it is believed that heterogeneity plays a small role in the
Netherlands. The reason for this is that the Netherlands is a relatively small country with
an almost similar climate, culture and habits in the twelve provinces. Moreover, the regional
authorities have little impact on the taken NPIs, resulting in similar rules for every province.
Above that, heterogeneous models require significantly more input data, wherein often more
assumption will be made. Considering these aspects, a heterogeneous model will not result in
major benefits.

An assumption that is believed to have a bigger impact on the results is the last assumption
made in section 3.3. This assumption holds that "home stayers" have the same contact rate as
travellers, while it’s highly likely to be less. Adding this effect to the model will lead to less
overall infection. This can be an interesting topic for future research.

This work focuses on the spreading of COVID-19 between the twelve provinces of the Netherlands.
By changing the input parameters, this model can be applied to every country in the world. In
fact, the model can also be applied on a smaller scale, such as in counties or municipalities.
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Chapter 8: Future research
The metapopulation SIDARE model can be used to study a variety of different NPIs. An
example that can be thought of is a differentiated feedback lockdown strategy. A differentiated
feedback lockdown strategy means that lockdown measures are taken per province based on their
infections/ hospitalizations. Della Rossa et al. (2020) studied a differentiated feedback strategy for
Italy and found that this can more effective than nationwide lockdown strategies. Here, effective
means the amount of control effort required to get a similar effect disease mitigating impact.
The metapopulation SIDARE model can be used to repeat this study for the Netherlands.

Future research can be done in improving the metapopulation SIDARE model. The proposed
metapopulation SIDARE model estimates travel based on commuting data. However, commuting
data is not the only form of travel between regions. Other travel motivations could be shopping,
touring, hobbies etc. Estimating travel on the actual amount of moving vehicles can be more
accurate. Moreover, travel from and to other countries can be modelled. This opens new research
topics such as: what is the impact of the imported cases on the spreading of COVID-19 in the
Netherlands? Another improvement can be made in considering more factors that are usefull for
decison-makers. The model can be extended to a version that considers the economical impact
of the travel restricting measures. After that, the travel restricting measures can be compared to
other NPIs.

At the time of writing, the Netherlands has already started vaccinating. The current vaccination
strategy prioritises vaccinating the elderly and other risk groups first (Rijksoverheid, 2021c).
The idea behind this strategy is that it lowers the pressure on the ICU capacity. However,
putting ethical considerations aside, it can be argued that this is not the most effective strategy.
Miller and Hyman (2007) suggests that vaccination should focus on those people with the most
unvaccinated contacts. The next best strategy is to vaccinate the people that have the most
contacts. This theory can be used in combination with the metapopulation SIDARE model to
test optimal vaccination strategies.

Finally, it is important to notice that the metapopulation SIDARE model’s subpopulations
don’t necessarily have to represented regions. The subpopulation can also represent the elderly,
risk groups or something else. In this way, whole different studies can be conducted. An
example could be the plan of herstel-NL, which wants to split the population into two groups
(https://herstel-nl.nl). One of these groups are able to live a normal life, and the other group
(the risk group) will be isolated as much as possible. A challenging part of this study will be how
to model the contact rates between those groups.
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Appendix A: Differential equations
Differential equations SEAIRD model

Ṡ = −λS − µ [Is]S
Ėm = pλS − εEm − µ [Is]Em + pν

Ȧm = εEm − σAm − µ [Is]Am
İm = σAm − (γm + µ [Is]) Im
Ṙm = γmIm − µ [Is]Rm
Ės = (1− p)λS − εEs − µ [Is]Es + (1− p)ν
Ȧs = εEs − σAs − µ [Is]As
İs = σAs − (γs + µ [Is] + α [Is]) Is
Ṙs = γsIs − µ [Is]Rs
Ḋ = α [Is] Is + µ [Is]N
with
N = S + E +A+ I +R

E = Es + Em, A = As +Am, I = Is + Im, R = Rs +Rm

λ = (1− c) (βA (As +Am) + βI (Im + ξIs))

Differential equations SIDHARTE model

S(t) = −S(t)(aI(t) + βD(t) + rA(t) + δR(t))
I(t) = S(t)(al(t) + βD(t) + yA(t) + δR(t))− (e+ ζ + λ)I(t)
Ḋ(t) = eI(t)− (η + ρ)D(t)
A(t) = ζI(t)− (θ + µ+ κ)A(t)
k̇(t) = ηD(t) + θA(t)− (ν + ξ)R(t)
Ṫ (t) = µA(t) + νR(t)− (d+ z)T (t)
H(t) = λI(t) + ρD(t) + κA(t) + ξR(t) + σT (t)
E(t) = rT (t)

Differential equations SEIIR model

S′i = µNi − β
∑
j

Siτij︸ ︷︷ ︸
Time agent ∈Si spends at j

(
∑
k I

c
kτkj∑

kNkτkj︸ ︷︷ ︸
Fraction of clinical infected at j

+α
∑
k I

sc
k τkj∑

kNkτkj︸ ︷︷ ︸
subclinical infected at j

) (−µSi

E′i = β
∑
j

Siτij︸ ︷︷ ︸
Time agent ∈Si spends at j

(
∑
k I

c
kτkj∑

kNkτkj︸ ︷︷ ︸
Fraction of clinical infected at j

+α
∑
k I

sc
k τkj∑

kNkτkj︸ ︷︷ ︸
subclinical infected at j

)− (µ+ κ)Ei

Ic
′
i = ρκEi − (µ+ γ)Ici
Isc

′
i = (1− ρ)κEi − (µ+ γ)Isci
R′iγI

c
i + γIsci − µRi
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Differential equations SIQHDR model

Ṡi = −
M∑
j=1

M∑
k=1

ρjβφij(t)Si
φkj(t)Ik
Np
j

İi =
M∑
j=1

M∑
k=1

ρjβφij(t)Si
φkj(t)Ik
Np
j

− αiIi − ψiIi − γIi

Q̇i = αiIi − x′′iQi − η
Q
i Qi + κQi Hi

Ḣi = κMi Qi + ψiIi − ηMi Hi − κQi Hi − ζ
(
Hi/T

H
i

)
Hi

Ḋi = ζ
(
Hi/T

H
i

)
Hi

Ṙi = yIi + ηQi Qi + ηHi Hi

Np
i =

M∑
k=1

φbi(t) (Sk + Ik +Rk)

Differential equations SHARUCD model
Ṡ = −β S

N
(H + φA+ %N)

Ḣ = ηβ
S

N
(H + φA+ %N)− (γ + µ+ v)H

Ȧ = (1− η)β S
N

(H + φA+ %N)− γA

Ṙ = γ(H + U +A)

U̇ = vηβ
S

N
(H + φA+ %N)− (γ + µ)U

ĊH = ηβ
S

N
(H + φA+ %N)

ĊA = ξ · (1− η)β S
N

(H + φA+ %N)

ĊR = γ(H + U + ξA)
ĊU = vH

Ḋ = µ(H + U)



Appendix B: Map of the Netherlands

Figure B.1: A map of the Netherlands with its twelve provinces
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Appendix C: Adjacency matrices

Adjacency matrix case I =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



(C.1)

Adjacency matrix case II =



1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 1 1 1 1 1 1 0 1



(C.2)

Note that equation (C.2) is for the particular case where Noord-Braband is isolated. If another
provinces is selected, the zero row and column shifts.

Adjacency matrix case III =



1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1



(C.3)
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Adjacency matrix case IV =



1 1 1 1 1 0 0 1 0 1 0 1
1 1 1 1 1 0 0 1 0 1 0 1
1 1 1 1 1 0 0 1 0 1 0 1
1 1 1 1 1 0 0 1 0 1 0 1
1 1 1 1 1 0 0 1 0 1 0 1
0 0 0 0 0 1 1 0 1 0 1 0
0 0 0 0 0 1 1 0 1 0 1 0
1 1 1 1 1 0 0 1 0 1 0 1
0 0 0 0 0 1 1 0 1 0 1 0
1 1 1 1 1 0 0 1 0 1 0 1
0 0 0 0 0 1 1 0 1 0 1 0
1 1 1 1 1 0 0 1 0 1 0 1



(C.4)



Appendix D: Plots

Figure D.1: These graphs show the simulated number of infections by the metapopulation SIDARE
model (red) compared with the SIDQHR model (blue) by Della Rossa et al. (2020)

Figure D.2: The effect of nationwide travel restrictions from 0 to 99% on the national Acutely
Symptomatic peak. The lightest colour shows the highest control effort. The black dotted line
represents the ICU capacity of the Netherlands
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Figure D.3: Regional plot showing the effects of restricting the travel between the the target cluster
and the rest of the Netherlands 99%



Appendix E: Matlab code
Listing E.1: SIDARE network.file

1 clear all;close all;clc;clf;cla
2
3 flux_control_nationwide = 0 ; %Input value between 0 and 1
4 flux_control_regional =[0 0 0 0 0 0 0 0 0 0 0 0] '; %Input value

between 0 and 1
5 lockdown_control = 0; %Input value between 0 and 1
6 Separate_north_south = 0; %Input value between 0 and 1
7 target_control = 0; %Input value between 0 and 1
8 vaccinationrate = 0 ; % Amount of vaccinations per day
9

10 %% Model parameters
11 Provinces = {'Groningen ','Friesland ','Drenthe ','Overijssel ','

Flevoland ','Gelderland ','Utrecht ','Noord - Holland ','Zuid - Holland
','Zeeland ','Noord - Brabant ','Limburg '};

12 N = xlsread ('DATASHEET_SIDARE ','B2:M2 ') '*1000 ;% Total population
N = S + I + R

13 beta = 0.2; % Infection rate
14 gamma1 = (1/14) ; % rate of recovery undetected : 14 days
15 gamma2 = (1/14) ; % rate of recovery detected : 14 days
16 gamma3 = (1/12.1) ; % rate of recovery threatend : 12.4 days
17 epsilon1 =0.0053; % rate from infected undetected to acutely

symtomatic : 0.3
18 epsilon2 =0.0053; % rate from infected detected to symtomatic : 0.3
19 vu =0.05; % rate from infected undetected to infected detected
20 mu =0.0085; %* gammaa ; % mortality rate 0.022* gammaa
21 u1= flux_control_nationwide ; % nationwide control on Phi matrix
22 u2= flux_control_regional ; %local control on Phi matrix
23 u3= lockdown_control ;
24 u4= Separate_north_south ;
25 u5= target_control
26 Tend =600; % simulation time
27 M=12; % Amount of provinces
28 h =0.0481/ M; % Amount of hospial beds
29
30 %% calculation of the Phi matrix
31 load('commute ') % This loads a 12 x12 matrix showing the ammou1t

of people that move from i to j
32 Commute ( boolean (eye (12)))=0; % the diagonals ( people that work in

their own region ) are set to zero
33 Travel1 = Commute *1000*0.9*(5/7) *(1-u1); % The travel matrix is the

commuting data times the workday per week and the ratio of
working from home

34 Travel2 = bsxfun (@ times ,Travel1 ,(1-u2) ');
35 Travel3 = bsxfun (@ times ,Travel2 ,(1-u2));
36
37 if u4 ==1
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38 Travel3 = Travel3 .*[ ones (6 ,6) (zeros (6 ,6) +0.001) ;( zeros (6 ,6)
+0.001) ones (6 ,6)]

39 end
40
41 for i=1:12
42 Phi1=eye (12) .*(N-sum( Travel3 (i ,:) -Travel3 (i,i)))+ Travel3 ; %The

diagonals are the total inhibitants minus the people that work
in another region

43 end
44 for i=1:12
45 Phi(i ,:)= Phi1(i ,:)/sum(Phi1(i ,:)); %The matrix is normalize by

dividin each entry by the sum of the row
46 end
47
48
49 %% initialization
50
51 I0 = [0 0 0 0 0 0 0 0 0 0 1 0] '; % initial number of infected
52 S = zeros(M ,1);
53 I = zeros(M ,1);
54 I(: ,1) = I0;
55 D = zeros(M ,1);
56 A = zeros(M ,1);
57 R = zeros(M ,1);
58 E = zeros(M ,1);
59 S(: ,1) = N-I0 -D-A-R-E;
60 vaccinations (: ,1)=zeros(M ,1)
61 kappa =0;
62
63 %% dynamics
64
65 for t = 1:Tend -1
66 N_p = Phi (:, :) ' * (S(:, t) + I(:, t) + R(:, t)); % people

that are able to move
67
68
69
70 for i=1:M
71 s2 =0;
72
73
74 if sum(S(:,t)) >2000000 && vaccinationrate > 1;
75 kappa=N/sum(N).* vaccinationrate ;
76 else
77 kappa=zeros(M ,1);
78 end
79
80 if A(i,t) <=h
81 mubar=mu*A(i,t);
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82 else
83 mubar =(mu*h)+(5* mu*(A(i,t)-h));
84 end
85
86 for j=1:M
87 s2= s2+beta*Phi(i,j)*S(i,t)*sum(Phi (:,j) '*I

(:,t)/N_p(j)); % Network infection rate (
Traffic taken into accou1t )

88 end
89 % Network dynamics
90 S(i,t+1) = S(i,t) -((1-u3)*s2)-kappa(i);
91 I(i,t+1) = I(i,t)+((1 - u3)*s2)- gamma1 *I(i,t)-epsilon1 *I(i

,t)-vu*I(i,t);
92 D(i,t+1) = D(i,t)+(vu*I(i,t)- gamma2 *D(i,t) - epsilon2 *D(

i,t));
93 A(i,t+1) = A(i,t)+( epsilon1 *I(i,t)+ epsilon2 *D(i,t)-gamma3

*A(i,t)-mubar);
94 R(i,t+1) = R(i,t)+( gamma1 *I(i,t)+ gamma2 *D(i,t)+ gamma3 *A(i

,t))+kappa(i);
95 E(i,t+1) = E(i,t)+mubar;
96 TotalI (i,t) = I(i,t)+D(i,t)+A(i,t);
97 Newinfected (i,t+1)=I(i,t+1) -I(i,t);
98 vaccinations (i,t+1)= vaccinations (i,t)+kappa(i);
99 end
100
101 end
102
103
104 %% show graphs
105
106 for i=1:M
107 fig1 = figure (1);
108 x=0: Tend -1;
109 subplot (3,4,i)
110 hold on; grid on;
111 plot(x,I(i ,:) ./N(i),'r',x,D(i ,:) ./N(i),'m',x,A(i ,:) ./N(i),'c',x,

E(i ,:) ./N(i),'k','LineWidth ' ,2.5); grid on;
112 xlabel ('Days '); ylabel ('Fraction of the population ');title(

Provinces {i})
113 end
114
115 figure (1)
116 subplot (3 ,4 ,4)
117 legend ('S','I','D','E','R','E');
118
119 S_national = sum(S, 1);
120 I_national = sum(I, 1);
121 D_national = sum(D, 1);
122 A_national = sum(A, 1);
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123 R_national = sum(R, 1);
124 E_national = sum(E, 1);
125 N_national = sum(N);
126 vaccinations_national = sum( vaccinations ,1);
127
128 fig2 = figure (2);
129 grid on;
130 plot(x, S_national /N_national ,'g',x, I_national /N_national ,'r',

...
131 x, D_national /N_national ,'m',x, A_national /N_national ,'c',...
132 x, R_national /N_national ,'b',x, E_national /N_national ,'k','

linewidth ', 2.5);
133 xlabel ('Days '); ylabel ('Fraction of the population ');title('The

Netherlands ')
134
135 legend ('S','I','D','A','R','E')
136
137 %%
138 totalcases =round (( I_national (end)+ D_national (end)+...
139 A_national (end)+ R_national (end)+ E_national (end))-

vaccinations_national (end));
140 totaldead =round (( E_national (end)));
141 [ Peakmagnitude , Peaktime ] = max( I_national );
142 Peakmagnitude = Peakmagnitude /sum(N);
143 fprintf ('total cases = %d,\ ntotal deaths = %d,\ nTime of peak = %

dd ,\ nPeak magnitude = %d'...
144 ,totalcases ,totaldead ,Peaktime , Peakmagnitude )
145
146 %% print
147
148 % saveas (fig1 ,' Regional_no_interventionpol .png ')
149 % saveas (fig2 ,' National_no_interventionpol .png ')
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