
Grasping in 6DoF: An Orthographic Approach to
Generalized Grasp Affordance Predictions

Master Thesis

(Computational Intelligence and Robotics)

Mario Rı́os Muñoz (s3485781)

March 22, 2021

Internal Supervisor(s): Dr. Hamidreza Kasaei (Artificial Intelligence, University of Groningen)

Prof. Dr. Lambert Schomaker (Artificial Intelligence, University of Groningen)

Artificial Intelligence / Human-Machine Communication
University of Groningen, The Netherlands

RIJKSUNIVERSITEIT GRONINGEN (RUG)

Abstract

Faculty of Science and Engineering

Department of Artificial Intelligence

MSc

by Mario Ŕıos Muñoz

Grasp detection research focuses at the moment on finding neural networks that given a

RGB-D image or point cloud, yield a parametric grasp description that can be used to

firmly grip target objects. There is a need for these models to be small and e�cient, such

that they can be used in embedded hardware. Furthermore these models tend to only

work for top-down views, which highly restrict the ways objects can be grasped. In this

work, we focus on improving an existing shallow network, GG-CNN, and propose a new

orthographic pipeline to enable the use of these models independently of the orientation

of the camera. We make our implementation available on GitHub.

https://github.com/m-rios/ggcnn_plus

Contents

Abstract i

List of Figures iv

List of Tables vi

1 Introduction 1

1.1 Problem Description . 2

1.1.1 Research Questions . 2

1.1.2 Contributions . 3

2 Literature Review 4

2.1 Machine Learning for Grasp Detection . 4

2.1.1 Classification vs Regression . 4

2.1.2 Planar vs 6DoF . 5

2.1.3 Shallow Architectures . 5

2.2 Datasets . 6

2.3 Neural Architecture Search . 7

3 Theoretical Background 8

3.1 A Primer on Artificial Neural Networks 8

3.1.1 Forward Pass, Backwards Pass and Loss Function 9

3.2 Convolutional Neural Networks for Image Processing 11

3.2.1 Convolutional Layers . 12

3.2.2 Transposed Convolutional Layers 13

3.2.3 Fully Convolutional Networks . 15

3.3 Transfer Learning . 15

3.3.1 Net2Net . 15

4 Methods 18

4.1 GG-CNN . 18

4.1.1 Datasets and Training . 19

4.2 Architecture Modification . 19

4.2.1 Beam Search . 20

4.2.2 Beam Search for Architecture Optimization 20

4.3 Orthographic Pipeline . 22

ii

Contents iii

4.3.1 Canonical Views . 23

4.3.2 Depth Image Synthesis . 24

4.3.3 View Selection . 26

4.4 Simulation Environment . 26

4.4.1 Pybullet . 27

4.4.2 Experimental Setup . 27

4.4.3 Scene Initialization . 27

4.4.4 Objects Dataset . 28

4.5 Additional Software and Support Materials 29

5 Results 31

5.1 Simulation Baseline . 31

5.2 Beam Search . 32

5.2.1 Improving the Architecture . 33

5.2.2 Optimizing the Architecture . 34

5.3 Grasping in 6DoF . 36

5.3.1 Straight-in Approach . 37

5.3.2 Evaluating the View Selection Metric 38

5.3.3 Orthographic Pipeline . 39

5.3.4 Real Robot Trials . 40

6 Discussion and Future Work 41

6.1 Evaluation Methods . 41

6.1.1 Particularities of our Simulation Environment 41

6.1.2 Simulation Results . 42

6.1.3 Standardization . 42

6.2 GG-CNN . 44

6.2.1 Multi-task Learning . 44

6.2.2 A↵ordance Segmentation . 45

6.3 Beam Search . 45

6.3.1 Operator Selection . 45

6.3.2 Limitations . 46

6.3.3 Potential for lifelong learning . 47

6.4 Orthographic Pipeline . 47

6.4.1 Caveats . 48

7 Conclusion 49

Bibliography 50

List of Figures

3.1 Rectified Linear Unit (ReLU) activation function acting on a simplified
linear model with 1 input. All the values < 0 are truncated to 0. Values
above 0 are left intact. The term b (bias) shifts the response within the
envelop of the function. 9

4.1 The GG-CNN architecture. The 4 convolutional filters of the last layer
generate the grasp-quality and width images, and the 2 angle images. The
best grasp is isolated from the quality distribution, and the images are
post-processed to generate a bounding-box representation. The rightmost
image overlays this bounding box representation over the input depth
image. 19

4.2 Example of exploration of a graph using beam search with a beam size
of 3. The characters identify the node and the digits the value of the
heuristic. The objective of the search is to maximize the heuristic. Nodes
in red have been expanded. In this case the algorithm is miss-guided by
the local maxima at depth 2, and it fails to find the optimal solution of
node J . 20

4.3 Overview of the proposed orthographic pipeline: (left) flow chart for our
proposed orthographic pipeline. (Right) example of a point-cloud cap-
tured with a real RGB-D sensor. The plane corresponding to the table
(yellow) is identified via RANSAC. The object in the center of the scene
is isolated and its orthographic views are projected. 23

4.4 (Left) Point cloud of a real object and its projected canonical views. Top
view is defined by the normal to the world plane. (Right) Synthetic depth
image derived from the frontal projection of the point cloud 24

4.5 Simulation environment. The object must be dropped in the green bin
for a grasp to be considered successful . 28

4.6 Overview of the experimental setup: (left) scene generation process and
experimental setup. Scenes are batch generated and stored in a hdf5
file. For each object, we generate 5 scenes with random orientations.
As part of the scene description we embed a depth image to ensure all
predictions are carried on the same input; (right): result of the VHACD
algorithm. Left object represents the original geometry. Each volume of
a di↵erent color in the right object shows the convex decomposition that
approximates the original shape. 29

4.7 Objects used in the simulation environment. 30

iv

List of Figures v

5.1 Simulation baseline: (left) evolution of the rate of successful grasps of a
randomly initialized GG-CNN network. The published weights for GG-
CNN achieves an accuracy of 78.5%. We find the best epoch for the ran-
domly initialized one to achieve 82% of success rate; (right) performance
of the randomly initialized network based on IOU > 25% criteria. 32

5.2 Results of the beam search with the vanilla GG-CNN architecture as the
starting node. All experiments were ran to a depth of 5 with a beam size
of 3. e stands for training epochs after applying a transfer operator. r is
the number of retraining epochs for the best node after lookahead. All
experiments selected only the convolutional layers for expansion, except
for the transpose one, which also selects the transposed convolutional
layers. The no lookahead experiment was ran without the lookahead step. 33

5.3 GG-CNN+ (improved version of GG-CNN) resulting from applying beam
search with a depth limit of 5, beam size of 3, 2 training epochs per
student network and lookahead. The 4 output convolutional layers remain
unchanged and are left out of the graph for simplicity 35

5.4 Stripped down versions of GG-CNN used as starting point for the opti-
mization experiments. The 4 output convolutional layers are not depicted. 36

5.5 In order to optimize the original mode we start from two stripped down
versions. 36

5.6 Experimental setup for the oblique camera settings. The pipelines are
tested at 30o, 60o and 90o from the horizontal plane. (Left) straight in
approach. The object is grasped along a parallel to the optical axis (ligth
blue) of the camera. (Right) orthographic pipeline. The object is grasped
along a parallel to the x, y or z axis w.r.t the object frame of reference. . 37

5.7 Stages of a grasping experiment with a real robot. (Top left) Initial
configuration. (Top Right) Gripper in pre-grasp pose. (Bottom Right)
Grasp pose with fingers closed. (Bottom Left) Post grasp pose. 40

List of Tables

5.1 Modifications to GG-CNN that result in the best performing model. El-
ements in bold font represent the new addition at that depth. Layers 1
(9⇥ 9⇥ 32) and 2 (5⇥ 5⇥ 16) remain unchanged and thus are omitted. 35

5.2 Straight-in Approach Evaluation Results 38

5.3 View Selection Evaluation Results . 39

5.4 Orthographic Pipeline Evaluation Results 39

vi

Chapter 1

Introduction

Autonomous robotic manipulation is a complex and challenging problem, involving a

number of disciplines that range from mechanical engineering and hardware development

to motion planning and object detection or semantic segmentation. Advancements in

the field are relevant for a large number of applications. Automated manipulators were

first introduced to the assembly line by the car industry [1], and are nowadays well

established in the manufacturing sector. Moreover, robotic arms like the Canadarm [2]

have been employed for space construction. However, at the moment this technology

only thrives in highly controlled environments, where end e↵ectors tailored to the specific

task at hand are employed and operations are either highly repetitive and well known

or planned in detail beforehand.

One sector where the use of dexterous robotics could be highly beneficial but has not

seen any commercially viable solutions as of yet is service robots for the domestic envi-

ronment. The ability to manipulate common household items for these type of agents

is fundamental to their purpose, but the challenges are many [3]. To name a few, we

can consider: highly dynamic environments; open-ended number of object categories;

clutter; noisy sensors and the need for cost-e↵ectiveness.

A key skill for enabling autonomous manipulation is robust grasp a↵ordance detection.

The term a↵ordance was first coined by Gibson in his 1977 publication [4]. It refers to

the utility that an element of an environment o↵ers to an agent. Examples of a↵ordances

are sitting, in the case of chairs, or scooping, for spoons, and more relevant to this work:

grasping, for handles and object surfaces. The concept of a↵ordance has become of the

upmost relevance for the field of cognitive robotics. In order for an intelligent agent

to solve complex tasks, it needs to understand not only the class of the objects that

surround it, but also how said objects, or even sub-elements of the object, can be useful

for the problem at hand. Detecting grasp a↵ordances is instrumental to build more

1

Introduction 2

complex manipulation behaviours and tasks, but it is not su�cient to ensure a firm

grip: the pose of the hand and fingers relative to the target geometry prior to grasping

an object plays a major role as well. This is the objective of grasp detection research:

given a 3D representation of an object, determine the point in space and orientation that

a robotic hand must adopt such that when the fingers close a robust grasp is achieved.

In recent years, following the advent of deep learning and a↵ordable of-the-self 3D camera

hardware, successful e↵orts have been made to develop models that take a depth image as

an input and yield a grasp prediction. These models typically use CNNs (Convolutional

Neural Networks) to process the images, and in most of the cases the cameras have a

top-down view of the workspace and the predictions are made only in 3DoF (degrees of

freedom). This approach is limited in the type of objects that can be manipulated (for

example plates can’t be grasped this way). Additionally, this constrains the location

where the camera can be mounted to the robot, and where the robot must place itself

in order to interact with a scene.

To ensure cost-e↵ectiveness of commercial solutions, the compute hardware of future

service robots may be limited. GG-CNN [5] is a small convolutional network that can

run inferences in real time (50 Hz) on desktop-level GPU cards. This makes it a good

candidate for embedded applications with more limited processing power.

1.1 Problem Description

There is room for improvement accuracy-wise for such a small network as GG-CNN.

The challenge that we will focus on is how to achieve better success rates while keeping

the network su�ciently small. Moreover, the network was designed to run real time

predictions on images from a hand-mounted camera. In their experiments they always

present a nadir (top-down) view of the scene and approach the objects vertically. It

would be interesting to explore how this network performs when attached to the body of

a robot, such that the same cameras used for navigation may be used for manipulation

as well. As such, we will evaluate the performance of GG-CNN on o↵-nadir views, as

well as provide a grasping strategy for other than top down manipulator approaches.

1.1.1 Research Questions

1. How can we improve the accuracy of GG-CNN while keeping it small?

2. How well does GG-CNN perform on o↵-nadir grasp approaches?

Literature Review 3

3. How can we adapt existing models to robustly grasp objects from o↵-nadir camera

views?

1.1.2 Contributions

1. Through methodical model-space exploration, we find an extended version of the

GG-CNN architecture that performs 5% better in our simulation experiments,

with only 8% more number of parameters.

2. We propose a model-agnostic orthographic pipeline that enables any architecture

compatible with depth images to safely grasp objects from an o↵-nadir point of

view.

Chapter 2

Literature Review

In this chapter we give an overview of Machine Learning based methods to achieve grasp

detection. We also introduce a number of datasets available for neural network training,

and a set of techniques relevant for automated architecture-space exploration.

2.1 Machine Learning for Grasp Detection

With the cheapening of GPU hardware and the advent of Machine and Deep Learning,

many fields have been revolutionized and their state-of-the-art been pushed forward.

Grasp detection is no exception. Neural network based approaches typically use Con-

volutional Neural Networks (CNNs) to process an image with depth information or a

point cloud and produce a description of a grasp pose.

2.1.1 Classification vs Regression

Depending on the output of an architecture and the training process, neural networks

can be utilized to perform classification or regression tasks. Both methods are valid for

grasp detection. Classification-based solutions first sample the grasp space for candidates

and then use the model to determine if a grasp is valid or not. The method in [6] uses

a predefined grid of anchored boxes as the starting point for tentative grasps. It feeds

the image through a ResNet [7] derived architecture to identify features, that are then

passed to a regression and a classification subnets. The regression layers fine-tune the

predefined boxes, while the classification layers select the valid candidates. The authors

in [8] chose to work on point-clouds, and trained their network to classify each point

as valid/no valid based on a grasp pose analytically determined from the neighbouring

geometry. A similar approach was followed in [9], where a U-Net [10] derived architecture

4

Literature Review 5

was employed. Researchers from Nvidia [11] used variational auto-encoders trained on

successful grasp examples to generate a variety of grasps per point-cloud. They classify

the resulting grasps using PointNet [12], and feed those deemed as invalid to another

network in order to fine-tune them into valid grasps. GQ-CNN [13] is trained on a vast

dataset of synthetic images to predict a quality score for grasp-aligned depth images.

On the other hand, regression-based methods learn to directly infer the parameters

that define a valid grasp. This makes this kind of approaches more straight forward,

and typically simpler. GG-CNN [5] and GR-ConvNet [14] follow a similar approach.

Both use multiple output maps with similar dimensions to the input image. These maps

encode per-pixel the parameters necessary to construct a grasp (grasp quality, width and

orientation). To do so, GG-CNN uses a a shallow fully convolutional architecture, while

GR-ConvNet combines convolutional and transposed-convolutional layers with residual

blocks. The network proposed in [15] makes use of convolutional layers for feature

extraction to which a set of of fully-connected layers are concatenated. They output a

flat 5-dimensional array describing a single grasp pose per image.

2.1.2 Planar vs 6DoF

Research is frequently focused on antipodal grasps (two fingered grippers). A common

choice for this grasp definition is a rectangle, where the height may be fixed (according

to the geometry of the gripper used), the width represents the position of the fingers

prior to closing them and the position and orientation determine the pose of the hand

[5, 6, 13–15]. This is a 3DoF parameterization of the hand pose w.r.t the camera frame

of reference, that can then be transformed to a 6DoF pose w.r.t the world coordinates

knowing the extrinsic camera parameters. There is however a family of networks that

directly provide 6DoF grasps [8, 11, 16]. These networks tend to work on point cloud

representations of the scene rather than RGB-D data. The advantage of 6DoF grasps is

that they allow manipulation from angles detached from the camera orientation. Given

that most imaged-based solutions choose to place the camera with a top-down view,

6DoF methods would enable the grasping of objects that cannot be grabbed from the

top, like plates.

2.1.3 Shallow Architectures

As already mentioned, there is a motivation to find small networks that can run on low

powered hardware. Incidentally, regression-based networks tend to be better suited for

this goal [5, 14, 15]. GG-CNN (75K parameters) was designed from the ground-up to

be run in real time, such that closed-loop control strategies could be used to guide the

Literature Review 6

manipulator. The method in [14], while bigger (2M parameters), can also be executed

in real time on capable hardware and it performs notably better (97.7% vs 73%) when

tested against rectangle ground truths. The fast CNN introduced in [15] also runs at very

high frequencies with decent results (94.8%). There is one classification-based method

that was specifically designed to be executed on embedded platforms like Nvidia’s Jetson

TX1 [17]. Their approach consists on training a compressed CNN to segment image

pixels according to their graspability. They then post-process the graspable blobs and

use a heuristic to generate the 5 parameters for a rectangular grasp.

2.2 Datasets

The Columbia dataset [18] was one of the original attempts at a standardized grasp

database. They used the 3D models from the Princeton Shape Benchmark and generated

a variety (230k) of grasp labels compatible with di↵erent hand geometries. The dataset

works on the assumption that similar objects are grasped similarly and it does not

provide a partial depth or point-cloud representations of the objects, but a complete

mesh description. One very popular alternative that does provide real depth sensor

images is the Cornell Grasping Dataset (CGD)1. This dataset contains 885 RGB-D

images of 240 di↵erent household objects with several hand-labelled grasp annotations

per image up to a total of 8K grasp examples.

Since the adoption of data-driven and machine learning based methods one of the main

challenges for training large scale networks has been the reduced size of the datasets.

The reason behind this is that ground truths for grasp poses usually come from either

hand-labelled examples [19] or physical experiments with actual manipulators [20, 21],

both methods being extremely time consuming. There is a dire need for datasets com-

parable in size to those used in other kinds of deep learning research. Jacquard [22]

was proposed in 2018 to fill this void. They generate grasp annotations through simu-

lation. To do so, they made use of the ShapenetSem [23] database of 3D models and

through random sampling and simulation validation they were able to generate 54k

RGB-D synthetic images with 1.1M grasp annotations on 11K di↵erent objects. More

recently ACRONYM [24] (17.7M annotations) and GraspNet-1Billion (1B annotations)

[16] have been introduced. The former follows an approach similar to Jacquard but pro-

duces annotated point-clouds instead of depth images and full 6DoF grasp descriptions

instead of planar ones. The later is generated from real depth sensor data of cluttered

scenes. They sample the grasp space using an analytical metric to evaluate the quality,

generating 6DoF grasp poses as well.

1http://pr.cs.cornell.edu/grasping/rect data/data.php

Theoretical Background 7

2.3 Neural Architecture Search

AutoML is a trend in Deep Learning research that seeks to automate the entire Machine

Learning pipeline [25]. This includes all the steps from data preparation and feature

engineering, to model generation and evaluation. One step in this automation pipeline

takes care of finding the best architecture for the problem. This is known as Neural

Architecture Search [26]. Models created using these automated techniques have already

proven to out-perform hand-crafted networks. As the name suggests, NAS formulates

architecture optimization as a search problem, where the state space is formed by the

set of possible architectures that can be found by the algorithm. The initial state is a

base network, to which modifications are added in the form of new layers or operations

(like pooling). In order to assess the performance each new network must be trained and

evaluated, which can be very costly. This process can be streamlined through transfer

learning [27]. In this case the transfer of knowledge ensures that the parent and children

architecture yield the same output such that only a few training epochs are needed to

teach the resulting network to make use of the new layers. This transfer learning based

technique was successfully applied to a 3D shape recognition task in [28]. Combining

transfer learning with beam search, they were able to find an architecture 99.4% smaller

than the state-of-the-art that performed 3% better.

Chapter 3

Theoretical Background

3.1 A Primer on Artificial Neural Networks

The purpose of an ANN (Artificial Neural Network) is to learn a hidden function encoded

in a dataset that would be too di�cult to model by hand. It takes a series of inputs

representing the state of the problem, and outputs a solution learnt from a series of

examples.

An ANN is a mathematical model loosely inspired by the way neurons in the brain

accumulate action potential from the synapses, and fire when this potential overcomes

their activation threshold, thus stimulating subsequent neurons. A single neuron, and

also the simplest network that can be conceived, the perceptron [29], can be formally

described as in equation 3.1. The term x 2 Rn is the input to the network. W 2 Rm⇥n

represents the weights, or the contribution factor of the synapses towards the output

value. The dimension m in W is the number of units or outputs of the perceptron. The

term b 2 Rm is called the bias and it shifts the value within the activation function. The

most important factor in the equation is the S term, or activation function, which shapes

the output of the units. Any non-linear function can be used as an activation function.

The use of this non-linearity lets us model non-linear relationships in the data. It also

becomes specially relevant when building multi-layered networks since multiple linear

layers combined can be reduced to a single linear unit. An example of a valid non-linear

function commonly used is the Rectified Linear Unit (ReLU) function (Figure 3.1).

S(W Tx+ b) (3.1)

The weights and biases are typically referred to as the trainable or hyper-parameters,

since they are the values that are changed in order for the model to learn features in

8

Theoretical Background 9

Figure 3.1: Rectified Linear Unit (ReLU) activation function acting on a simplified
linear model with 1 input. All the values < 0 are truncated to 0. Values above 0 are
left intact. The term b (bias) shifts the response within the envelop of the function.

the data. A measure of complexity of a model can be given by the number of units and

the way they are connected, thus determining the number of parameters. A Multi-Layer

Perceptron (MLP) is a combination of Perceptrons in a series of layers, so that the

outputs of the units in the first layer are fed as input for the perceptrons in the next

layer. The layers in a MLP network are commonly called fully connected layers, due to

the fact that every input contributes to every output. Bigger models can understand

more complex relationships in the data, at the cost of longer training times and at risk of

overfitting. Overfitting happens when the model learns the exact patterns of a training

set and does not extrapolate to new examples. The size of the models also has an impact

on the time it takes them to make an inference. This aspect is relevant for applications

where latency is a factor.

3.1.1 Forward Pass, Backwards Pass and Loss Function

Given a set of weights, biases and an input, we can evaluate equation 3.1 to obtain

an output. This is what is called a forward or inference pass. For an inference to be

valid, the values of the hyper-parameters must approximate the function that we want

to learn. The process of tuning these values to approximate the output of the model

to our desired outcome is called training. This training process can be formulated as

an optimization problem, where we try to minimize the di↵erence between the current

output of the network and the desired one. This di↵erence is a measure of the error of

the system, and is commonly referred to as the loss function. A common formulation

Theoretical Background 10

for the loss function is the Mean Squared Error:

1

n

nX

i=1

(Yi � Y
0
i)

2 (3.2)

Here n is the number of examples, Yi is the output of our model for the i
th input and

Y
0
i is the expected output. In order to evaluate a loss function, we must have a set of

ground truths or correct answers for a given input that are representative of the problem

or function that we want to learn. This set of examples forms the dataset that is used

for training the network. In order to train the network, we calculate the loss function

over a set of examples and use that value to update the hyper-parameters such that the

error is reduced. The set of examples used to calculate the loss function and update

the model is called the batch. By subsequently performing batch updates such that

the entire dataset is presented to the network once, we conduct an epoch of training.

Commonly, several epochs are needed for the neural network to achieve acceptably low

scores in the loss function, meaning the model is imitating correctly the desired function.

There are many possible strategies to minimize the loss function, and this has been a very

active field of research. Optimization strategies draw from optimization theory. There

is available a large body of powerful optimization methods, however, it must be kept in

mind that it is not enough to score low on the loss function. The model also needs to

perform correctly beyond the training dataset: it needs to generalize to unforeseen data.

If the optimization policy is too aggressive, the model can be overfitted to the dataset. A

way to monitor the generalization potential, is to split the dataset into a training subset,

used for performing the batch updates, and an evaluation dataset. By computing the

loss on the evaluation dataset, we can get an estimation on the generalization error. It

is a good practice when training neural networks to periodically check the generalization

error as well. The moment this error stops decreasing (independently of what the training

loss function states) is a signal that overfitting is starting to occur, and training must

be stopped.

The last bit needed to understand how the loss function is used to train the network is un-

derstanding an optimization scheme. A very simple yet e↵ective optimization technique

that is the basis of most of the methods used by the state-of-the-art is the Stochastic

Gradient Descent (SGD).

Wt+1 = Wt � ⌘rE|Wt (3.3)

Theoretical Background 11

The terms Wt+1 and Wt represent the values of the weight matrix at times t and t+ 1

respectively. E|W t is the loss function for the model using the Wt weights. ⌘ is a hyper-

parameter called the learning rate. By computing the gradient w.r.t the weights of the

loss function at time t, we obtain the direction in the hyper-parameter space in which

the error is maximized. Then, by subtracting this gradient from the current weights,

we ensure that the error is reduced in the next iteration. Since the error and weight

updates propagates from the output of the model to the input, performing one of these

updates is commonly referred to as backpropagation of the error, or backwards pass.

As it might be obvious from equation 3.3, SGD is an iterative algorithm. We start the

training process with a randomly initialized weight matrix, and each update of W results

in a slightly di↵erent response of the model, which in turns changes the score on the loss

function (with every step it becomes lower and lower). Each step t is a new example (or

batch of examples) in the training dataset, thus an epoch is completed once t reaches

the last element. The learning rate is the amount by which the network is changed in

every iteration. Low learning rates mean very little shift in the response of the model,

which makes training take longer. On the contrary, high learning rates change too much

the response of the network, and might make it skip valleys where the local minima is,

thus preventing the network from learning. Frequently, a dynamic learning rate is used,

that changes with t. The policy for these dynamic value tends to use high coe�cients

early in the training process, to make sure we shift away from the randomly-initialized,

poor-performance model, and gradually decreases the rate as the learning evolves, to

ensure further examples just fine-tune the model without making drastic changes. This

dynamic learning rate is an example of one of the many modifications that can be done

to the backprogagation algorithm. Pure SGD is rarely used nowadays for training neural

networks. A more powerful alternative, which uses some of these adaptive techniques

and is available out of the box in the major machine learning frameworks is the RMSprop

optimizer1.

3.2 Convolutional Neural Networks for Image Processing

Let us consider a grayscale image of 28 ⇥ 28 pixels. Let as contemplate the problem

of classifying which digit, from 0 to 9 is depicted in said image. In order to solve such

a problem with a MLP we would need to flatten the image to a vector. The simplest

architecture feasible for this problem would be a 1-layered network with 784 units at

the input and 10 outputs (one for each character, for a 1-hot class representation). The

number of parameters needed to model such a small network is 7.850 accounting for

1https://keras.io/api/optimizers/rmsprop/

Theoretical Background 12

both weights and biases. Now consider a slightly larger image of 128⇥ 128 pixels. The

number of parameters grows to 163.850. It is evident that this type of architecture does

not scale well, more so if we consider deeper models.

Another limitation of MLPs applied to image related taks is the fact that the isolated

value of a pixel is rarely relevant. Features in an image are localized to a region of the

image, and have some spatial structure. Take the example of face detection. Useful

features to determine whether an image contains a face or not could be straight lines,

which might denote a jawline or a nose, and oval edges, which could identify an eye.

Learning such relationships with a fully connected layer can be hard. Moreover, MLPs

lack a fundamental quality for robust image understanding: position invariance. Con-

sider a dataset where most of the relevant information is displayed at one corner of the

image. Because each node in the input is tied to a specific pixel in the image, features

learned for this dataset will not generalize to examples where the interesting information

is predominant in the opposite corner.

One family of architectures better suited to handle images are Convolutional Neural

Networks (CNNs) [30]. CNNs solve both of the drawbacks of MLPs by using small

convolutional filters instead of fully connected layers. Firstly, instead of working on

the totality of the image, CNNs focus on small regions determined by the size of the

filters. Thus, local features can be detected. Secondly, The same set of filters are used

across the entire input by sweeping the image on both dimensions. This means that the

number of parameters can be highly reduced. In order to propertly understand how this

is possible, it is necessary to further explain how a convolutional filter looks like.

3.2.1 Convolutional Layers

The formal definition of a convolution between two matrices A,B of similar dimensions

is:

c =
X

i

X

j

ai,jbi,j (3.4)

That is, a convolution is the scalar value that results from the sum of the element-wise

multiplication between the two matrices. In our example A is the input signal and B

the filter. For practical applications, the input is larger than the filter. In this case, the

convolution is applied by overlapping the filter over the input and systematically shifting

it across the rows and columns. The amount by which the filter is shifted is the stride.

The output to the convolution is another matrix whose size is invertly proportional to

the size of the filter and the stride. The following is an example of a convolution with a

stride of 2:

Theoretical Background 13

2

666664

8 2 5 8

5 1 2 7

8 5 3 0

7 8 1 2

3

777775
⇤
"
1 4

6 2

#
=

"
48 63

86 13

#
(3.5)

Here the 4⇥4 matrix is the input and the 2⇥2 matrix represents a single filter, that when

applied with a stride of 2 results on a 2 ⇥ 2 output. The colors in the input represent

the overlap with the filter that leads to the same colored output. A convolutional layer

is typically composed of more than one filter, forming a tensor of n⇥m⇥d where n and

m are the size in pixels of the individual filter and d is the number of filters.

A filter is a set of values spatially arranged such that they yield a high output for a

specific pattern in the input image. By tuning a bank (volume) of filters to di↵erent

patterns of interest, we can identify relevant features in the image to extract information.

The following matrix could be used as a vertical edge filter:

2

664

1 0 �1

1 0 �1

1 0 �1

3

775 (3.6)

This, along with more oriented edges and other primitive patterns can help understand

the geometrical properties of an image. The output of these filters can be further pro-

cessed by another bank (convolutional layer) to gain understanding at a higher level of

abstraction. For example a filter could tune in to faces by looking at a combination of

ovals and triangles denoting the eyes and nose.

3.2.2 Transposed Convolutional Layers

Transposed convolutional layers are some times referred to as de-convolutional layers.

This term, however is not accurate. A de-convolutional layer should perform the inverse

operation of a convolution. Instead, a transposed-convolutional layer works in a similar

fashion as the convolutional one, but upsampling the output rather than downsampling.

To understand why a transposed convolutional layer is called so, we must first look at

how a normal convolution operation can be expressed in matrix form.

Consider the following convolution with a stride of 1:

Theoretical Background 14

2

664

a11 a12 a13

a21 a22 a23

a31 a32 a33

3

775 ⇤
"
w11 w12

w21 w22

#
=

"
o11 o12

o21 o22

#
(3.7)

The flattened output is computed as follows, according to the definition in 3.4:

2

666664

o11

o12

o21

o22

3

777775
=

2

666664

a11w11 + a12w12 + a21w21 + a22w22

a12w11 + a13w12 + a22w21 + a23w22

a21w11 + a22w12 + a31w21 + a32w22

a22w11 + a23w12 + a32w21 + a33w22

3

777775
(3.8)

To achieve the same result through a matrix multiplication, we can flatten the input

row-wise into a 1⇥ 9 vector, and re-arrange the kernel coe�cients in a 9⇥ 4 matrix like:

2

6666666666666666664

a11

a12

a13

a21

a22

a23

a31

a32

a33

3

7777777777777777775

T 2

6666666666666666664

w11 0 0 0

w12 w11 0 0

0 w12 0 0

w21 0 w11 0

w22 w21 w12 w11

0 w22 0 w12

0 0 w21 0

0 0 w22 w21

0 0 0 w22

3

7777777777777777775

=
h
o11 o12 o21 o22

i
(3.9)

From linear algebra, we now that a vector of size 1⇥9 multiplied by a matrix sized 9⇥4

results in a vector sized 1⇥ 4. This in unflattened dimensions means going from a 3⇥ 3

input down to a 2 ⇥ 2 output. Applying the same rule, we can easily go from a 2 ⇥ 2

input into a 3⇥ 3 output simply by transposing the weight matrix.

The right hand side term of the following equation is achieved by multiplying a flattened

2⇥ 2 B matrix with the transposed of the weight matrix in 3.9:

"
b11 b12

b21 b22

#
⇤T

"
w11 w12

w21 w22

#
=

2

664

b11w11 b11w12 + b12w11 b12w12

b11w21 + b21w11 b11w22 + b12w21 + b21w12 + b22w11 b12w22 + b22w12

b21w21 b21w22 + b22w21 b22w22

3

775

Theoretical Background 15

Similar to the earlier example with the convolution, here we are using colors to denote

the source of information from input to output. In the case of the normal convolution, we

would go from a sub-matrix in the input to a scalar in the output. With the transposed

convolution, however, we go from a scalar value in the input matrix to a sub-matrix in

the output.

3.2.3 Fully Convolutional Networks

A fully convolutional network makes no use of fully connected layers (like the ones in

the MLP), only convolutional and transposed convolutional layers. They are typically

arranged such that the first half of the network uses convolutional filters to extract

features from the input, compressing the information to a so called latent-space. From

this high level of abstraction representation of the input, the second stage of the network

uses transposed convolutions to upsample the information. If the upsample is carried

up to the original dimensions of the input, a pixel-level inference can be achieved.

3.3 Transfer Learning

Transfer learning is a technique that allows us to use the knowledge learnt by a model

in a di↵erent architecture or to solve a di↵erent problem. The model that donates the

weights is commonly called the teacher, and the receiver the student. Knowledge transfer

helps bootstrap the training of a student, by starting from an already decent place in the

hyper-parameter space. One example of a transfer learning method widely used in the

literature, is using the weights of the convolutional layers of a successful network such

as Inception [31] for feature extraction, and combining them as input to our problem-

specific layers. This way we don’t need to re-learn common traits like corners or edges,

and we can focus our training on finding the relationships of higher-order pieces of

information.

3.3.1 Net2Net

Net2Net [27] is a method that lets us e�ciently add units to a network. It introduces

two knowledge transfer operators: net2deepernet, to increase the number of layers of

the model and net2widernet to increase the number of units (filters, in the context

of convolutional networks) in a layer. Both operators work in a similar fashion: they

initialize the new weights in such a way that the output of the student network remains

Theoretical Background 16

the same as that of the teacher. By doing this, the performance of the model is not

reduced and less number of epochs are needed to teach the network to use the new units.

Net2DeeperNet

Consider a teacher network Y = �(W T
x) where � is the ReLU activation function. Since

ReLU is idempotent, that is, since we can write �(x) = �(�(x)) for any x, then the

following holds true:

Y = �(W T
x) = �(I�(W T

x)) (3.10)

Simply by initializing the new layer to the identity matrix we prevent the loss of knowl-

egde.

Net2WiderNet

The process of adding units to a layer is slightly more involved. This is due to the fact

that we must change the size of the inbound and outbound weight matrices. Consider

the following network with one hidden layer (note that for simplicity the activation

function has been omitted):

Hidden layer :
"
h1

h2

#
=

"
a c

b d

#T "
x1

x2

#

Output layer :

y =

"
e

f

#T "
h1

h2

#

In order to add an additional unit in H, we need one more row in the inbound weight

matrix. We can do this by replicating one of the existing sets of weights. This, however,

changes the output value and shape of the hidden layer. To mitigate it, and ensure the

final output remains constant, we replicate the same position on the outbound layer,

and divide it by 2 like:

Methods 17

Hidden layer :
2

664

h1

h2

h2

3

775 =

"
a c c

b d d

#T "
x1

x2

#

Output layer :

y =

2

664

e

f/2

f/2

3

775

T 2

664

h1

h2

h2

3

775

This algorithm can be generalized to any number of new units in a layer. Consider W (i)

and W
(i+1) as the inbound and outbound weights to the a↵ected layer in the parent

network, and U
(i) and U

(i+1) as the corresponding weights in the student network. Let

us call m the number of units in the teacher layer, and n the desired total number of

units for the student layer. To construct U (i), the first m columns will be a literal copy

of W (i). The remaining n�m columns will be randomly selected from W
(i). Similarly,

the first m rows of U (i+1) are taken directly from W
(i+1). The remaining rows follow

the exact same random mapping as in the inbound. That is, if column m + 1 in U
(i)

used column m � 3 from W
(i), row m + 1 in U

(i+1) will use row m � 3 in W
(i+1). In

order to preserve the output, each row in U
(i+1) will be divided by how many times the

donor row in W
(i+1) was selected.

Chapter 4

Methods

This work presents two main contributions: an extension of GG-CNN that improves

its accuracy and a pipeline to enable safe grasping for o↵-nadir camera angles. In this

chapter, we explain the algorithm to methodically explore the GG-CNN variations and

we go over the details of our grasping pipeline. Furthermore, we provide some insights

into our simulation environment for grasp evaluation.

4.1 GG-CNN

As already described, GG-CNN is a fully convolutional network. That is, instead of

having an output with the representation of a single grasp (the 5 parameters discussed

in section 2.1.2), it outputs a dense prediction for each pixel in the original input. It

achieves this by using 3 transposed-convolutional layers after the initial 3 convolutional

layers (see Figure 4.1). The input to the model is a depth-only image (no color infor-

mation), and it has 4 separate outputs:

• Grasp Quality: Normalized between [0, 1], it represents the probability of suc-

cessful grasp of the pixel.

• Angle: The angle is represented as points in the unit circle by two images, one

for each component, with values between [�1, 1].

• Width: The width is also given in normalized units and then remapped to a range

of [0, 150] pixels.

While the network generates 3002 grasp assessments, for practical applications we typi-

cally want just the best grasp. The output of the network is postprocessed to facilitate

18

Methods 19

grasp generation. The grasp quality distribution is filtered by a Gaussian blur. The

angle is computed from the two components as 1
2 arctan

y
x , so that the values are com-

prised within the range [�⇡
2 ,

⇡
2]. The width is rescaled to the range of [0, 150] pixels

and also filtered by a Gaussian. The image coordinates of the best grasp are obtained

by finding the best local maxima in the smoothed grasp quality distribution, which are

then used to find the angle and width. Knowing the intrinsic and extrinsic parameters

of the camera, and having the depth from the input image it is possible to transform

this image-space grasp representation to world-space coordinates.

Figure 4.1: The GG-CNN architecture. The 4 convolutional filters of the last layer
generate the grasp-quality and width images, and the 2 angle images. The best grasp
is isolated from the quality distribution, and the images are post-processed to gener-
ate a bounding-box representation. The rightmost image overlays this bounding box

representation over the input depth image.

4.1.1 Datasets and Training

Since the goal of GG-CNN is to generate a grasp distribution, the network can be trained

on any grasping dataset as long as it presents several grasp examples per image. The

loss function used is the pixel-wise MSE on each of the outputs, and the optimizer used

is the RMSProp. In our experiments we trained the network on Cornell, using the same

approach to that of the original publication.

4.2 Architecture Modification

One of the objectives of this work is to find an improved version of the GG-CNN archi-

tecture. Coming up with a new model is a highly involved process: the combinatorics

of the modifications that can be done to a neural network is such that an exhaustive

approach is not feasible. The method proposed in [28] solves this issue by formulating

the architecture exploration as a search problem, and using the beam search algorithm

to solve it. We employ this method in our work to grow the base GG-CNN network.

Methods 20

4.2.1 Beam Search

Breadth-first is an exploration strategy for state space search problems where all the

children of a given level in the search tree are expanded before the o↵spring is evaluated.

For problems where the search space is infinite, this guarantees that if there is a solution

it will be found (it does not get stuck on local optima). However, if the branching

factor is too big the number of nodes to be explored before a solution is found can

be prohibitively large. Beam search is a greedy variant of breadth-first. Instead of

considering all nodes at a depth level, it evaluates them according to some heuristic and

selects the best for expansion. It is governed by a beam size parameter k that limits the

number of nodes to expand. Due to its greedy approach, beam search can be misguided

and get lost on local optima. An example of such a case can be seen in Figure 4.2. A

solution to this is guiding the search by a depth-limited lookahead, albeit this increases

the execution time of the algorithm considerably.

A1

B2

D6 G2E3

J14 K10 L12

H9F7 I5

C4

Figure 4.2: Example of exploration of a graph using beam search with a beam size
of 3. The characters identify the node and the digits the value of the heuristic. The
objective of the search is to maximize the heuristic. Nodes in red have been expanded.
In this case the algorithm is miss-guided by the local maxima at depth 2, and it fails

to find the optimal solution of node J

4.2.2 Beam Search for Architecture Optimization

Beam search can be easily employed to systematically explore the architecture space of

a model. The nodes in the tree search are the instances of a model, and the branches

correspond to modifications to the models. An example of a possible modification is

adding filters to a convolutional layer. Applying any modification means changing the

hyper-parameters of a model, therefore the network needs to be re-trained. Training time

Methods 21

can be cut short if the network modifications preserve the knowledge of the parent model.

This way, only a few epochs are needed to teach the network to use the newly added units,

without having to re-learn past knowledge. Knowledge-preservation between parent and

o↵spring is crucial for this algorithm to be e↵ective, since re-training the network from

scratch after every modification is unfeasible in practice. Therefore, the number of

modifications that can be done to a given network is limited by the amount of available

knowledge transfer operators. In this work we use the two operations described in section

3.3.

Listing 4.1 shows a python-pseudocode implementation of the beam search algorithm

for architecture optimization. Since a base model can be infinitely grown, the algorithm

is depth limited and aims to find the best architecture within d modifications. From

lines 8-10 it is clear that the branching factor increases with the depth, which makes

searching into higher depths very costly. The wider and deeper functions implement

the knowledge transfer operators, adding a copy of the layer below the currently se-

lected layer, and duplicating the number of filters in the selected layer respectively. The

sort by accuracy method evaluates the newly trained nodes against the validation split

of the dataset, and this score is used as the heuristic to guide the search. The best k

nodes are selected to be expanded on the next iteration.

1 beam_search(start_model , k, depth):

2 queue = [start_model]

3 explored = []

4

5 d depth:

6 children = []

7 model queue:

8 layer model:

9 children += train(wider(model , layer))

10 children += train(deeper(model , layer))

11 children = sort_by_accuracy(children)

12 queue = children [:k]

13 explored += queue

14

15 explored

Listing 4.1: Architecture exploration using Beam Search

Methods 22

Lookahead

To mitigate the e↵ect of getting stuck on local optima, as explained earlier, we can

guide the search with a lookahead. The lookahead changes the heuristic to select the

modification based on which will result in a better model at a depth d. This d is

fixed, that is, the algorithm never explores deeper. Lookahead improves the search

not only because it looks at the score further in the tree, but also because with each

iteration the algorithm trims the breadth of the tree, allowing it to focus its beam on

the most promising o↵spring. Listing 4.2 shows the pseudocode for the algorithm. Note

how in line 4 the depth is capped to d (relative to the initial model). The method

select best leaf looks at the last k nodes from the beam search, which represent the

leaves of the lookahead, and selects the best. From this leaf, we find the immediate

children from the model that leads to it. This model will then be selected as the new

root for the next lookahead. Notice how in line 8 the selected child is trained further.

This is a way to balance training and execution time: we train the o↵spring only for a

few epochs during lookahead, and for longer after selecting the best node at each level.

1 beam_search_with_lookahead(model , k, depth)

2 models_e = [model]

3 d depth:

4 models = beam_search(depth -d+1,k, model)

5 leaf = select_best_leaf(models)

6 parent(leaf) model:

7 leaf = parent(leaf)

8 model = train(leaf)

Listing 4.2: Beam Search with lookahead

4.3 Orthographic Pipeline

In this section, we introduce a pipeline that allows the use of GG-CNN for o↵-nadir

grasps prediction. The pipeline works on a point-cloud representation of the scene.

It segments the object of interest and identifies its canonical views (front, side, top)

w.r.t the camera. For each of the views, a depth image is synthesized, and prioritised

according to an entropy-based measure of the information it carries. Then, the view

with the highest level of information is fed to the network to predict a grasp point. For

a schematic of the pipeline, see Figure 4.3

Methods 23

Figure 4.3: Overview of the proposed orthographic pipeline: (left) flow chart for
our proposed orthographic pipeline. (Right) example of a point-cloud captured with
a real RGB-D sensor. The plane corresponding to the table (yellow) is identified via
RANSAC. The object in the center of the scene is isolated and its orthographic views

are projected.

4.3.1 Canonical Views

The point cloud is received w.r.t. the camera frame. First, the largest plane (table) is

identified using RANSAC [32]. PCA is used to find the main axes of the plane, and the

vector with the smallest eigenvalue is chosen as the normal of the plane. The orientation

of the normal is selected such that the cosine between the normal and the camera vector

is negative (so that it points “up”).

In this work, we assume that there is only one object to be grasped, and that it lays

within a known region of the workspace. Object segmentation is performed by discarding

all the points outside the ROI and also removing those that belong to the plane. The

next step is to determine the main axes of the target object. These axes should maximise

the information that is contained on each of the faces, but they should also facilitate a

safe approach direction for the grasp. An unsafe approach is one that results in collisions

with the workspace surface, for example approaching from below the table. To avoid

this, the normal of the plane is always used as the z axis of the object. The other two

components are found by performing PCA.

The main axes x, y, z of the object cloud determine the canonical views of the object,

which are used for grasp prediction and grasp approach orientation. The top view

approach vector is �z. The approach vector for the front view is computed as:

af = argmax
a2{x,y}

(|aTvc|) (4.1)

aaf = af sign(aT
fvc) (4.2)

Methods 24

Figure 4.4: (Left) Point cloud of a real object and its projected canonical views.
Top view is defined by the normal to the world plane. (Right) Synthetic depth image

derived from the frontal projection of the point cloud

Where vc is the camera aim vector and af and aaf are the front axis and front ap-

proach axis respectively. The remaining axis determines the side view, and the approach

orientation is computed similarly to the front view. One limitation of PCA is that while

the direction of the axes for a given cloud is unique, there are two possible orientations

for each axis (there is a sign ambiguity). In our case, this means that the approach

direction could potentially be from the back of the object (w.r.t the camera). This is

not desirable, since the back view contains the highest uncertainty due to self-occlusion.

To overcome this, we always select the orientation opposite to the camera vector (i.e.

the sign term in equation 4.2 will always be �1). This is similar to approaching the

object from the side closest to the camera.

4.3.2 Depth Image Synthesis

A depth image is synthesized based on the visible points of the object cloud from each of

the canonical views. The virtual camera is aimed following the approach vector described

above. The object is centered in the image, and a padding is added to limit the size of

the object so that it resembles the dataset images. For each point in the object cloud

the corresponding row r and column c indices in the image are computed according to

the following equation:

"
r

c

#
=

2

6664

l � 1� bpvps + µrc8
<

:
l � 1� bphps + µcc if aap 2 {y}

bphps + µcc else

3

7775
(4.3)

Methods 25

Where:

• l is the width or height of the image (300 pixels, to match the input of GG-CNN).

• µr and µc are the row and column indices of the image center.

• pv and ph are the horizontal and vertical components of the point w.r.t to the

center of the cloud. For the front and side views the vertical component is z and

the horizontal component is the remaining one orthogonal to the approach vector

(either x or y). For the top view the vertical component is that which is colinear

with the front approach vector.

• ps is the pixel size (world units per pixel).

The pixel size is computed based on the dimensions of the AABB (Axis Aligned Bound-

ing Box) according to:

pmax =
h
maxCx maxCy maxCz

i

pmin =
h
minCx minCy minCz

i

ps =
max(pmax � pmin)

l � 2d� 1
(4.4)

where Ci, i 2 x, y, z denotes the components of all the points in the object cloud and d

is the padding. The same size is used across all 3 views, to ensure a uniform represen-

tation of the dimensions of the object. The depth value of each pixel is taken from the

component that is colinear with the approach vector of each view. Since the approach

vector has the opposite direction to the corresponding view axis, positive values occlude

negative ones in the case that more than one point belongs to the same pixel. Missing

pixels, for which there is no information available are identified as �1

Generating a depth distribution directly from the points in the cloud results in a very

sparse image, since each point fills one pixel at most. To achieve more realistic images,

a dilation with a radius of 3 is applied to non-missing pixels, taking into account depth

occlusion. Missing values are replaced by the lowest known depth value. At this stage,

points that are further from the virtual camera have a lower value than points that

are closer. The depth images from real sensors encode actual distance to the camera

along the camera vector, so we invert the depth values to match this. Since the depth

Methods 26

values are expressed w.r.t to the center of the object cloud, the resulting image is already

distance-invariant. As a final step, we smooth the image by applying a gaussian filter.

4.3.3 View Selection

Out of the 3 synthetic depth images, not all will contain su�cient information to estimate

a valid grasp, due to self-occlusion. An example of a potentially problematic image can

be found in the side view of Figure 4.4. The view with the highest uncertainty depends

on the position of the camera relative to the object. A method must be found to robustly

determine the best view for prediction. In [33, 34] entropy was proposed as a way of

prioritising orthographic projections. Entropy is a concept from information theory that

measures the amount of information in a message as the unpredictability of its contents

[35]. Messages whose content is highly predictable (e.g. outcomes from a loaded dice)

contain less information that those which are unpredictable (throws from a fair dice).

Formally, information entropy is defined as follows:

H = �
nX

i=1

pi log2 pi (4.5)

Applied to the problem of view selection, the summation is iterated over the pixels in

the image, and pi represents the probability that the pixel is occupied by a point (the

number of points assigned to that pixel over the total number of points in the object

cloud). The base of the logarithm can be arbitrarily chosen, since it only a↵ects the

scale, however 2 is a common choice in the literature. The singularity at pi = 0 does not

contribute to the final entropy value (i.e. missing values are not considered). Under this

formulation, the highest possible value of entropy is that of an image where all the pixels

have the same number of points assigned. In opposition, the lowest values of entropy

are yielded when most of the points are assigned to a reduced number of pixels. This

will happen for views with highly occluded data. Since those are the views we want to

avoid, we select that image which maximizes entropy.

4.4 Simulation Environment

One of the challenges in grasp research is the lack of standardized benchmarks. Task

performance can be considerably a↵ected by factors like the set of test objects, the

capability of the end e↵ector, the precision of the robotic arm, the quality of the motion

planning and ultimately, the accuracy and robustness of the grasp pose prediction. In

[22] authors propose a benchmark that employs simulation to test grasp points on a

Methods 27

large dataset of objects. They make their simulator available as a web service for other

researchers to test their prediction algorithms under the exact same conditions. At the

beginning of the project, the use of said simulator was attempted in order to establish a

baseline. Unfortunately, the results never arrived. In order to have full control over the

simulation and evaluation aspect and ensure quick turnaround of results, it was decided

to implement a custom simulation.

4.4.1 Pybullet

We base our simulation on Pybullet [36], a Python wrapper for the Bullet [37] engine.

Bullet and Pybullet have become the de facto physics simulation engine for Machine

Learning. Companies like Google Brain and OpenAI have employed it to train and

evaluate their Reinforcement Learning algorithms [38–40], and it is the engine of choice

of the Jacquard simulator team. It allows us to easily model rigid body physics and

friction interactions, essential for simulating something like a pick and place task.

4.4.2 Experimental Setup

In order to simplify the implementation, we are using a free-floating custom end e↵ector

with 6DoF and unlimited workspace, instead of a realistic armed manipulator. Our

custom end e↵ector is a simple two-jaw gripper. Figure 4.5 depicts the gripper in a fully

opened configuration.

For each grasping trial, a pre-initialized scene is loaded containing the object to be

grasped in a stable configuration. The gripper is spawned one meter above ground, and

a target bin is placed two meters away from the object. The purpose of the bin is to

constrain the motion of the object once dropped. Upon grasp prediction, the gripper

first moves to a pre-grasp pose, matching the final orientation but 10 cm above the final

point. This is to avoid any rotation near the object that might disturb it and end up in

grasp failure. After gripping, the manipulator lifts the object vertically and translates

towards the bin, so that the CoM of the object lays at the baricenter of the box. The

objects are then dropped and the simulation is let run for a period of 20 seconds to let

the scene stabilize. After that, if the CoM of the object lies within the boundaries of

the bin, the grasp is considered to be successful.

4.4.3 Scene Initialization

Scenes are initialized by spawning the object centered in the world with a random

orientation, at a height equal to its longest axis to avoid initial collisions with the

Methods 28

Figure 4.5: Simulation environment. The object must be dropped in the green bin
for a grasp to be considered successful

ground plane. Objects are then let loose and the simulation is ran until the change

in position is smaller than a given threshold or it times out. Those scenes that didn’t

time out are considered stable. For each stable scene, the state of the object (including

position, velocity and acceleration) are appended to a hdf5 file along with the rgb and

depth images aimed at the object. This way we ensure that all subsequent experiments

are performed under the same conditions.

4.4.4 Objects Dataset

We use object models from ShapeNetSem [41], also used by Jacquard. ShapeNetSem

is a heavily annotated compilation of a series of 3D object databases. This implies

that the scaling of the objects is not homogeneous and in some cases it is unknown. To

ensure that all the objects used could be grasped by our simulated gripper, we randomly

subsampled a set of 40 objects and manually re-scaled them using Blender1 to fit the

gripper’s dimensions. Figure 4.7 displays all the objects used in the simulations.

When loading an object onto Pybullet, two models can be provided, one for visual

rendering and another for collision interactions. If only the visual model is provided,

Pybullet attempts to use it as a collision model. However, visual models tend to be too

1https://https://www.blender.org/

Results 29

Objects

VHACD

Scene initialization (x5)

scenes_description.hdf5

Random rotation Freefall simulation

x,y,z,α,β,� object_id

A B

Grasp simulation

Figure 4.6: Overview of the experimental setup: (left) scene generation process and
experimental setup. Scenes are batch generated and stored in a hdf5 file. For each
object, we generate 5 scenes with random orientations. As part of the scene description
we embed a depth image to ensure all predictions are carried on the same input; (right):
result of the VHACD algorithm. Left object represents the original geometry. Each
volume of a di↵erent color in the right object shows the convex decomposition that

approximates the original shape.

complicated and make physics calculations ine�cient. If this is the case, Pybullet opti-

mizes the visual mesh reducing the number of polygons. In our experience, the default

optimizations introduce ghost geometries, like closing the gap in a mug handle. This

leads to unrealistic simulations, where the performance of the experiments are highly

diminished. To overcome this, we make use of the Volumetric Hierarchical Approximate

Convex Decomposition (V-HACD) algorithm. V-HACD decomposes a mesh into smaller

chunks of lower resolution that approximate the original geometry, thus simplifying the

physics calculations while staying true to the visual model. An example of how the

algorithm works on one of our test objects can be observed in 4.6

4.5 Additional Software and Support Materials

The entire project is implemented in Python 2.7. For preprocessing the Cornell dataset

we use the original script by the GG-CNN team. The neural network is implemented in

Keras using the tensorflow backend. Image and point cloud processing are conducted

using the SciPy toolkits2 Model training and evaluation was conducted on NVIDIA K40s

and V100s GPUs provided by the Peregrine HPC cluster3.

2https://www.scipy.org/
3https://www.rug.nl/society-business/centre-for-information-technology/research/services/hpc/facilities/peregrine-

hpc-cluster

Results 30

Figure 4.7: Objects used in the simulation environment.

Chapter 5

Results

In this chapter we present our experiments and interpret the results. We first establish

a baseline, evaluating GG-CNN on our simulation environment. Next we show our

proposed GG-CNN+ architecture resulting from beam search. Finally, we evaluate both

networks on o↵-nadir approaches and test our orthographic pipeline.

5.1 Simulation Baseline

We are using a state-of-the-art physics engine to develop our simulation environment.

However, there are many factors that can have an influence on trial performance. In

our case these can be the selection of objects, grip geometry, motion control gains and

election of hyperparameters like simulation timestep which has an e↵ect on the accuracy

of friction physics. In order for our evaluation pipeline to be meaningful, we first need

to validate it and set a baseline with which to compare future experiments.

To establish this baseline, we first evaluate the vanilla GG-CNN architecture with the

published weights on our platform. We repeat the task for each objects 5 times with

di↵erent orientations. We achieve a precision of 78.5% successful grasps, where each

successful event accounts for 0.5%.

In order to understand the impact on the actual performance of network training, we

re-train a randomly initialized GG-CNN on the Cornell dataset and evaluate each epoch

in both simulation and IOU. The objective is to observe whether our simulation truly

reflects the learning of the network. As such, we expect the scores to have a tendency to

rise with the number of training epochs. Results can be observed in Figure 5.1. After

one epoch, the network achieves a performance of 60%. Both simulation and IOU show a

considerable improvement in performance in the first few epochs, and in both cases, the

31

Results 32

Figure 5.1: Simulation baseline: (left) evolution of the rate of successful grasps of a
randomly initialized GG-CNN network. The published weights for GG-CNN achieves
an accuracy of 78.5%. We find the best epoch for the randomly initialized one to achieve
82% of success rate; (right) performance of the randomly initialized network based on

IOU > 25% criteria.

best epoch is number 32, which achieves a success rate of 82% in simulation. However,

there is a clear distinction in between-epoch variability, being that of the simulator

notably larger.

5.2 Beam Search

The attractiveness of methodically exploring the architecture space using beam search

was two-fold for this project: improving the accuracy by adding parameters to the

original model; or reducing the number of parameters while achieving a similar success

rate.

To reach both goals we conducted two sets of experiments, starting with di↵erent archi-

tectures. Each candidate architecture was re-trained on Cornell. Two alternatives were

considered for the search heuristic: IOU accuracy or simulation performance. The IOU

metric, also known as box metric in the literature, consists on computing the intersect

over union of the predicted grasp rectangle and the ground truth. If this overlap is

> 25% and the di↵erence in the orientation is less than 30� the grasp is considered valid.

The advantage of IOU is the speed of evaluation. The advantage of simulation is the

quality of the heuristic (since it reflects actual task performance). However our object

Results 33

Figure 5.2: Results of the beam search with the vanilla GG-CNN architecture as
the starting node. All experiments were ran to a depth of 5 with a beam size of 3.
e stands for training epochs after applying a transfer operator. r is the number of
retraining epochs for the best node after lookahead. All experiments selected only the
convolutional layers for expansion, except for the transpose one, which also selects the
transposed convolutional layers. The no lookahead experiment was ran without the

lookahead step.

dataset was not large enough to be split into separate test/training subsets. Addition-

ally, evaluating each candidate network on simulation would take orders of magnitude

longer than on the IOU dataset. For these reasons the IOU method was selected. In the

following subsections we explain the experiments in more detail.

5.2.1 Improving the Architecture

For these experiments, we used the vanilla GG-CNN network as the starting node,

and only considered the net2widernet and net2deepernet transfer operators, meaning

that for any given model, the number of possible children is 2 times the number of

convolutional layers. We use the same values in the original beam search paper, for the

depth limit and beam size. That is, we used a depth limit of 5 and a beam size of 3.

The results for our experiments can be seen in Figure 5.2.

The lookahead step increases by several orders of magnitude the number of nodes that

are explored, and consequently makes the algorithm take longer to reach the depth limit.

This motivated the first experiment, comparing the benefits of using lookahead. The red

line, labelled as “no lookahead” shows the results without lookahead (i.e. only running

the algorithm in Listing 4.1. These results can be compared against the blue line, which

Results 34

did make use of lookahead. The success rate in simulation is marginally lower for the

experiment without lookeahead up until depth 3 where lookahead starts to pay o↵. This

behaviour was to be expected: beam search is greedy and can easily be stuck on local

optima. With the lookahead, we explore more of the o↵spring of the promising branches,

which leads to better architectures.

Beam search can retrain the network at two stages: After applying a new transfer

operator before each node is evaluated; and after a lookahead step. One possible way to

improve the accuracy of the resulting model is training for longer. However, increasing

the number of retraining epochs for each new candidate can become prohibitively costly

due to the growing branching factor of the search tree. Nonetheless, some amount of

training at this stage is required, otherwise, given the definition of our knowledge transfer

operators no improvement can happen. Thus, the only way to achieve longer training in

shorter a time is training very briefly after a modification is applied and retraining the

best node after lookahead for longer. In Figure 5.2 we list the number of epochs used

at each stage: e stands for training after expanding a node, and r stands for retraining

after lookahead. We used 2 and 8 epochs respectively. It can be seen how the best

possible result is obtained when training briefly after a modification is applied.

So far we have only considered convolutional layers for modification. This accounts,

however, for only half of the layers in the architecture. The transfer operators can be

applied to transposed convolutional layers in a similar fashion. We ran one experiment

where both convolutional and transposed convolutional layers were allowed to be ex-

panded. This increases the number of possible children for a node by an initial factor

of 2, which also makes the algorithm take longer. The results can be observed in green,

labeled as “transpose”. We see the accuracy of this experiment monotonically decrease

with depth, by a small amount.

We draw the conclusion from these experiments that the best results are achieved when

only training for 2 epochs right after applying a transfer operator, and doing so only to

convolutional layers, with an exploration strategy that uses lookahead. The best model

using these settings is found at depth 4 and achieves an accuracy in simulation of 82.5%.

This is a boost in accuracy of 5% w.r.t the vanilla GG-CNN model, by only increasing

the number of hyperparameters of the model 8%. The resulting architecture can be seen

in Figure 5.3. The modifications that lead to this architecture are listed in Table 5.1

5.2.2 Optimizing the Architecture

Beam search can only add units to an existing model. Thus, in order to achieve a

smaller model than vanilla GG-CNN, we must start from a stripped down version. We

Results 35

Figure 5.3: GG-CNN+ (improved version of GG-CNN) resulting from applying beam
search with a depth limit of 5, beam size of 3, 2 training epochs per student network
and lookahead. The 4 output convolutional layers remain unchanged and are left out

of the graph for simplicity

Table 5.1: Modifications to GG-CNN that result in the best performing model. Ele-
ments in bold font represent the new addition at that depth. Layers 1 (9⇥ 9⇥ 32) and

2 (5⇥ 5⇥ 16) remain unchanged and thus are omitted.

depth operator(layer) layer 3 layer 4 layer 5 layer 6
0 deeper(3) 3⇥ 3⇥ 8
1 deeper(4) 3⇥ 3⇥ 8 3⇥ 3⇥ 8
2 wider(3) 3⇥ 3⇥ 8 3⇥ 3⇥ 8 3⇥ 3⇥ 8
3 deeper(3) 3⇥ 3⇥ 16 3⇥ 3⇥ 8 3⇥ 3⇥ 8
4 N/A 3⇥ 3⇥ 16 3⇥ 3⇥ 16 3⇥ 3⇥ 8 3⇥ 3⇥ 8

considered two initial models that we call narrow and shallow. The narrow model has

the same 6 layers as GG-CNN, but instead of using filter banks of 32, 16 and 8, it has

sets of 8, 4, 2. The shallow model keeps only the 4 inner convolutional and transposed

convolutional layers with kernel sizes of 5⇥5 and 3⇥3, discarding the outer 9⇥9 kernel

layers. It uses the same filter bank sizes as the narrow model: the outer layers have 4

filters and the inner ones 2 filters. A schematic for both models can be seen in Figure 5.4

Both models were pre-trained in the same version of the Cornell dataset as GG-CNN.

Figure 5.2 shows their initial accuracy, as well as the results of the beam search. We

used the same search parameters used for the best-performing run in the earlier exper-

iments: 2 retraining epochs after layer expansion, lookahead and expansion of only the

convolutional layers. It can be seen how both models achieve > 60% accuracy in simu-

lation prior to any modification. The shallow model as a tendency to decrease accuracy

with the search depth, whereas the narrow model has a slight tendency to become more

accurate. The best model is achieved at depth 5 starting from the narrow architecture,

and obtains a success rate of 71.5%. The resulting architecture is 4 times smaller than

Results 36

Figure 5.4: Stripped down versions of GG-CNN used as starting point for the opti-
mization experiments. The 4 output convolutional layers are not depicted.

Figure 5.5: In order to optimize the original mode we start from two stripped down
versions.

GG-CNN, having 16104 parameters, however it performs 7% worse. Given the fact that

GG-CNN is already quite a lightweight architecture, the drop in performance can’t be

justified by the reduced size.

5.3 Grasping in 6DoF

The main purpose of the orthographic pipeline is to enable a robotic agent with a frame-

fixed camera to manipulate objects at any relative position. This hypothetical robot can

navigate around the workspace so as to frame the target within the field of view of the

camera, but it has no control over the angle from the horizontal plane with which the

object is observed. Thus the orthographic pipeline must work well under any elevation.

To replicate these variations in object perception, we evaluated the orthographic pipeline

in 3 di↵erent scenarios. Each scenario alters the camera orientation w.r.t to the ground.

The elevation angles considered where 30o, 60o and 90o (see Figure 5.6). The camera

Results 37

Figure 5.6: Experimental setup for the oblique camera settings. The pipelines are
tested at 30o, 60o and 90o from the horizontal plane. (Left) straight in approach. The
object is grasped along a parallel to the optical axis (ligth blue) of the camera. (Right)
orthographic pipeline. The object is grasped along a parallel to the x, y or z axis w.r.t

the object frame of reference.

was aimed at the origin, where the target objects were spawned, such that the objects

would get projected towards the optical center of the image.

5.3.1 Straight-in Approach

We lack a baseline to compare the orthographic pipeline with. In the top-down exper-

iments found in the literature, the grasp is typically executed following a nadiral path.

This type of approach can be generalized to any camera elevation by traversing the grip-

per along a parallel direction to the optical axis of the camera. This has some potential

problems with ground clearance for oblique approaches. Therefore, this can be consid-

ered a good minimum to improve upon. If the orthographic pipeline performs similarly

or worse than a straight-in approach, then the method can be considered flawed.

In order to establish the mentioned baseline we first tested the models on a straight-in

approach. With this method, pixel prediction is used to cast a ray from the camera.

This ray defines the approach direction and the position of the final pose. The angle

prediction in camera coordinates is directly used as the angle about the approach axis

to complete the grasp pose definition.

We ran the straight-in approach over the full set of scenes and camera positions for both

the GG-CNN and GG-CNN+ models. The results for the 90o setup are the same as

observed earlier in the simulation baseline and beam search results, since it is e↵ectively

the same setup. Performance drops significantly for the 60o setup, by a factor of 42%

in the case of the GG-CNN model and 37.5% in the case of the GG-CNN+ model.

Results 38

Table 5.2: Straight-in Approach Evaluation Results

angle model accuracy

90
GG-CNN 78.5%
GG-CNN+ 83.5%

60
GG-CNN 36.5%
GG-CNN+ 46%

30
GG-CNN 14.7%
GG-CNN+ 24.3%

Predictably, performance is even worse for the 30o setup, were in both cases it falls

below 25%. In all the experiments GG-CNN+ outperforms GG-CNN. For the oblique

settings, GG-CNN+ achieves ⇡ 10% better success rates than GG-CNN.

5.3.2 Evaluating the View Selection Metric

Prior to evaluating the orthographic pipeline, the best view selection method must be

identified. In the methods section two di↵erent view selection metrics were proposed:

observable mass and entropy. The former is a count on the number of visible pixels in

a synthetic image, while the latter also takes into consideration the number of points

assigned to each pixel. To evaluate which of the two methods works best for selecting

the optimal approach direction we conduct a simple experiment.

For this experiment, we want to decouple the performance of the grasp prediction, and

the simulator’s grasp accuracy from the performance of the view selection metric. To

achieve this, we find the best possible accuracy if the view selection metric was not

a factor. We establish this baseline by grasping each scene by all three approaches.

This means that for each object and each of the 5 random orientations, we grasp three

times, approaching from the front, the side and the top views. For each scene, a grasp

is considered successful if at least one of the approaches succeeded. The result of this

experiment represents the highest possible success rate that an ideal view selection metric

could achieve for a given prediction model in our pipeline and simulator.

Next, we run the experiment again, but instead of grasping by all three approaches we

pick only the best one according to the selection metric. All these experiments were

conducted with a camera angle of 45o, and our extended GG-CNN architecture was

used for the grasp prediction. The results can be observed in Table 5.3. The baseline

is the ideal scenario where the best approach is always selected. It achieves a 82.5%

success rate. This is the maximum performance our model and manipulator can achieve

for the given camera orientation and object dataset. The best metric is entropy, which

Results 39

Table 5.3: View Selection Evaluation Results

Metric Accuracy
baseline 82.5%
entropy 68%

observable mass 66.5%

Table 5.4: Orthographic Pipeline Evaluation Results

Angle Model Acc. % Top Acc.
Top

%
Front

Acc.
Front

% Side Acc.
Side

90o
orig. 65.5%

100%
65.5% 0 — 0 —

ours 72.5% 72.5% 0 — 0 —

60o
orig. 59.5%

91.5%
63.4%

6%
25%

2.5%
0

ours 70% 74.3% 25% 20%

30o
orig. 26%

47%
51%

49.5%
4%

3.5%
0

ours 34.5% 60.6% 12.1% 0

achieves an accuracy of 68%. This is a penalisation on accuracy of 14.5%. Observable

mass is 1.5% worse than entropy.

5.3.3 Orthographic Pipeline

Finally, we test the orthographic pipeline on the same scenes and camera configurations.

Table 5.4 shows the outcome of each experiment as well as split accuracies per approach

direction. The best results were obtained for the 90o configuration. The totality of the

scenes for this configuration was grasped from the top, which suggests that the entropy

metric works optimally for a top down setup.

For the 60o setup the most selected view is the top one, followed by the front and the

side. For the 30% configuration the front view is the most selected followed by the top

one. In all cases, the highest success rate is achieved when grasping from the top, and

the poorest performance results from grasping from the side. Our GG-CNN+ model

outperforms vanilla in all scenarios.

When comparing the straight-in approach with the orthographic pipeline, the former

performs 11% better for the top approaches while the latter is 24% and 10.2% more

successful for the 60o and 30o configurations respectively. The reason for this is discussed

in detail in the next section.

Discussion and Future Work 40

Figure 5.7: Stages of a grasping experiment with a real robot. (Top left) Initial
configuration. (Top Right) Gripper in pre-grasp pose. (Bottom Right) Grasp pose

with fingers closed. (Bottom Left) Post grasp pose.

5.3.4 Real Robot Trials

We also conducted a simple experiment on an actual robot with real sensor data. The

arm used was a Kinova MICO 6DoF with a KG-2 2-fingered gripper. To control it we

wrote a ROS package and made use of the MoveIt library. The experiment consisted of

a simple pick and drop task, and we used a cardboard box from a whiteboard eraser as

the target object. The point cloud was captured with an Asus Xtion RGB-D camera.

An example of a point cloud generated from such a sensor can be seen in Figure 4.3.

We carried out this experiment not as a performance evaluation on a physical environ-

ment, but as a proof of concept for our orthographic pipeline. The camera was set at

approximately 45o of elevation and pointed directly towards the object. We used the

same pipeline described in 4.3, with the exception of forcing the grasp approach to be

the top one, for security concerns regarding table-arm collisions. In our single trial, we

succeeded on grasping the mentioned object using predictions from GG-CNN. Figure 5.7

shows the di↵erent stages of the grasp operation for our trial.

Chapter 6

Discussion and Future Work

6.1 Evaluation Methods

In this section we will discuss some aspects regarding our evaluation methods. This will

be paramount to put into perspective all our results and to frame the way they can be

interpreted.

6.1.1 Particularities of our Simulation Environment

We chose to evaluate our model and pipeline on simulation rather than IOU or other

heuristic-based evaluation techniques for two reasons: heuristic approaches do not neces-

sarily reflect actual performance; and in the case of the orthographic pipeline no ground

truths would have been available. Nonetheless, as much as simulation experiments at-

tempt to replicate real-life conditions, their results can never be compared to physical

experiences. There are a number of factors applicable to any simulation method that

di↵er from real-life behaviour. In the following we will discuss a few details specific to

our implementation.

First of all, while fine-tuning the parameters of the simulation, we observed how crucial

the value of the time step was to the accuracy of the system. In order to have collision

physics robustly simulated, the time step must be bellow a threshold (in our experience,

we found this threshold to be 10�3). Longer time steps can lead to deep penetrations,

singularities and integration errors [36], that result in the objects shooting o↵ from the

gripper plates after a grasp. We did our best to find a time step that balanced physics

accuracy and execution time, however the selection of this parameter biases the result

of our simulation.

41

Discussion and Future Work 42

Secondly, it was also observed that the objects had a tendency to fall from the grip-

per during traversal from the pick-up to the drop-o↵ points. This happened even for

apparently good grasps. To prevent it, we set an arbitrarily high value to the friction

coe�cients and the maximum force that the fingers could exert. As a consequence, small

features or protuberances in the objects would su�ce for a grasp to be firm. Some of

these grasps would never be possible with a real life manipulator.

Lastly, we described in the methods section how the criteria for a successful, robust

grasp was that the target object could be picked up and dropped o↵ within a destination

container. In some of our experiences, an object would be successfully moved to the drop-

o↵ location but because of the orientation at which it collided with the ground it would

bounce outside of the container. In retrospective, a simple pick and shake experiment,

or translation to a target position without dropping onto a bin would have su�ced as a

success criteria. However, this behaviour was noticed along the experimentation process,

and for the shake of consistency and validity of earlier results was not addressed.

6.1.2 Simulation Results

One phenomenon stands out from all our simulation experiments: the success rate

achieved by networks with very little training (just 1 epoch) is considerably high. This

happens to the vanilla architecture in the simulation baseline experiment (Figure 5.1) as

well as to the narrow and shallow initial architectures in the beam search experiments

(Figure 5.5). In all cases, the networks achieve an initial accuracy slightly above 60%.

In contrast, IOU results yield initial values in the low 10s. This might raise doubts

about the validity of the simulation to assess performance, however there is one plau-

sible explanation for this behaviour. The IOU metric assesses how close the network

prediction is to the ground truth. This is what we mean when we say that IOU does

not represent actual performance. A grasp prediction might not align su�ciently well

with any of the ground truths and still be valid. Moreover, the case can be given where

the gripper is completely misaligned with the object, but because the fingers gradually

close the object gets re-oriented to a pose suitable for grasping.

6.1.3 Standardization

So far we have mentioned a number of factors that can have a substantial impact on the

results of a simulation experiment. To add a few more, we can consider the election of

the gripper geometry, the control strategy, and parameters of the manipulator (like the

torque limit of the motors). All these aspects make reproducibility and comparability

of results hard.

Discussion and Future Work 43

It is the opinion of the author that there is a lack of much needed standardized bench-

marking methods for the field of grasp detection. This stands out when comparing it

to the fields of object detection or image classification. Yearly challenges like those of

ILSVRC [42] o↵er a common goal to research as well as a fair and accurate way to

compare results among the proposed solutions. There have been some recent e↵orts

towards this standardization for manipulation research. In the aforementioned work by

the Jacquard team [22], their simulator was made available for other research teams to

submit their predictions over the dataset via their website. A priori, this solution seems

optimal, since it o↵ers the exact same environment, with no possibility for alterations,

across all submissions. Thus it has the potential to be the most partial and accurate

way to compare results. However, there are some caveats to their solution.

To begin with, the simulator is quite limited in the scenarios it can handle. Only

pick-and-move tasks are supported, and the point of view of the camera is always top-

down. This means that it is only good for comparing grasp prediction quality. If one’s

experiments involve other points of view (like it is our case for the orthographic pipeline)

or a specific control strategy (e.g. the closed-loop controller for [5]) or any other type of

task (like grasping in cluttered environments) then the simulator is of no use. Moreover,

the fact that the simulator cannot be installed and run locally makes its use unpractical

for iterative improvements. It also removes the possibility of running simulations within

the training loop (e.g. as validation tests). Since the publishing of their work, a number

of other publications have succesfully made use of the Jacquard dataset. However, to

the best of our knowledge, their simulator is yet to be used as a performance metric.

Designing a single simulator that can accommodate all possible experimental setups and

still be a ”single source of truth” for performance results might be unfeasible or hard

to do. An alternative could be a way to compare performance between the simulators

themselves. In 2015 an object dataset was proposed to benchmark robotic grasping ex-

periments [43]. While this is useful to remove the object-related performance deviations,

the other factors discussed so far still remain. More recently, a method to benchmark

simulation engines against real-robot experiment has been proposed [44]. This new

benchmark provides a set of scene and task descriptions, a dataset of motion-captured

movements of a real Kinova Mico robot solving said tasks and some metrics to compare

simulation performance and motion captured data. This framework is meant to be used

to tune the hyperparameters of the simulator such that the velocities, accelerations,

torque, contact forces and other physical properties of the arm and the final pose of the

manipulated object are as close to the ground truth as possible. Ensuring that ones’s

simulator meets this standard would help reduce the irreproducibility of an experiment.

Discussion and Future Work 44

6.2 GG-CNN

One of the reasons we chose GG-CNN to build upon was its object-class agnostic ap-

proach to grasp prediction. The rationale behind that was that if the network only learns

the geometric properties that make a shape suitable for grasping, it should generalize

well to unseen objects. The consequence, however, is a complete lack of semantic grasp-

ing capability. We observed in our experiments how some of the grasps, while successful,

were ”peculiar”, or not how a human would grasp the object. For example, consider

a wine glass sitting on its foot. For a top-down approach, the network would tend to

grab it by the wall of the bowl (that is with one finger inside the bowl, and the other

outside), instead of with both fingers outside the bowl (which would avoid dipping the

fingers in the potential content). Another example is a hammer being grabbed by its

head instead of its grip. While these grasps would succeed in a table-clearing scenario,

they would not be acceptable for more service-oriented tasks like food serving or tool

handling. One way to inform the model prediction with the object class, and improve

its performance on these scenarios would be through multi-task learning [45].

6.2.1 Multi-task Learning

Multi-task learning [46] consists in training a model to solve more than one task simul-

taneously. This can be done when there is some form of shared knowledge between the

two and it typically results not only in a model that can solve two tasks, but that also

obtains better generalization performance. It works because by optimizing one of the

loss functions, we are updating the common knowledge representation, and since their

knowledge is related it also improves the performance for the other task. Additionally, it

can be beneficial in the cases where one of the tasks has fewer data available to train on

[47], as is the case for grasp prediction when compared to a problem like object detection

or semantic segmentation.

It could be considered that the original GG-CNN model already uses some form of mul-

titask learning. It minimises 4 loss functions, albeit all aim towards the same goal of

grasp prediction and their ground truth is derived from the same dataset. The existing

architecture could be extended to be class-aware by adding an additional convolutional

layer with as many filters as classes to be identified like it was done in [48] and training

against a dataset like COCO [49]. If this was to be done, the network would be conduct-

ing simultaneous classification and regression. An example of earlier success with this

type of multitasking on CNNs can be seen in [50], where they use it to jointly diagnose

and predict clinical scores for Alzheimer’s Disease.

Discussion and Future Work 45

Typically, models that perform well on object-classification tend to be considerably

larger than our GG-CNN version [30, 51–54]. It is fair to assume that adding more

tasks to the network, and specifically a higher number of classes to classify, will lead

it to reach its capacity. The beam search framework would be useful in this case, to

methodically enlarge our current model. Alternatively, in order to keep the network

small, we could consider fewer classes. It has been argued before that “objects that look

similar can be grasped similarly” [18, 45, 55]. By using a tighter object taxonomy, where

several classes that are grasped similarly (e.g. cans and bottles, forks and knives...) are

clustered into a single one, we could still a↵ord to have an object type informing the

grasp. We propose the exploration of this alternative as a future work.

6.2.2 A↵ordance Segmentation

An alternative to informing the grasp with object class knowledge would be doing so with

other a↵ordances in the image, besides grasping. Knowledge about the ways an object

can be used might be more informative on how to grasp it than the object category

on its own. If a part of an object has the a↵ordance of pounding, while another has

it for grasping, then it is less likely that the network infers that the pounding part is

suitable for a grasp. Furthermore, in a lot of cases knowledge of a↵ordances has implicit

knowledge about the object, but it can have a more compact representation (many tools

can be used for cutting). Once again, we could use multitask-learning to incorporate

this a↵ordance segmentation skill into the grasp generation task.

6.3 Beam Search

6.3.1 Operator Selection

There are some peculiarities in the choices in terms of layers and operators that beam

search made in our experiments that are worth discussing.

Wider vs Deeper

We observed in section 5.2.1 how in order to arrive at GG-CNN+ 3 out of 4 modifications

consisted on making the model deeper rather than wider. Furthermore, all of those

modifications were applied to the deeper layers, leaving the first two untouched. While

our experiments don’t have statistical significance to argue that deeper is always better

for GG-CNN like architectures, our results line up with current ML trends. In principle

Discussion and Future Work 46

an arbitrarily wide network can approximate complex functions [56, 57], however there

is a tendency in state-of-the-art ML models to become deeper and not wider [58]. In

[59] researchers from Google conducted a study on how deep vs wide learning a↵ects the

knowledge representation and ultimately the output of the network. Surprisingly they

found that on average wider vs deeper networks perform similarly on image classification

tasks, although the accuracy distribution depends on the class (some classes having

higher accuracy on wide networks and vice-versa).

Transposed Convolution Knowledge Transfer

It stood out during our experiments that no transposed convolutional layers were selected

for knowledge transfer. There are two possible reasons for this: 1) that indeed replicating

transposed convolutions results in lesser improvement than normal convolutional layers

2) that the transfer operator for transposed layers has a negative e↵ect in performance.

We attempted ruling out option 2 by subtracting the output of a teacher network from a

student resulting from a transposed knowledge transfer operation. The result was not a

completely blank image which suggests a fault in our implementation of the transposed

convolution transfer operator. This fault was not shared with the normal convolution

transfer operator, where both student and teacher networks yield the exact same output.

Nonetheless, the di↵erences in both outputs were small enough (we hypothesize it was

caused by numerical inaccuracies) that a few training epochs should quickly overcome

it. We chose not to further explore the reason for this negative impact, since having an

option to expand both convolutional and transposed convolutional layers increases the

branching factor and makes the algorithm run slower.

6.3.2 Limitations

One of the limitations of Beam Search is that it lacks imagination in the sense that it

can only do a limited number of modifications to the initial architecture. This means, for

example, that if we want to explore the potential of di↵erent filter sizes the starting node

must be at least as deep as the number of sizes we want to investigate. The source of

this limitation lies in the fact that we can do as many operations per layer as knowledge

transfer operators we have available (if we want to keep an e�cient implementation

that is). Arbitrary modifications could still be conducted without the benefit of shorter

re-training times. In the original beam search publication [28] the authors considered

max-pooling operations, but in their experience the algorithm would never select it due

to its negative impact on initial performance.

Discussion and Future Work 47

6.3.3 Potential for lifelong learning

Lifelong learning is the ability of an agent to incrementally update its knowledge base

in order to adapt to new scenarios, acquire new skills or improve its performance on

existing ones [60]. This is a pervasive feature for most animals. For example, humans

are born with a very limited set of skills, evolve them very rapidly during the early stages

of development, and continue to perfect them as they grow older. A key aspect of this

capability is being able to acquire new knowledge without “catastrophically forgetting”

existing one. There have been some e↵orts in the recent past to achieve open-ended

learning. In [61], a cognitive architecture is proposed capable of incrementally increasing

the knowledge base for known classes, as well as building new models from unknown

objects from scratch, in an on-line manner. The method in [55] achieves incremental

learning through kinesthetic teaching. Both methods use hand-crafted features to detect

object and match object categories. In [62], an extensive review is given of current e↵orts

to achieve lifelong learning with neural network models. One of the proposed frameworks

is that of dynamic architectures. Dynamic architectures achieve incremental learning by

means of introducing units (trainable parameters) to the model, and retraining it with

the novel and old data. Beam search can fit within this framework. Once an architecture

reaches its capacity, and retraining on novel data makes it perform worse (i.e. the

network starts to catastrophically forget past knowledge), beam search can be applied

on the novel dataset to determine the best student network from the present model. In

the case of GG-CNN, this can help increase the number of graspable geometries over

time.

6.4 Orthographic Pipeline

For models where the grasp pose is given in 3DoF there is only one possible approach

direction to the grasp: parallel to the normal of the image plane. In section 5.3.1 we

demonstrated how this approach can be risky when the camera is oriented at o↵-nadir

angles. The reason for the elevated failure rate of this method is mainly the table-

gripper collisions that happen when approaching the objects at such angles. With our

orthographic pipeline we were able to get around this issue achieving higher success rates

on oblique approaches. Nonetheless, our accuracy cannot be compared with the state-

of-the-art of 6DoF prediction [8, 11, 16]. We see the value of our approach, however, in

the fact that it is model-agnostic and compatible with any architecture that works on

depth images. Furthermore, while we did not gather statistically significant results with

a real robot, we demonstrated that, in principle, our pipeline works with a physical arm

and real sensor data.

Conclusion 48

6.4.1 Caveats

It is evident from the results in sections 5.3.1 and 5.3.3 that the orthographic pipeline

supposes a penalization in e↵ectiveness for top-down approaches w.r.t the straight-in

strategy. The reason for this is obvious: our synthetic image generation process in-

troduces noise and loss of resolution due to the sparsity of the image and our dilation

post-processing. Nonetheless, the overhead of our approach is not necessary for nadir

grasps, since this is the setup for which most models are designed.

In table 5.4 we showed the results for the orthographic grasp experiments segregated per

camera orientation and canonical view. In our experiments we let the entropy metric be

the only criteria for view selection, which under some circumstances might favor the side

view. However, given our definition of the front and side vectors, the side view will always

have the highest uncertainty due to occlusions. Thus, for practical applications it does

not make sense to ever consider it as a viable approach. Furthermore, the highest success

rate is achieved when grasping from the top, independently of the camera orientation.

Our pipeline has a collision avoidance feature built-in into the grasp selection, but clearly

a collision-less grasp does not translate into a successful one. There are two possible

reasons why non top-grasps have such a high failure rate. Firstly, due to our test objects

geometry and our simulation scene initialization process, most objects lay flat against

the floor. This makes grasping horizontally a daunting task. Even a human would

prefer to grab the objects vertically for most scenes. Secondly, a non-colliding grasp

might result in ground-object interactions when closing the gripper’s fingers that exert

unforeseen torque on the object-gripper system, leading to the object slipping. As such,

we propose our orthographic pipeline as a solution for nadir grasps independently of the

camera orientation, since this is the most robust approach.

Chapter 7

Conclusion

Grasp detection is a fundamental skill in order to enable robotic agents to autonomously

perform manipulation tasks in the wild. There are numerous Machine Learning methods

available to solve such a problem, and some of them achieve excellent performance on the

benchmarks (> 97%), however these models tend to be complex. There is a motivation

to find smaller architectures that still behave su�ciently well, such that they can be

deployed on low-powered embedded devices. In this work, we took it upon ourselves to

improve GG-CNN, one of these small networks that achieves results > 78%. Through a

methodical architecture exploration strategy, we were able to find an extended version

that we coin GG-CNN+ that performs 5% better on simulation experiments and is only

8% larger, making it still a good candidate for embedded applications.

Most of the grasp detection research focuses on top-down views, which limits the way

objects can be approach to just a vertical fashion. We propose an orthographic pipeline

that can be applied to any existing top-down solution, that enables grasping objects

based on images taken from o↵-nadir oriented cameras. While our solution is not robust

enough to grasp objects from the side or the front, it can still be used to grab them from

the top, independently of the orientation of the camera.

49

Bibliography

[1] Mordechai Ben-Ari and Francesco Mondada. Robots and Their Applications,

pages 1–20. Springer International Publishing, Cham, 2018. ISBN 978-3-319-

62533-1. doi: 10.1007/978-3-319-62533-1 1. URL https://doi.org/10.1007/

978-3-319-62533-1_1.

[2] Bruce A Aikenhead, Robert G Daniell, and Frederick M Davis. Canadarm and the

space shuttle. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and

Films, 1(2):126–132, 1983.

[3] Charles C Kemp, Aaron Edsinger, and Eduardo Torres-Jara. Challenges for robot

manipulation in human environments [grand challenges of robotics]. IEEE Robotics

& Automation Magazine, 14(1):20–29, 2007.

[4] James J Gibson. The theory of a↵ordances. Hilldale, USA, 1(2), 1977.

[5] Douglas Morrison, Peter I. Corke, and Jürgen Leitner. Closing the loop for robotic

grasping: A real-time, generative grasp synthesis approach. CoRR, abs/1804.05172,

2018.

[6] Xinwen Zhou, Xuguang Lan, Hanbo Zhang, Zhiqiang Tian, Yang Zhang, and Nan-

ning Zheng. Fully convolutional grasp detection network with oriented anchor box.

arXiv preprint arXiv:1803.02209, 2018.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[8] Yuzhe Qin, Rui Chen, Hao Zhu, Meng Song, Jing Xu, and Hao Su. S4g: Amodal

single-view single-shot se (3) grasp detection in cluttered scenes. In Conference on

robot learning, pages 53–65. PMLR, 2020.

[9] Yikun Li, Lambert Schomaker, and S Hamidreza Kasaei. Learning to grasp 3d

objects using deep residual u-nets. In 2020 29th IEEE International Conference on

Robot and Human Interactive Communication (RO-MAN), pages 781–787. IEEE,

2020.

50

https://doi.org/10.1007/978-3-319-62533-1_1
https://doi.org/10.1007/978-3-319-62533-1_1

Bibliography 51

[10] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-

works for biomedical image segmentation. In International Conference on Medi-

cal image computing and computer-assisted intervention, pages 234–241. Springer,

2015.

[11] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-dof graspnet: Variational

grasp generation for object manipulation. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 2901–2910, 2019.

[12] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 652–660, 2017.

[13] Je↵rey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu

Liu, Juan Aparicio Ojea, and Ken Goldberg. Dex-net 2.0: Deep learning to plan

robust grasps with synthetic point clouds and analytic grasp metrics. arXiv preprint

arXiv:1703.09312, 2017.

[14] Sulabh Kumra, Shirin Joshi, and Ferat Sahin. Antipodal robotic grasping using

generative residual convolutional neural network. arXiv preprint arXiv:1909.04810,

2019.

[15] Eduardo G Ribeiro and Valdir Grassi. Fast convolutional neural network for real-

time robotic grasp detection. In 2019 19th International Conference on Advanced

Robotics (ICAR), pages 49–54. IEEE, 2019.

[16] Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu Lu. Graspnet-1billion: a

large-scale benchmark for general object grasping. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pages 11444–11453, 2020.

[17] Umar Asif, Jianbin Tang, and Stefan Harrer. Graspnet: An e�cient convolutional

neural network for real-time grasp detection for low-powered devices. In IJCAI,

volume 7, pages 4875–4882, 2018.

[18] Corey Goldfeder, Matei Ciocarlie, Hao Dang, and Peter K Allen. The columbia

grasp database. In 2009 IEEE international conference on robotics and automation,

pages 1710–1716. IEEE, 2009.

[19] Hanbo Zhang, Xuguang Lan, Xinwen Zhou, Zhiqiang Tian, Yang Zhang, and

Nanning Zheng. Visual manipulation relationship network. arXiv preprint

arXiv:1802.08857, 2018.

[20] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp

from 50k tries and 700 robot hours. In 2016 IEEE international conference on

robotics and automation (ICRA), pages 3406–3413. IEEE, 2016.

Bibliography 52

[21] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.

Learning hand-eye coordination for robotic grasping with deep learning and large-

scale data collection. The International Journal of Robotics Research, 37(4-5):421–

436, 2018.

[22] Amaury Depierre, Emmanuel Dellandréa, and Liming Chen. Jacquard: A large

scale dataset for robotic grasp detection. In 2018 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pages 3511–3516. IEEE, 2018.

[23] Manolis Savva, Angel X. Chang, and Pat Hanrahan. Semantically-Enriched 3D

Models for Common-sense Knowledge. CVPR 2015 Workshop on Functionality,

Physics, Intentionality and Causality, 2015.

[24] Clemens Eppner, Arsalan Mousavian, and Dieter Fox. Acronym: A large-scale

grasp dataset based on simulation, 2020.

[25] Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art.

Knowledge-Based Systems, 212:106622, 2019.

[26] Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. Neural architecture

search: A survey. J. Mach. Learn. Res., 20(55):1–21, 2019.

[27] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning

via knowledge transfer. arXiv preprint arXiv:1511.05641, 2015.

[28] Xu Xu and Sinisa Todorovic. Beam search for learning a deep convolutional neural

network of 3d shapes. In 2016 23rd International Conference on Pattern Recognition

(ICPR), pages 3506–3511. IEEE, 2016.

[29] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton Project

Para. Cornell Aeronautical Laboratory, 1957.

[30] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012.

[31] Christian Szegedy, Sergey Io↵e, Vincent Vanhoucke, and Alexander A Alemi.

Inception-v4, inception-resnet and the impact of residual connections on learning.

In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[32] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6):381–395, 1981.

Bibliography 53

[33] S Hamidreza Kasaei, Ana Maria Tomé, Lúıs Seabra Lopes, and Miguel Oliveira.

Good: A global orthographic object descriptor for 3d object recognition and ma-

nipulation. Pattern Recognition Letters, 83:312–320, 2016.

[34] Juil Sock, S Hamidreza Kasaei, Luis Seabra Lopes, and Tae-Kyun Kim. Multi-

view 6d object pose estimation and camera motion planning using rgbd images. In

Proceedings of the IEEE International Conference on Computer Vision Workshops,

pages 2228–2235, 2017.

[35] Claude E Shannon. A mathematical theory of communication. Bell system technical

journal, 27(3):379–423, 1948.

[36] E Coumans, Y Bai, and J Hsu. Pybullet physics engine, 2018.

[37] Erwin Coumans et al. Bullet physics library. Open source: bulletphysics. org, 15

(49):5, 2013.

[38] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner,

Steven Bohez, and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for

quadruped robots. CoRR, abs/1804.10332, 2018. URL http://arxiv.org/abs/

1804.10332.

[39] Fereshteh Sadeghi, Alexander Toshev, Eric Jang, and Sergey Levine. Sim2real view

invariant visual servoing by recurrent control. CoRR, abs/1712.07642, 2017. URL

http://arxiv.org/abs/1712.07642.

[40] Oleg Klimov and J Schulman. Roboschool, 2017.

[41] Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-

Xing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianx-

iong Xiao, Li Yi, and Fisher Yu. Shapenet: An information-rich 3d model repository.

CoRR, abs/1512.03012, 2015. URL http://arxiv.org/abs/1512.03012.

[42] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-

der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi:

10.1007/s11263-015-0816-y.

[43] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel,

and Aaron M Dollar. The ycb object and model set: Towards common benchmarks

for manipulation research. In 2015 international conference on advanced robotics

(ICAR), pages 510–517. IEEE, 2015.

http://arxiv.org/abs/1804.10332
http://arxiv.org/abs/1804.10332
http://arxiv.org/abs/1712.07642
http://arxiv.org/abs/1512.03012

Bibliography 54

[44] Jack Collins, Jessie McVicar, David Wedlock, Ross Brown, David Howard, and

Jürgen Leitner. Benchmarking simulated robotic manipulation through a real world

dataset. IEEE Robotics and Automation Letters, 5(1):250–257, 2019.

[45] Nima Shafii, S Hamidreza Kasaei, and Lúıs Seabra Lopes. Learning to grasp familiar

objects using object view recognition and template matching. In 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 2895–

2900. IEEE, 2016.

[46] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[47] Yu Zhang and Qiang Yang. A survey on multi-task learning. arXiv preprint

arXiv:1707.08114, 2017.

[48] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. CoRR, abs/1411.4038, 2014. URL http://arxiv.org/

abs/1411.4038.

[49] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Gir-

shick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence

Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014.

URL http://arxiv.org/abs/1405.0312.

[50] Mingxia Liu, Jun Zhang, Ehsan Adeli, and Dinggang Shen. Joint classification

and regression via deep multi-task multi-channel learning for alzheimer’s disease

diagnosis. IEEE Transactions on Biomedical Engineering, 66(5):1195–1206, 2018.

[51] Bo Zhao, Jiashi Feng, Xiao Wu, and Shuicheng Yan. A survey on deep learning-

based fine-grained object classification and semantic segmentation. International

Journal of Automation and Computing, 14(2):119–135, 2017.

[52] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 3431–3440, 2015.

[53] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[54] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1–9, 2015.

http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1405.0312

Bibliography 55

[55] S Hamidreza Kasaei, Nima Shafii, Lúıs Seabra Lopes, and Ana Maria Tomé. Inter-

active open-ended object, a↵ordance and grasp learning for robotic manipulation.

In 2019 International Conference on Robotics and Automation (ICRA), pages 3747–

3753. IEEE, 2019.

[56] Gaurav Pandey and Ambedkar Dukkipati. To go deep or wide in learning? In

Artificial Intelligence and Statistics, pages 724–732. PMLR, 2014.

[57] Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and

Ruosong Wang. On exact computation with an infinitely wide neural net. CoRR,

abs/1904.11955, 2019. URL http://arxiv.org/abs/1904.11955.

[58] Md. Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Pa-

heding Sidike, Mst Shamima Nasrin, Brian C. Van Esesn, Abdul A. S. Awwal,

and Vijayan K. Asari. The history began from alexnet: A comprehensive sur-

vey on deep learning approaches. CoRR, abs/1803.01164, 2018. URL http:

//arxiv.org/abs/1803.01164.

[59] Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks

learn the same things? uncovering how neural network representations vary with

width and depth, 2020.

[60] Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. Robotics and au-

tonomous systems, 15(1-2):25–46, 1995.

[61] S Kasaei, Juil Sock, Luis Seabra Lopes, Ana Maria Tomé, and Tae-Kyun Kim.

Perceiving, learning, and recognizing 3d objects: An approach to cognitive service

robots. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,

2018.

[62] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan

Wermter. Continual lifelong learning with neural networks: A review. Neural

Networks, 113:54–71, 2019.

http://arxiv.org/abs/1904.11955
http://arxiv.org/abs/1803.01164
http://arxiv.org/abs/1803.01164

	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Description
	1.1.1 Research Questions
	1.1.2 Contributions

	2 Literature Review
	2.1 Machine Learning for Grasp Detection
	2.1.1 Classification vs Regression
	2.1.2 Planar vs 6DoF
	2.1.3 Shallow Architectures

	2.2 Datasets
	2.3 Neural Architecture Search

	3 Theoretical Background
	3.1 A Primer on Artificial Neural Networks
	3.1.1 Forward Pass, Backwards Pass and Loss Function

	3.2 Convolutional Neural Networks for Image Processing
	3.2.1 Convolutional Layers
	3.2.2 Transposed Convolutional Layers
	3.2.3 Fully Convolutional Networks

	3.3 Transfer Learning
	3.3.1 Net2Net

	4 Methods
	4.1 GG-CNN
	4.1.1 Datasets and Training

	4.2 Architecture Modification
	4.2.1 Beam Search
	4.2.2 Beam Search for Architecture Optimization

	4.3 Orthographic Pipeline
	4.3.1 Canonical Views
	4.3.2 Depth Image Synthesis
	4.3.3 View Selection

	4.4 Simulation Environment
	4.4.1 Pybullet
	4.4.2 Experimental Setup
	4.4.3 Scene Initialization
	4.4.4 Objects Dataset

	4.5 Additional Software and Support Materials

	5 Results
	5.1 Simulation Baseline
	5.2 Beam Search
	5.2.1 Improving the Architecture
	5.2.2 Optimizing the Architecture

	5.3 Grasping in 6DoF
	5.3.1 Straight-in Approach
	5.3.2 Evaluating the View Selection Metric
	5.3.3 Orthographic Pipeline
	5.3.4 Real Robot Trials

	6 Discussion and Future Work
	6.1 Evaluation Methods
	6.1.1 Particularities of our Simulation Environment
	6.1.2 Simulation Results
	6.1.3 Standardization

	6.2 GG-CNN
	6.2.1 Multi-task Learning
	6.2.2 Affordance Segmentation

	6.3 Beam Search
	6.3.1 Operator Selection
	6.3.2 Limitations
	6.3.3 Potential for lifelong learning

	6.4 Orthographic Pipeline
	6.4.1 Caveats

	7 Conclusion
	Bibliography

