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Abstract: This paper focuses on the design and comparison of different deep neural networks
for the real-time locomotor intention prediction of one osseointegrated amputee by using data
from an inertial measurement unit (IMU). The deep neural networks are based on convolutional
neural networks, recurrent neural networks, and convolutional recurrent neural networks. The
input to the architectures are features in both time-domain and time-frequency domain, which
are derived from either one IMU placed on the upper left thigh or two IMUs placed on both
the left thigh and left shank of the osseointegrated amputee. The prediction of eight and seven
different locomotion modes and twenty-four and twenty transitions are investigated with or
without sitting, respectively. The study shows that a recurrent network, realized with four layers
of gated recurrent unit networks, achieves, with 5-fold cross-validation, a mean F1-score of 84.77%
and 86.5% using one IMU and 93.06% and 89.99% using two IMUs, with or without sitting,
respectively.

1 Introduction

Prostheses play an important role in the daily life
of amputees. In the case of individuals with lower-
limb amputations, the need to conveniently per-
form daily activities, such as walking, standing up,
and stair climbing are important [1]. A fundamen-
tal step in developing active lower-limb prostheses
is achieving intuitive control, where the locomotor
intention should be accurately predicted. To avoid
discomfort in the prosthetic leg and reduce the cog-
nitive load the locomotor intention should be pre-
dicted and converted within 300 ms [2].

An inertial measurement unit (IMU) is designed
to measure angular acceleration and angular ve-
locity and has been applied in variously wearable
products. A variety of data analysis and machine
learning techniques have been proposed in the lit-
erature to translate information from the IMU
into locomotion modes in real-time. These pattern
recognition techniques can be broadly divided into
two categories, namely, methods based on feature
engineering [3] and methods based on feature learn-
ing [4], either with handcrafted or raw input data.
Feature engineering methods have been studied in
locomotion intent prediction and locomotion mode
recognition using IMU. In [5] handcrafted features

from the time domain were extracted to compare
different supervised machine learning algorithms,
i.e. support vector machine, multi-layer perceptron,
random forest, k-nearest-neighbours and discrim-
inant analysis. [6] translated raw signals to esti-
mate translational motion of the lower leg from
which time-domain features were extracted. Other
research focused on handcrafted features from the
fusion between IMU and other sensors, such as a
pressure sensor [7].

Feature learning, using deep learning methods,
has the advantage of extracting higher-level fea-
tures from the data and does not rely on hu-
man experience or domain knowledge [4]. There-
fore, feature learning has also been recently used
in locomotion mode recognition and locomotion in-
tent prediction. For example, a single triaxial ac-
celerometer has been used in combination with
deep belief networks [8] and convolutional neural
networks (CNNs) [9], using the spectrogram or ex-
tracted time-domain features, respectively. Addi-
tionally, CNNs, in combination with one IMU on
the foot [10], multiple IMUs on the lower-limb [11]
and several IMUs on the lower-limbs and/or torso
[12], [13] have been investigated, together with a
recurrent neural network (RNN) using two IMU on
the arms [14].
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Table 1.1: State of the art of deep learning and machine learning methods on motion prediction
of upper and lower limbs using IMU data. The upper part of the table indicates the feature
engineering methods using machine learning and the lower part of the table the feature learning
methods using deep learning. IMU indicates the use of both accelerometer and gyroscope data.

Ref. Year Method Features Mean accuracy Limb(s) Motion(s) Transitions Subject(s)

Feature Engineering Methods

[5] 2020 Gaussian SVM
IMU time domain
handcrafted)

97.65%
Upper,
lower

Locomotion (5 modes) Yes (9 transitions) 10 healthy

[6] 2018 LDA
IMU time domain +
kinematics (handcrafted)

96.22% Lower Locomotion (5 modes) No 6
transtibial
amputees

[7] 2014 LDA
IMU time domain +
pressure insoles (handcrafted)

99.71% Lower Locomotion (6 modes) Yes (12 transitions) 7 healthy

Feature Learning Methods

[8] 2016 DBN (5 hidden layers)
Accelerometer
time-frequency domain

98.23% Lower 6 activities No 29 healthy

[8] 2016 DBN (5 hidden layers)
Accelerometer
time-frequency domain

91.5% Lower
Locomotion
(gait freeze classif.)

No 10 patients

[8] 2016 DBN (5 hidden layers)
Accelerometer
time-frequency domain

89.38% Upper 10 activities No 1 healthy

[9] 2018 CNN (4 hidden layers) Accelerometer time domain 91.97% Lower 6 activities No 36 healthy
[10] 2020 CNN (12 hidden layers) IMU raw data 87.74% Lower Locomotion (6 modes) No 30 healthy
[11] 2019 CNN (6 hidden layers) IMU raw data 94.15% Lower Locomotion (5 modes) Yes (8 transitions) 10 healthy

[11] 2019 CNN (6 hidden layers) IMU raw data 89.23% Lower Locomotion (5 modes) Yes (8 transitions) 1
transtibial
amputee

[12] 2019 CNN (7 hidden layers) IMU raw data NA Lower 16 lower limb motions No 19 healthy

[13] 2017 CNN (10 hidden layers) IMU time-frequency domain 97.06%
Upper,
lower

Locomotion
(gait phase classif.)

No 10 Healthy

[14] 2018 RNN (1 hidden layer) IMU time domain 96.63%
Upper,
lower

5 activities No 11 healthy

[15] 2019 CNN (3 hidden layers) IMU time domain 95.58% Lower Locomotion (6 modes) No 10 healthy
[16] 2017 RNN (3 hidden layers) IMU time domain 77% Upper 3 hand motions No 1 healthy
[17] 2016 CNN (3 hidden layers) IMU raw data 97.01% Lower locomotion (6 modes) No 12 healthy
[18] 2019 NN (1 hidden layer) IMU raw data 98.60% Upper 10 hand motions No 5 healthy

To convert the locomotion control mode
smoothly, correctly, and in time it is important to
predict transitions as well. Few works have been
presented on predicting locomotion mode transi-
tions in combination with IMU data [5], [7], [11].
The authors of [5] used five IMUs on different limbs
to create handcrafted features for each limb within
the time domain, such as the mean, standard de-
viation, range and first and last value of the an-
gle within a window. For classification, a Gaussian
support vector machine (SVM) was used. Although
the accuracy in [5] is relatively high (97.65%) for
the Gaussian support vector machine, the predic-
tion of specific steady-state locomotion and tran-
sitions were separated. Additionally, [7] used the
time domain features: maximum, minimum, mean,
waveform length, standard deviation and root mean
square of both the IMU and a pressure insole sig-
nals within a window. The classification was made
using linear discriminant analysis (LDA). The ac-
curacy shown in Table 1.1 is only for the steady-
state locomotion. The transitions were all correctly
classified but were not taken into account when re-
porting the accuracy.

To the best of the author’s knowledge, only [11]
used a deep learning method. More specifically, a
CNN combined with three IMU’s on the lower limbs
achieved an accuracy of 89.23% for a transtibial
amputee. The features used in [11] were only raw
IMU signals, as opposed to the aforementioned ma-
chine learning methods.

Table 1.1 reports the main contributions of deep
neural networks and machine learning networks of
the state of the art methods for motor intention
prediction. The table also reports the average ac-
curacies, the inclusion of transitions, and whether
the networks were tested on healthy subjects or am-
putees.

This paper focuses on the real-time prediction
of locomotor intentions by means of deep neu-
ral networks by using data from IMUs. Nine dif-
ferent artificial neural networks, based on CNN,
RNN and convolutional recurrent neural networks
(CRNNs) designed by [15] [19] have been adjusted
and compared. The inputs into the architectures
are features in the time-domain and time-frequency
domain, which have been extracted from either
one IMU, placed on the left thigh, or two IMU’s
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placed on the left thigh and shank. Specifically,
the features are mean IMU data (i.e., angular ac-
celerations and angular velocities, obtained from
3-axis accelerometers and 3-axis gyroscopes) from
a time window, which is chosen to complement
the frequency information within that time win-
dow, rather than having more raw data points
than frequencies. Additionally, the corresponding
quaternions and frequency information, which has
been obtained using short-time Fourier transform
on each IMU channel, have been chosen. These fea-
tures are extracted and validated on one osseoin-
tegrated transfemoral amputee. The task concerns
the prediction of seven or eight locomotion actions:
standing, stair ascent and descent, ramp ascent and
descent, terrain walking either with or without sit-
ting and the twenty-four or twenty transitions, re-
spectively. This study shows that a RNN, realized
with four layers of gated recurrent units, achieves,
with 5-fold cross-validation, a mean F1-score of
84.77% (standard deviation of 1.33) and 86.5%
(standard deviation of 0.38) using one IMU and
93.06% (standard deviation of 1.21) and 89.99%
(standard deviation of 5.95) using two IMUs, with
or without sitting, respectively.

The remainder of the paper is organized as fol-
lows. In Section 2, the materials and methods for
locomotor intention prediction are described. Sec-
tion 3 will present the results, which are discussed
in Section 4. The concluding remarks will be made
in Section 5.

2 Materials and Methods

This Section presents the design of nine differ-
ent deep neural networks that learn IMU features
in both the time and time-frequency domain for
real-time prediction of eight locomotion modes and
twenty-four transitions.

2.1 Data-set

The data-set used in this study is provided by the
MyLeg project [20] under the name ”MyLeg - Am-
putee Pilot”. The data have been collected on one
male osseointegrated amputee with a weight of 84.1
kg, a height of 186.6 cm and an amputation of
the left leg. The data were extracted from the sub-
ject during locomotion using wearable electromyo-

graphic (EMG) sensors and IMUs. From the data-
set, this study only uses data from two IMUs on the
left thigh and left shank, which is the side of the
prosthetic leg. The IMU data were initially sam-
pled with a sampling frequency of 240 Hz but were
later re-sampled to 1000 Hz to synchronize with the
EMG data.

The locomotion modes that need to be predicted
are S: Sitting, ST: Standing, LW: Level Ground
Walking, SA: Stair Ascent, SD: Stair Descent, RA:
Ramp Ascent, RD: Ramp Descent and TW: Terrain
Walking. The transitions that need to be predicted
are shown in Table 2.1. The left column indicates
the starting mode and the right column indicates
the ending modes in the trial. The ramps have a
slope of 10 degrees for three meters and continue
on 15 degrees. The inclination of the stairs was not
provided. The data labelling has been done man-
ually and transitions were initially labelled as the
future mode (i.e. S → ST was labelled as ‘ST’). To
include transitions in the data-set, a window of 500
ms was chosen between two modes, i.e. 250 ms in
the previous mode and 250 ms in the future mode,
and labelled with the correct transition label.

Table 2.1: Different transitions between modes
indicated by a mode before transition and a
mode after transition.

Locomotion mode
before transition

Locomotion mode after transition

S ST W
ST S W SA SD RA RD TW
W S ST SA SD RA RD TW
SA ST W
SD ST W
RA RD
RD W
TW ST W

2.2 Input

1) Features: The input data into the deep neural
networks are extracted from the IMU data. Specif-
ically, either one IMU on the left thigh or two
IMUs on the left thigh and left shank are used.
The features used in this study are the mean of the
raw IMU data within a window, W , the accord-
ing quaternions and time-localized frequency infor-
mation of each IMU channel, calculated using the
short-time Fourier transform (STFT). The number
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of inputs from the STFT is related to W and are
not equal to the number of raw data points from
the IMU. Therefore, the mean of each channel from
the IMU is taken within W , resulting in both time
and time-frequency domain information within W .
The window has been chosen to be 30 ms with a
step length of 10 ms, to leave enough time to pro-
cess data, predict the locomotion mode and convert
into the right control mode [2]. The quaternions are
estimated using the mean IMU data points by the
filter proposed in [21], with the implementation of
[22].

2) Sequential frames: The input data is generated
using a window of 30 ms. Five adjacent samples
are sequentially concatenated into one frame using
a sliding window with stride 1, which equals to an
overlap of 20 ms, resulting in a frame of 70 ms.
Figure 2.1 shows how frames are extracted from
the data set.

Samples (70 ms) 

Features

0

1

2

3

4

Window (30 ms)

Timestep (10ms) 0
1
2
3

4

Figure 2.1: Representation of sequential frames.
Using a window of 30 ms and time-step of 10 ms
the samples were sequentially concatenated.

3) Scaling: The data have been standardized
within each sample by centering to the mean and
by scaling component-wise to the unit variance.

4) Data partitioning: Using 5-fold cross-
validation, 80% of the data was used for training
and 20% was used for testing. Within training,
10% was used for validation.

2.3 Output

The output of the neural networks has a dimen-
sion equal to the locomotion modes to be predicted:
standing, ground-level walking, stair ascent and de-
scent, ramp ascent and descent terrain walking and
sitting, and the transitions (see Table 2.1). Conse-
quently, the exact output dimension is thirty-two
when sitting is included and twenty-seven when sit-
ting is excluded.

2.4 Deep Neural Networks

Nine deep neural networks were designed and com-
pared in this research. The architectures are fur-
ther described in the following subsections. The
networks are mainly based on CNNs, RNNs and
CRNNs and are inspired by [15] and [19].

2.4.1 Convolutional Neural Networks

Three different CNN architectures (i.e. CNN1D,
CNN2D and WaveNet) have been designed. Fig-
ure 2.2 shows both the CNN1D and the CNN2D
architectures, which consist of six hidden layers i.e.
four convolution layers and two dense layers. The
input into the networks consists out of five rows,
i.e. five concatenated samples and the number of
features (see Figure 2.1). In this study, the con-
volutional kernel size is set to (1 × 2) and (2 ×
2) for the CNN1D and CNN2D, respectively. The
first four convolutional layers have a filter size of
respectively 32, 64, 128 and 256. A rectified lin-
ear unit (ReLu) is used as an activation function
in each filter. Finally, two dense layers follow: first
a dense layer with 50 units and a dropout of 0.25
and then an output layer that has the units equal to
the number of classes (thirty-two or twenty-seven)
and a Softmax activation function. The most signif-
icant difference between the CNN1D and CNN2D
the direction of the convolution kernels. CNN1D
slides only frame-wise, i.e. from top to down, while
CNN2D slides both frame-wise and column-wise.

Input

Conv1D / Conv2D

Conv1D / Conv2D

Conv1D / Conv2D

Conv1D / Conv2D

Dense (Dropout)

Softmax

Output

Figure 2.2: The CNN1D and CNN2D architec-
tures consist of six hidden layers, including four
convolutional layers and two dense layers.
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Figure 2.3 shows another CNN, the WaveNet
[23], which consists of four convolutional layers.
The input is first processed by a causal convolu-
tional layer, consisting out of 256 filters and a filter
size of 2. Next, the output goes in two ways. In one
direction it is served as an input into a dilated con-
volutional layer (256 filters and a filter size of 2),
which consists out of two convolutions with either a
tanh or sigmoid activation function, and these are
combined using dot multiplication. This then goes
to the output layer. In another direction, it skips
the dilated convolution and is directly summed up
with the output of the dilated convolution, which
then serves as an input for the second layer. The
output layer consists of a dense layer (200 units,
0.25 dropout) and a dense layer with a Softmax
activation function, where the number of units is
equal to the number of classes.

Dilated Conv1D #N

 Tanh Sigmoid

X

+

Causal Conv1D

Input

+ Dense

Softmax

Output

1 2

Dilated Conv1D
#N+1

3

Figure 2.3: WaveNet architecture with four con-
volutional layers, from which three are dilated
and one is causal, and two dense layers.

2.4.2 Recurrent Neural Networks

Figure 2.4 shows two different RNN architectures
that have been designed. Both architectures consist
of six hidden layers, i.e. four recurrent layers and
two dense layers. The recurrent layers can either
be long short-term memory (LSTM) [24] or gated
recurrent units (GRU) [25]. The first four layers
consist out of 128 LSTM or GRU units. Then two
dense layers follow, one that has 200 units and a
dropout of 0.25 and one that serves as an output
layer with units equal to the number of classes.

Input

LSTM/GRU

LSTM/GRU

Dense (Dropout)

LSTM/GRU

LSTM/GRU

Softmax

Output

Figure 2.4: RNN architectures with four recur-
rent layer, either LSTM or GRU, and two dense
layers.

2.4.3 Convolutional Recurrent Neural Net-
works

Figure 2.5 shows the four different CRNN networks
that have been designed. They both consist out of
eight hidden layers, i.e., three convolutional layers
(either one- or two-dimensional), three recurrent
layers (either LSTM or GRU), and two dense lay-
ers. The first three convolutional layers are similar
to that of the CNNs with the only difference that it
has filters of size 64, 128 and 256, respectively. The
last three RNN layers are equivalent to the layers
in the RNN in Figure 2.4, as they also have 128
units. The final two layers are both dense layers.
One of them has 200 units and 0.25 dropout and
the other has a number of units equal to the number
of classes and a Softmax activation function. There
is only one difference between the one-dimensional
and two-dimensional version of the CRNN and that
is that the output of the CNN2D layers needs to be
wrapped together with the time-step to serve as a
compatible input into the RNN layers.

2.5 Hyperparameters

This section describes the parameters that were set
for the training procedure. The training was done
on a single computer with an NVIDIA GeForce
GTX 1060, a quad-core Intel i7-6700 processor and
8 GB RAM.

1) Learning Rate: The learning rate is set at a
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Input

Conv1D / Conv2D

Conv1D / Conv2D

LSTM/GRU

LSTM/GRU

Conv1D / Conv2D

LSTM/GRU

Dense (Dropout)

Softmax

Output

Figure 2.5: CRNN architectures with three
convolutional layers (one- or two-dimensional),
three recurrent layers (LSTM or GRU) and two
dense layers.

value of 0.001. The trade-off value is determined at
such, because using a high learning rate causes the
network to never converge, while a lower learning
rate would increase the risk of falling into a local
minimum.

2) Optimizer: The optimizer is chosen to speed
up the convergence of the neural network, by opti-
mizing the gradient descent. The Adaptive Moment
Estimation (Adam) has been used in this study
[26]. Adam computes individual adaptive learning
rates for different parameters.

3) Batch Size: The batch size represents how
many input data are show simultaneously to the
network before updating its weights. The batch size
is chosen to be 512, which is relatively high, but in
combination with the number of filters, it has been
observed to obtain the highest performance. The
high batch size does not result in processing more
previous data before classifying a mode, as the data
is shuffled, but may increase the accuracy of the er-
ror estimate in training.

4) Loss Function: As a loss function categorical
cross-entropy has been used.

5) Class Weighting: The loss function assumes
there is an equal distribution among the differ-
ent classes. However, in this study, the transition

classes are underrepresented. To account for this
unbalance a weight is added to each class. This
weight makes the transitions more important for
the network and penalizes mistakes made for the
transitions more opposed to other classes.

6) Shuffling: The training of a network is done by
feeding the network the input data batch by batch.
If the network is fed the data in chronological order
the network would overfit between multiple classes,
because the data is first on solely the first mode and
then the next mode. To avoid this the sequential
frames are shuffled. Thus, the distribution of classes
in a batch is more equivalent to the distribution
of the data-set, but the temporal properties of the
data remain within the frame.

7) Epoch: The data is presented 150 times to the
networks during training to optimize data use and
avoid under-fitting.

8) Early stopping: The number of epochs is set
to a high number to ensure that the data is used
enough and is not under-fitting. If the number of
epochs is too high the network will start to overfit
on the data. Therefore, an early stopping approach
is used. If the accuracy on the validation set has not
increased for fifteen epochs the network will stop
training and will be the final model. This number
is empirically set to avoid an increase in validation
loss, which is a sign of overfitting.

2.6 Evaluation: Performance metric

Due to the uneven distribution of the data the neu-
ral networks are compared based on the F1 scores,
a metric that compares both precision and recall
and is calculated using:

F1 = 2× precision× recall

precision + recall

where

precision =
tp

tp + fp
, recall =

tp

tp + fn

with tp being the number of true positive predic-
tions, fp the number of false positives and fn the
number of false negatives. The final comparison of
the networks is based on this metric.

K-fold cross-validation is used to compare the
general effectiveness of the neural networks. In this
research, k is set to 5, which means that the data is
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divided into five subsets. Next, the data is validated
on one subset and trained on the remaining four.
The validation is done on every subset and hence,
happens five times in total. Finally, the mean F1
score of all validations is taken to compare the per-
formances. This way, the data gets fully utilized
and prevents underfitting and increasing the relia-
bility of the evaluation as the training and testing
is set differently each time.

3 Results

In this section, the proposed architectures are com-
pared using the F1-score performance metric. The
results are reported separately based upon the fea-
tures extracted from the relative sensor placement
for either one IMU on the left thigh or two IMUs
on the left thigh and shank of one osseointegrated
amputee. Additionally, within each subsection, the
results for including or excluding the sitting ’mode’
are reported separately.

3.1 One IMU (left thigh)

Figure 3.1 shows the F1-scores (mean and standard
deviation (SD)), with 5-fold cross-validation of all
the deep neural networks when only features from
the left thigh are used for the prediction of the loco-
motion modes and transitions, including the sitting
mode. It can be observed that the GRU outper-
forms the other networks with a mean F1-score of
84.77% (SD = 1.33). A paired t-test shows that
there is a significant difference between the GRU
and the LSTM (i.e. the second-best network) (p =
0.091 < 0.05).

Figure 3.2 shows the F1-scores, with 5-fold cross-
validation of all the deep neural networks when only
features from the left thigh are used, but the sitting
mode and corresponding transitions are excluded
from the data set. The GRU outperforms the other
networks with a mean of 86.5% (SD = 0.38) and a
paired t-test shows that the GRU has a significant
difference concerning the LSTM (p = 0.012 < 0.05).

3.2 Two IMUs (left thigh and shank)

Figure 3.3 shows the F1-scores, with 5-fold cross-
validation of all the deep neural networks when the
features from both the left thigh and shank are used

CNN2D
GRU

CNN1D
CNN2D

CNN2D
LST

M

CNN1D
LST

M

CNN1D
GRU

Wav
eN

et
LST

M
GRU

Model

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

0.61 0.62 0.63 0.63 0.74 0.76 0.76 0.83 0.85

Figure 3.1: F1-score (mean and SD), with 5-fold
cross validation for all the deep neural network
architectures of one osseointegrated amputee.
Only features from the upper left thigh were
used.

CNN2D
LST

M
CNN1D

CNN2D

CNN2D
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0.0
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Figure 3.2: F1-score (mean and SD), with 5-fold
cross validation for all the deep neural network
architectures of one osseointegrated amputee.
Only features from the upper left thigh were
used. Sitting and corresponding transitions were
excluded from the data-set.

and the sitting mode is included. Again, it seems
that GRU outperforms the other networks with a
mean of 93.06% (SD = 1.21). Although, with re-
spect to the LSTM, the GRU has no significant
difference (p = 0.17 > 0.05%). However, there is
a significant difference between the GRU and the
WaveNet (p = 0.006 < 0.05).

Figure 3.4 shows the F1-scores, with 5-fold cross-
validation of all the deep neural networks when the
features from both the left thigh and shank are
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Figure 3.3: F1-score (mean and SD), with 5-
fold cross validation for all the deep neural net-
work architectures of one osseointegrated am-
putee. Features from the left thigh and shank
were used.

used, but the sitting mode and corresponding tran-
sitions are excluded. It can be observed that the
WaveNet, GRU and LSTM have seemingly simi-
lar performances. Moreover, a paired t-test indi-
cates no significant difference between the WaveNet
(mean is 90.14% and SD is 1.15) and the GRU
(mean is 89.98% and SD is 5.95) (p = 0.958 >
0.05). Additionally, there is no significant differ-
ence between the LSTM (mean is 89.68% and SD
is 1.82) and the GRU (p = 0.989 > 0.05).

CNN2D
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Figure 3.4: F1-score (mean and SD), with 5-
fold cross validation for all the deep neural net-
work architectures of one osseointegrated am-
putee. Features from the left thigh and shank
were used. The sitting mode and corresponding
were excluded from the data-set.

3.3 Running time

Table 3.1 shows the running time in of the three
outperforming models when individually classifying
1000 samples. The samples were randomly chosen
from the data set. It can be noted that the pro-
cessing time does not increase when two IMUs are
used, while the performance does increase signifi-
cantly. Besides, the table shows that the SD of the
GRU is higher than the other two networks.

Table 3.1: Mean running time and SD (in ms) of
the three outperforming models when individu-
ally classifying 1000 samples (including sitting).

IMUs WaveNet LSTM GRU
Thigh 17.56 ± 5.33 17.29 ± 6.02 17.79 ± 13.59
Thigh and Shank 16.87 ± 5.00 17.33 ± 6.58 18.17 ± 13.72

3.4 Results Summary

Table 3.2 summarizes the results of the four experi-
mental conditions, i.e., one or two IMUs and with or
without the sitting mode, and shows the results of
the three best performing models. It can be noted
that the GRU outperforms the other models ex-
cept when sitting is removed from the data set and
the information of two IMUs is used. However, the
running time of the GRU is higher and fluctuates
more between different samples than the other two
networks, but remains below 300 ms.

4 Discussion

This study presented a comparison of nine different
deep neural network architectures for the predic-
tion of locomotion. These networks used inputs ex-
tracted from either one IMU or two IMUs, attached
to the amputated side of an osseointegrated am-
putee. The mean signal, quaternions and frequency
information were used as input into the networks.
These were all extracted using a 30 ms window with
a time-step of 10 ms and concatenated into a frame.

With a mean F1-score of 93.06%, using inputs
from two IMUs (left thigh and shank), the designed
GRU has a performance that is higher than in [11]
for an amputee, while the decision space is over two
times larger (thirty-two vs. thirteen motor intents)
and less IMUs are used ( two vs. three, respec-
tively). However, compared to [11], a more complex
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Table 3.2: Summary of the best performing models’ results in different experimental conditions:
one IMU (on the left thigh) or two IMUs (on the left thigh and shank) and with sitting in- or
excluded. The highest F1-scores for each setting are bold.

Locomotor intention prediction for one osseointegrated amputee

Features Raw IMU data, quaternions and frequency information
Number of features 106 (for one IMU) and 212 (for two IMUs), i.e., for each IMU:

• 6 mean IMU data,

• 4 quaternions estimated from mean data, and

• 96 frequencies derived from short-time Fourier transform
using a window of 30 ms are used

Number of samples 76420
Number of frames per sample 5
Number of classes (i.e. modes 32 (with sitting) or 27 (without sitting)
and transitions)
Mean F1-score (one IMU) With sitting: Without sitting:
from 5-fold cross-validation WaveNet: 76.39%, SD = 0.59 WaveNet: 77.70%, SD = 1.53

LSTM: 83.21%, SD = 1.86 LSTM: 79.68%, SD = 3.48
GRU: 84.77%, SD = 1.33 GRU: 86.50%, SD = 0.38

Mean F1-score (two IMUs) With sitting: Without sitting:
from 5-fold cross-validation WaveNet: 89.30%, SD = 0.95 WaveNet: 90.14%, SD = 1.15

LSTM: 90.11%, SD = 3.08 LSTM: 89.68%, SD = 1.82
GRU: 93.06%, SD = 1.21 GRU: 89.99%, SD = 5.95

input is used in this study, which could mean that
the computational cost is higher in the presented
networks. Additionally, the designed GRU outper-
forms CNNs where one IMU is used [10], RNNs
where two IMUs are used [14] and DBNs that use
the frequency information of one IMU’s accelerom-
eter [8].

Although Table 1.1 shows higher accuracies in
other research, it must be noted that the number
of different locomotion modes and transitions are
significantly higher in this study. Consequently, it
could be assumed that performance might increase
when the number of locomotion modes is decreased.
However, Table 3.2 shows that the F1-score is not
significantly higher in the experimental conditions
where sitting is removed. Moreover, in the case of
using two IMUs, the F1-score is even lower.

5 Conclusion

This paper presented a comparison of nine different
deep neural networks, inspired by the work of [15]
and [19], for the real-time prediction of locomotor
intention. The inputs to the architecture are fea-

tures from the time-domain, i.e. mean IMU data
and quaternions from a 30 ms window, and fea-
tures from the time-frequency domain which have
been obtained using short-time Fourier transform
on each IMU channel. The features were derived
from either one IMU (on the left thigh) or two IMUs
(on the left thigh and shank) of one osseointegrated
amputee. The architectures have to predict: i) eight
locomotion modes: sitting, standing, ground-level
walking, stair ascent and descent, ramp ascent and
descent and the twenty-four transitions between
the modes; ii) seven locomotion modes and twenty
transitions (i.e. sitting and its transitions are re-
moved from the data-set)

The study shows that the RNN with four lay-
ers of gated recurrent units outperforms the other
architectures in three out of four scenarios. Using
one IMU it achieves a mean F1-score of 84.77%
(with SD of 1.33) and 86.5% (with SD of 0.38)
with and without sitting, respectively. Using two
IMUs it achieves a mean F1-score of 93.06% (with
SD of 1.21) and 89.99% (with SD of 5.95) with and
without sitting, respectively. These performances
were achieved by taking the mean of a 5-fold cross-
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validation on one subject.
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