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Abstract: Previous research has shown that functional connectivity of Electroencephalogram (EEG) 

between different parts of the brain is somewhat predictive of Major Depressive Disorder (MDD). 

Apart from the functional connectivity also power in various frequency bands (alpha, delta, theta and 

beta) has been shown to differ between healthy individuals and MDD patients. Specifically, patients 

with MDD had a significant increase in the theta, alpha and beta frequency bands compared to healthy 

controls, in the frontal and occipital regions of the brains. This study aimed to investigate whether there 

was a difference in the functional connectivity and power spectra between more depressed participants 

compared to less depressed participants who were ranked on a depression spectrum rather than being 

separated into healthy controls and MDD patients. In addition, this study focused on frontal brain areas 

represented through 9 electrodes (FP1, FP2, AF3, AF4, F7, F3, FZ, F4, F8) to examine functional 

connectivity and power spectra. We examined EEG functional connectivity across the frontal brain area 

during the resting state using the Phase Lag Index (PLI). In addition to functional connectivity, we 

examined oscillatory power during the resting state, in the 5 frequency bands ; delta (0.5 to 4Hz); theta 

(4 to 7Hz); alpha (8 to 12Hz) and beta (13 to 30Hz). The results showed that less depressed individuals 

had higher frontal theta power than more depressed individuals. All other frequency bands and the PLI 

failed to show any significant difference in the two groups. Future research with a larger data set and 

more measures of EEG functional connectivity would give a more detailed functional connectivity 

analysis with groups on both end of the depression spectrum by providing more information on how 

different brain areas relate to each other for the two groups. 

1. Introduction 

 

Depression is a common yet serious medical 

mental disorder that negatively effects how an 

individual feels and acts. (Torres, 2020). 

Conservative estimates put us at 350 million 

patients worldwide suffering from this illness. In 

addition, it is one of the leading causes of 

disabilities worldwide (Caan, 2015). Depression 

causes sadness and loss of interest amongst 

several other mood changes. In the United States 

alone, 20% of the population is said to suffer 

from some form of depression (Blazer, 2000).  

 

Depression is associated with specific changes in 

brain activity measured with Functional 

Magnetic Resonance Imaging (fMRI) and 

Electroencephalogram (EEG). Leuchter et al. 

(2012) observed that major depressive disorder 

(MDD) can be associated with dysfunctions in 

the brain networks linking the limbic system and 

cortical regions. They observed altered 

functional connectivity between the dorsolateral 

prefrontal cortex (DLPFC) and subcortical limbic 

structures. Several other studies have backed up 

this finding including Pandya et al. (2012) who 

showed that the DLPFC could be central to the 

understanding of MDD. Typically, those with 

MDD show deficits in emotional and cognitive 

information processing. In addition, the most 

common region to manifest anatomic 

abnormalities in MDD is the frontal lobe, hence 

this area is of importance for EEG research and 

should be studied (Zhang et al., 2018). Further 

fMRI research also showed the anterior cingulate 

cortex (ACC) has increased functional 

correlations with the DLPFC and the amygdala 

in MDD patients (Zhang et al., 2018).  

 

In order to get these useful insights from fMRI 

individuals are observed while in resting-state. 

In the resting-state participants do not have 

active task demands (Stevens, 2016). This enables 

researchers to block out any external activity that 

interferes with brain functioning as the brain is 
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not performing any extra activity. Analysis of 

resting-state EEG is commonly used for clinical 

research purposes (Bai et al., 2017). Biswal et al. 

(1995) were the first to understand the 

importance of taking measurements in the 

resting-state. Resting-state fMRI recordings can 

prove to be more beneficial for research as they 

can provide analysis and topographical maps 

which are highly consistent and reproducible 

across multiple subjects and sessions (Rosazza et 

al., 2014). In the resting-state the human brain is 

fully operational (Smitha et al., 2017). The brain 

is still functioning regularly, and all states can 

still be observed. Taking fMRI recordings in the 

resting-state requires least effort from 

individuals and can even be done with 

unconscious patients while being cost effective 

and convenient (Bai et al., 2017). However, 

resting-state recordings cannot be used to study 

specific brain areas. It is also not yet clear 

whether there are individual differences in sleep 

state and wake state (Daliri, 2014). 

 

FMRI studies are known to be very costly. 

Previous studies concluded that EEG analysis 

has been proved to be more cost effective, easier 

to perform and requires the least expertise 

(Olbrich & Arns, 2013). Recent studies have also 

shown that EEG recordings are of particular 

importance for measuring cognitive functioning 

and hence could help understand depression at a 

deeper level in terms or brain activity and 

different brains areas involved in this disorder.  

The study by Leuchter et al. (2012) looked at how 

EEG can be used to examine depression. It was 

established that patterns of alpha asymmetry 

fluctuated over the span of a week in patients 

with MDD as compared to other individuals. 

This could suggest that distributed synchrony in 

MDD may be reflected by a broadly distributed 

dysregulation. Frontal EEG alpha asymmetry 

showing increased relative right hemispheric 

activity has been frequently linked with 

depression and anxiety (Sun et al., 2017). Ferdek 

et al. (2016) showed that in a group that was 

more prone to ruminative thoughts, seen 

through the Ruminative Response Scale (RSS) 

questionnaire, there was decreased activation of 

the left DLPFC and increased activation of the 

left temporal lobe structures (Ferdek et al., 2016). 

Ruminative thoughts have been identified as one 

of the most problematic cognitive symptoms 

associated with depression. These negative 

thoughts interfere with an individual’s thinking, 

problem solving and adaptive behaviours 

(Alderman et al., 2015).  MDD clinical diagnosis 

reflects a cluster of observable behaviour which 

can be seen through EEG. (Olbrich & Arns, 2013).  

 

Fingelkurts et al. (2007) found increased 

synchronization in the EEG alpha and theta 

bands in patients with MDD, with increases 

reported over the frontal or parietooccipital 

regions, either on the right or left side. The study 

used a structural synchrony (SS) approach to 

measure the synchronization between different 

brain areas. Synchronization was seen when 

applying the rapid transition processes (RTP’s) 

between different EEG channels (Fingelkurts, 

2007). Leuchter et al. (2012) recently reported an 

increased EEG coherence between frontal brain 

areas in MDD in the EEG alpha, beta and theta 

bands. For this study different frequencies in the 

EEG spectrum were observed in order to see 

differences between both groups. EEG 

waveforms can be characterized based on their 

location, amplitude, frequency, morphology, 

continuity (rhythmic, intermittent or 

continuous), synchrony, symmetry, and 

reactivity. The most frequently used method for 

clinical research is to classify EEG waveforms by 

frequency. The most commonly studied 

waveforms include delta (0.5 to 4Hz); theta (4 to 

8Hz); alpha1 (8 to 10Hz); alpha2 (10 to 13Hz) and 

beta (13 to 25Hz) (Nayak & Anilkumar, 2020).  

 

Most studies focus on comparing healthy 

controls to patients who have been diagnosed 

with MDD. It is not known yet whether these 

differences in functional connectivity and 

oscillatory power can also be observed for 

individuals who are not necessarily clinically 

depressed but placed on a depression spectrum 

from low to high. This study focuses on 

analysing the functional connectivity and 

oscillatory power of different brain areas to see 

whether there is a difference in connectivity and 

power between the resting state of low and high 

depressed participants.  
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2. Methods 

 

We examined whether functional connectivity 

differed between individuals in a normally 

functioning group that varied in their self-

reported depression scores. 

 

2.1 Participants 

Forty participants with normal or corrected-to-

normal vision and having proficiency in English 

were recruited for the experiment through a 

Facebook group and by word of mouth. All 

participants were between the ages of 18 and 35 

years. Participants were subdivided into groups 

with low and high self-reported depression like 

thinking. Data from 39 participants was used for 

this study as data from one participant was not 

usable. In order to get a detailed insight of the 

participants depression-like thinking a number 

of questionnaires were used. These further 

helped in putting the participants into low and 

high depression groups. The questionnaires 

include Perseverative Thinking Questionnaire 

(PTQ) measuring repetitive negative thinking 

(Ehring et al., 2011), Rumination Response Scale 

(RRS) for accessing depressive rumination 

(Nolen-Hoeksema & Morrow, 1991) and CES-D 

indicating the severity of depression (Radloff, 

1977). Participants within the criterion of the top 

and bottom 25% of the distribution on the total 

score were selected for the current study. All 

participants signed an informed consent before 

the experiment was started. The study was 

approved by the local Ethics Committee. 

 

2.2 Equipment and Procedure 

Each participant was invited to the EEG 

laboratory (Room 209) located at the University 

of Groningen Zernike Campus, Nijenborgh 4, 

9747 AG, Groningen. Participants had to sit 

quietly for five minutes while EEG was being 

recorded – a resting state scan. Each participant 

was invited to enter the room and take part in 

the resting state task that had been set up. All 

equipment had been used according to 

international standards and was cleaned 

properly to ensure hygiene and to ensure 

minimum interference from electrode sensors 

when recording. Participants were also 

instructed to follow certain instructions in order 

to proceed with the experimental task. During 

the experiment, participant pairs sat on two 

chairs in a room behind two monitors which 

were set to the same resolution. To avoid the 

possibility of verbal or nonverbal 

communication, their view of each other was 

obstructed by a barrier in between them. An 

interface to record the resting state scan was 

created in the programming software Python, 

which provided instructions. Once the 

participants sat on the chairs with all the EEG 

equipment attached, they had to open the 

program in python which contained the resting-

state scan experimental information. After 

opening the program, audio was played asking 

the participants to turn on the speakers and test 

the audio equipment, along with on-screen text 

instructions. The instructions were played 

through the computer speakers, stating that a 

rest period of five minutes would shortly start. 

Upon pressing the space key on the computer, a 

timer would count down from 5 minutes to 0. 

This would be the resting-state period which 

would then be examined for further analysis. 

Participants would hear a beep after 5 minutes 

indicating that the time period is over. In the 

case of an interruption by something or 

someone, participants could open their eyes and 

press the 'space' key again and immediately close 

their eyes to restart the 5 minutes rest session. 

Once the 5 minutes of rest were over another 

instruction played. This stated: “Now several 

statements will follow regarding potential 

feelings and thoughts you may have experienced 

during the resting period.” Participants had to 

indicate to what degree they agreed with the 

statements that followed (Completely Disagree, 

Disagree, Neither Agree nor Disagree, Agree, 

Completely Agree). 

  

Participants were hooked up to a Biosemi 

electroencephalography (EEG) system.  The 

stimulus presentation machine displayed the 

behavioural computer-based task to two separate 

screens and sent EEG triggers via parallel ports 

to the USB receiver. These EEG caps had 32 

electrodes for the scalp and 6 external electrodes. 

The electrodes were placed according to the 

layout in Figure 2.1 and EEG recordings were 

carried out in the ActiView program. Each 

resting-state task lasted for two minutes and was 

recorded with the BioSemi 32-channel system 
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and six facial electrodes: two on the mastoids, 

one below and above the eye and one to the left 

and the right of the eyes, as shown in Figure 2.1.  

Mastoid electrodes were used for referencing, 

whilst those around the eyes were placed for 

catching the eye-movement artifacts. Initially, 

the Cz electrode was used as the reference signal, 

however after pre-processing it was the average 

reference computed in MATLAB. The sampling 

rate was 512 Hz and the impedance was below 

40 kΩ.  

 

 
 
Figure 2.1: Placement of electrodes for the current 

study including all 38 electrodes.  

 

 
Figure 2.2: Channel locations represented by 

numbers from 1 to 38  

 

 

 

2.3 EEG Pre-Processing 

Continuous EEG data were imported into 

EEGLAB (Delorme and Makeig, 2004) for 

analysis. The EEG data was then pre-processed 

using the EEGLAB toolbox (Delorme and 

Makeig, 2004) and custom scripts running on 

MATLAB (MATLAB, 2020).  Channels with 

excessive artifacts such as eye blinks, eye 

movements, body movements, and muscle 

contractions were removed. The EEG data were 

digitally filtered (0.5-30 Hz band-pass filter), 

down sampled to 512 Hz, and segmented into   

2-s long epochs after re-referencing to the 

average of all scalp channels. The data from the 

participants was then converted to 148 artifact 

free epochs of 2-s per epoch, each containing 512 

frames per epoch. This data was then saved in 

plain text files. These steps were carried out by a 

Matlab script created to perform these specific 

steps.   

 

To examine functional connectivity and 

oscillatory power, subsequent analyses was 

performed separately for the delta (0.5-4 Hz), 

theta (4-8 Hz), alpha1 (8- 10 Hz), alpha2 (10-

13Hz) and beta (13-25 Hz) bands. The analysis 

was carried out in the BrainWave software 

developed by Cornelis Jan Stam (version 0.9.76; 

freely available from 

http://home.pn.nl/stam7883/brainwave.html). 

 

2.4 EEG Data Analysis 

After the data had been processed in MATLAB, 

it was converted to text files using EEGLAB 

(Delorme and Makeig, 2004). This was then 

imported to BrainWave to get the various 

metrics for analysis of functional connectivity 

and power spectra analysis. Fast Fourier 

Transform (FFT) Power Analysis had been 

conducted on delta (0.5-4 Hz), theta (4-8 Hz), 

alpha1 (8- 10 Hz), alpha2 (10-13Hz) and beta (13-

25 Hz) frequency bands. In addition, the Phase 

Lag Index (PLI) was also calculated for all 

channels. In order to measure the connectivity of 

the frontal brain only 9 electrodes had been 

considered (FP1, FP2, AF3, AF4, F7, F3, FZ, F4, 

F8) as seen in Figure 2.1. All 32 channels were 

also analysed to get the mean power value across 

each of the 4 frequency bands and the PLI value.  

 

 

http://home.pn.nl/stam7883/brainwave.html
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2.4.1 Spectral Power 

Spectral power was calculated for all EEG 

channels in Brainwave, with a frequency 

resolution of 1/2 s = 0.5 Hz. The relative power 

values were calculated for the following 

frequency bands: delta (0.5–4 Hz), theta (4–8 Hz), 

alpha1 (8–10 Hz), alpha2 (10-13Hz), beta (13–

25 Hz) and gamma (25–49 Hz). The gamma 

power has a high frequency range which was not 

required for this study. In addition, research has 

showed that gamma activity is a by-product of 

other network activity and hence not useful to 

analyse (Jia & Kohn, 2011). Thus, this frequency 

band was not examined for the current study. 

Mean power values from each of the 9 channels 

over 148 epochs were calculated for each 

frequency band. An averaged power value was 

calculated for each frequency band and the PLI 

for each subject. This was done for each 

depression group (“high” and “low”) (see 

Appendix B). Mean power for each frequency 

band was calculated by taking the power value 

for each channel (Ch1, Ch3, Ch3, Ch4, Ch27, 

Ch28, Ch29, Ch30 and Ch31) (see Figure 2.2) 

adding it then dividing it by the total number of 

channels. 

 

2.4.2 Functional Connectivity 

The phase lag index (PLI) was used to calculate 

functional connectivity between all 32 electrodes 

for each frequency band and across all epochs. 

The PLI measures phase synchronization based 

on the asymmetry of the distribution of 

instantaneous phase differences between two 

signals, which is determined using the analytical 

signal based on the Hilbert transformation (Stam 

et al., 2007). Furthermore, the PLI quantifies the 

relative phase distribution’s asymmetry; that is, 

that the likelihood that the phase difference 

Δφ  will be in the interval −π < Δφ < 0 is different 

from the likelihood that it will be in the interval 

0 < Δφ < π. This implies the presence of a 

consistent, nonzero phase difference (‘lag’) 

between two time series. The distribution is 

expected to be symmetric if there is no coupling 

or if the median phase difference is equal to or 

centres around a value of 0 mod π. The PLI is 

obtained from time series of phase differences 

Δφ (tk), k = 1…N by means of: 

 

PLI=|<sign[sin(Δφ(tk))]>| 

 

Here sign is the signum function. The PLI ranges 

between 0 and 1. A PLI of zero indicates either 

no coupling or coupling with a phase difference 

cantered around 0 (mod π). A PLI of 1 indicates 

perfect phase locking at a value of Δφ different 

from 0 (mod π). The stronger this nonzero phase 

locking is, the larger PLI will be. Mean PLI was 

calculated by getting the PLI between the 

various channels (Ch1, Ch2, Ch3, Ch4, Ch27, 

Ch28, Ch29, Ch30 and Ch31) and then dividing it 

by the total number of channels. 

 

2.4.3 Statistical Analysis  

After performing power spectrum analysis and 

obtaining PLI values from the Brainwave 

software, unstructured data (see Appendix C) 

and had to be converted into structured data for 

further analysis. All the data was imported in 

Microsoft Excel (Office 365, 2012) for creation of 

a data set. This data set was then imported into 

RStudio (RStudio Team, 2020) for statistical 

analysis. To compare the mean power values of 

the two groups of more and less depressed 

participants, a Two-Sample t-test was used. Each 

group’s (“high” and “low”) mean power in each 

frequency band and mean PLI was compared to 

one another. The assumptions made to use this 

test were; the data are continuous (not discrete), 

the data follow the normal probability 

distribution and the variance of the two 

population are equal. In addition, p < 0.05 was 

the significance threshold. 

 

3. Results 

 

To examine whether depression differentiated 

EEG signals, power in all the frequency bands 

(delta, alpha1, alpha2, beta and theta) and PLI 

values were examined for any significant 

differences between low and high depression 

groups. 

3.1. Mean power and PLI in the frontal brain 

regions 

tavIn order to see if a difference existed between 

more and less depressed participants, the mean 

power for each frequency band; delta (0.5 to 

4Hz); theta (4 to 8Hz); alpha1 (8 to 10Hz); alpha2  
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Figure 3.1: Box plot showing differences in 

oscillatory power (in the theta band) for more 

(“high”) and less (“low”) depressed groups. 

 

(10 to 13Hz) and beta (13 to 25Hz) was computed 

across 9 channels (Fp1, Fp2, F3, F4, F7, F8, AF3, 

AF4, FZ). Along with this, the PLI was calculated 

across all the 9 channels as well. The results can 

be seen in Table 3.1(see Table 3.1). 

 

Only the theta band showed a significant 

difference in the mean values between both 

groups (t(37) = -2.52; p = 0.016; Table 3.1) with the 

low depressed group having a higher average 

theta power in the chosen set of frontal channels 

(see Figure 3.1). In other frequency bands and 

the PLI no significant differences were seen to be 

found (see Table 3.1). 

 

3.2 Topographical Analysis  

In order to extract meaningful data from EEG 

analysis, topographical maps are also used. For 

the purposes of this study two subjects 

representing each group (low depression and 

high depression) were examined. The 2 subjects 

were chosen based on how closely the mean 

theta oscillatory power for each subject was 

related to the mean theta oscillatory power for 

each group the subject belonged too. These maps 

show the power spectrum at the particular 

frequency band chosen. To observe the theta 

band (4 – 7Hz) where a significant difference was 

observed, the various frequencies were 

examined; 4Hz, 6Hz and 7 Hz. A difference in 

oscillatory power across the frontal brain areas 

can be observed in Figure 3.2 and Figure 3.3. The 

comparison between both subjects shows a 

difference in oscillatory power when visualized 

in a topographical map. The top portion of the 

head in each figure, representing the frontal 

brain areas can be seen to have different values 

for both individuals. 

4. Discussion and Conclusion 

 

This study aimed to examine whether there was 

a difference in oscillatory power and functional 

connectivity between two groups of individuals 

ranked along a depression spectrum. Fingelkurts 

et al. (2007) previously showed differences in 

connectivity between those who had been 

diagnosed with MDD and healthy controls. In 

order to perform this analysis oscillatory power 

and functional connectivity had been calculated 

for all 39 participants who belong to a group of 

low depression or high depression.  

 

When looking at the 9 electrodes representing 

the frontal brain areas, a significant difference 

(t(37) = -2.52; p = 0.016; Table 3.1) was seen in 

oscillatory power for the theta band however all 

other frequency bands showed no significant 

difference. In addition, the PLI which measured 

functional connectivity did not show any 

significant difference either. The theta frequency 

band could be representative of the functional 

connectivity in the limbic system and Anterior 

Cingulate Cortex (ACC) (Fingelkurts et al., 2007). 

This is area is believed to be important for 

emotional and behavioural control (Palleiro et 

al., 2019). A lower mean connectivity value in 

this study for the high depressed group could be 

explained by functional impairments in 

participants’ limbic system and ACC which are 

related to theta activity in the human brain. 

(Pizzagalli et al., 2003). This further motivates a 

single electrode analysis across frequency bands 

to show differences in oscillatory power in 

groups with depression and those who have no 

depression. In addition to this, oscillatory power 

and functional connectivity had been examined 

for the whole brain however no significant 

results were observed. When averaging power 

across all electrodes individual electrode 

differences are washed out and hence no 

significant results are obtained (Appendix D) 

 



 

 7 

 
Table 3.1: Table with the mean values of each frequency bands (delta, theta, alpha1, alpha2, beta) and mean 

PLI, averaged across the 9 channels(Fp1, Fp2, AF3, AF4, F7, F3, Fz, F4, F8) representing the frontal brain areas. 

These values are calculated for both groups (“low” and “high”). A p-value for each “Measure” is also given. 

 
 

 

 

 

 
Fig 3.2: Topographical map at 4Hz, 6Hz and 7Hz for subject 15 in the high depression group 

  

 

Fig 3.3: Topographical map at 4Hz, 6Hz and 8Hz for subject 37 in the low depression group  

 

 

 

 
Depression 

(low) 

Depression    

(high) 

Statistical Values (t-test) 

 
n = 19 n = 20 

 
  

Relative Power 
  

p t df 

Delta (mean) 0.451978136 0.433086033 0.5934 -0.5386 37 

Theta (mean) 0.168534443 0.143017532 0.01629 * -2.517 37 

Alpha 1 (mean) 0.063018079 0.063144234 0.9910 0.01140 37 

Alpha 2 (mean) 0.174690782 0.223006508 0.2245 1.235 37 

Beta (mean) 0.132781673 0.128805249 0.7523 -0.3180 37 

Connectivity  
   

  

PLI (mean) 0.259428638 0.258157704 0.9172 -0.1047 37 
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A number of potential problems have been 

identified with the current study. Firstly, 

previous research has focussed on groups which 

have been diagnosed with MDD compared to 

healthy controls. This allows for more significant 

results already supported by prior research. This 

study was carried out with individuals who had 

some form of depression but ranked differently 

on a spectrum. However, the motivation behind 

this study was to see whether these differences 

could be observed in individuals on a depression 

spectrum and possibly in the future allow for 

more such studies to be carried out.  Secondly, in 

order to measure functional connectivity several 

other measures such as the Phase Locking Value, 

Phase Slope Index, Coherence, Pair Phase 

Consistency, Minimum Spanning Trees and 

Granger Causality were not used in this study.  

Amor et al., (2005) explained that phase 

synchrony suffers from two major problems. 

This could lead to phase synchronization 

methods being insensitive to very brief periods 

of synchronization because of their use of a time 

integration window (Amor et al., 2005). Other 

methods to measure functional connectivity 

could provide more reliable results. Thirdly and 

finally, EEG coherence in the form of oscillatory 

power or functional connectivity like any metric 

derived from electrical recordings of the scalp 

does not directly measure brain activity. 

 

Future research could build upon single 

electrode analysis in various frequency bands 

and perform further connectivity analysis in 

order to examine differences between depressed 

and non-depressed participants. This would 

allow for a more focussed analysis on specific 

brain areas making an MDD diagnosis easier to 

perform. This research could have practical 

application since, current methods of 

determining whether individuals have MDD or 

not are inefficient as several questionnaires and 

diagnosis from certified therapists or medical 

professionals is required to provide a diagnosis 

for MDD. This usually takes quite some time. It 

would be useful to employ an Artificial Neural 

Network to diagnose MDD or help trained 

professionals and hence make this process more 

efficient and faster (Rostamabad et al., 2013). 

Research by Li et al., (2020) showed that a 

Convolutional Neural Network (CNN) built to 

categorize mild depression obtained a 

classification accuracy of 80.74%. Future research 

to aid clinical diagnosis of MDD would enable 

those with this disorder to be diagnosed and 

treated at a much faster rate if relevant data 

could be collected. 
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1 Appendix A 

 

Subject 3 averaged across 148 epochs , 9 channels 

representing frontal brain areas        

0.080792042 alpha1_power 
    

0.420469219 alpha2_power 
    

0.121362613 beta_power 
    

0.269713213 delta_power 
    

0.239234985 PLI 
    

0.098043544 theta_power 
    

 

Each subject has an average power value for 

each frequency band and a PLI value. The PLI 

was calculated between 9 channels for 148 

epochs. Power values for each frequency band 

were averaged over all epochs. 
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2 Appendix B 

 

 

 

Subjects alpha1_p

ower 

alpha2_pow

er 

beta_power delta_powe

r 

PLI theta_p

ower 

Depre

ssion  

2 0.0447755

26 

0.424653904 0.126105105 0.292884384 0.244784

535 

0.103638

889 

high 

3 0.0807920

42 

0.420469219 0.121362613 0.269713213 0.239234

985 

0.098043

544 

high 

7 0.0254684

68 

0.09650976 0.17215991 0.550984985 0.264579

58 

0.132460

961 

high 

8 0.0959249

25 

0.266802553 0.09959009 0.363028529 0.236805

556 

0.167094

595 

high 

9 0.0435840

84 

0.20171021 0.146278529 0.474368619 0.289142

643 

0.125635

886 

high 

11 0.1418647

93 

0.118222222 0.080827979 0.489482597 0.257986

613 

0.163727

577 

high 

13 0.1841163

66 

0.281066817 0.089436186 0.301165916 0.234469

97 

0.137882

883 

high 

15 0.0404744

74 

0.101581832 0.219061562 0.450402402 0.236988

739 

0.177547

297 

high 

17 0.0402079

58 

0.279508258 0.150438438 0.372855105 0.229056

306 

0.146930

931 

high 

18 0.0312929

29 

0.06666936 0.10630303 0.637131313 0.307731

987 

0.151381

145 

high 

19 0.0472685

19 

0.340456553 0.123930199 0.381623219 0.224081

909 

0.101563

39 

high 

23 0.0631820

68 

0.191647415 0.109949945 0.483789329 0.232270

627 

0.144609

461 

high 

25 0.0380330

33 

0.143152402 0.162022523 0.502251502 0.266161

411 

0.144084

835 

high 

26 0.0338138

14 

0.263054805 0.075587838 0.485112613 0.253512

763 

0.136372

372 

high 

33 0.0332845

35 

0.058756757 0.106095345 0.633680931 0.371569

069 

0.158678

679 

high 

39 0.0576997

96 

0.165623344 0.133234964 0.450459225 0.282519

878 

0.177125

382 

high 

40 0.1216704

2 

0.255168919 0.067584084 0.349042793 0.225457

958 

0.201087

087 

high 

41 0.0453723

72 

0.083731231 0.138886637 0.558497748 0.301509

009 

0.163631

381 

high 

42 0.0598521

02 

0.374707207 0.167566066 0.268749249 0.208120

12 

0.123906

907 

high 

43 0.0342064

56 

0.326637387 0.179683934 0.346496997 0.257170

42 

0.104947

447 

high 

4 0.0617590

09 

0.141074324 0.114292793 0.466771772 0.239709

459 

0.209187

688 

low 

5 0.0502297 0.15868018 0.185036787 0.42739039 0.225606 0.166455 low 
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3 607 706 

10 0.0688611

11 

0.281676426 0.180608108 0.311692943 0.193734

985 

0.148867

868 

low 

12 0.1174121

62 

0.139267267 0.088593844 0.462825826 0.234259

76 

0.184216

967 

low 

14 0.0563828

83 

0.093039039 0.089096847 0.54649024 0.283783

033 

0.207972

222 

low 

16 0.0946516

52 

0.356246997 0.097737988 0.332253754 0.230162

913 

0.114077

327 

low 

20 0.0812597

6 

0.143424174 0.119993243 0.490854354 0.250983

483 

0.157690

691 

low 

24 0.0710743

24 

0.056265015 0.206968468 0.454674174 0.232155

405 

0.194870

12 

low 

27 0.0484617

12 

0.095818318 0.10809985 0.534915165 0.290457

958 

0.204117

117 

low 

28 0.0606509

01 

0.071755255 0.17943994 0.470583333 0.247366

366 

0.207556

306 

low 

29 0.0638340

84 

0.305148649 0.086338589 0.425925676 0.288026

276 

0.111199

7 

low 

30 0.0383881

38 

0.14584009 0.183548799 0.455312312 0.228319

069 

0.161205

706 

low 

31 0.0357852

85 

0.278801051 0.118825826 0.426631381 0.264219

97 

0.131295

796 

low 

32 0.0360454

78 

0.063557623 0.157544703 0.570059432 0.269519

38 

0.163883

204 

low 

34 0.0425442

94 

0.067286787 0.140345345 0.565088589 0.336346

096 

0.174753

003 

low 

35 0.0424887

39 

0.061477477 0.117358108 0.565448949 0.305487

237 

0.203491

742 

low 

36 0.0396298

57 

0.044099523 0.115088616 0.589685072 0.323843

217 

0.202005

453 

low 

37 0.0818213

21 

0.327637387 0.148259009 0.278568318 0.215629

129 

0.156049

55 

low 

38 0.1060630

63 

0.488029279 0.085674925 0.212412913 0.269533

784 

0.103258

258 

low 

 

An average power and PLI value was 

calculated for each subject over 148 epochs. After 

this individuals were separated into the two 

groups. 
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3. Appendix C 

 

 

Example of unstrcutred data for Subject 33 obtained after performing analtysis in Brainwave. 
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4. Appendix D  

  
Total 

Group 

Depress

ion(low) 

Depression

(high) 

T-test 

(p value)  
n = 39 n = 19 n = 20 

 

Relative 

Power 

  

   

Delta (mean) 0.4422898

79 

0.321635

528 

0.323898542 0.9495 

Theta (mean) 0.1554488

48 

0.158311

014 

0.142082424 0.1662 

Alpha 1 

(mean) 

0.0630827

74 

0.085795

918 

0.085763655 0.9986 

Alpha 2 

(mean) 

0.1994680

77 

0.246463

231 

0.273345326 0.5032 

Beta (mean) 0.1307424

81 

0.180457

767 

0.169005463 0.43 

Connectivity 
    

PLI (mean) 0.2587768

77 

0.244524

916 

0.250062886 0.5973 

 

Results obtained when performing t test on average power and PLI values for all 32 channels 

for each group. No significant values were obtained. 


